当前位置:文档之家› 高考数学讲义微专题05函数的对称性与周期性(含详细解析)

高考数学讲义微专题05函数的对称性与周期性(含详细解析)

高考数学讲义微专题05函数的对称性与周期性(含详细解析)
高考数学讲义微专题05函数的对称性与周期性(含详细解析)

微专题05 函数的对称性与周期性

一、基础知识

(一)函数的对称性

1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称

2、轴对称的等价描述:

(1)f a x f a x f x 关于x a 轴对称(当a 0时,恰好就是偶函数)

ab

(2)f a x f b x f x 关于x 轴对称

2

在已知对称轴的情况下,构造形如f a x f b x 的等式只需注意两点,一是等式

ab 两侧f 前面的符号相同,且括号内x 前面的符号相反;二是a, b的取值保证x 为所给

2

对称轴即可。例如:f x 关于x 1 轴对称f x f 2 x ,或得到

f 3 x f 1 x 均可,只是在求函数值方面,一侧是f x 更为方便

(3)f x a 是偶函数,则f x a f x a ,进而可得到:f x 关于x a 轴对称。

①要注意偶函数是指自变量取相反数,函数值相等,所以在f x a 中,x 仅是括号中的一

部分,偶函数只是指其中的x 取相反数时,函数值相等,即f x a f x a ,要与以下的命题区分:若f x 是偶函数,则f x a f x a :f x 是偶函数中的x占据整个括号,所以是指括号内取相反数,则函数值相等,所以有f x a f x a

②本结论也可通过图像变换来理解,f x a 是偶函数,则f x a 关于x 0 轴对称,

而f x 可视为f x a 平移了a 个单位(方向由a的符号决定),所以f x 关于x a对称。

3、中心对称的等价描述:

(1)f a x f a x f x 关于a,0 轴对称(当a 0时,恰好就是奇函数)

ab

(2)f a x f b x f x 关于 a b,0 轴对称

2

在已知对称中心的情况下,构造形如f a x f b x 的等式同样需注意两点,一是

ab

等式两侧f 和x 前面的符号均相反;二是a, b的取值保证x 为所给对称中心即可。例

2

如:f x 关于1,0 中心对称f x f 2 x ,或得到f 3 x f 5 x 均可,同样在求函数值方面,一侧是f

x 更为方便

(3)f x a 是奇函数,则f x a f x a ,进而可得到:f x 关于a,0 轴对称。

① 要注意奇函数是指自变量取相反数,函数值相反,所以在f x a 中,x 仅是括号中的一部分,奇函数只是指其中的x 取相反数时,函数值相反,即f x a f x a ,要与以下的命题区分:

若f x 是奇函数,则f x a f x a :f x 是奇函数中的x占据整个括号,所以是指括号内取相反数,则函数值相反,所以有f x a f x a

② 本结论也可通过图像变换来理解,f x a 是奇函数,则f x a 关于0,0 中心对称,而f x 可视为f x a 平移了a 个单位(方向由a的符号决定),所以f x 关于a,0 对称。

4、对称性的作用:最突出的作用为“知一半而得全部”,即一旦函数具备对称性,则只需要

分析一侧的性质,便可得到整个函数的性质,主要体现在以下几点:

(1)可利用对称性求得某些点的函数值

(2)在作图时可作出一侧图像,再利用对称性得到另一半图像

(3)极值点关于对称轴(对称中心)对称

(4)在轴对称函数中,关于对称轴对称的两个单调区间单调性相反;在中心对称函数中,关于对称中心对称的两个单调区间单调性相同

(二)函数的周期性

1、定义:设f x 的定义域为D ,若对x D ,存在一个非零常数T ,有f x T f x ,则称函数f x 是一个周期函数,称T 为f x 的一个周期

2、周期性的理解:可理解为间隔为T 的自变量函数值相等

3、若f x 是一个周期函数,则f x T f x ,那么f x 2T f x T f x ,即2T 也是f x 的一个周期,进而可得:kT k Z 也是f x 的一个周期

4、最小正周期:正由第 3 条所说,kT k Z 也是f x 的一个周期,所以在某些周期函数中,往往寻找周期中最小的正数,即称为最小正周期。然而并非所有的周期函数都有最小正周期,比如常值函数f x C

5、函数周期性的判定:

( 1) f x a f x b :可得 f x 为周期函数,其周期 T b a ( 2) f x a f x f x 的周期 T 2a

分析: 直接从等式入手无法得周期性, 考虑等间距再构造一个等式: f x 2a f x a

分析: f x 2 a

xa

( 6)双对称出周期:若一个函数 f x 存在两个对称关系,则 f x 是一个周期函数,具体 情况如下:(假设 b a )

① 若 f x 的图像关于 x a,x b 轴对称,则 f x 是周期函数,周期 T 2 b a 分析: f x 关于 x a 轴对称

f x f 2a x

f x 关于 x b 轴对称

f x f 2b x

f 2a x f 2b x f x 的周期为 T 2b 2a 2 b a

② 若 f x 的图像关于 a,0 , b,0 中心对称,则 f x 是周期函数,周期 T 2 b a

③ 若 f x 的图像关于 x a 轴对称,且关于 b,0 中心对称,则 f x 是周期函数,周期 T 4 b a

7、函数周期性的作用:简而言之“窥一斑而知全豹” ,只要了解一个周期的性质,则得到整

个函数的性质。

(1)函数值:可利用周期性将自变量大小进行调整,进而利用已知条件求值

所以有: f x 2a xa x f x ,即周期 T 2a

注:遇到此类问题,如果一个等式难以推断周期,

过两个等式看能否得出周期

那么可考虑等间距再列一个等式,进而通 3) f x a

f x 的周期 T 2a

4) f x k ( k 为常数) f x 的周期 T 2a 分析: f x

k, f x a

f x 2a k ,两式相减可得: f x 2a 5) f x f x a

k ( k 为常数)

f x 的周期 T 2a

x

( 2)图像:只要做出一个周期的函数图象,其余部分的图像可利用周期性进行“复制 +粘贴” ( 3)单调区间:由于间隔 kT k Z 的函数图象相同,所以若 f x 在 a,b b a T 上 单调增(减) ,则 f x 在 a kT,b kT k Z 上单调增(减)

(4)对称性:如果一个周期为 T 的函数 f x 存在一条对称轴 x a (或对称中心) ,则 f x

kT 存在无数条对称轴,其通式为

xa k

2

Z 证明: Q f x 关于 x

a 轴对称

fx

f 2a x

函数 f x 的周期为 T

fx kT f x

f x kT f 2a

x

f x 关于 kT

x a 轴对称

2

注:其中( 3)(4)在三角函数中应用广泛,可作为检验答案的方法 二、典型例题:

例 1:设 f (x )为定义在 R 上的奇函数, f (x 2) f (x ),当 0 x 1时, f (x ) x ,则

f (7.5)

答案: f (7.5)

答案: D

思路:由 f (x 2)

f (x )可得: f x 的周期 T 4, 考虑将 f (7.5) 用0 x 1中的函

数值进行表示: f (7.5) f 3.5 0.5 ,此时周期性已经无法再进行调整,考虑利用奇

偶性进行微调:

0.5

f 0.5

1

,所以 f (7.5) 2

A. 2:定义域为 R 的函数 f

B. 思路:

x2 2f

x 满足 f x2 C.

2f x ,当 x 0,2 时, f x

D.

,可类比函数的周期性,所以考虑将

5

向x

2

0,2 进行转化:

1 3

2 32

2

小炼有话说: f x 虽然不是周期函数,但函数值关系与周期性类似,可理解为:间隔 位的自变量,函数值呈 2 倍关系。所以在思路上仍可沿用周期性的想法,将自变量向已知范 围进行靠拢。

f 2016

f 4 ,而由已知可得 f 4

1 f

2 3

,所以 f 2016

5

3 5 1 f2

答案: D

log 2 1 x ,x

0 例 4

定义在 R 上的函数 f

x 满足 f x

,则

f x 1 f

x 2 ,x 0

x 的 特 点 为 x 0 才 有 解 析 式 能 够 求 值 , 而 x 0 只 能 通 过

f x f x 1 f x 2 减少自变量的取值,由所求 f 2009 可联想到判断 f x 是否

具有周期性, x 0时, f x f x 1 f x 2 ,则有 f x 1 f x 2 f x 3 , 两式相加可得: f x f x 3 ,则

f x f x 3 f x 6 ,即 f x 在 x 0 时 周期是 6 ,故 f 2009 f 5 f 2 ,而 f 2 f 1 f 0 f 0 f 1 f 0 f 1 1

答案: C

小炼有话说: (1)本题的思路依然是将无解析式的自变量通过函数性质向含解析式的自变量

2 个单

例 3:定义在 R 上的函数 f x 对任意 x

f 2016 等于( ) 1

1

A. B.

C

4

2

1f x

1 R ,都有 f x2

f 2

1

,则

1f

x

4

1

3

D.

3

5

1 f x

思 路 : 由 f x 2 及 所 求

1fx

fx4

1 fx

2 1

1

fx

1 f x

1

fx

2

1 1 f x

f x ,所以 f x 是周期为 4 的周期函数,故

f 2009 的值为( )

A. 1

B. 0

C. 1

D. 2

思路:所给

f 2010 可 联 想 到 周 期 性 , 所 以 考 虑

1 f x

靠拢,而 x 2009 数较大,所以考虑判断函数周期性。

( 2)如何快速将较大自变量缩至已知范围中?可利用带余除法除以周期,观察余数。则被除 数的函数值与余数的函数值相同,而商即为被除数利用周期缩了多少次达到余数。例如本题 中 2009 6 334L 5 ,从而 f 2009 f 5

( 3)本题推导过程中 f x f x 3 也有其用处,其含义是间隔为 3 的自变量函数值互 为相反数,相比周期,它的间隔更小,所以适用于利用周期缩小自变量范围后,进行“微调” 从而将自变量放置已知区间内

例 5:函数 f x 是周期为 4 的偶函数,当 x 0,2 时, f x log 2 x 1 1 ,则不等式

xf x 0 在 1,3 上的解集为 ________________

思路:从已知出发可知 x 0,2 时, f x 为增函数,

log 2 2 1 0,所以 x 0,1 时, f x 0,

2, 1 时, f x 0 。从而可作出草

图。由所解不等式

xf x 0可

将 1,3 分为 1,0 U 0,3 两部分, 当 x 0 时, f x 0 ,所以 x 1,0 ,当 x 0 时,

f x 0 ,所以 f x 1,3 ,综上解集为: 1,0 U 1,3

案: 1,0 U 1,3

例6 :已知 f x 是定义在 R 上的函

数,

满足 f x f x

0,f x

1f x 1 ,

x

0,1 时,

f 2

xx

x ,则函数 f x 的最小值为( )

A.

1

B.

1 1

1

C.

D.

4

4

2

2

思路:

由 fx

1

fx

1 可得 f x

是周期为 2 的周期函数,所以只需要求出一

个周期 内的最值即可。 由 f x x 0可得 f x 为奇函数,所以考虑区间 1,1 ,在 x 0,1

x 1,2 时, f x

0 ,由偶函数可得: x 1,0 时,

时, f x

12

1

,所以 4

max

1 1

,而由于 f x 为奇函数,所以在

24

1 1 x

1,0 时,

x min f

f

2

2

1

,所以 f 1 即为 f x 在 1,1 的最

42

小值,从而也是 f x 在 R 上的最小值

答案: B

例 7:已知定义域为 R 的函数 f x 满足 f x f x 4 ,且函数 f x 在区间 2, 上 单调递增,如果 x 1 2

x 2 ,且 x 1 x 2 4 ,则 f x 1 f x 2 的值( )

A. 可正可负

B. 恒大于 0

C. 可能为 0

D. 恒小于 0 思路一:题目中给了单调区间,与自变量不等关

系,所求为函数值的关系,从而想到单调性, 而 x 1

x 2 4可得 x 2 4 x 1,因为 x 1 2,

所以 4 x 1 2 ,进而将 x 2,4 x 1装入了 2,

中 , 所 以 由

x 2

4 x 1 可 得 f x 2 f 4 x 1 , 下一 步 需 要 转 化 f 4 x 1 , 由 f x f x 4 可得 f x 关于 2,0 中

心对称,所以有 f 4 x f x 。代入 x 1 可得 f 4 x 1 f x 1 ,从而 f x 2 f x 1 f x 1 f x 2 0

思路二: 本题运用数形结合更便于求解。 先从 f x f x 4 分析出 f x 关于 2,0 中 心 对 称 , 令

x 2 代 入 到 f x f x 4 可 得 f 2 0 。中心对称的函数对称区间

单调性相同, 从而可作 出草图。而 x 1 x 2 4 x 1 x 2 2,即 x 1, x 2的中点位于

1 2

2 1 2

x 2的左侧,所以 x 1比 x 2距离 x 2更远,结合图象便可

分析出

f x 1 f x 2 恒小于 0

答案: D

小炼有话说: (1)本题是单调性与对称性的一个结合,入手点在于发现条件的自变量关系, 与所求函数值关系,而连接它们大小关系的“桥梁”是函数的单调性,所以需要将自变量装 入同一单调区间内。而对称性起到一个将函数值等价转化的作用,进而与所求产生联系

(2)数形结合的关键点有三个:第一个是中心对称图像的特点,不仅仅是单调性相同,而且 是呈“对称”的关系,从而在图像上才能看出 f x 1 f x 2 的符号;第二个是 f 2 0 , 进 而 可 知 x 2,

, f x 0;x ,2 ,f x 0 ; 第 三 个 是

x 1 x 2

4 x 1 x

2 2 , 4 2 2 ,

既然是数形结合, 则题中条件也要尽可能转为图像特点,而

x 1

x 2

4 表现出中点的位

置,

从而能够判断出

x 1,x 2 距离中心对称点的远近。

例8 :函数 f x 的定义域为 R ,若 f x 1

与 f x 1 都是奇函数,则( )

A.

f x 是偶函数

B. f x 是奇函数

《函数对称性的解题方法归纳》

函数对称性的解题方法归纳 讲函数的对称性主要是讲奇偶函数图像的对称性,函数与反函数图像的对称性。前者是函数自身的性质,而后者是函数的变换问题。下文中我们均简称为函数的变换性。函数的对称性在近几年高考中屡见不鲜,对于解决其它问题也很有帮助,同时也是数学美的很好体现。现通过函数自身的对称性和不同函数之间的对称变换这两个方面来探讨函数对称性有关的性质。 1. 函数自身的对称性探究 设函数 )2()2(),()(x f x f x f +=-∞+-∞上满足在,)7()7(x f x f +=-,且在闭区间[0,7]上只有0)3()1(==f f (1)试判断函数)(x f y =的奇偶性; (2)试求方程0)(=x f 在闭区间[-2005,2005]上根的个数并证明你的结论。 分析:由)7()7(),2()2(x f x f x f x f +=-+=-可得:函数图象既关于x =2对称,又关于x =7对称,进而可得到周期性,然后再继续求解,而本题关键是要首先明确函数的对称性,因此,熟悉函数对称性是解决本题的第一步。 定理1 函数)(x f y =的图像关于直线x =a 对称的充要条件是)()(x a f x a f -=+即)2()(x a f x f -= 证明(略) 推论 函数)(x f y =的图像关于y 轴对称的充要条件是)()(x f x f -= 定理2 函数)(x f y =的图像关于点A (a ,b )对称的充要条件是 b x a f x f 2)2()(=-+ 证明(略) 推论 函数)(x f y =的图像关于原点O 对称的充要条件是0)()(=-+x f x f 偶函数、奇函数分别是定理1,定理2的特例。 定理3 ①若函数)(x f y =的图像同时关于点A (a ,c )和点B (b ,c )成中心对称(b a ≠),则)(x f y =是周期函数,且b a -2是其一个周期。

函数周期性与对称性的函数方程 专题

函数周期性与对称性的函数方程 【问题提出】 问题1:满足下列条件的函数是否为周期函数?为什么?如果是,请写出它的一个正周期. (1))()(a x f x f += ; (2))()(a x f x f +-=;(3))()(a x f b x f +=+ (4)) (1 )(a x f x f +± =.(其中0,0>>b a ) 问题2:满足下列条件的函数是否具有对称性?为什么?如果有,请写出它的对称性质. (1))()(x a f x a f -= +; (2))()(x b f x a f -=+ (3))()(x a f x a f --=+;(4))()(x b f x a f --=+ 【探究拓展】 探究1:设()b a ,为函数) (x f y =的对称中心,则必有等式 ________________________ 变式:(复旦自主招生)写出函数)3sin()(-+=x x x f 的一个对称中心为____________ 探究2:已知奇函数 )(x f 的图像关于直线2-=x 对称,当[]2,0∈x 时, ,2)(x x f = 则______)9(=-f 变式1:奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且1)1(=f ,则 =+)9()8(f f _____ 1

变式2:已知偶函数)(x f 满足)(1 )2(x f x f - =+,当 32<---≤-=0 ),2()1(, 0),2(log )(2x x f x f x x x f ,则) 2013(f 的值为_______. -1 变式:定义在 R 上的函数 ) (x f 满足 ?? ?>---≤=-. 0),2()1(,0,3)(1x x f x f x x f x ,则 =)2014(f ______. 9 2- 探究4:已知函数y =f (x )(x ∈R )满足f (x +2)=f (x ),且x ∈(-1,1]时,f (x )=|x |,则y =f (x )与y =log 7x 的交点

(完整版)专题函数的周期性

专题函数的周期性 一知识点精讲 1 .周期函数的定义:对于f (x)定义域内的每一个x ,都存在非零常数T ,使得f(x T) f (x)恒成立,则称函数f (x)具有周期性,T叫做f (x)的一个周期,则kT (k Z,k 0 )也是f (x)的周期,所有周期中的最小正数叫 f (x)的最小正周期.周期函数的定义域一定是无限集 2性质 ①若f(x)的周期中,存在一个最小的正数,则称它为f(x)的最小正周期; 3?几种特殊的具有周期性的抽象函数: 函数y f x满足对定义域内任一实数x (其中a0为常数) (1) f x f:X a,则y f x的周期T a . (2) f x a f x,贝U f x的周期T2a . (3) f x a的周期T2a . ,贝U T x f x (4) f x a f x a,贝U f x的周期T2a . (5) f(x a)1 f (x),则f x 1 f(x)的周期 T2a . (6) f(x a) 1 f(x),则f 1 f (x) x的周期T4a数. (7) f(x a) 1 f (x),则f x 1 f(x) 的周期T4a . (8)函数y f (x)满足f (a x) f (a x)(a 0), 若f (x)为奇函数,则其周期为 T 4a,若f (x)为偶函数,则其周期为T 2a . (9)函数y f (x) x R的图象关于直线x a和x b a b都对称,则函数f (x)是 以2 b a为周期的周期函数. (10) 函数y f (x) x R的图象关于两点A a, y o > B b, y o a b都对称,则函数 f (x)是2 b a为周期的周期函数. (11) 函数y f (x) x R的图象关于A a, y0和直线x b a b都对称,则函数 f (x)是以4 b a为周期的周期函数. (12) f(x a) f(x) f (x-a),则f (x)的周期T 6a. 二典例解析 1. 设f(x)是(—a , +s)上的奇函数,f(x+2)= —f(x),当0W x w 1 时,f(x)=x ,则f(7.5)=( ) A.0.5 B. —0.5 C.1.5 D. —1.5 2. 若y=f(2x)的图像关于直线x a和x b(b a)对称,则f(x)的一个周期为( ) ②若周期函数f(x)的周期为T,则f( x)(0)是周期函数,且周期为 2 2

函数的对称性

函数的对称性 知识梳理 一、对称性的概念及常见函数的对称性 1、对称性的概念 ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 2、常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数;②一次函数;③二次函数;④反比例函数;⑤指数函数;⑥对数函数;⑦幂函数;⑧正弦函数; ⑨正弦型函数sin()y A x ω?=+既是轴对称又是中心对称;⑩余弦函数;⑾正切函数;⑿耐克函数; ⒁绝对值函数:这里主要说的是(||)y f x =和|()|y f x =两类。前者显然是偶函数,它会关于y 轴对称;后者是把x 轴下方的图像对称到x 轴的上方,是否仍然具备对称性,这也没有一定的结论,例如|ln |y x =就没有对称性,而|sin |y x =却仍然是轴对称。 ⒂形如(0,)ax b y c ad bc cx d +=≠≠+的图像是双曲线,其两渐近线分别直线d x c =- (由分母为零确定)和直线a y c =(由分子、分母中x 的系数确定),对称中心是点(,)d a c c -。 二、抽象函数的对称性 【此类问题涉及到了函数图象的两种对称性,一种是同一函数自身的对称性,我们称其为自对称;另一种是两个函数之间的对称性 ,我们称其为互对称。】 1、函数)(x f y =图象本身的对称性(自对称问题) (1)轴对称 ①)(x f y =的图象关于直线a x =对称 ?)()(x a f x a f -=+ ?)2()(x a f x f -= ?)2()(x a f x f +=-

函数的周期性与对称性

第5炼 函数的对称性与周期性 一、基础知识 (一)函数的对称性 1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称 2、轴对称的等价描述: (1)()()f a x f a x -=+?()f x 关于x a =轴对称(当0a =时,恰好就是偶函数) (2)()()()f a x f b x f x -=+?关于2 a b x +=轴对称 在已知对称轴的情况下,构造形如()()f a x f b x -=+的等式只需注意两点,一是等式两侧f 前面的符号相同,且括号内x 前面的符号相反;二是,a b 的取值保证2 a b x +=为所给对称轴即可。例如:()f x 关于1x =轴对称()()2f x f x ?=-,或得到()()31f x f x -=-+均可,只是在求函数值方面,一侧是()f x 更为方便 (3)()f x a +是偶函数,则()()f x a f x a +=-+,进而可得到:()f x 关于x a =轴对称。 ① 要注意偶函数是指自变量取相反数,函数值相等,所以在()f x a +中,x 仅是括号中的一部分,偶函数只是指其中的x 取相反数时,函数值相等,即()()f x a f x a +=-+,要与以下的命题区分: 若()f x 是偶函数,则()()f x a f x a +=-+????:()f x 是偶函数中的x 占据整个括号,所以是指括号内取相反数,则函数值相等,所以有()()f x a f x a +=-+???? ② 本结论也可通过图像变换来理解,()f x a +是偶函数,则()f x a +关于0x =轴对称,而()f x 可视为()f x a +平移了a 个单位(方向由a 的符号决定),所以()f x 关于x a =对称。

高中数学函数的周期性练习

高中数学函数的周期性练习 题型一:求周期问题 【例1】 已知()f x 是定义在R 上的函数,(10)(10)f x f x +=-且(20)(20)f x f x -=-+,则()f x 是( ) A . 周期为20的奇函数 B. 周期为20的偶函数 C. 周期为40的奇函数 D. 周期为40的偶函数 【例2】 求函数tan cot y αα=- 的最小正周期 【例3】 定义在R 上的函数()f x 满足(3)()0f x f x ++=,且函数32f x ??- ?? ?为奇函数.给出以下3个命题: ①函数()f x 的周期是6; ②函数()f x 的图象关于点302 ??- ???,对称; ③函数()f x 的图象关于y 轴对称,其中,真命题的个数是( ). A .3 B .2 C .1 D .0 【例4】 若y =f (2x )的图像关于直线2a x =和()2 b x b a =>对称,则f (x )的一个周期为( ) A . 2a b + B .2()b a - C .2 b a - D .4()b a - 【例5】 已知函数()f x 对于任意,a b ∈R ,都有()()f a b f a b ++-2()()f a f b =?,且(0)0f ≠. ⑴求证:()f x 为偶函数; ⑵若存在正数m 使得()0f m =,求满足()()f x T f x +=的1个T 值(T ≠0). 典例分析

【例6】 设()f x 是定义在R 上的偶函数,其图象关于直线1x =对称.且对任意121,[0,]2 x x ∈,都有1212()()()f x x f x f x +=?,(1)0f a =>. ⑴求1()2f 及1()4 f ; ⑵证明()f x 是周期函数; 题型二:求值问题 【例7】 已知定义在R 上的函数()f x 的图象关于点304??- ??? ,成中心对称图形,且满足3()2f x f x ??=-+ ?? ?,(1)1f -=,(0)2f =-.那么,(1)(2)(2006)f f f +++L 的值是( ) A .1 B .2 C .1- D .2- 【例8】 (2005天津卷)设f (x )是定义在R 上的奇函数,且()y f x =的图象关于直线12 x =对称,则f (1)+ f (2)+ f (3)+ f (4)+ f (5)=_0_______________. 【例9】 (2006年安徽卷理)函数()f x 对于任意实数x 满足条件()() 12f x f x += ,若()15,f =-则()()5f f =__________。 【例10】 (2006年山东卷)已知定义在R 上的奇函数f (x )满足f (x+2)=-f (x ),则,f (6)的值为 ( ) (A )-1 (B) 0 (C) 1 (D)2 【例11】 (1996全国,15)设()f x 是(),-∞+∞上的奇函数,()()2f x f x +=-,当0≤x ≤1时,()f x x =, 则f (7.5)等于( ) A .0.5 B.-0.5 C.1.5 D.-1.5 【例12】 已知函数f (x )的定义域为N ,且对任意正整数x ,都有f (x )=f (x -1)+f (x +1)若f (0)=2004,求 f (2004)

函数对称性、周期性和奇偶性的规律总结大全 .分解

函数对称性、周期性和奇偶性规律 一、 同一函数的周期性、对称性问题(即函数自身) 1、 周期性:对于函数 )(x f y =,如果存在一个不为零的常数 T ,使得当x 取定义域内的每一个值时,都有 )()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周 期。如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。 2、 对称性定义(略),请用图形来理解。 3、 对称性: 我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =- 奇函数关于(0,0)对称,奇函数有关系式 0)()(=-+x f x f 上述关系式是否可以进行拓展?答案是肯定的 探讨:(1)函数)(x f y =关于a x =对称?)()(x a f x a f -=+ )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 简证:设点),(11y x 在 )(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==, 即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。得证。 若写成:)()(x b f x a f -=+,函数)(x f y =关于直线2 2)()(b a x b x a x +=-++= 对称 (2)函数 )(x f y =关于点),(b a 对称?b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+- 简证:设点),(11y x 在 )(x f y =上,即) (11x f y =,通过 b x f x a f 2)()2(=+-可知, b x f x a f 2)()2(11=+-,所以 1 112)(2)2(y b x f b x a f -=-=-,所以点 )2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。得 证。 若写成:c x b f x a f =-++)()(,函数)(x f y =关于点)2 ,2( c b a + 对称 (3)函数 )(x f y =关于点b y =对称:假设函数关于b y =对称,即关于任一个x 值,都有两个 y 值与其对应,显然这不符合函数的定义,故函数自身不可能关于b y =对称。但在曲线c(x,y)=0,则 有可能会出现关于 b y =对称,比如圆04),(22=-+=y x y x c 它会关于y=0对称。 4、 周期性: (1)函数 )(x f y =满足如下关系系,则T x f 2)(的周期为 A 、 )()(x f T x f -=+ B 、) (1 )()(1)(x f T x f x f T x f - =+= +或 C 、 )(1)(1)2(x f x f T x f -+=+或) (1) (1)2(x f x f T x f +-=+(等式右边加负号亦成立)

函数对称性、周期性和奇偶性规律总结

( 函数对称性、周期性和奇偶性 关岭民中数学组 (一)、同一函数的函数的奇偶性与对称性:(奇偶性是一种特殊的对称性) 1、奇偶性:(1) 奇函数关于(0,0)对称,奇函数有关系式0)()(=-+x f x f (2)偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =- 2、奇偶性的拓展 : 同一函数的对称性 (1)函数的轴对称: 函数)(x f y =关于a x =对称?)()(x a f x a f -=+ > )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 若写成:)()(x b f x a f -=+,则函数)(x f y =关于直线 2 2)()(b a x b x a x +=-++= 对称 证明:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知, )2()(111x a f x f y -==,即点)(),2(11x f y y x a =-也在上,而点 ),(11y x 与点),2(11y x a -关于x=a 对称。得证。 说明:关于a x =对称要求横坐标之和为2a ,纵坐标相等。 ∵1111(,)(,)a x y a x y +-与 关于x a =对称,∴函数)(x f y =关于a x =对称 ?)()(x a f x a f -=+ ∵1111(,)(2,)x y a x y -与关于x a =对称,∴函数)(x f y =关于a x =对称 ?)2()(x a f x f -= ∵1111(,)(2,)x y a x y -+与关于x a =对称,∴函数)(x f y =关于a x =对称 ?)2()(x a f x f +=- (2)函数的点对称: · 函数)(x f y =关于点),(b a 对称?b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+-

抽象函数的性质问题解析

抽象函数的性质问题解析 抽象函数是高中数学的一个难点,也是近几年来高考的热点。考查方法往往基于一般函数,综合考查函数的各种性质。本节给出抽象函数中的函数性质的处理策略,供内同学们参考。 1、 定义域:解决抽象函数的定义域问题——明确定义、等价转换。 材料一:若函数)1(+=x f y 的定义域为)3,2[-,求函数)21(+=x f y 的定义域。 解析:由)1(+=x f y 的定义域为)3,2[-,知1+x 中的)3,2[-∈x ,从而411<+≤-x ,对函数)21(+=x f y 而言,有1124x -≤+<,解之得:),21(]31,(+∞--∞∈ x 。 所以函数)21(+=x f y 的定义域为),21(]31,(+∞--∞ 总结:函数的定义域是指自变量的取值范围,求抽象函数的定义域的关键是括号内式子的地位等同(即同一对应法则后括号内的式子具有相同的取值范围),如本题中的1+x 与21+x 的范围等同。 2、 值域:解决抽象函数的值域问题——定义域、对应法则决定。 材料二:若函数)1(+=x f y 的值域为]1,1[-,求函数)23(+=x f y 的值域。 解析:函数)23(+=x f y 中定义域与对应法则与函数)1(+=x f y 的定义域与对应法则完全相同,故函数)23(+=x f y 的值域也为]1,1[-。 总结:当函数的定义域与对应法则不变时,函数的值域也不会改变。 3、 对称性:解决抽象函数的对称问题——定义证明是根本、图象变换是捷径、特值代入是妙法。 材料三:设函数)(x f y =定义在实数集上,则函数)1(-=x f y 与)1(x f y -=的图象关于( ) A 、直线0=y 对称 B 直线0=x 对称 C 直线1=y 对称 D 直线1=x 对称 解法一(定义证明):设点),(00y x P 是函数)1(-=x f y 的图象上的任意一点,则)1(00-=x f y ,),(00y x P 关于直线m x =的对称点为),2(00/y x m P -,要使点),2(00/y x m P -在函数)1(x f y -=的图象上,则)21()]2(1[000m x f x m f y -+=--=,应有121-=-m ,故1=m , 所以函数)1(-=x f y 与)1(x f y -=的图象关于直线1=x 对称。 解法二(图象变换法):由函数)(x f y =的图象向右平移1个单位得到函数)1(-=x f y 的

函数的周期性练习题兼答案

函数周期性分类解析 一.定义:若T 为非零常数,对于定义域内的任一x ,使)()(x f T x f =+恒成立 则f (x )叫做周期函数,T 叫做这个函数的一个周期。 二.重要结论 1、()()f x f x a =+,则()y f x =是以T a =为周期的周期函数; 2、 若函数y=f(x)满足f(x+a)=-f(x)(a>0),则f(x)为周期函数且2a 是它的一个周期。 3、 若函数()()f x a f x a +=-,则()x f 是以2T a =为周期的周期函数 4、 y=f(x)满足f(x+a)=() x f 1 (a>0),则f(x)为周期函数且2a 是它的一个周期。 5、若函数y=f(x)满足f(x+a)= () x f 1 -(a>0),则f(x)为周期函数且2a 是它的一个周期。 6、1() ()1() f x f x a f x -+=+,则()x f 是以2T a =为周期的周期函数. 7、1() ()1() f x f x a f x -+=- +,则()x f 是以4T a =为周期的周期函数.

8、 若函数y=f(x)满足f(x+a)= ) (1) (1x f x f -+(x ∈R ,a>0),则f(x)为周期函数且4a 是它的 一个周期。 9、 若函数y=f(x)的图像关于直线x=a,x=b(b>a)都对称,则f(x)为周期函数且2(b-a )是它的一个周期。 10、函数()y f x =()x R ∈的图象关于两点()0,A a y 、()0,B b y ()a b <都对称,则 函数()f x 是以()2b a -为周期的周期函数; 11、函数()y f x =()x R ∈的图象关于()0,A a y 和直线x b =()a b <都对称,则函数()f x 是以()4b a -为周期的周期函数; 12、 若偶函数y=f(x)的图像关于直线x=a 对称,则f(x)为周期函数且2a 是它 的一个周期。 13、若奇函数y=f(x)的图像关于直线x=a 对称,则f(x)为周期函数且4a 是它的一个周期。 14、若函数y=f(x)满足f(x)=f(x-a)+f(x+a)(a>0),则f(x)为周期函数,6a 是它的一个周期。 15、若奇函数y=f(x)满足f(x+T)=f(x)(x ∈R ,T ≠0),则f(2 T )=0.

函数对称性、周期性和奇偶性规律总结

函数对称性、周期性和奇偶性规律总结

注:换种说法:)(x f y =与()()y g x f x ==-若满足)()(x g x f -=,即它们关于0=y 对称。 2、()y f x =与()y f x =-关于Y 轴对称。 证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以()y f x =-经过点11(,)x y - ∵11(,)x y 与11(,)x y -关于Y 轴对称,∴()y f x =与()y f x =-关于Y 轴对称。 注:因为11(,)x y -代入()y f x =-得111(())()y f x f x =--=所以()y f x =-经过点11(,)x y - 换种说法:)(x f y =与()()y g x f x ==-若满足)()(x g x f -=,即它们关于0=x 对称。 ()(())()g x f x f x -=--= 3、()y f x =与(2)y f a x =-关于直线x a = 对称。 证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以(2)y f a x =-经过点11(2,)a x y - ∵11(,)x y 与11(2,)a x y -关于x a =轴对称,∴()y f x =与(2)y f a x =-关 于直线x a = 对称。 注:换种说法:)(x f y =与()(2)y g x f a x ==-若满足)2()(x a g x f -=,即它们关于a x =对称。 4、)(x f y =与)(2x f a y -=关于直线a y =对称。 证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以)(2x f a y -=经过点11(,2)x a y - ∵11(,)x y 与11(,2)x a y -关于y a =轴对称,∴)(x f y =与)(2x f a y -=关于直线a y =对称. 注:换种说法:)(x f y =与()2()y g x a f x ==-若满足a x g x f 2)()(=+,即它们关于a y =对称。 5、)2(2)(x a f b y x f y --==与关于点(a,b)对称。 证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以2(2)y b f a x =--经过点11(2,2)a x b y --

函数的对称性和周期性

函数的对称性和周期性 一.明确复习目标 1.理解函数周期性的概念,会用定义判定函数的周期; 2.理解函数的周期性与图象的对称性之间的关系,会运用函数的周期性处理一些简单问题。 3.掌握常见的函数对称问题 二、建构知识网络 一、两个函数的图象对称性 1、 )(x f y =与)(x f y -=关于x 轴对称。 换种说法:)(x f y =与)(x g y =若满足)()(x g x f -=,即它们关于0=y 对称。 2、 )(x f y =与)(x f y -=关于Y 轴对称。 换种说法:)(x f y =与)(x g y =若满足)()(x g x f -=,即它们关于0=x 对称。 3、 )(x f y =与)2(x a f y -=关于直线a x =对称。 换种说法:)(x f y =与)(x g y =若满足)2()(x a g x f -=,即它们关于a x =对 称。 4、 )(x f y =与)(2x f a y -=关于直线a y =对称。 换种说法:)(x f y =与)(x g y =若满足a x g x f 2)()(=+,即它们关于a y =对 称。 5、 )2(2)(x a f b y x f y --==与关于点(,)a b 对称。 换种说法:)(x f y =与)(x g y =若满足b x a g x f 2)2()(=-+,即它们关于点 (,)a b 对称。 6、 )(x a f y -=与)(b x y -=关于直线2b a x += 对称。 二、单个函数的对称性 性质1:函数()y f x =满足()()f a x f b x +=-时,函数()y f x =的图象关于直线2 a b x +=对称。 证明:在函数()y f x =上任取一点11(,)x y ,则11()y f x =,点11(,)x y 关于直线 2 a b x +=的对称点11(,)a b x y +-,当1x a b x =+-时 11111()[()][()]()f a b x f a b x f b b x f x y +-=+-=--== 故点11(,)a b x y +-也在函数()y f x =图象上。

最全最详细抽象函数的对称性、奇偶性和周期性常用结论

抽象函数的对称性、奇偶性与周期性常用结论 一.概念: 抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数,如函数的定义域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,也是大学高等数学函数部分的一个衔接点,由于抽象函数没有具体的解析表达式作为载体,因此理解研究起来比较困难,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力 1、周期函数的定义: 对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期。 分段函数的周期:设)(x f y =是周期函数,在任意一个周期内的图像为C:),(x f y = []a b T b a x -=∈,,。把)()(a b K KT x x f y -==轴平移沿个单位即按向量 )()0,(x f y kT a ==平移,即得在其他周期的图像: []b kT a kT x kT x f y ++∈-=,),(。 [][]? ??++∈-∈=b kT a,kT x )(b a, x )()(kT x f x f x f 2、奇偶函数: 设[][][]b a a b x b a x x f y ,,,),( --∈∈=或 ①若为奇函数;则称)(),()(x f y x f x f =-=- ②若为偶函数则称)()()(x f y x f x f ==-。 分段函数的奇偶性 3、函数的对称性: (1)中心对称即点对称: ①点对称;关于点与),()2,2(),(b a y b x a B y x A -- ②对称;关于与点),(),(),(b a y b x a B y b x a A ++-- ③成中心对称;关于点与函数),()2(2)(b a x a f y b x f y -=-= ④成中心对称;关于点与函数),()()(b a x a f y b x a f y b +=+-=- ⑤成中心对称。关于点与(函数),(0)2,2(0),b a y b x a F y x F =--= (2)轴对称:对称轴方程为:0=++C By Ax 。 ①))(2,)(2(),(),(2222//B A C By Ax B y B A C By Ax A x B y x B y x A +++-+++-=与点关于

(完整版)函数的周期性与对称性总结

一:有关周期性的讨论 在已知条件()()f a x f b x +=-或 ()()f x a f x b +=-中, (1) 等式两端的两自变量部分相加得常数,如()()a x b x a b ++-=+,说明f x ()的图像具有对称性,其对称轴为2 b a x +=。 (2)等式两端的两自变量部分相减得常数,如()()x a x b a b +--=+,说明 f (x )的图像具有周期性,其周期T=a +b 。 设a 为非零常数,若对于)(x f 定义域内的任意x 恒有下列条件之一成立 周期性规律 对称性规律 (1))()(a x f a x f +=- a T 2=? (1))()(x a f x a f -=+ a x =? (2))()(a x f x f += a T =? (2))()(x b f x a f -=+ 2 b a x += ? (3))()(x f a x f -=+ a T 2=? (3) )()(x b f x a f +=- 2b a x +=? (4))(1)(x f a x f =+ a T 2=? (4) )()(x b f x a f --=+ 中心点)0,2 (b a +? (5))(1)(x f a x f - =+ a T 2=? (5) )()(x a f x a f --=+ 为对称中心点)0,(a ? (6)1 )(1)()(-+=+x f x f a x f a T 2=? (7) 1()()1() f x f x a f x -+=+ a T 2=? (8) 1()()1()f x f x a f x -+=- + a T 4=? (9) ) (1)(1)(x f x f a x f -+=+ a T 4=? (10) )()()(a x f a x f x f ++-=, 0>a a T 6=?

6抽象函数的周期性

抽象函数的周期和对称性 一、关于周期性的结论 1. ()()f x T f x +=型:f x ()的周期为T 。 2. f x a f x b ()()+=+型:f x ()的周期为||b a -。 证明:f x a f x b f x f x b a ()()()()+=+?=+-。 3. f x a f x ()()+=-型:f x ()的周期为2a 。 证明:f x a f x a a f x a f x ()[()]()[()]+=++=-+=--2=f x () 4. ) (1 )(x f a x f ± =+型:f x ()的周期为2a 。 证明:f x a f x a a f x a f x f x ()[()]() () ()+=++= += =21 1 1。 5. f x a f x f x ()() () += +-11型:f x ()的周期为4a 。 证明:f x a f x a a f x a f x a ()[()]() ()+=++=++-+211 = + +--+- =-1111111f x f x f x f x f x () ()()() (), ∴f x a f x a a f x a f x f x ()[()]() () ()+=++=- +=- - =4221 21 1。 6. 两线对称型:函数f x ()关于直线x a =、x b =对称,则f x ()的周期为||22b a -。 证明: f x f a x f x f b x f a x f b x f x f x b a ()()()()()()()()=-=-?? ? ?-=-?=+-222222, 。

函数的周期性及其应用解题方法

函数的周期性及其应用解题方法 方法提炼 抽象函数的周期需要根据给出的函数式子求出,常见的有以下几种情形: (1)若函数满足f(x+T)=f(x),由函数周期性的定义可知T是函数的一个周期; (2)若满足f(x+a)=-f(x),则f(x+2a)=f[(x+a)+a]=-f(x+a)=f(x),所以2a是函数的一个周期; ! (3)若满足f(x+a)=1/f(x),则f(x+2a)=f[(x+a)+a]=1/f(x+a)=f(x),所以2a是函数的一个周期; (4)若函数满足f(x+a)=-1/f(x),同理可得2a是函数的一个周期; (5)如果T是函数y=f(x)的周期,则①kT(k∈Z且k≠0)也是y=f(x)的周期,即f(x+kT)=f(x); ②若已知区间[m,n](m<n)的图象,则可画出区间[m+kT,n+kT](k∈Z且k≠0)上的图象. 没有等价变形而致误 ' 【典例】函数f(x)的定义域D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2). (1)求f(1)的值; (2)判断f(x)的奇偶性,并证明; (3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围. 错解:(1)令x1=x2=1,有f(1×1)=f(1)+f(1),解得f(1)=0. > (2)f(x)为偶函数,证明如下: 令x1=x2=-1,有f[(-1)×(-1)]=f(-1)+f(-1),解得f(-1)=0. 令x1=-1,x2=x,有f(-x)=f(-1)+f(x), ∴f(-x)=f(x).∴f(x)为偶函数. (3)f(4×4)=f(4)+f(4)=2, 》 f(16×4)=f(16)+f(4)=3, 由f(3x+1)+f(2x-6)≤3, 得f[(3x+1)(2x-6)]≤f(64). 又∵f(x)在(0,+∞)上是增函数, ∴(3x+1)(2x-6)≤64. 《 ∴-7/3≤x≤5. 分析:(1)从f(1)联想自变量的值为1,进而想到赋值x1=x2=1.(2)判断f(x)的奇偶性,就是研究f(x),f(-x)的关系,从而想到赋值x1=-1,x2=x.即f(-x)=f(-1)+f(x).(3)就是要出现f(M)<f(N)的形式,再结合单调性转化为M<N或M>N的形式求解.正解:(1)令x1=x2=1, 有f(1×1)=f(1)+f(1),解得f(1)=0. (2)f(x)为偶函数,证明如下:

抽象函数的对称性与周期性

抽象函数的对称性与周期性 一、 抽象函数的对称性 定理1. 若函数y=f (x) 定义域为R ,且满足条件:f (a+x)=f (b -x), 则函数y=f (x) 的图象关于直线x= 2a b +对称。 推论1. 若函数y=f (x) 定义域为R ,且满足条件:f (a+x)=f (a -x) (或f (2a -x)= f (x) ),则函数y=f (x) 的图像关于直线x= a 对称。 推论2. 若函数y=f (x) 定义域为R ,且满足条件:f (a+x)=f (a -x), 又若方程f (x)=0有n 个根,则此n 个根的和为na 。 定理2. 若函数y=f (x) 定义域为R ,且满足条件:f (a+x)+f (b -x)=c , (a,b,c 为常数),则函数y=f (x) 的图象关于点( ,)22a b c + 对称。 推论1.若函数y=f (x) 定义域为R ,且满足条件:f (a+x)+f (a -x)=0,(a 为常数),则函数y=f (x) 的图象关于点(a ,0)对称。 定理3.若函数y=f (x) 定义域为R ,则函数y=f (a+x) 与y=f (b -x)两 函数的图象关于直线x=2b a -对称。 定理4.若函数y=f (x) 定义域为R ,则函数y=f (a+x) 与y=c -f (b - x)两函数的图象关于点( ,)22b a c -对称。 性质1:对函数y=f(x),若f(a+x)= -f(b -x)成立,则y=f(x)的图象关于点(2b a +,0)对称。 性质2:函数y=f(x -a)与函数y=f(a -x)的图象关于直线x=a 对称。 性质3:函数y=f(a+x)与函数y=f(a -x)的图象关于直线x=0对称。 性质4:函数y=f(a+x)与函数y=-f(b -x)图象关于点(2a b -,0)对称。 二、抽象函数的周期性 定理5.若函数y=f (x) 定义域为R ,且满足条件f (x +a)=f (x -b),则y=f (x) 是以T=a +b 为周期的周期函数。 定理6.若函数y=f (x) 定义域为R ,且满足条件f (x +a)= -f (x -b),则y=f (x) 是以T=2(a +b )为周期的周期函数。 定理7.若函数y=f (x)的图象关于直线 x=a 与 x=b (a ≠b)对称,则y=f (x) 是以T=2(b -a)为周期的周期函数。 定理8.若函数y=f (x)的图象关于点(a,0)与点(b,0) , (a ≠b)对称,则y=f (x) 是以T=2(b -a)为周期的周期函数。 定理9.若函数y=f (x)的图象关于直线 x=a 与 点(b,0),(a ≠b)对称,则

专题五 函数的周期性

专题五 函数的周期性 一、定义 二、结论: 1. 若对f(x)定义域内的任意x ,恒有下列条件之一成立: ①f(x+a)=-f(x) ②f(x+a)=)x (f 1 ③f(x+a)= -) x (f 1 ④f(x+a)= f(x -a) ⑤f(x+a)=11+-)x (f )x (f ⑥f(x+a)=)x (f )x (f +11- 则f(x)是周期函数,____________是它的一个周期。 2.若f(x)同时关于直线x=a 与直线x=b 对称(a <b ),则f(x)是周期函数,____________是它的一个周期,若f(x)关于直线x=a 对称同时关于点(b ,0)对称(b ≠a ),则f(x)是周期函数,____________是它的一个周期,若f(x)关于点(a ,0)对称同时关于点(b ,0)对称(b ≠a ),则f(x)是周期函数,____________是它的一个周期。 三、应用 例1.设函数f(x)(x ∈R)是以3为周期的奇函数,且f(1)>1,f(2)=a ,则( ) A.a >2 B.a <-2 C.a >1 D.a <-1 例2.设f(x)是(-∞,+∞)上的奇函数,f(x+2)= -f(x),当0≤x ≤1时,f(x)=x ,则 f(7.5)等于( ) A.0.5 B.-0.5 C.1.5 D.-1.5 例3.已知函数f(x)满足:f(1)= 4 1,4f(x) .f(y)=f(x+y)+f(x -y) (x ,y ∈R),则f (2014)=________。 例4.在数列{n a }中,1a =2 1,1+n a =1-n a 1,则2014a =________。

高中函数对称性总结分析

高中函数对称性总结 新课标高中数学教材上就函数的性质着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏对函数对称性、连续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴,反比例函数的对称性,三角函数的对称性,因而考查的频率一直比较高。以笔者的经验看,这方面一直是教学的难点,尤其是抽象函数的对称性判断。所以这里我对高中阶段所涉及的函数对称性知识做一个粗略的总结。 一、对称性的概念及常见函数的对称性 1、对称性的概念 ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 2、常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ③二次函数:是轴对称,不是中心对称,其对称轴方程为x=-b/(2a)。 ④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x与y=-x均为它的对称轴。 ⑤指数函数:既不是轴对称,也不是中心对称。 ⑥对数函数:既不是轴对称,也不是中心对称。 ⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y轴;而其他的幂函数不具备对称性。 ⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,x=kπ+π/2是它的对称轴。 ⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图像向上

相关主题
文本预览
相关文档 最新文档