当前位置:文档之家› Magnetic Field Effects on the 1083 nm Atomic Line of Helium. Optical Pumping of Helium and

Magnetic Field Effects on the 1083 nm Atomic Line of Helium. Optical Pumping of Helium and

Magnetic Field Effects on the 1083 nm Atomic Line of Helium. Optical Pumping of Helium and
Magnetic Field Effects on the 1083 nm Atomic Line of Helium. Optical Pumping of Helium and

a r X i v :p h y s i c s /0203040v 2 [p h y s i c s .a t o m -p h ] 24 J u n 2002

EPJ manuscript No.

(will be inserted by the editor)

Magnetic Field E?ects on the 1083nm Atomic Line of Helium

Optical Pumping of Helium and Optical Polarisation Measurement in High Magnetic Field

E.Courtade 1,

F.Marion 1,P.-J.Nacher 1a ,

G.Tastevin 1,K.Kiersnowski 2,and T.Dohnalik 2

1Laboratoire Kastler Brossel b ,24rue Lhomond,75231Paris cedex 05,France.

2

Marian Smoluchowski Institute of Physics,Jagiellonian University,ul.Reymonta 4,30-059Krak′o w,Poland.

February 2,2008

Abstract.The structure of the excited 23S and 23P triplet states of 3He and 4He in an applied magnetic

?eld B is studied using di?erent approximations of the atomic Hamiltonian.All optical transitions (line positions and intensities)of the 1083nm 23S-23P transition are computed as a function of B .The e?ect of metastability exchange collisions between atoms in the ground state and in the 23S metastable state is studied,and rate equations are derived,for the populations these states in the general case of an isotopic mixture in an arbitrary ?eld B .It is shown that the usual spin-temperature description remains valid.A simple optical pumping model based on these rate equations is used to study the B -dependence of the population couplings which result from the exchange collisions.Simple spectroscopy measurements are performed using a single-frequency laser diode on the 1083nm transition.The accuracy of frequency scans and of measurements of transition intensities is studied.Systematic experimental veri?cations are made for B =0to 1.5T.Optical pumping e?ects resulting from hyper?ne decoupling in high ?eld are observed to be in good agreement with the predictions of the simple model.Based on adequately chosen absorption measurements at 1083nm,a general optical method to measure the nuclear polarisation of the atoms in the ground state in an arbitrary ?eld is described.It is demonstrated at B ~0.1T,a ?eld for which the usual optical methods could not operate.

PACS.32.60.+i Zeeman and Stark e?ects –32.70.-n Intensities and shapes of atomic spectral lines –32.80.Bx Level crossing and optical pumping

1Introduction

Highly polarised 3He is used for several applications in various domains,for instance to prepare polarised targets for nuclear physics experiments [1],to obtain spin ?lters for cold neutrons [2,3],or to perform magnetic resonance imaging (MRI)of air spaces in human lungs [4,5].A very e?cient and widely used polarisation method relies on op-tical pumping of the 23S metastable state of helium with 1083nm resonant light [6,7].Transfer of nuclear polarisa-tion to atoms in the ground state is ensured by metastabil-ity exchange collisions.Optical Pumping (OP)is usually performed in low magnetic ?eld (up to a few mT),required only to prevent fast relaxation of the optically prepared orientation.OP can provide high nuclear polarisation,up to 80%[8],but e?ciently operates only at low pressure (of order 1mbar)[9].E?cient production of large amounts of polarised gas is a key issue for most applications,which often require a dense gas.For instance,polarised gas must

2 E.Courtade et al.:The 1083nm Helium Transition in High Magnetic Field

in the structures of the di?erent excited levels of helium.In order to populate the 23S metastable state and per-form OP,a plasma discharge is sustained in the helium gas.In the various atomic and molecular excited states which are populated in the plasma,hyper?ne interaction transfers nuclear orientation to electronic spin and orbital orientations.The electronic angular momentum is in turn converted into circular polarisation of the emitted light or otherwise lost during collisions.This process is actu-ally put to use in the standard optical

[8,17]in which the circular polarisation of a spectral line emitted by the plasma is nuclear polarisation is inferred.The an applied magnetic ?eld unfortunately sitivity of the standard optical detection 10mT,and hence a di?erent measurement be used in high ?elds.This transfer of an adverse e?ect in OP situations by of nuclear polarisation in the gas.The of an applied ?eld reduces this polarisation thus signi?cantly improve the OP ations of limited e?ciency,such as low high pressures.At low temperature (4.2metastability exchange cross section sets a neck and strongly limits the e?ciency of OP ?eld increase from 1to 40mT was observed increase in nuclear polarisation from 17%to situation [21].At high gas pressures (above the proportion of metastable atoms is creation of metastable molecular species is factors which tend to reduce the e?ciency not surprising that a signi?cant by suppressing relaxation channels in high A systematic investigation of various vant for OP in non-standard conditions (high high pressure)has been made,and results elsewhere [22,23].As mentioned earlier,an surement method of nuclear polarisation in must be developed.It is based on ments of a probe beam,and requires a of magnetic ?eld e?ects on the 1083nm In this article we report on a detailed study an applied magnetic ?eld on the structure of 23P atomic levels,both in 3He and 4He.In cal section we ?rst present results obtained e?ective Hamiltonian and discuss the puted line positions and intensities at ?elds,then discuss the e?ect of an applied metastability exchange collisions between and the 11S 0ground state level of helium.mental section we present results of line positions and intensities up to 1.5T,optical measurement technique of the nuclear of 3He.

Let us ?nally mention that these principally motivated by OP developments,results could be of interest to design or ments performed on helium atoms in the 23S in an applied ?eld,as long as metrological required.This includes laser cooling and Zeeman slowing [24]of a metastable atom beam,magnetic trapping and evaporative cooling which recently allowed two groups to obtain Bose Einstein condensation with metastable 4He atoms [25,26],and similar experiments which may probe the in?uence of Fermi statistics with ultracold metastable 3

He atoms.

E.Courtade et al.:The 1083nm Helium Transition in High Magnetic Field 3

analyse the results of ?ne-structure intervals measured us-ing

microwave transitions in an applied magnetic ?eld in 4

He [33]and 3He [34].

All this work has produced a wealth of data which may now be used to compute the level structures and transi-tion probabilities with a very high accuracy up to high magnetic ?elds (several Tesla),in spite of a small per-sisting disagreement between theory and experiments for the g -factor of the Zeeman e?ect in the 23P state [32,35].However,such accurate computation can be very time-consuming,especially for 3He in which ?ne-structure,hy-per?ne and Zeeman interaction terms of comparable im-portance have to be considered.A simpli?ed approach was proposed by the Yale group [36],based on the use of an e?ective Hamiltonian.The hyper?ne mixing of the 23P and singlet 21P states is the only one considered in this e?ective Hamiltonian,and its parameters have been ex-perimentally determined [34].A theoretical calculation of the 3He 23P structure with an accuracy of order 1MHz later con?rmed the validity of this phenomenological ap-proach [37].In the present article,we propose a further simpli?cation of the e?ective Hamiltonian introduced by the Yale group,in which couplings to the singlet states are not explicitly considered.Instead we implicitly take into account these coupling terms,at least in part,by using the 23P splittings measured in zero ?eld to set the eigenvalues of the ?ne-structure matrices.

Results obtained using this simpli?ed e?ective Hamil-tonian will be compared in section 2.1.3to those of the one including the couplings to the 21P levels,with 3or 6addi-tional magnetic sublevels,depending on the isotope.The e?ect of additional terms in a more elaborate form of the Zeeman Hamiltonian [32]than the linear approximation which we use will also be evaluated.2.1A simple e?ective Hamiltonian 2.1.1Notations

The 11

S ground level of helium is a singlet spin state (S =0),with no orbital angular momentum (L =0),and hence has no total electronic angular momentum (J =0).In 3He,the nucleus thus carries the only angular momen-tum I ,giving rise to the two magnetic sublevels m I =±1/2.Their relative populations,(1±M )/2,de?ne the nuclear polarisation M of the ground state.

The level structure of 4He excited states is determined from the ?ne-structure term and the Zeeman term in the Hamiltonian.The ?ne-structure term H fs is easily ex-pressed in the total angular momentum representation (J )using parameters given in tables 4and 5in the Appendix.For the Zeeman term in the applied magnetic ?eld B we shall use the simple linear form :

H (4)

Z =μB (g ′L L +g ′

S S )·B.(1)

The values of Bohr magneton μB ,and of the orbital and

spin g -factors g ′L

and g ′S are given in table 6in the Ap-pendix.The situation is quite simple for the 23S state,for

which the 3sublevels |m S (with m S =±1,0)are eigen-states at any ?eld.For the 23P state the Zeeman term

couples sublevels of di?erent J (which however have the same m J )and is more easily expressed in the decoupled (L,S )representation.We note |m L ,m S the vectors of the decoupled basis used in the (L,S )representation and |J ;m J those of the coupled basis,which are the zero-?eld 9eigenstates of the 23P state.We call Z 1to Z 9(by increas-ing value of the energy,see ?gure 2)the 9sublevels of the 23P state in arbitrary ?eld.To simplify notations used in the following,we similarly call Y 1to Y 3the 3sublevels of the 23S state.

Fig.2.Left :magnetic sublevels of 4He in the 23S (bottom)and 23P (top)levels in very low magnetic ?eld.J is thus a good quantum number and m J is used to di?erentiate the atomic states.When a small ?eld is applied,the sublevel degeneracies are removed and energies increase for increasing values of m J (i.e.from Z 1to Z 9).Right :magnetic sublevels of 3He in very low magnetic ?eld.F and m F are now good quantum numbers to di?erentiate the atomic states.Only the F =3/2P x and P y states involve a strong mixing of states of di?erent J values [7].Energies increase for increasing values of m F for all sublevels except in the 23P 0state (i.e.from A 1to A 6and B 1to B 16).

The transition probabilities of all components of the 1083nm line are evaluated using the properties of the elec-tric dipole transition operator.For a monochromatic laser light with frequency ω/2π,polarisation vector e λ,and in-tensity I las (expressed in W/m 2),the photon absorption

4 E.Courtade et al.:The 1083nm Helium Transition in High Magnetic Field

rate for a transition from Y i to Z j is given by :

1

m e ωΓ′

I las

(Γ′/2)

2

3mc 2

f,(3)

from which Γ=1.022×107

s ?1

is obtained.Atomic colli-sions contribute to Γ′

by a pressure-dependent amount of

order 108s ?1/mbar [40].The transition matrix elements

T

(4)

ij (e λ)are evaluated in the (L,S )representation for each of the three light polarisation states λ=x ±iy (circularly polarised light σ±propagating along the z -axis set by the ?eld B )and λ=z (transverse light with πpolarisation)using the selection rules given in table 7in the Appendix.The transformation operator P 4given in table 10in the Appendix is used to change between the (L,S )and the (J )representations in the 23P state of 4He and thus write a simple 9×9matrix expression for the Hamiltonian in the (L,S )representation,H 9:

H 9=P ?1

4H 9fs P 4+H 9Z ,

(4)

where H 9fs is the diagonal matrix of table 4in the Ap-pendix and H 9Z the diagonal matrix written from equa-tion 1.

The level structure of 3He excited states is determined from the total Hamiltonian,including hyper?ne interac-tions.The ?ne-structure term H fs is expressed in the to-tal angular momentum representation (J )using slightly di?erent parameters (table 5in the Appendix)due to the small mass dependence of the ?ne-structure intervals.For the Zeeman term we also take into account the nuclear contribution:

H (3)

Z =μB (g ′L L +g ′S S +g I I )·B.(5)

The values of all g -factors for 3He are listed in table 6in the Appendix.For the hyper?ne term,we consider the simple contact interaction between the nuclear and elec-tronic spins and a correction term H cor

hfs :

H hfs =A L I ·S +H cor

hfs .

(6)

The matrix elements of the main contact interaction term in the decoupled (S,I )representation and the values of the constants A S and A P for the 23S and 23P states are given in table 8in the Appendix.The correction term only exists for the 2P state [36,37].When restricted to the triplet levels,it only depends on 2parameters which are given with the matrix elements in table 11in the Appendix.As in the case of 4He,we compute level structure in the decoupled representation,now (L,S,I ).The vectors of the decoupled bases are noted |m S :m I for the 23S state,and |m L ,m S :m I for the 23P state.For the 23S state,the 6×6matrix expression H 6of the Hamiltonian is :

H 6=H 6Z +F 6,

(7)

where H 6Z is the diagonal matrix written from equation 5and F 6the matrix representation of H hfs (table 8in the Appendix).For the 23P state,the 18×18matrix H 18is

constructed from H 9fs ,F 6,H cor

hfs and H (3)Z :

m ′L ,m ′S :m ′

I |H 18|m L ,m S :m I =

δ(m ′I ,m I ) m ′L ,m ′

S |H 9fs |m L ,m S

+δ(m ′L ,m L ) m ′S :m ′

I |F 6|m S :m I +

m ′L ,m ′S :m ′I H cor

hfs +H (3)Z m L ,m S :m I .

The mass-dependent constants in H 9fs and F 6are set to

the values given for 3He in the Appendix.

Notations similar to those of the zero-?eld calculation of reference [7]are used.The 6sublevels of the 23S state are called A 1to A 6,the 18levels of the 23P state B 1to B 18by increasing values of the energy (see ?gure 2)1.An alternative notation system,given in table 12in the Appendix,is also used for the 6sublevels of the 23S state when an explicit reference to the total angular momentum projection m F is desired.Transition probabilities from A i to B j due to monochromatic light are given by a formula similar to equation 2:

1

m e ωΓ′

I las

(Γ′/2)

2

1

There is a di?erence with notations used in reference [7]:

within each level of given F,labelling of state names was in-creased for convenience from largest to lower values of m F .In an applied ?eld,this would correspond to an energy decrease inside each of the F levels (except the P 0,F =1/2level).This is the reason for the new labelling convention,which is more convenient in an applied ?eld.

E.Courtade et al.:The1083nm Helium Transition in High Magnetic Field5

In the following,the dependence of the transition ma-trix elements on the polarisation vector eλwill not be explicitly written.Given the selection rules described in the Appendix,the polarisation vector corresponding to a non-zero transition matrix element can be unambiguously determined.

All optical transition energies ω(4)ij and ωij will be referenced to ω57(0),the energy of the C1transition in null magnetic?eld,which connects levels A5and A6to levels B7to B10.Energy di?erences will be noted?,for instance:

?(4)ij/ =ω(4)ij?ω57(0),?ij/ =ωij?ω57(0).(10) They are determined from computed energy splittings in the23S and23P states of each isotope.The isotope shift contribution is adjusted to

obtain the precisely measured C9-D2interval(810.599MHz,[29]).

2.1.2Numerical Results

Numerical computation of level structure and absorption spectra in an applied?eld B is performed in3steps.Matri-ces H9(for4He),H6and H18(for3He)are computed?rst.

A standard matrix diagonalisation package(the double-precision versions of the jacobi and eigsrt routines[41])is then used to compute and sort all eigenvalues(energies) and eigenvectors(components of the atomic states in the

decoupled bases).All transition matrix elements T(4)

ij and

T ij are?nally evaluated,and results are output to?les for further use or graphic display.Actual computation time is insigni?cant(e.g.20ms per value of B on a PC using a compiled Fortran program[42]),so that we chose not to use the matrix symmetries to reduce the matrix sizes and the computational load,in contrast with references [36,37].We thus directly obtain all transitions of the1083 nm line:19transitions for4He(6forσ+and forσ?,7 forπlight polarisation),and70transitions for3He(22for σ+and forσ?,26forπlight polarisation).These num-bers are reduced for B=0to18for4He(the Y2→Z7, i.e.|0 →|1;0 πtransition has a null probability)and to 64for3He(the F=1/2→F=5/2transitions,from A5or A6to any of B1to B6are forbidden by selection rules). Due to level degeneracy,the usual D0,D1and D2lines of

4He,and C1to C9lines of3He[7]are obtained for B=0 (?gure3,and table9in the Appendix).

An applied magnetic?eld removes level degeneracies (Zeeman splittings appear)and modi?es the atomic states and hence the optical transition probabilities.Examples of level Zeeman energy shifts are shown in?gure4for the23S state and the highest-lying23P levels(originating from the23P0state at low?eld).In the23S state,the two Zeeman splittings are simply proportional to B(28 GHz/T)for4He,as inferred from equation1.For3He, signi?cant deviations from linearity occur for A2,A3and A5above a?eld of order0.1T,for which Zeeman shifts are signi?cant compared to the hyper?ne splitting.Level crossing of A4and A5(and hence interchange of names Fig.3.Top:Components of the1083nm line in4He(left) and3He(right)for B=0.D J is the usual name of the tran-sition to the23P J level.C1to C9refer to the transitions by increasing energy.C0is the additional lowest energy compo-nent corresponding to a forbidden transition in zero?eld(see text).Bottom:positions of all the spectral lines resulting from level splittings and isotope shift.The total frequency span from C1to D0is70.442GHz.

of the two states)occurs at0.1619T.A high-?eld decou-pled regime is almost reached for1.5T(?gure4,bottom).

Analytical expression for state energies and components

on the decoupled{|m S:m I }basis are given in the Ap-pendix(equations A10to A17).In the23P state,the sit-

uation is more complex due to?ne-structure interactions

and to the larger number of levels.In particular no level

remains una?ected by B in contrast with the situation for Y2.As a result,πtransitions in4He from Y2to Z3or Z9have non-zero Zeeman frequency shifts,which are pro-portional to B2at low and moderate?eld although they originate from the linear Zeeman term in the Hamiltonian (equation1).Even the23P0states,for which level mixing is weakest due to the large?ne-structure gap,experience signi?cant?eld e?ects(?gure4,top and top insert).The splitting between B17and B18(2.468GHz/T at low?eld) is only weakly a?ected by the nuclear term in equation5 (±16.2MHz/T),and mostly results from level mixing and electronic Zeeman e?ects.

Examples of optical transition intensities and Zeeman frequency shifts are shown in?gure5for4He(πlight polarisation).Shifts of transition frequencies are clearly visible on the projection onto the base plane,the usual Zeeman diagram(in which no line crossing occurs).Large changes are also induced by the applied?eld on the transi-tion probabilities.In particular,the forbidden D1transition (Y2→Z7)has a matrix element which linearly increases

at low?eld(T(4)

27

=3.3×|B|),and approaches1in high?eld (curve labelled b in?gure5).The two other strong lines

6 E.Courtade et al.:The1083nm Helium Transition in High Magnetic Field

Fig.4.Level energies E S and E P of the23S and23P states are computed as a function of the applied?eld B.They result from the?ne-structure and Zeeman energy contributions for 4He(dashed lines),with the additional hyper?ne contributions

for3He(solid lines).The inserts are close-ups of the low-?eld regions.In the23P state(top),only the highest lying levels are shown for simplicity.

at high?eld(2curves labelled a superimposed in?gure

5) originate from the low-?eld Y1→Z2and Y3→Z8tran-sitions of D2and D1lines.All other line intensities tend to0at high?eld,in a way consistent with the sum rules of equation9.

The splittings of the C8and C9lines of3He at mod-erate?eld are displayed in?gure6.Circularly polarised light,which is used in OP experiments to deposit angular momentum in the gas,is more e?ciently absorbed forσ?polarisation when a?eld is applied.This can tentatively be related to results of our OP experiments:at B=0.1T, the most e?cient pumping line is actually found to be C9,σ?.OP results at B=0.6T reported in reference[15] also indicate thatσ?polarisation is more e?cient,in spite of?uorescence measurements suggesting an imperfect po-larisation of the light.One must however note that OP e?ciency does not only depend on light absorption,and that level structures and metastability exchange collisions (which will be discussed below)also play a key role.Let us ?nally mention that the forbidden C0transition becomes Fig.5.3D plot of the transition matrix elements forπlight polarisation in4He,T(4)

ij

(π),(vertical axis)and of transition energy di?erence?(with respect to C1)as a function of B.To highlight the changes of the transition intensities,the symbol

sizes(symbol areas)are proportional to T(4)

ij

.a and b are the strongest lines in high?eld(see text).The projection onto the base plane is the usual Zeeman diagram.

allowed in an applied?eld,but that the transition prob-abilities remain very weak and vanish again at high?eld.

Fig.6.Plot of the Zeeman line shifts for the C8and C9lines of3He.The symbol types refer to di?erent light polarisation states.The symbol sizes(areas)are proportional to the corre-sponding transition matrix elements T ij.

E.Courtade et al.:The1083nm Helium Transition in High Magnetic Field7

2.1.3Discussion

To assess the consequences of the main approximation in

our calculations,namely the restriction of the Hamilto-

nian to the triplet23P con?guration,we have made a sys-

tematic comparison to the results of the full calculation

including singlet-triplet mixing.

In the case of4He,exact energies are of course obtained

for B=0,and level energy di?erences do not exceed1kHz

for B=2T.This very good agreement results from the

fact that the lowest order contribution of the singlet ad-

mixture in the23P

state to the Zeeman e?ect is a third

order perturbation[30,43].For similar reasons,computed

transition probabilities are also almost identical,and our

simple calculation is perfectly adequate for most purposes

if the proper parameters of table5in the Appendix are

used.

For3He we have compared the results of the full cal-

culation involving all24sublevels in the2P states as de-

scribed by the Yale group[36]and two forms of the sim-

pli?ed calculation restricted to the18sublevels of the23P

state.The simpler form only contains the contact interac-

tion term A P I·S in the hyper?ne Hamiltonian of equa-

tion6.The more complete calculations makes use of the

full hyper?ne interaction,with the correction term H cor

hfs

introducing two additional parameters,d and e.

The simpler1-parameter calculation is similar to the

zero-?eld calculation of reference[7](with updated values

of all energy parameters),and provides a limited accuracy

as shown in?gure7.Errors on the computed energies of

Fig.7.Errors in calculated energies for the18sublevels of the

3He23P state resulting from the sole use of the contact term

A P I·S in the hyper?ne Hamiltonian are plotted for di?erent

magnetic?eld https://www.doczj.com/doc/843948348.html,rge changes of the errors occur

close to level anticrossings(e.g.m F=1/2B15and B17levels

close to1.18T,see?gure4).

the levels of several tens of MHz cannot be signi?cantly re-

duced by adjusting A P to a more appropriate value.This

is a direct evidence that the correction term H cor

hfs

unam-

biguously modi?es the energy level diagram,with clear

?eld-dependent signatures at moderate?eld and around

1T.Errors on the transition matrix elements up to a few

10?3also result from neclecting H cor

hfs

.Using this simple1-

parameter form of the hyper?ne Hamiltonian should thus

be avoided when a better accuracy is desired.

The3-parameter calculation has also been compared

to the full calculation,and a slight adjustment of param-

eters A P,d and e with respect to the corresponding pa-

rameters C,D/2and E/5of the full calculation(which

also includes the o?-diagonal parameter C′[36]),now pro-

vides a more satisfactory agreement for the level energies,

shown in?gure8.Transitions matrix elements T ij are also

Fig.8.Errors in calculated energies for the18sublevels of the

3He23P state resulting from the use of the full3-parameter

hyper?ne Hamiltonian are plotted for di?erent magnetic?eld

intensities.As in?gure7,large changes of the errors occur

close to the B15-B17level anticrossing around1.18T.

obtained with good accuracy(1.3×10?4r.m.s.di?erence

on average for all transitions and?elds,with a maximum

di?erence of5×10?4).The values of the3parameters A P,

d and

e di?er by-0.019%,3.4%and4.6%from the corre-

sponding parameters in the full calculation.This adjust-

ment may e?ectively represent part of the o?-diagonal ef-

fects in the singlet admixture,and allows to decrease the

energy errors,especially below1T(by a factor2-3).

The other important approximation in our calculations

is related to the simpli?cations in the Zeeman Hamiltonian

written in equations1and5.The?rst neglected term is

the non-diagonal contribution proportional to the small

parameter g x in equation A1.The non-zero elements of

this additional contribution are of orderμB Bg x/5,i.e.1-

2MHz/T in frequency units.The other neglected term

results from the quadratic Zeeman e?ect[30,32,43],which

introduces matrix elements of order(μB B)2/R∞(R∞=

3.29×106GHz stands for the Rydberg constant in fre-

quency units),i.e.60kHz/T2.For most applications,and

in particular for the experimental situations considered in

the following,corrections introduced by these additional

8 E.Courtade et al.:The1083nm Helium Transition in High Magnetic Field terms in the Zeeman Hamiltonian would indeed be negli-

gible,not larger for instance than the errors in?gure8.

2.2Metastability exchange

So far we have only addressed the e?ects of an applied

magnetic?eld on the level energies and structures of the

23S and23P states of helium,and the consequences for the

1083nm optical transition.In this section we now consider

the e?ect of the applied?eld on the angular momentum

transfer between atoms during the so-called metastability

exchange(ME)collisions,which are spin-exchange binary

collisions between an atom in the ground state and one

in the metastable23S state.They play an important role

in all experimental situations where the atoms in the23S

state are a minority species in a plasma(e.g.with a num-

ber density1010–1011cm?3compared to2.6×1016for the

total density of atoms at1mbar in typical OP conditions).

These collisions may be neglected only for experiments on

atomic beams or trapped atoms for which radiative forces

are used to separate the metastable atoms from the much

denser gas of atoms in the ground state.

To describe the statistical properties of a mixture of

ground state and23S state atoms we shall use a standard

density operator formalism and extend the treatment in-

troduced by Partridge and Series[44]for ME collisions,

later improved[45,46]and used for an OP model[7],to

the case of an arbitrary magnetic?eld.Our?rst goal is

to show that the“spin temperature”concept[47,48,7]re-

mains valid,and that the population distribution in the

23S state is fully determined(in the absence of OP and of

relaxation)by the nuclear polarisation M of the ground

state.This is the result on which the optical detection

method of section3.3relies.The second goal is to provide

a formalism allowing to study the consequences of hyper-

?ne decoupling on spin transfer during ME collisions.

2.2.1Derivation of rate equations

We shall consider situations in which no resonance is driven

between the two magnetic sublevels of the ground state of

3He(the ground state of4He has no structure)nor be-

tween sublevels of the23S state.We can thus a priori

assume that the density operatorsρg(in the ground state

of3He),ρ3(in the23S state of3He)andρ4(in the23S

state of4He)are statistical mixtures of eigenstates of the

Hamiltonian.The corresponding density matrices are thus

diagonal and contain only populations(no coherences).

With obvious notations:

ρg=1+M

2|? ?|(11)

ρ3= 61a i|A i A i|(12)

ρ4= 31y i|Y i Y i|,(13) where a i and y i are relative populations( a i= y i=1).

An important feature of ME in helium is that in prac-tice no depolarisation occurs during the collisions,due to the fact that all involved angular momenta are spins[46]. Three kinds of ME collisions occur in an isotopic mixture, depending on the nature of the colliding atoms(3He or 4He)and on their state(ground state:3,4He,23S state: 3,4He?).

1.Following a ME collision between3He atoms:

3He+3He?→3He?+3He

ρgρ3ρ′3ρ′g

the nuclear and electronic angular momenta are re-combined in such a way that the density operators just after collisionρ′g andρ′3are given by:

ρ′g=Tr eρ3(14)

ρ′3=ρg?Tr nρ3(15) where Tr e,Tr n are trace operators over the electronic and nuclear variables respectively[45].

2.Following the collision between a ground state4He

atom and a23S state3He atom:

4He+3He?→4He?+3He

ρ3ρ′′4ρ′′g

the density operators just after collision are:

ρ′′g=Tr eρ3(16)

ρ′′4=Tr nρ3.(17) 3.Following the collision between a23S state4He atom

and a ground state3He atom:

3He+4He?→3He?+4He

ρgρ4ρ′′′3

the density operator of the outgoing23S state3He atom is:

ρ′′′3=ρg?ρ4.(18) The partial trace operations in equations14to17 do not introduce any coherence term in density matri-ces.In contrast,the tensor products in equations15and 18introduce several o?-diagonal terms.These are driving terms which may lead to the development of coherences in the density operators,but we shall show in the fol-lowing that they can usually be neglected.Since m F is a good quantum number,o?-diagonal terms in the ten-sor products only appear between2states of equal m F. With the state names de?ned in the Appendix(table12), these o?-diagonal terms are proportional to the operators A h+ A l+ and A l+ A h+ (for m F=1/2), A h? A l? and A l? A h? (for m F=-1/2).These four operators contain a similar sinθ±cosθ±factor,whereθ+andθ?are?eld-dependent level mixing parameters(see equations A14to A17in the Appendix).They have a time evolution char-acterised by a fast precessing phase,exp(i?E±t/ ),de-pending on the frequency splittings?E±/ of the eigen-states of equal m F.

E.Courtade et al.:The 1083nm Helium Transition in High Magnetic Field 9

The time evolution of the density operators due to ME collisions is obtained from a detailed balance of the de-parture and arrival processes for the 3kinds of collisions.This is

similar to

the method introduced by Dupont-Roc et al .[45]to derive a rate equation for ρg and ρ3in pure 3

He at low magnetic ?eld.It is extended here to isotopic mixtures,and the e?ect of an arbitrary magnetic ?eld is discussed.

The contribution of ME collisions to a rate equation for the density operator ρ3of the 23S state 3He is obtained computing an ensemble average in the gas of the terms arising from collisions with a 3He atom (collision type 1,?rst line of the rate equation)and from collisions involving di?erent isotopes (types 2and 3,second line): d

σv 33,34.For each time-dependent o?-diagonal

coherence,the average of the fast precessing phase involves

a weighting factor exp(??t

/τ)to account for the distribu-tion of times ?t elapsed after a collision: exp i?E ±?t

/ =1dt

n 3ρ3

ME

=n 3N 3σv 34

?n 3N 4ρ3+n 4N 3

Πi ρg ?ρ4Πi

(21)

in which we note Πi =|A i A i |the projector on the eigen-state A i .The main di?erences with the result derived in [45]are the additional term (second line)in equation 21,which re-?ects the e?ect of 3He ?4He collisions,and the replacement of the projectors on the F substates by the more general projectors Πi on the eigenstates in the applied ?eld B .Considering the ?eld dependence of the frequency split-tings ?E ±/ ,the condition on the ME collision rate 1/τis only slightly more stringent at 0.08T that for B =0,but can be considerably relaxed at high magnetic ?eld.The linear increase of ?E ±and the 1/B decrease of sin θ±(see ?gure 31)in the common factor of all coherences pro-vide a B 2increase of the acceptable collision rate,and hence of the operating pressure,for which coherences can be neglected in all density matrices,and equations 11to 13are valid.

The other rate equations are directly derived from equa-tions 14,16and 17.Since there is no tensor product,hence no coherence source term in the relevant arrival terms,ex-plicit ensemble averages are not required and the contri-bution of ME is: d

σv 33(?ρg +Tr e ρ3)

+

dt

n 4ρ4

ME

=?n 4N 3

σv 34Tr n ρ3.(23)

A trace operation performed on equations 21and 23shows

that

d

dt n 3

ME ,(24)as expected since the three ME processes preserve the to-tal number of atoms in the 23S excited state.2.2.2Steady-state solutions

Total rate equations can be obtained by adding relaxation

and OP terms to the ME terms of equations 21and 23.They can be used to compute steady-state density ma-trices for the 23S state,while the nuclear polarisation M (and hence ρg )may have a very slow rate of change (com-pared to the ME collision rate 1/τ).In these steady-state situations,the contribution of ME collisions to the total rate equations for the 23S state just compensates the OP and relaxation contributions.Since the latter are traceless terms (OP and relaxation only operate population trans-fers between sublevels of a given isotope),by taking the trace of equation 21or 23one ?nds that the 23S state and ground state number densities have the same isotopic ratio R :

R =n 4/n 3=N 4/N 3.(25)

This results from having implicitly assumed in section 2.2.1that all kinds of collisions have the same ME cross sec-

10 E.Courtade et al.:The1083nm Helium Transition in High Magnetic Field tion2.In fact destruction and excitation of of the23S

state in the gas may di?erently a?ect3He and4He atoms,

e.g.due to the di?erent di?usion times to the cell walls.

However in practice this has little e?ect compared to the very frequent ME collisions,which impose the condition of equation25for number densities.

To obtain simpler expressions for the rate equations, we introduce the parameters:

1/τe=N3σv34(26)

1/T e=n3σv34(27)

μ=σv34(28) The rates1/T e and1/τe correspond to the total ME col-lision rate for a3He atom in the ground state and in the 23S state respectively;in steady state,equation25can be used to show thatτe/T e=n3/N3=n4/N4.Since the ther-mal velocity distributions simply scale with the reduced masses of colliding atoms,the value of the dimensionless parameterμcan be evaluated from the energy dependence ofσ.From reference[18]one can estimateμ?1.07at room temperature.Rewriting equation26as:

1/τe=(N3+N4)

1+R

,(29)

the ME rate in an isotopic mixture thus di?ers from that in pure3He by at most7%(at large R)for a given total density.

Using these notations and the isotopic ratio R(equa-tion25),the contributions of ME to rate equations be-come:

d T e(?ρg+Tr eρ3)(30) dτe1

dt

ρ3 ME=1R+μ Πi×

×(μρg?Tr nρ3+Rρg?ρ4)Πi}.(32)

In a way similar to that of reference[7]we can trans-form equations30to32into an equivalent set of coupled rate equations for the nuclear polarisation M and for the

dt

M ME=1

dt

y i ME=1R+μ ?y i+6 k=1G4ik a k (34) dτe ?a i+

1

E.Courtade et al.:The 1083nm Helium Transition in High Magnetic Field 11

2.2.4OP e?ects on populations

The general problem of computing all the atomic popu-lations in arbitrary conditions is not considered in this work.It has been addressed

in the low ?eld limit using speci?c models in pure 3He [7]and in isotopic mixtures [50].Here we extend it to arbitrary magnetic ?elds,but only consider the particular situation where there is no ground state nuclear polarisation (M =0).It can be met in absorption spectroscopy experiments,in which a weak probing light beam may induce a deviation from the uni-form population distribution imposed by M =0(in?nite spin temperature).We shall assume in the following that the OP process results from a depopulation mechanism in which population changes are created only by excitation of atoms from selected 23S sublevels and not by sponta-neous emission from the 23P state (where populations are randomised by fast relaxation processes).In 3He,this de-population mechanism has been checked to dominate for pressures above ~1mbar [6,7].

Under such conditions,and further assuming that Zee-man splittings are large enough for a single sublevel in the 23S state to be pumped (A p or Y p ,depending on the probed isotope),the OP contribution to the time evolu-tion of populations has a very simple form.Given the ME contribution of equation 34or 35,the total rate equation for the pumped isotope becomes:

d dt y i ME +y p

3

?δY (i,p )

(41)

or d dt a i ME +a p 6?δA (i,p )

,(42)

where 1/τp is the pumping rate (equation 2or 8)and

δA (i,p )=1(resp.δY (i,p )=1)if the level A i (resp.Y i )is the pumped level,0otherwise.In steady state,the relative populations can be obtained from the kernel of the 9×9matrix representation of the set of rate equations 34and 42,or 35and 41.

When a 3He line is probed,the 4He relative popula-tions y i are fully imposed by ME processes only (equa-tion 34),and can be subsituted in equation 42.The rela-tive populations a i can then be obtained as the kernel of a 6×6matrix which depends on the pumped level index p ,on the reduced pumping rate τe /τp and on the magnetic ?eld B,but not on the isotopic ratio R (as discussed at the end of the Appendix).Results showing the decrease of the pumped population a p ,and hence of the absorp-tion of the incident light,are displayed in ?gure 9as a function of B .A strong absorption decrease is found at high B,due to larger population changes induces by OP when ME less e?ciently transfers the angular momentum to the ground state (let us recall that we assume M =0,so that the ground state is a reservoir of in?nite spin tem-perature).Population changes are found to be weaker for

the two states A l +and A h

?,which both have |0:± as the main component in high ?eld (curves b and b ′in ?gure 9).

When a 4He line is probed,the substitution and re-duction performed above cannot be made.The full set of

Fig.9.OP on a 3He level :the computed decrease of the relative population a p of the pumped level of 3He below its equilibrium value (1/6)is plotted as a function of B for two values of the reduced pumping rate τe /τp :10?2(solid lines)

and 10?3(dashed lines).For the 2populations a p =a l +or a h

?,the results fall on the same curve (labelled b or b ′depending on τe /τp ).For the 4other populations,a signi?cantly larger decrease is found (groups of curves a and a ′).The insert is an expanded view of the low-?eld region (with a linear B -scale).

populations turns out to vary with the isotopic ratio R.However,the OP e?ects are found to depend mostly on the product Rτe /τp ,as shown in ?gure 10in the case of the state Y 3(m S =1).This in?uence of the isotopic com-position extends over a wide ?eld range,which justi?es the use of isotopic mixtures to reduce the bias resulting from OP e?ects in our systematic quantitative measurements of 4He line intensities.Figure 11displays a comparison of computed OP e?ects for the 3sublevels of the 4He 23S states.Results for the populations y 1and y 3are quite sim-ilar,except at large R.Weaker OP e?ects are found for the population y 2,for which m S =0.This feature is similar to the weaker OP e?ects found in 3He for the two states which have m S =0,m I =±1/2as main angular momenta components in high ?eld (see ?gure 9).

3Experimental

In this part we present experimental results of laser ab-sorption experiments probing the ?ne,hyper?ne and Zee-man splittings of the 1083nm transition in 3He and 4He.Accurate microwave measurements [27,33,34]and high pre-cision laser spectroscopy experiments [28,29,51,52]are usu-ally performed on helium atomic beams.In contrast,we have made unsophisticated absorption measurements us-ing a single free-running laser diode on helium gas in cells at room temperature,under the usual operating condi-tions for nuclear polarisation of 3He by OP.An important consequence of these conditions is the Doppler broadening

12 E.Courtade et al.:The1083nm Helium Transition in High Magnetic Field

Fig.10.OP on a4He level:the decrease of the4He population y3below its equilibrium value(1/3)is plotted as a function of B.The population has been computed for two values of the reduced pumping rateτe/τp:10?2(solid lines)and10?3 (dashed lines),and di?erent values of R(ranging from100to 10?3).The population decrease mostly depends on the product Rτe/τp(10?1,10?2,...10?5for curves a,b,...e).

Fig.11.OP on a4He level:the computed decrease of4He populations y1,y2and y3due to OP e?ects is plotted as a function of B.The reduced pumping rateτe/τp=10?2is that of the solid lines in?gure10.Four values of the isotopic ratio R are used(Rτe/τp=10?2to10?4for curves a to d).

of all absorption lines.Each transition frequencyωij/2π(in the rest frames of the atoms)is replaced by a Gaussian distribution of width?:

?=(ωij/2π)

ln2,are respec-tively1.98and1.72GHz).The narrow Lorentzian res-onant absorption pro?les(with widthsΓ′/2)in equations

2and8are thus strongly modi?ed,and broader Voigt

pro?les are obtained for isolated lines in standard absorp-

tion experiments.ForΓ′??,these are almost Gaus-sian pro?les of width?.In the following,we?rst report

on Doppler-free absorption measurements from which a

good determination of frequency splittings is obtained, then on integrated absorption intensities in di?erent mag-netic?elds.We?nally demonstrate that absorption mea-surements may provide a convenient determination of the nuclear polarisation M.

3.1Line positions:saturated absorption measurements 3.1.1Experimental setup

The experiment arrangement is sketched in?gure12.The Fabry Perot interferometer

Fig.12.Main elements of a saturated absorption experiment.

A magnetic?eld

B is applied either along the pump and probe beams,or perpendicular to the beams.Polarising elements (Pol.)consist of linear polarisers and/or quarter-wave plates depending on the desired polarisations of the pump and probe beams.

helium gas samples are enclosed in sealed cylindrical Pyrex glass cells,5cm in diameter and5cm in length.Cells are ?lled after a careful cleaning procedure:bakeout at700K under high vacuum for several days,followed by100W RF (27MHz)or microwave(2.4GHz)discharges in helium with frequent gas changes until only helium lines are de-tected in the plasma?uorescence.Most results presented here have been recorded in cells?lled with0.53mbar of 3He or helium mixture(25%3He,75%4He).Di?erent gas samples(from0.2to30mbar,from10%to100%3He) have also been used to study the e?ect of pressure and isotopic composition on the observed signals.A weak RF discharge(<1W at3MHz)is used to populate the23S state in the cell during absorption measurements.The RF excitation is obtained using a pair of external electrodes. Aligning the RF electric?eld with B provides a higher density of23S states and better OP results in high mag-netic?eld.

Most data have been acquired using a specially de-signed air-core resistive magnet(100mm bore diameter,

E.Courtade et al.:The 1083nm Helium Transition in High Magnetic Field 13

with transverse optical access for 20mm beams).In spite of a reduced footprint (30×20cm 2,axis height 15cm)which conveniently permits installation on an optical ta-ble,this magnet provides a fair homogeneity.The com-puted relative inhomogeneity is <10?3over a 5cm long cylindrical volume 1cm in diameter (typical volume probed by the light beams in spectroscopy measurements),and <3×10?3over the total cell volume.This usually induces low enough magnetic relaxation of nuclear polarisation in OP experiments.The ?eld-to-current ratio was calibrated using optically detected NMR resonance of 3He.Experi-ments for B up to 0.12T were performed with this coil.Several saturated absorption experiments have been re-peated and extended up to 0.22T using a standard elec-tromagnet in the Institute of Physics in Krakow.

The laser source is a 50mW laser diode (model 6702-H1formerly manufactured by Spectra Diode Laborato-ries).Its output is collimated into a quasi-parallel beam (typically 2×6mm in size)using an anti-re?ection coated lens (f =8mm).A wedge-shaped plate is used to split the beam into a main pump beam (92%of the total in-tensity),a reference beam sent through a

confocal Fabry Perot interferometer,and a probe beam (?gure 12).A small aperture limiting the probe beam diameter is used to only probe atoms lying in the central region of the pump beam.A small angle is set between the counterpropagating beams.This angle and su?cient optical isolation from the interferometer are required to avoid any feedback of light onto the laser diode,so that the emitted laser frequency only depends on internal parameters of the laser.The po-larisations of pump and probe beams are adjusted using combinations of polarising cubes,1/2-wave,1/4-wave re-tarding plates.For all the measurements of the present work,the same polarisation was used for pump and probe beams.However valuable information on collisional pro-cesses can be obtained using di?erent polarisation and/or di?erent frequencies for the two beams.

The probe beam absorption is measured using a modu-lation technique.The RF discharge intensity is modulated at a frequency f RF low enough for the density of the ab-sorbing atoms 23S to synchronously vary (f RF ~100Hz).The signal from the photodiode monitoring the transmit-ted probe beam is analysed using a lock-in ampli?er.The amplitude of the probe modulation thus measured,and the average value of the transmitted probe intensity are both sampled (at 20Hz),digitised,and stored.Absorp-tion spectra are obtained from the ratios of the probe modulation by the probe average intensity.This proce-dure strongly reduces e?ects of laser intensity changes and of optical thickness of the gas on the measured absorp-tions [22].

With its DBR (Distributed Bragg Re?ector)technol-ogy,this laser diode combines a good monochromaticity and easy frequency tuning.It could be further narrowed and stabilised using external selective elements,and thus used for high-resolution spectroscopy of the 1083nm line of helium [51].Here we have simply used a free running diode,with a linewidth dominated by the Schalow-Townes broadening factor of order 2-3MHz FWHM [53].The laser

frequency depends on temperature and current with typi-cal sensitivities 20GHz/K and 0.5GHz/mA respectively.To reduce temperature drifts,the diode is enclosed in a temperature regulated 1-dm https://www.doczj.com/doc/843948348.html,ing a custom made diode temperature and current controller,we obtain an overall temperature stability better than a mK,and a current stability of order a μA.Frequency drifts over sev-eral minutes and low frequency jitter are thus limited to 10MHz at most.

The laser frequency is adjusted,locked or swept by temperature control using the on-chip Peltier cell and tem-perature sensor.The small deviation from linearity of the frequency response was systematically measured during the frequency sweeps by recording the peaks transmitted by the 150MHz FSR interferometer.Figure 13displays an example of such a measurement:for a control voltage V (in Volts)the frequency o?set (in GHz)is 52.5×(1+0.048V )V .The linear term in this conversion factor is usually taken from more accurate zero-?eld line splitting measurements (see below),but this small non-linear correction is used to improve the determination of frequency scales for ex-tended sweeps.

Fig.13.Insert :fraction of recording of the light intensity transmitted by the Fabry Perot interferometer during a tem-perature controlled laser frequency scan (1V of control voltage approximately induces changes of 2.5K in laser temperature and 50GHz in emitted frequency).Main plot :residues of a linear ?t (open triangles)or parabolic ?t (solid circles)of all transmitted peak positions.

3.1.2Zero-?eld measurements

Results presented in this section have in fact been ob-tained in the earth ?eld in which Zeeman energy changes are of order 1MHz or less and thus too small to a?ect the results given the accuracy of our measurements.A small permanent magnet is placed near the cell to strongly re-duce the ?eld homogeneity and thus prevent any nuclear polarisation to build up when the pump beam is absorbed.

14 E.Courtade et al.:The1083nm Helium Transition in High Magnetic Field An example of frequency sweep over the whole3He ab-

sorption spectrum is given in?gure14(3He pressure:0.53

mbar).The frequency scale is determined using the ac-

Fig.14.Zero-?eld saturated absorption spectrum of3He.The

upper traces(a)represent the probe absorption signals when

the pump beam is applied(solid line)or blocked(dotted line).

Traces b and c(an expanded section of trace b)are the di?er-

ence of probe absorptions with and without the pump beam,

with a×4vertical scale factor.The sections of the spectrum

comprising the lines C2to C5provide a much larger signal and

are displayed with a reduced amplitude.Frequency sweep rate

is160MHz/s,a value ensuring su?cient signal quality and

manageable laser frequency drifts.Transition lines are labelled

C1to C9,crossover resonances between C i and C j are labelled

χi?j.The vertical bars on the axes represent the computed

line positions and intensities.

curately known value3A S/2=6.7397GHz of the C8-C9

splitting.The saturated absorption spectrum(solid line in

?gure14a)combines the usual broad absorption lines and

several narrow dips.The dips reveal a reduced absorption

of the probe by atoms interacting with the pump beam.

These are atoms with negligible velocity along the beam

direction(Doppler-free resonances)or atoms with a veloc-

ity such that the Doppler shift is just half of the splitting of

two transitions from or to a common level(crossover reso-

nances).An absorption signal recorded without the pump

beam(dotted line in?gure14a)only shows the broad fea-

tures,which can be?t by a Doppler Gaussian pro?le for

isolated lines(e.g.C8or C9).It is used to obtain the nar-

row resonances in?gure14b by signal substraction.The

widthδof the narrow resonances is50MHz FWHM in

the conditions of?gure14.It can be attributed to several

combined broadening processes,including pump satura-

tion e?ects and signal acquisition?ltering.

Broader line features,the“pedestals”on which nar-

row resonances stand,result from the combined e?ects of

collisions in the gas.Fully elastic velocity changing col-

lisions tend to impose the same population distribution

in all velocity classes,and thus to identically decrease

the probe absorption over the whole velocity pro?le.In

contrast,ME collisions involving a3He atom in a gas

where the nuclear polarisation is M=0induce a net loss

of angular momentum3(a uniform population distribu-

tion tends to be imposed by the in?nite spin tempera-

ture,see section2.2.3).In steady-state,the un-pumped

velocity classes will thus acquire only part of the pop-

ulation changes imposed in the pumped velocity class.

The relative amplitude of the resulting broad pedestal

results from the competition of collisional transfer and

collisional loss of orientation.One consequence is that

it is almost pressure-independent,as was experimentally

checked.Another consequence is that it strongly depends

on4He concentration in isotopic mixtures,as illustrated

in?gure15.The much larger fractional amplitude of the

Fig.15.Zero-?eld saturated absorption spectrum of the D0

line in a25%3He-75%4He mixture(same total pressure,

0.53mbar,as for?gure14).The lower trace also displays the

squared absorption amplitude(open circles),with an arbitrary

weight adjusted to?t the saturated absorption pedestal(see

text).

pedestal results from the weaker depolarising e?ect of the

ME collisions:only25%of the exchange collisions occur

in this case with a depolarised3He atom and thus con-

E.Courtade et al.:The1083nm Helium Transition in High Magnetic Field15 tribute to bleach the pump-induced population changes,

while all collisions induce velocity changes.In?gure15

is also displayed the squared absorption pro?le,which

closely matches the shape of the pedestal.This is a general

feature also observed in3He spectra,which results from

the linear response to the rather low pump power.Assum-

ing that the relative population changes are proportional

to the absorbed pump power,frequency detuning reduces

by the same Doppler pro?le factor both these population

changes and the probed total population.The resulting

squared Doppler pro?le is still Gaussian,but with reduced

width?/

16 E.Courtade et al.:The1083nm Helium Transition in High Magnetic Field

Fig.17.a:Plot of frequency shifts on the3He C8and C9 lines in an applied magnetic?eld measured by a saturated ab-sorption technique.Solid lines:computed Zeeman shifts(same as in?gure6).Up and down triangles:data forσ+andσ?po-larisations of light beams.Solid and open symbols:measure-ment using the air-core and iron yoke magnets respectively. Crosses:result of corrections applied the open symbol data set(see text).b:Di?erences between experimental and com-puted values for the measurements in the iron yoke magnet are plotted as a function of B.Open symbols:raw data(no correction);?lled symbols:data with?eld corrections only; crosses:data with?eld and frequency corrections(see text). attributed to a global frequency o?set from scan to scan. Estimating the o?set of each scan from the average of the3 recorded line positions,the remaining di?erences are sig-ni?cantly reduced(9MHz r.m.s.forσ+andσ?).The accuracy of these line position measurements is thus com-parable to that of the zero-?eld measurements(?gure16).

For the measurements in the iron yoke electromagnet (up to0.25T),a similar frequency o?set adjustment is not su?cient to signi?cantly reduce the di?erences be-tween measured and computed line positions(?gure17b). For instance,they amount to130MHz r.m.s.for theσ+ measurements(open up triangles).Moreover,splittings within a given scan consistently di?er from the computed ones.Assuming that the magnetic?eld is not exactly pro-portional to the applied current due to the presence of a soft iron yoke in the magnet,we use the largest measured splitting on the C9line(the transitions originating from the sublevels m F=±3/2)to determine the actual value of the magnetic?eld during each scan.Solid symbols in?g-ure17b are computed di?erences for these actual values of the magnetic?eld.Crosses(?gures17a and17b)corre-spond to fully corrected data,allowing also for frequency o?set adjusments.The?nal remaining di?erences(22MHz r.m.s.)are still larger than in the air-core magnet,yet this agreement is su?cient to support our?eld correction and o?set adjustment procedures in view of the line intensity measurements described in the following section.

3.2Line intensities

3.2.1Experimental setup

The experimental arrangement is either the one sketched in?gure12,in which the pump beam is blocked and only a weak probe beam(usually0.1-1mW/cm2)is transmitted through the cell,or a simpli?ed version of the setup when no saturated absorption measurement is performed.

The magnetic?eld is obtained by di?erent means de-pending on its intensity.Data at moderate?eld(up to 0.22T)data have been acquired using the resistive mag-nets described in section3.1.1.Higher?eld measurements have been performed in the bore and fringe?eld of a1.5T MRI superconducting magnet[54].With the laser source and all the electronics remaining in a low-?eld region sev-eral meters away from the magnet bore,cells were succes-sively placed at?ve locations on the magnet axis with?eld values ranging from B=6mT to1.5T.The1.5T value (in the bore)is accurately known from the routinely mea-sured1H NMR frequency(63.830MHz,hence1.4992T). The lower?eld intensities,6mT and0.4T,have been mea-sured using a Hall probe with a nominal accuracy of1%. The intermediate values,0.95T and1.33T,are deduced from the measured Zeeman splittings with a similar accu-racy of1%.Due to the steep magnetic?eld decrease near the edge of the magnet bore,large gradients cause a sig-ni?cant inhomogeneous broadening of the absorption lines in some situations discussed in section3.2.3.For these high?eld measurements,the Fabry Perot interferometer was not implemented and no accurate on-site check of the laser frequency scale was performed.Instead,the usual corrections determined during the saturated absorption measurements(see section3.1.1and?gure13)are used for the analysis of the recorded absorption spectra.

A systematic study of the e?ect of experimental con-ditions such as gas pressure,RF discharge intensity,and probe beam power and intensity,has been performed both in low?eld(the earth?eld)and at0.08T.The main char-acteristic features of the recorded spectra have been found to be quite insensitive to these parameters.Absorption spectra have been analysed in detail to accurately deduce the relative populations of di?erent sublevels(from the ra-tios of line intensities)and the average atomic density of atoms in the23S state in the probe beam(from its absorp-tion).A careful analysis of lineshapes and linewidths re-veals three di?erent systematic e?ects which are discussed in the next three sections.

3.2.2E?ect of imperfect3He isotopic purity

Evidence of a systematic e?ect on absorption pro?les was observed in experiments with nominally pure3He gas.A

E.Courtade et al.:The 1083nm Helium Transition in High Magnetic Field 17

typical recording of the C 8and C 9absorption lines for B =0

and residuals

to di?erent Gaussian ?ts are shown in ?gure 18.A straightforward ?t by two independent

Fig.19.Absorption measurements on the C 8and C 9lines performed in a ?eld B =0.111T in nominally pure 3He at 0.53mbar for circular polarisations (upper graph :σ+,lower graph :σ?).Traces a correspond to the raw absorption signals (solid lines)and computed pro?les (dotted lines,see text).Traces b are di?erences (residue plots)between absorption signals,corrected for light polarisation defects,and computed pro?les.Traces c are the computed pro?les for pure 4He,scaled down in order to correspond to an isotopic ratio R =0.4%.Expanded vertical scales (×5,right hand side axes)are used for traces b and c .

sorption signals are similar to the computed ones (dot-

18 E.Courtade et al.:The1083nm Helium Transition in High Magnetic Field ted lines),but two signi?cant di?erences appear.First,

a small line is visible for instance in the upper graph

aroundε/h=30GHz,where noσ+transition should be

observed.This is due to an imperfect circular polarisation

of the probe beam in the cell,resulting in part from stress-

induced circular dichroism in the cell windows(measured

to be of order0.2%).The amount of light with the wrong

polarisation is determined for each recording,and each sig-

nal is corrected by substracting the appropriate fraction

of the signal with the other circular polarisation(0.79%

and0.18%corrections forσ+andσ?recordings in?g-

ure19)4.Second,the corrected signals may then tenta-

tively be?t by the sum of three Gaussian pro?les centred

on the frequencies independently determined in a satu-

rated absorption experiment(see?gure17).But,as is the

case in zero?eld,this procedure does not provide satisfac-

tory results for the amplitudes and linewidths of the split

C9lines(corresponding to the transitions originating from

any of the lowest levels of the23S state,A1to A4,to the

highest levels of the23P state,B17and B18).In?gure19,

traces b display the di?erences between the corrected sig-

nals and the computed sums of three Gaussian pro?les

with a common linewidth and with amplitudes propor-

tional to the nominal transition probabilities in this?eld.

Two global amplitudes and the linewidth(?=1.221GHz)

are adjusted to?t the two C8transitions,and the resulting

di?erences are best accounted for assuming a proportion

R=0.4%of4He in the gas(traces c in?gure19).In order

to better reproduce the experimental recordings,the am-

plitudes of the split C9lines are?nally allowed to vary.

Fits with excellent reducedχ2and no visible feature in

the residues are obtained and the obtained ratios of in-

tensities are given in table1for this typical recording.

The same kind of discrepancy as in zero?eld is obtained

polarisation

computed

0.37570.18803

T4,17T2,17

0.313110.16111

C8/C90.833400.85683

ratio0.851980.86360

deviation+21%?3.6%

https://www.doczj.com/doc/843948348.html,puted line intensities T ij for B=0.1111T and

their ratios are compared to the experimental line amplitude

ratios of?gure19.

for the strong components of the transitions;it happens

to be much worse for the weakest line in some recordings,

including that of?gure19,for reasons which are not un-

derstood.

In an attempt to test whether the remaining line in-

tensity disagreements with the computed values may re-

E.Courtade et al.:The 1083nm Helium Transition in High Magnetic Field 19

respect to the computed ones is usually small (of order ±3%)after correcting for the presence of some 4He in our 3

He cells and for the observed light polarisation imperfec-tions.This di?erence does not arise from signal-to-noise limitations and its origin is not known.This may set a practical limit to the accuracy with which an absolute measurement of population ratios can be made using this experimental technique.Similar discrepancies are also ob-served at higher ?elds,situations for which the additional systematic e?ects described in the following sections must ?rst be discussed.

3.2.3E?ects of magnetic ?eld gradients

As previously mentioned (section

3.2.1),absorption ex-periments above

0.25T have been performed in the fringe ?eld of a 1.5T magnet.The exact ?eld map of this magnet was not measured,but the ?eld decreases from 1.33T to 0.95T in only 25cm,so that ?eld gradients along the axis may exceed 15mT/cm at some locations.In contrast,?eld variations in transverse planes are much smaller in the vicinity of the ?eld axis.As a result,a negligible broad-ening of absorption lines is induced by the ?eld gradient for perpendicular probe beams (σor πpolarisation for a linear polarisation perpendicular or parallel to B ).For probe beams propagating along the ?eld axis (σpolarisa-tion for a linear polarisation,σ+or σ?polarisation for a circular polarisation),the range of ?elds δB applied to the probed atoms is the product of the ?eld gradient by the cell length.This ?eld spread δB induces spreads δ?ij /h of optical transition frequencies which are proportional to δB and to the derivatives d?ij /dB.Each spread δ?ij /h thus depends on the probed transition as illustrated in ?gure 21for B =0.95T.

https://www.doczj.com/doc/843948348.html,puted ?eld-derivatives of the transitions energies ?ij /h are plotted for all 3He and 4He circular polarisation tran-sitions as a function of ?ij /h for B =0.95T.Inhomogeneous line broadenings proportional to these values are induced by a ?eld gradient.

The resulting absorption pro?les are given by the con-volution of the Doppler velocity distribution and of the fre-

quency spread functions,computed from the density dis-tribution of metastable atoms,the ?eld gradient at the cell location and the derivatives d?ij /dB.Assuming for sim-plicity a uniform density of atoms in the 23S state,com-puted broadened absorption pro?les only depend on the dimensionless ratio δ?ij /h?of the transition frequency spread to the Doppler width.Figures 22a and 22b display examples of computed pro?les (absorption as a function of this reduced detuning).For increasing frequency spreads,

of c ?to δ?a of

20 E.Courtade et al.:The1083nm Helium Transition in High Magnetic Field

Fig.23.Part of an absorption spectrum recorded at B=0.95T in a3He-4He mixture at2.13mbar(isotopic ratio R=3)using a longitudinal probe beam(open symbols).The solid curve is the spectrum computed for this R,assuming thermal Doppler widths for the di?erent lines.Its amplitude is scaled to repro-duce that of the47GHz line.Experimental broadening of the absorption lines is directly found on the101GHz line,and suggested by the residual absorption between the main lines (non-zero signal at50and55GHz),which is2-3times larger than computed.The insert is an expanded portion of the spec-trum,in which several3He and4He lines overlap(the computed absorption of pure4He is displayed as a dotted line).Experi-mental broadening of the absorption lines also clearly appears for this part of the spectrum.

nal(symbols)roughly correspond to the pro?le computed assuming the nominal Doppler widths?and neglecting frequency spreads(solid line).Clear amplitude di?erences are however observed,in particular for the most intense line.They can be attributed to OP

e?ects,and will be discussed in detail in the next section(3.2.4).Moreover, signi?cant linewidth di?erences appear,for instance on the isolated most shifted4He line(?tted apparent linewidth ?app=1.42GHz,30%larger than?4).Most of the other lines actually result from the overlap of several atomic transitions,and a straightforward Gaussian?t is not rele-vant.For example,the computed total absorption around ?/h=72GHz(insert in?gure23,solid line)results from the two4He transitions at66.7and72.1GHz(dotted line) and the two3He transitions at65.2and71.1GHz.

To better analyse the e?ect of the probe beam direc-tion on the shape and widths of di?erent lines,we plot in?gure24the absorption data using the same method as in?gure22b.The open symbols correspond to three of the lines in?gure23,with a probe beam along the di-rection?eld,and the solid symbols to lines from a similar recording with a perpendicular probe beam.Apart from the asymmetries on the71GHz lines which result from the additional3He line on the low-frequency side of the absorption pro?le(which is thus not retained in the anal-ysis),satisfactory linear?ts reveal Gaussian-like pro?les and provide the values of the corresponding linewidths. The experiments performed with a transverse probe pro-vide data with the steepest slopes and hence the smallest B

R

of ij

symbols:data of?gure23,longitudinal probe beam.Solid symbols:data for a transverse probe beam.The straight lines represent Gaussian absorption pro?les,and the values of their slopes are used to extract the apparent linewidths?app.The smallest linewidths,consistent with the4He Doppler width,are obtained for a transverse probe(?4=1.13and1.105GHz for the47and72GHz lines).Larger apparent linewidths are ob-tained for a longitudinal probe(?app=1.27,1.31and1.42GHz for the47,72and101GHz lines).

linewidths,while those using a longitudinal probe lead to larger apparent linewidths as https://www.doczj.com/doc/843948348.html,ing the convo-lution results of?gure22c,the frequency spreadsδ?ij/h for these lines are computed to be1.4,1.65and1.85GHz respectively.From the derivatives d?ij/dB for these transi-tions(?gure21),one computes that a?eld spreadδB=52mT would produce frequency spreads of1.08,1.65and1.85 GHz,corresponding to the observed broadenings for the 72and101GHz lines.The additional apparent broaden-ing for the47GHz experimental line may be attributed to OP e?ects for this rather intense line(see the next sec-tion3.2.4).For the estimated value of the?eld gradient (15mT/cm),this52mT?eld spread would be obtained for an e?ective cell length of3.5cm.This is quite satis-factory since the density of atoms in the metastable23S state vanishes at the cell walls,so that most of the probed atoms lie within a distance shorter than the actual gap between the end windows of our5cm-long cells(external length).

To summarise the results obtained in this section,the expected e?ects of strong?eld gradients on absorption lines have indeed been observed.They introduce a sys-tematic broadening and amplitude decrease of absorption signals which can be signi?cant(up to30%changes in our experiments),and must be considered in quantitative analyses.For isolated lines,area measurements are not af-fected by the transition frequency spreads.However,most lines usually overlap in a recorded absorption spectrum (especially in an isotopic mixture),and the quantitative

如何写先进个人事迹

如何写先进个人事迹 篇一:如何写先进事迹材料 如何写先进事迹材料 一般有两种情况:一是先进个人,如先进工作者、优秀党员、劳动模范等;一是先进集体或先进单位,如先进党支部、先进车间或科室,抗洪抢险先进集体等。无论是先进个人还是先进集体,他们的先进事迹,内容各不相同,因此要整理材料,不可能固定一个模式。一般来说,可大体从以下方面进行整理。 (1)要拟定恰当的标题。先进事迹材料的标题,有两部分内容必不可少,一是要写明先进个人姓名和先进集体的名称,使人一眼便看出是哪个人或哪个集体、哪个单位的先进事迹。二是要概括标明先进事迹的主要内容或材料的用途。例如《王鬃同志端正党风的先进事迹》、《关于评选张鬃同志为全国新长征突击手的材料》、《关于评选鬃处党支部为省直机关先进党支部的材料》等。 (2)正文。正文的开头,要写明先进个人的简要情况,包括:姓名、性别、年龄、工作单位、职务、是否党团员等。此外,还要写明有关单位准备授予他(她)什么荣誉称号,或给予哪种形式的奖励。对先进集体、先进单位,要根据其先进事迹的主要内容,寥寥数语即应写明,不须用更多的文字。 然后,要写先进人物或先进集体的主要事迹。这部分内容是全篇材料

的主体,要下功夫写好,关键是要写得既具体,又不繁琐;既概括,又不抽象;既生动形象,又很实在。总之,就是要写得很有说服力,让人一看便可得出够得上先进的结论。比如,写一位端正党风先进人物的事迹材料,就应当着重写这位同志在发扬党的优良传统和作风方面都有哪些突出的先进事迹,在同不正之风作斗争中有哪些突出的表现。又如,写一位搞改革的先进人物的事迹材料,就应当着力写这位同志是从哪些方面进行改革的,已经取得了哪些突出的成果,特别是改革前后的.经济效益或社会效益都有了哪些明显的变化。在写这些先进事迹时,无论是先进个人还是先进集体的,都应选取那些具有代表性的具体事实来说明。必要时还可运用一些数字,以增强先进事迹材料的说服力。 为了使先进事迹的内容眉目清晰、更加条理化,在文字表述上还可分成若干自然段来写,特别是对那些涉及较多方面的先进事迹材料,采取这种写法尤为必要。如果将各方面内容材料都混在一起,是不易写明的。在分段写时,最好在每段之前根据内容标出小标题,或以明确的观点加以概括,使标题或观点与内容浑然一体。 最后,是先进事迹材料的署名。一般说,整理先进个人和先进集体的材料,都是以本级组织或上级组织的名义;是代表组织意见的。因此,材料整理完后,应经有关领导同志审定,以相应一级组织正式署名上报。这类材料不宜以个人名义署名。 写作典型经验材料-般包括以下几部分: (1)标题。有多种写法,通常是把典型经验高度集中地概括出来,一

公路电动栏杆机控制模块维修简述

公路电动栏杆机控制模块维修简述 目前,公路自动栏杆机控制模块主要是Magnetic的自动栏杆机控制模块,这种控制模块采用了先进的微处理器技术和可靠的开关控制技术,系统集成度高,逻辑功能强,满足公路环境下的应用。 下面简单介绍栏杆机控制模块面板的功能与接线,栏杆机控制模块中的数字代表意义和接法如下: “1”表示接电源L(火线)220V AC; “2”表示接电源N(零线); “3”表示电源线地线; “4”表示电机接地线PE; “5”表示电机公共绕组U,接电机公共绕组U; “6”表示电机落杆绕组V,接电机绕组V; “7”表示电机升杆绕组W,接电机绕组W; “8、9”表示降压减速阻容(R=5Ω/25W C=2uF/AC450V,电阻和电容串联); “10、11”表示电机运行电容(4uF/AC450V); “17”表示电源输出24VDC接地线; “18”表示电源输出 24VDC正极; “19”表示控制信号共用线(+24VDC); “20”表示开脉冲,和控制信号共用线(+24VDC)短接有效; “21”表示环路感应器2输入(用于车辆到时自动抬杆,用于6、8模式); “22”表示关脉冲,和控制信号共用线(+24VDC)短接有效; “23”表示抬杆、落杆限位开关输入信号; “24”表示安全开关,接常闭触点;断开时,系统不会执行落杆动作; “25”表示控制信号共用线(+24VDC),同“19”功能一样; “26”表示档杆状态输出公共触点; “27、28”完全等同于“20、22”,常开触点(300ms); “29”表示抬杆状态输出触点; “30”表示落杆状态输出触点; “31、32”表示报警输出,为常开触点。 栏杆机控制模块长期处于工作状态,每天控制栏杆上下达几千次以上,是栏杆机易损元件之一,下面简单介绍几点常见的故障和维修方法,供大家参考: 首先,在维修栏杆机控制模块之前,务必将故障设备的灰尘清除干净,养成这个习惯可以让你检查和维修故障更快速、准确。 故障一控制模块无电现象 控制模块电源长期处于带电中,供电系统元件容易老化,容易出现无供电现象。这种情况一般先观察,所谓观察就是用眼睛看。注意观察栏杆机控制模块的外观、形状上有无什么异常,电器元件(如变压器、电容、电阻等)有无出现变形、断裂、松动、磨损、冒烟、腐蚀等情况。 其次是鼻子闻,一般轻微的气昧是正常的,如果有刺鼻的焦味,说明某个元器件被烧坏或击穿,应替换相应的元器件。最后用手试,当然是触摸绝缘的部分,有无发热或过热,用手去试接头有无松动,以确定设备运行状况以及发生故障的性质和程度。 如某站01#车道出现控制模块无电,经测试是电源保险管(250V 4A)烧毁。在更换前

最新小学生个人读书事迹简介怎么写800字

小学生个人读书事迹简介怎么写800字 书,是人类进步的阶梯,苏联作家高尔基的一句话道出了书的重要。书可谓是众多名人的“宠儿”。历来,名人说出关于书的名言数不胜数。今天小编在这给大家整理了小学生个人读书事迹,接下来随着小编一起来看看吧! 小学生个人读书事迹1 “万般皆下品,惟有读书高”、“书中自有颜如玉,书中自有黄金屋”,古往今来,读书的好处为人们所重视,有人“学而优则仕”,有人“满腹经纶”走上“传道授业解惑也”的道路……但是,从长远的角度看,笔者认为读书的好处在于增加了我们做事的成功率,改善了生活的质量。 三国时期的大将吕蒙,行伍出身,不重视文化的学习,行文时,常常要他人捉刀。经过主君孙权的劝导,吕蒙懂得了读书的重要性,从此手不释卷,成为了一代儒将,连东吴的智囊鲁肃都对他“刮目相待”。后来的事实证明,荆州之战的胜利,擒获“武圣”关羽,离不开吕蒙的“运筹帷幄,决胜千里”,而他的韬略离不开平时的读书。由此可见,一个人行事的成功率高低,与他的对读书,对知识的重视程度是密切相关的。 的物理学家牛顿曾近说过,“如果我比别人看得更远,那是因为我站在巨人的肩上”,鲜花和掌声面前,一代伟人没有迷失方向,自始至终对读书保持着热枕。牛顿的话语告诉我们,渊博的知识能让我们站在更高、更理性的角度来看问题,从而少犯错误,少走弯路。

读书的好处是显而易见的,但是,在社会发展日新月异的今天,依然不乏对读书,对知识缺乏认知的人,《今日说法》中我们反复看到农民工没有和用人单位签订劳动合同,最终讨薪无果;屠户不知道往牛肉里掺“巴西疯牛肉”是犯法的;某父母坚持“棍棒底下出孝子”,结果伤害了孩子的身心,也将自己送进了班房……对书本,对知识的零解读让他们付出了惨痛的代价,当他们奔波在讨薪的路上,当他们面对高墙电网时,幸福,从何谈起?高质量的生活,从何谈起? 读书,让我们体会到“锄禾日当午,汗滴禾下土”的艰辛;读书,让我们感知到“四海无闲田,农夫犹饿死”的无奈;读书,让我们感悟到“为报倾城随太守,西北望射天狼”的豪情壮志。 读书的好处在于提高了生活的质量,它填补了我们人生中的空白,让我们不至于在大好的年华里无所事事,从书本中,我们学会提炼出有用的信息,汲取成长所需的营养。所以,我们要认真读书,充分认识到读书对改善生活的重要意义,只有这样,才是一种负责任的生活态度。 小学生个人读书事迹2 所谓读一本好书就是交一个良师益友,但我认为读一本好书就是一次大冒险,大探究。一次体会书的过程,真的很有意思,咯咯的笑声,总是从书香里散发;沉思的目光也总是从书本里透露。是书给了我启示,是书填补了我无聊的夜空,也是书带我遨游整个古今中外。所以人活着就不能没有书,只要爱书你就是一个爱生活的人,只要爱书你就是一个大写的人,只要爱书你就是一个懂得珍惜与否的人。可真所谓

栏杆机说明书

MAGSTOP MIB 2O/3O/40 栏杆机 及MAGTRONIC MLC 控制器 操作指导 @1999年马格内梯克控制系统(上海)有限公司 地址:上海浦东新区宁桥路999号二幢底西层邮编:201206 电话:(21)58341717 传真:(21)58991233

目录 1. 系统概述 2 1.1 停车场系统的布局 2 1. 2 系统组件概述 2 2 安全 3 2.1一般安全信息3 2.2 建议用途 3 2.3 本手册中使用的安全标志3 2.4 操作安全 4 2.5 技术发展 4 2.6 质量保证 4 3. 装配及安装 5 3.1 构筑安装地基 5 3.2 安装感应线圈 6 3.3 安装机箱 8 3.4 安装栏杆机臂 8 3.5 基本机械结构 9 3.6 设置及校准弹簧 9 3.7 校准栏杆机臂位置 10 4. 电源连接 10 5. MLC控制器 11 5.1 命令发生器:在不同操作模式下的连接及功能 12 5.2 MLC控制器的操作 14 5.3 MLC控制器显示信息的解释 14 5.4 MLC控制器的复位 14 5.5 栏杆机的操作 15 5.6 编制及读取操作数据 16 5.7 校准感应线圈 18 6. 初始化操作 19 6.1 委托程序 19 6.2 在启动过程中显示的信息 19 7. 技术数据 21 7.1 栏杆机 21 7.2 控制器 21 8. 附录 22 8.1校准角度传感器及优化栏杆机的动作22 8.2 校准安全设备的角度 24 8.3 读取时间计数器 25 8.4 读取操作循环计数器 25 8.5 读取制动设置 25 8.6 复位情况的说明 26 8.7 测试模式 27 8.8 校准传感器 28 9. 技术支持 28 10. 备用零部件 29

高速公路自动栏杆机控制模块维修

高速公路自动栏杆机控制模块维修实例【转贴】 本人在成绵高速公路长期的维护工作中收集、总结的一些关于自动栏杆机控制模块的维护心得,供大家参考。成绵高速公路自动栏杆机控制模块主要是恒富威和magnetic专业设计的自动栏杆机控制模块,主要用于栏杆机的控制。采用了先进的微处理器技术和可靠的开关控制技术,系统集成度高,逻辑功能强,满足高速公路环境下的应用。下面我介绍下栏杆机控制模块面板的功能与接线栏杆机控制模块中的数字代表意义货接法如 下:“1”表示接电源L(火线)220V。“2”表示接电源N (零线)。“3”表示电源线地线。“4”表示电机接地线PE。“5”表示电机公共绕组U;接电机公共绕组U。“6”表示电机落杆绕组V;接电机绕组V。“7”表示电机升杆绕组W;接电机绕组W。“8、9”表示降压减速阻容(R=5Ω/25W C=2uF/AC450V,电阻和电容串联)。“10、11”表示电机运行电容 (4uF/AC450V)。“17”表示24V接地线。“18”表示表示电源+24V。“19”表示控制信号共用线(+24V)。“20”表示开脉冲,和控制信号共用线(+24V)短接有效。“21”表示环路感应器2输入(用于车辆到时自动提杆,用于6、8模式)。“22”表示关脉冲,和控制信号共用线(+24V)短接有效。“23”表示抬杆、落杆限位开关输入信号。“24”示安全开关,接常闭触点;断开时,系统不会执行落杆动作。“25”表示控制信号共用线(+24V),同“19”功能一样。“26”表示档杆状态输出公共触点。“27、28”完全等同于“20、22”表示计数输出,常开触点 (300ms)。“29”表示抬杆状态输出触点。“30”表示落杆状态输出触点。“30、31”表示报警输出,常开触点。栏杆机控制模块长期处于工作状态,每天控制栏杆上下达千次以上;是栏杆机易坏元件之一,下面我介绍常见几点常见的故障和实用的维修方法,供大家参 考。首先,维修设备之前,务必将故障设备的灰尘清除掉,养成这个习惯可以让你维修和检查故障起来轻松、准确许多。 故障一控制模块无电现象控制模块电源长期处于带电中,供电系统元件容易老化,容易出现无供电现象。这种情况一般先观察,所谓观察就是用眼睛看。注意观察栏杆机控制模块的外观、形状上有无什么异常,电器元件,如变压器,电容,电阻等有无出现变形,断裂,松动,磨损,冒烟,腐蚀等情况。其次是鼻子闻,一般轻微的气昧是正常的,如果有刺鼻的焦味,说明某个元器件被烧坏或击穿,应替换相应的元器件。最后用手试,当然是触摸绝缘的部分,有无发热或过热,用手去试接头有无松动;以确定设备运行状况以及发生故障的性质和程度。如某站一道出现控制模块无电,经测试是电源保险管(250V 4A)烧毁。我在更换前观察其他元件外表是否变形断裂,用手触摸电容、电感等接头有无松动。其次我就用万用表跑线,看是否有短路现象。经我检查后初步判定为保险丝被击穿,准备替换。替换前应认清被替换元器件的型号和规格。(同时替换某些元件时还应该注意方向。)最后我将同一型号的保险丝替换上并加电,控制模块工作灯亮起,用外用表测试控制模块,修复。有时,无电现象还由变压器(PIN9 0-115V PIN16 115V-0)损坏造成的。控制模块

个人先进事迹简介

个人先进事迹简介 01 在思想政治方面,xxxx同学积极向上,热爱祖国、热爱中国共产党,拥护中国共产党的领导.利用课余时间和党课机会认真学习政治理论,积极向党组织靠拢. 在学习上,xxxx同学认为只有把学习成绩确实提高才能为将来的实践打下扎实的基础,成为社会有用人才.学习努力、成绩优良. 在生活中,善于与人沟通,乐观向上,乐于助人.有健全的人格意识和良好的心理素质和从容、坦诚、乐观、快乐的生活态度,乐于帮助身边的同学,受到师生的好评. 02 xxx同学认真学习政治理论,积极上进,在校期间获得原院级三好生,和校级三好生,优秀团员称号,并获得三等奖学金. 在学习上遇到不理解的地方也常常向老师请教,还勇于向老师提出质疑.在完成自己学业的同时,能主动帮助其他同学解决学习上的难题,和其他同学共同探讨,共同进步. 在社会实践方面,xxxx同学参与了中国儿童文学精品“悦”读书系,插画绘制工作,xxxx同学在班中担任宣传委员,工作积极主动,认真负责,有较强的组织能力.能够在老师、班主任的指导下独立完成学院、班级布置的各项工作. 03 xxx同学在政治思想方面积极进取,严格要求自己.在学习方面刻苦努力,不断钻研,学习成绩优异,连续两年荣获国家励志奖学金;作

为一名学生干部,她总是充满激情的迎接并完成各项工作,荣获优秀团干部称号.在社会实践和志愿者活动中起到模范带头作用. 04 xxxx同学在思想方面,积极要求进步,为人诚实,尊敬师长.严格 要求自己.在大一期间就积极参加了党课初、高级班的学习,拥护中国共产党的领导,并积极向党组织靠拢. 在工作上,作为班中的学习委员,对待工作兢兢业业、尽职尽责 的完成班集体的各项工作任务.并在班级和系里能够起骨干带头作用.热心为同学服务,工作责任心强. 在学习上,学习目的明确、态度端正、刻苦努力,连续两学年在 班级的综合测评排名中获得第1.并荣获院级二等奖学金、三好生、优秀班干部、优秀团员等奖项. 在社会实践方面,积极参加学校和班级组织的各项政治活动,并 在志愿者活动中起到模范带头作用.积极锻炼身体.能够处理好学习与工作的关系,乐于助人,团结班中每一位同学,谦虚好学,受到师生的好评. 05 在思想方面,xxxx同学积极向上,热爱祖国、热爱中国共产党,拥护中国共产党的领导.作为一名共产党员时刻起到积极的带头作用,利用课余时间和党课机会认真学习政治理论. 在工作上,作为班中的团支部书记,xxxx同学积极策划组织各类 团活动,具有良好的组织能力. 在学习上,xxxx同学学习努力、成绩优良、并热心帮助在学习上有困难的同学,连续两年获得二等奖学金. 在生活中,善于与人沟通,乐观向上,乐于助人.有健全的人格意 识和良好的心理素质.

Magnetic TOLL栏杆机中文说明书

9 电气连接 9.1 安全 请参照18页,第2.6节“专业安全和特殊危险”中的安全注意事项。 电压 危险 一般 警告

热的表面 小心 电磁干扰 个人保护装备

在施工过程中,必须穿戴以下几种保护装备: ■工作服 ■保护手套 ■安全鞋 ■保护头盔。 9.2安装电保护设备 根据地区或当地的规定,安全设备需要提供给客户。通常有以下几种:■漏电保护器 ■断路器 ■ EN 60947-3的可锁定的2极开关。 9.3连接电源线 电压 危险 注意! 电源线的导线截面在1.5到4mm2 之间。要遵守国家关于 导线长度和相关电缆截面积的规定.

危险! 电压有致命的危险! 1.断开栏杆机系统电源。确保系统断电。确保机器不会再启动。 接线的准备—剥电缆外皮和铁芯绝缘 2.照下图剥开电源线和磁芯 图37:剥电源供应线。 1 电位 2 零线 3 地线 安置电源线 3.照下图,把电源线正确安装在相应的终端线夹上。也可参照,163页,第17.1节的“接线图”。 ■在机箱中正确安装电源线。此电源线不可连接移动部件。 ■用两个束线带固定电源线。 图38 安置电源线 1 电源线

2 束线带 3 束线带的金属突出物 连接电源线 图39:连接电源线 1 电源线的终端线夹 2 电位L 3 零线 N 4 地线 PE 9.4连接控制线路(信号设备) 以下连接对控制和反馈端有效: ■控制栏杆机的8个数码输入 ■反馈信息的4个数码输出 ■反馈信息的6个继电器输出。3个常开,3个转换触点。 危险! 电压有致命危险! 1.断开栏杆机系统电源。确保系统断电并不会重启。 连接控制线 2.将控制线穿过穿线孔。 ■在机箱中合理的放置控制线。控制线不可进入可移动部件。 ■安装控制线夹和绑线。通过轻微按压或移动,线夹可以在轨道上移动到预期的位置。绑线可以绑扎在金属突出物上。 3. 根据接线图连接控制线。请参照163页,第17.1节的“接线图”。

优秀党务工作者事迹简介范文

优秀党务工作者事迹简介范文 优秀党务工作者事迹简介范文 ***,男,198*年**月出生,200*年加入党组织,现为***支部书记。从事党务工作以来,兢兢业业、恪尽职守、辛勤工作,出色地完成了各项任务,在思想上、政治上同党中央保持高度一致,在业务上不断进取,团结同事,在工作岗位上取得了一定成绩。 一、严于律己,勤于学习 作为一名党务工作者,平时十分注重知识的更新,不断加强党的理论知识的学习,坚持把学习摆在重要位置,学习领会和及时掌握党和国家的路线、方针、政策,特别是党的十九大精神,注重政治理论水平的提高,具有坚定的理论信念;坚持党的基本路线,坚决执行党的各项方针政策,自觉履行党员义务,正确行使党员权利。平时注重加强业务和管理知识的学习,并运用到工作中去,不断提升自身工作能力,具有开拓创新精神,在思想上、政治上和行动上时刻同党中央保持高度一致。 二、求真务实,开拓进取 在工作中任劳任怨,踏实肯干,坚持原则,认真做好学院的党务工作,按照党章的要求,严格发展党员的每一个步骤,认真细致的对待每一份材料。配合党总支书记做好学院的党建工作,完善党总支建设方面的文件、材料和工作制度、管理制度等。

三、生活朴素,乐于助人 平时重视与同事间的关系,主动与同事打成一片,善于发现他人的难处,及时妥善地给予帮助。在其它同志遇到困难时,积极主动伸出援助之手,尽自己最大努力帮助有需要的人。养成了批评与自我批评的优良作风,时常反省自己的工作,学习和生活。不但能够真诚的指出同事的缺点,也能够正确的对待他人的批评和意见。面对误解,总是一笑而过,不会因为误解和批评而耿耿于怀,而是诚恳的接受,从而不断的提高自己。在生活上勤俭节朴,不铺张浪费。 身为一名老党员,我感到责任重大,应该做出表率,挤出更多的时间来投入到**党总支的工作中,不找借口,不讲条件,不畏困难,将总支建设摆在更重要的位置,解开工作中的思想疙瘩,为攻坚克难铺平道路,以支部为纽带,像战友一样团结,像家庭一样维系,像亲人一样关怀,践行入党誓言。把握机遇,迎接挑战,不负初心。

主要事迹简介怎么写(2020年最新)

主要事迹简介怎么写 概括?简要地反映?个单位(集体)或个?事迹的材料。简要事迹不?定很短,如果情况 多的话,也有?千字的。简要事迹虽然“简要”,但切忌语?空洞,写得像?学?期末鉴定。 ?应当以事实来说话。简要事迹是对某单位或个?情况概括?简要地反映情况,?如有三个??很突出,就写三个??,只是写某???时,要把主要事迹突出出来。 简要事迹?般来说,?少要包括两个??的内容。?是基本情况。简要事迹开头,往往要??段?字来表述?些基本情况。如写?个单位的简要事迹,应包括这个单位的?员、 承担的任务以及?段时间以来取得的主要成绩。如写个?的简要事迹,应包括该同志的性 别、出?年?、参加?作时间、籍贯、民族、?化程度以及何时起任现职和主要成绩。这 样上级组织在看了材料的开头,就会对这个单位或个?有?个基本印象。?是主要特点。 这是简要事迹的主体部分,最突出的事例有?个??就写成?块,并按照?定的逻辑关系进 ?排列,把同类的事例排在?起,?个??通常由?个?然段或?个?然段组成。 写作时,特别要注意以下四点: 1.?第三?称。就是把所要写的对象,是集体的?“他们”来表述,是个?的称之为“他(她)”。 (她)”,单位可直接写名称,个?可写其姓名。 为了避免连续出现?个“他们”或“他 2.掌握好时限。?论是单位或个?的简要事迹,都有?个时间跨度,既不要扯得太远,也不 要故意混淆时间概念,把过去的事当成现在的事写。这个时间跨度多长,要根据实际情况 ?定。如上级要某个同志担任乡长以来的情况就写他任乡长以来的事迹;上级要该同志两年 来的情况,就写两年来的事迹。当然,有时为了需要,也可适当地写?点超过这个时间的 背景情况。 3.?点他?的语?。就是在写简要事迹时,可?些群众的语?或有关?员的语?,这样会给??种?动、真切的感觉,衬托出写作对象?较?的思想境界。在?他?语?时,可适当加?,但不能造假。 4.?事实说话。简要事迹的每?个??可分为多个层次,?个层次先??句话作为观点,再???两个突出的事例来说明。?事实说话时,要尽量把?个事例说完整,以给?留下深 刻印象。

栏杆机控制器

MLC 580C N ,5131/04.02Phone:+49 7622/695-5Fax:+49 7622/695-602 e-mail:info@ac-magnetic.de https://www.doczj.com/doc/843948348.html,

Magnetic Control Systems Sdn.Bhd.No.16, Jalan Kartunis U1/47Temasya Ind.Park, Section U140150 Shah Alam, Selangor Darul Ehsan, Malaysia Phone:(+60) 3 / 55691718eMail: info@https://www.doczj.com/doc/843948348.html,.my Magnetic Control Systems (Shanghai) Co. Ltd.999 Ning-qiao Road, Bldg. 2W/1F Pudong New Area Shanghai 201206, China Phone:(+86) 21/ 58 341717eMail: magnetic@https://www.doczj.com/doc/843948348.html, Magnetic Automation Pty. Ltd.19 Beverage Drive Tullamarine, Victoria 3043, Australia Phone:(+61) 3 / 93 30 10 33eMail: info@https://www.doczj.com/doc/843948348.html, Magnetic Automation Corp.3160 Murrell Road Rockledge, FL 32955, USA Phone:(+1) 321/ 635 85 85eMail: info@https://www.doczj.com/doc/843948348.html, Magnetic Autocontrol Pvt.Ltd.Calve Chateau, 2B, IInd Floor Kilpauk 322 Poonamallee High Road IND Chennai, 600010 / India Phone:(+91) 44 6400 443eMail: magneticsales@https://www.doczj.com/doc/843948348.html,

最新树立榜样的个人事迹简介怎么写800字

树立榜样的个人事迹简介怎么写800字 榜样是阳光,温暖着我们的心;榜样如马鞭,鞭策着我们努力奋斗;榜样似路灯,照亮着我们前进的方向。今天小编在这给大家整理了树立榜样传递正能量事迹作文,接下来随着小编一起来看看吧! 树立榜样传递正能量事迹1 “一心向着党”,是他向着社会主义的坚定政治立场;“人的生命是有限的,可是,为人民服务是无限的,我要把有限的生命投入到无限的为人民服务中去”,是他的至理名言;“甘学革命的“螺丝钉”,是他干一行爱一行、钻一行的爱岗敬业态度。他——雷锋,是我们每一个人的“偶像”…… 雷锋的事迹传遍大江南北,他,曾被人们称为可敬的“傻子”。一九六零年八月,驻地抚顺发洪水,运输连接到了抗洪抢险命令。他强忍着刚刚参加救火工作被烧伤的手的疼痛,又和战友们在上寺水库大坝连续奋战了七天七夜,被记了一次二等功。望花区召开了大生产号召动员大会,声势很大,他上街办事,正好看到这个场面,他取出存折上在工厂和部队攒的200元钱,那时,他的存折上只剩下了203元,就跑到望花区党委办公室要为之捐献出来,为建设祖国做点贡献,接侍他的同志实在无法拒绝他的这份情谊,只好收下一半。另100元在辽阳遭受百年不遇洪水的时候,他捐献给了正处于水深火热之中的辽阳人民。在我国受到严重的自然灾害的情况下,他为国家建设,为灾区捐献出自已的全部积蓄,却舍不得喝一瓶汽水。就这样,他毫不犹豫的捐出了自己的所有积蓄,不求功名,不求名利,只求自己心安理得,只求为

革命献出自己的微薄之力,甘愿做革命的“螺丝钉”——在一次施工任务中,他整天驾驶汽车东奔西跑,很难抽出时间学习,他就把书装在挎包里,随身带在身边,只要车一停,没有其他工作时,就坐在驾驶室里看书。他曾经在自己的日记中写下这样一段话:”有些人说工作忙,没时间学习,我认为问题不在工作忙,而在于你愿不愿意学习,会不会挤时间来学习。要学习的时间是总是有的,问题是我们善不善于挤,愿不愿意钻。一块好好的木板,上面一个眼也没有,但钉子为什么能钉进去呢?这就是靠压力硬挤进去的。由此看来,钉子有两个长处:一个是挤劲,一个是钻劲。我们在学习上也要提倡这种”钉子“精神,善于挤和钻。”这就是他,用自己的实际行动来证明自己,用自己的亲生经历来感化世人,用自己的所作所为来传颂古今……人们都拼命地学习他的精神,他的精神被不同肤色的人所敬仰。现在,一切都在变,但是,那些决定人类向前发展的基本要素没有变,那些美好的事物没有变,那些所谓的“螺丝钉”精神没有变——而这正是他的功劳,是他开启了无私奉献精神的大门,为后人树立了做人的榜样…… 这就是他,一位中国家喻户晓的全心全意为人民服务的楷模,一位共产主义战士!他作为一名普通的中国人民解放军战士,在他短暂的一生中却助人无数。而且,伟大领袖毛泽东主席于1963年3月5日亲笔为他题词:“向雷锋同志学习”。 正是因为如此,全国刮起了学习雷锋的热潮。雷锋已经离开我们很长时间了。但是雷锋的精神却深深地在所有中国人心中扎下了根,现在它已经长成一株小树。正以其顽强的生命力,茁壮成长。我坚信,

德国magnetic栏杆机常见故障分析

德国Magnetic栏杆机的常见故障分析德国Magnetic自动栏杆机的核心部分是MLC控制器,控制器设置的正确与否直接影响栏杆机的正常工作。当栏杆机工作不正常时,请先确认是否是栏杆机的问题,是栏杆机哪个部分出现问题(如机械部分或控制部分),建议先将其他车道工作正常栏杆机控制器换到本车道,以确认是否是控制器出现问题;如果互换控制器后栏杆机工作正常,那么就确认本车道控制器有问题,请参照工作正常的控制器设置即可;如控制器重新设置后仍不能解决问题,请将控制器返回厂家维修。 以下是德国Magnetic自动栏杆机控制器的几种常见设置,可供参考。 1、控制器黑色按键和白色按键的作用: ?黑键:1)、手动控制抬杆; 2)、控制器编程时改变数值; 3)、控制器编程完毕后保存 ?白键:1)、手动控制落杆; 2)、控制器编程时确认数值; 3)、控制器编程完毕后不保存。 ?编程时,同时按下黑键和白键后数值下边出现光标。 ?同时按下黑键和白键持续四秒钟,控制器重启。 2、MLC控制器复位: ?同时按下黑键和白键持续四秒钟; ?将圆盘转至F,确认后可恢复到出厂设置; ?详见中文说明书第14页。 3、控制器圆盘开关各位置的功能 位置0:普通操作模式 位置1:程序代码 1—8

位置2:转矩时间 1—30秒 位置3:栏杆机开启时间 1—255秒 位置4:感应线圈A灵敏度 O一9 (0最小,9最大) 位置5:感应线圈B灵敏度 0—9(0最小,9最大) 位置6:检测器模式A0—8(见功能说明表) 位置7:检测器模式B0—8(见功能说明表) 位置8:感应线圈A/B频率 1 0,000Hz一90,000Hz 位置9:备用 位置A:计数模式 位置B:备用 位置C:备用 位置D:硬件错误控制器 16进制错误代码 位置E:语种选择德、英、法、西 位置F:出厂设置重设所有操作数据 4、模式设置: 将圆盘转至1,控制器有8种操作模式可供选择;详见中文说明书第16页。 5、控制器编程过程: (1)将圆盘开关转到所需位置; (2)同时按下黑色按键和白色按键; (3)使用黑色按键将数字滚动显示为所需的数值(光标位于正在变化的数字下方); (4)按下白色按键存储选中的数值或者将光标移到右边的一格; (5)按下黑色按键确认最终的数值或者按下白色按键取消输入的数值。 注意:完成编程后,请将圆盘开关转回到“0”位置(即普通操作模式) 6、感应线圈灵敏度设置: 将圆盘转至4或5(设置线圈A转至4,线圈B转至5);一般情况下灵敏度选择4-6,不宜太高或太低。详见中文说明书第16页。 7、检测器A、B的开启和关闭 将圆盘开关转至6和7分别设置检测器A、B的状态,如果A、B线圈都没有使用或只使用了一个检测器,那么就要关闭没有使用的检测器(将检测器A、B的数值设置为0,是关闭状态;检测器开启时数值是应该是1或2,一般用2。) 8、校准传感器/优化栏杆机动作

大学生先进事迹简介怎么写

大学生先进事迹简介怎么写 苑xx,男,汉族,1990年07月22日出生,中国共青团团员,入党积极分子,现任xx学院电气优创0902班班长,担任xx学院09级总负责人、xx学院团委学生会科创部干事、xx学院文艺团主持部部长。 步入大学生活一年以来,他思想积极,表现优秀,努力向党组织靠拢,学习刻苦,品学兼优,工作认真负责,脚踏实地,生活勤俭节约,乐于助人。一直坚持多方面发展,全面锻炼自我,注重综合能力、素质拓展能力的培养。再不懈的努力下获得了多项荣誉: ●获得09-10学年xx大学“百佳千优”(文化体育)一等奖学金和“百佳千优”(班级建设)二等奖学金; ●获得09-10学年xx大学“优秀学生干部”荣誉称号; ●2010年xx大学普通话知识竞赛中获得一等奖; ●2010年xx大学主持人大赛中获得一等奖,被评为金话筒; ●xx学院首届“大学生文明修身”活动周——再生比赛中获得一等奖; ●xx学院首届“大学生文明修身”活动周——演讲比赛中获得一等奖。 一、刻苦钻研树学风 作为班长,他在学习方面,将班级同学分成各个学习小组,布置每日学习任务,分组竞争,通过开展各项趣味学习活动,全面调动班级同学的积极性,如:排演英语戏剧、文学常识竞答、数学辅导小组等。他带领全班同学努力学习、勤奋刻苦,全班同学奖学金获得率达91%,四级通过率达66%。 二、勤劳负责建班风

在日常班级工作中,他尽心尽力,通过网络组织建立班级博客,把班级的日常情况,班级比赛,特色主题班会等活动,及时上传到 班级博客,以方便更多同学了解自己的班级,也把班级的魅力、特色,更全面、更具体的展现出来。 在班级建设中,他带领全班同学参加学院组织的各项文体活动中也收获颇多: ●在xx学院首届“大学生文明修身”活动周中荣获第二名, ●xx学院首届乒乓球比赛中荣获第一名、精神文明奖, ●在xx学院“迎新杯”男子篮球赛中荣获第四名、最佳组织奖。 除了参加学院组织的各项活动外,为了进一步丰富班级同学们的课余生活,他在班级内积极开展各式各样的课余活动: ●普通话知识趣味比赛,感受中华语言的魅力,复习语文文学常识,为南方同学打牢普通话基础,推广普通话知识。 ●“我的团队我的班”主题班会活动中,创办特色活动“情暖你我心”天使行动,亲切问候、照顾其他同学的生活、学习方面细节 小事,即使在寒冷的冬天,也要让外省的同学感受到家一样的温暖。 ●“预览科技知识”科技宫之行,作为现代大学生,不能只顾书本知识,也要跟上时代,了解时代前沿最新科技。 ●感恩节“感谢我们身边的人”主题班会活动,在这个特殊的节日里,他带领同学们通过寄贺卡、送礼物等方式,来感谢老师辛勤 的付出;每人写一封家书,寄给父母,感谢父母劳苦的抚育,把他们 的感激之情,转化为实际行动来感化周围的人;印发感恩宣传单,发 给行人,唤醒人们的感恩的心。 三、热情关怀暖人心 生活中,他更能发挥榜样力量,团结同学,增强班级凝聚力。时刻观察每一位同学的情绪状态,在心理上帮助同学。他待人热情诚恳,积极帮助生活中有困难的同学:得知班级同学生病高烧,病情 严重,马上放下午饭,赶到同学寝室,背起重病同学到校医院进行

个人事迹简介

个人事迹简介 我是来自计算机与与软件学院的学生,现在为青年志愿者协会的干事,在班级担任生活委员。在过去的一年里,我注重个人能力的培养积极向上,热心公益,服务群众,奉献社会,热忱的投身于青年支援者的行动中!一年时间虽短,但在这一年的时间里,作为一名志愿者,我确信我成长了很多,成熟了很多。“奉献、友爱、互助、进步”这是我们志愿者的精神,在献出爱心的同时,得到的是帮助他人的满足和幸福,得到的是无限的快乐与感动。路虽漫漫,吾将上下而求索!在以后的日子里,我会在志愿者事业上做的更好。 在思想上,我积极进取,关心国家大事,并多次与同学们一起学习志愿者精神,希望我们会在新的世纪里继续努力,发扬我国青年的光传统,不懈奋斗,不断创造,奋勇前进,为实现中华民族的伟大复兴做出了更大的贡献。 在学习上刻苦认真,抓紧时间,不仅学习好学科基础知识,更加学好专业课知识,在课堂上积极配合老师的教学,乐意帮助其它同学,有什么好的学习资料,学习心得也与他们交流,希望大家能共同进步。在上一个年度总成绩在班级排名第四,综合考评在班级排名第二。在工作中,我认真负责,出色的完成老师、同学交给的各项任务,所以班级人际关系良好。

此外参加了学院组织的活动,并踊跃地参加,发挥自己的特长,为班级争得荣誉。例如:参加校举办的大合唱比赛并获得良好成绩;参加了计算机与软件学院党校学习并顺利结业;此外,参加了计算机与软件进行的“计算机机房义务打扫与系统维护”的活动。在这些活动中体验到了大学生生活的乐趣。 现将多次参与各项志愿活动汇报如下:2013年10月26日,参加计算机与软件学院团总支实践部、计算机与软件学院青年志愿者协会组织“志愿者在五福家园的健身公园开展义务家教招新活动”;2013年11月7日,参加组成计算机与软件学院运动员方阵在田径场参加学院举办的学校运动会;2013年12月5日,参与学校学院组织的”一二.五“大合唱比赛;2014年3月12日,参加由宿舍站长组织义务植树并参与植树活动;2014年3月23日,在计算机与软件学院团总支书记茅老师的带领下,民俗文化传承协会、计算机与软件学院青年志愿者协会以及学生会的同学们参观了“计算机软件学院的文化素质教育共建基地--南京市民俗博物馆”的活动;2014年3月26日,参加有宿舍站长组织的“清扫宿舍公寓周围死角垃圾”的活动;2014年4月5日,参加由校青年志愿者协会、校实践部组织的“南京市雨花台扫墓”活动,2014年4月9日,作为班级代表参加计算机软件学院组织部组织的“计算机应用office操作大赛”的活动。 在参与各项志愿活动的同时,我的学习、工作、生活能力得到了提高和认可,丰富生活体验,提供学习的机会,提供学习的机会。

栏杆机

栏杆机 3.5基本机械结构 1.栏杆机臂 2.设置弹簧拉力的调节螺丝,带有安全夹 3.凸缘轴的紧固柄 4.橡胶缓冲块 5.连接件 6.电机的紧固柄 警告: 弹簧收紧后,弹簧及栏杆机臂对驱动装置(BDU)是加了相当大的力并因此产生了潜在的发生伤害的危险。 因此任何对于栏杆机臂驱动装置(BDU)的工作,必须在弹簧未被收紧并且栏杆机臂确保安全或被卸下的情况下才可以进行! 3.6测试/校准弹簧 所有栏杆机在生产工厂中都根据原配的栏杆机臂做了设置.但在使用时安装完栏杆机臂后进行栏杆机的第一次操作前,应该检查栏杆机臂的设置。 在栏杆机臂的重量被弹簧施加的拉力所平衡的情况下,栏杆机才可以正确运作。因此任何对于栏杆机臂的变动都必须根据如下步骤进行重新校准。 测试弹簧设置: 1.打开栏杆机箱体的门,卸下安装板,开启并取去封盖。 2.拔下电源插头。 3.手工将栏杆机臂调到约45°C角的位置后放开手。如果栏杆机臂稳定在此位置不动,说明此时 弹簧的调整是正确。 校准弹簧设置: 1.取下两个弹簧调节螺杆上的两个安全夹。同时拧紧或放松左右两根调节螺杆直至栏杆机臂在45°C角的位置保持稳定。 2.重新装上调节螺杆安全夹。 例外情况: 当栏杆机被设置为在发生电源故障的情况下自动打开,就需要比上面提到的更大的弹簧拉力(只有在栏杆机臂长度最大为3.5M 的情况下)。 请注意如果栏杆机在生产工厂中特别设置为这种打开方式,那么栏杆机臂在水平终点位置时不会锁止! 3.7校准栏杆机臂位置 要校准栏杆机臂位置(例如,在施加过度的力之后),请根据如下步骤进行: 1.打开栏杆机箱体的门,卸下安装板,开启并取出封盖。 2.按下黑色按键升起栏杆机臂。 3.将MLC控制器前面板上的旋转选择开关(图S0227)转到位置“1” 4.松开凸缘轴的紧固柄上的两个紧固螺钉,使得可以用手将栏杆机臂重新定位。 5.校准栏杆机臂的位置(垂直位置)。 6.使用扭矩扳手重新拧紧两个紧固螺钉(72Nm). 7.将MLC控制器选择开关(图S0227)转回到位置“0”。 4.电源连接

个人事迹简介10篇(优秀版)

《个人事迹简介》 个人事迹简介(一): 李维波,男,中共党员,自2003年应聘农电工以来,他就把自己的一切奉献给了他热爱的电力事业。在多年的工作中爱岗敬业,勤勤恳恳,任劳任怨。2003年至2007年先后担任过xx供电所线损管理员、用电检查管理员、两率管理员、线路工作负责人;2007年调到xx供电所任用电检查管理员、客户经理;2009年5月调到xx供电所任营销员兼用电检查管理员。 刚踏入电力工作的时候,他还是个电力行业的门外汉,可他深深的明白:知识改变思想!思想改变行动!行动决定命运这句话,明白在当今学习的社会里,对于电力更就应不断的吸取新的知识,更新新的观念,以满足时代对于电力的更高的要求。正是这样他透过自己的努力学习,一步步的从门外汉变成了此刻的技术骨干。 一、加强政治学习,提高理论思想水平 多年以来,他在工作中始终坚持学习邓小平理论和三个代表重要思想。他深知:一个人只有有了与时俱进的思想做指导,人的认识才会提高,思想才能净化,行为也才能与时代同步,与社会同步,与发展同步,也才能成为社会发展的推动者、有作为者,正因为如此,他严格要求自己,认真学习思想理论方面的知识,抓紧一切时间学习,认真听,做好笔记,写好心得,并且用三个代表思想来约束自己,不断提高自身的修养,从而真正实践党的全心全意为人民服务的宗旨。 二、加强专业知识的学习,提高专业技术 在当今信息化的时代,科学技术飞速发展,尤其在电力行业这个技术密集型企业中,学习显得尤为重要。从踏进电力企业的大门开始,他就自觉学习专业知识,以书本为老师,阅读各方面的相关书籍,不断丰富自己的理论基础;以老同志为师傅,细心观察他们的实际操作,不断丰富自己的实践经验;以实践为老师,从中加深对知识的理解和领会。从2003年开始,学会了计算机普通操作,掌握了电力安全方面相关知识、电工基础知识、供电营业规则,参加局每年安规考试多次得到全局前十名,2005年农电体制改革考试应知和应会总分全局第5名。 三、发扬三千精神,做好优质服务 2007年,xx所因滩坑移民影响,电费回收率难以上升,应对电费回收的复杂严峻形势,

高速公路自动栏杆机控制模块维修实例

高速公路自动栏杆机控制模块维修实例 本人在成绵高速公路长期的维护工作中收集、总结的一些关于自动栏杆机控制模块的维护心得,供大家参考。 成绵高速公路自动栏杆机控制模块主要是恒富威和magnetic专业设计的自动栏杆机控制模块,主要用于栏杆机的控制。采用了先进的微处理器技术和可靠的开关控制技术,系统集成度高,逻辑功能强,满足高速公路环境下的应用。 下面我介绍下栏杆机控制模块面板的功能与接线 栏杆机控制模块中的数字代表意义货接法如下: “1”表示接电源L(火线)220V。“2”表示接电源N(零线)。“3”表示电源线地线。“4”表示电机接地线PE。“5”表示电机公共绕组U;接电机公共绕组U。“6”表示电机落杆绕组V;接电机绕组V。“7”表示电机升杆绕组W;接电机绕组W。“8、9”表示降压减速阻容(R=5Ω/25W C=2uF/AC450V,电阻和电容串联)。“10、11”表示电机运行电容(4uF/AC450V)。“17”表示24V接地线。“18”表示表示电源+24V。“19”表示控制信号共用线(+24V)。“20”表示开脉冲,和控制信号共用线(+24V)短接有效。“21”表示环路感应器2输入(用于车辆到时自动提杆,用于6、8模式)。“22”表示关脉冲,和控制信号共用线(+24V)短接有效。“23”表示抬杆、落杆限位开关输入信号。“24”示安全开关,接常闭触点;断开时,系统不会执行落杆动作。“25”表示控制信号共用线(+24V),同“19”功能一样。“26”表示档杆状态输出公共触点。“27、28”完全等同于“20、22”表示计数输出,常开触点(300ms)。“29”表示抬杆状态输出触点。“30”表示落杆状态输出触点。“30、31”表示报警输出,常开触点。 栏杆机控制模块长期处于工作状态,每天控制栏杆上下达千次以上;是栏杆机易坏元件之一,下面我介绍常见几点常见的故障和实用的维修方法,供大家参考。 首先,维修设备之前,务必将故障设备的灰尘清除掉,养成这个习惯可以让你维修和检查故障起来轻松、准确许多。 故障一控制模块无电现象 控制模块电源长期处于带电中,供电系统元件容易老化,容易出现无供电现象。这种情况一般先观察,所谓观察就是用眼睛看。注意观察栏杆机控制模块的外观、形状上有无什么异常,电器元件,如变压器,电容,电阻等有无出现变形,断裂,松动,磨损,冒烟,腐蚀等情况。其次是鼻子闻,一般轻微的气昧是正常的,如果有刺鼻的焦味,说明某个元器件被烧坏或击穿,应替换相应的元器件。最后用手试,当然是触摸绝缘的部分,有无发热或过热,用手去试接头有无松动;以确定设备运行状况以及发生故障的性质和程度。 如某站一道出现控制模块无电,经测试是电源保险管(250V 4A)烧毁。我在更换前观察其他元件外表是否变形断裂,用手触摸电容、电感等接头有无松动。其次我就用万用表跑线,看是否有短路现象。经我检查后初步判定为保险丝被击穿,准备替换。替换前应认清被替换元器件的型号和规格。(同时替换某些元件时还应该注意方向。)最后我将同一型号的保险丝替换上并加电,控制模块工作灯亮起,用外用表测试控制模块,修复。 有时,无电现象还由变压器(PIN9 0-115V PIN16 115V-0)损坏造成的。控制模块变压器的13、14脚8V 2.4V A;15、16脚1.8V 5.4V A。首先观察变压器是否变形,有无焦味。再用外用表测试进电是否有电,出电是否和变压器上标示的一样则可判断变压器是否损坏。修复方法同上。 车辆过后栏杆无法下落 有的时候还会出现,自动栏杆在过车以后偶尔无法降杆,这往往也是栏杆机内部的控制模块工作紊乱导致。此时,只要对其进行重新复位,就能够很快恢复正常。操作方法:按下控制模块上RESET红色小键即复位,或者将栏杆机电源重开关一次即可修复。

相关主题
文本预览
相关文档 最新文档