当前位置:文档之家› 随机事件及其概率知识点总结

随机事件及其概率知识点总结

随机事件及其概率知识点总结
随机事件及其概率知识点总结

随机事件及其概率

一、随机事件

1、必然事件

在一定条件下,必然会发生的事件叫作必然事件.

2、不可能事件

在一定条件下,一定不会发生的事件叫作不可能事件.

3、随机事件

在一定条件下,可能发生,也可能不发生的事件叫作随机事件,一般用大写字母,,来表示随机事件. CBA

4、确定事件

必然事件和不可能事件统称为相对于随机事件的确定事件.

5、试验

为了探索随机现象发生的规律,就要对随机现象进行观察或模拟,这种观察或模拟的过程就叫作试验.

【注】(1)在一定条件下,某种现象可能发生,也可能不发生,事先并不能判断将出现哪种结果,这种现象就叫作随机现象. 应当注意的是,随机现象绝不是杂乱无章的现象,这里的“随机”有两方面意思:①这种现象的结果不确定,发生之前不能预言;②这种现象的结果带有偶然性. 虽然随机现象的结果不确定,带有某种偶然性,但是这种现象的各种可能结果在数量上具有一定的稳定性和规律性,我们称这种规律性为统计规律性. 统计和概率就是从量的侧面去研究和揭示随机现象的这种规律性,从而实现随机性和确定性之间矛盾的统一.

1.

(2)必然事件与不可能事件反映的是在一定条件下的确定性现象,而随机事件反映的则是在一定条件下的随机现象.

(3)随机试验满足的条件:可以在相同条件下重复进行;所有结果都是明确可知的,但不止一个;每一次试验的结果是可能结果中的一个,但不确定是哪一个. 随机事件也可以简称为事件,但有时为了叙述的简洁性,也可能包含不可能事件和必然事件.

二、基本事件空间

1、基本事件

在试验中不能再分的最简单的随机事件,而其他事件都可以用它们进行描述,这样的事件称为基本事件.

2、基本事件空间

所有基本事件构成的集合称为基本事件空间,常用大写字母来表示,中的??每一

个元素都是一个基本事件,并且中包含了所有的基本事件. ?

【注】基本事件是试验中所有可能发生的结果的最小单位,它不能再分,其他的事件都可以用这些基本事件来表示;在写一个试验的基本事件空间时,应注意每个基本事件是否与顺序有关系;基本事件空间包含了所有的基本事件,在写时应注意不重复、不遗漏.

三、频率与概率

1、频数与频率

nn次试验中是否出现,则称在次试验,观察某一事件在相同条件下进行了

SAn A n?)(fA为事件事件出现的次数事件出现的频数;为事件出现的比例AAA An n 出现的频率. A

2.

2、概率

f(A)稳的增加,对于给定的随机事件,如果随着试验次数事件发生的频率n AA n 定在某个常数上,则把这个常数称为事件的概率,简称为的概率,记作. )(AP AA

3、频率与概率的关系

(1)频率虽然在一定程度上可以反映事件发生的可能性的大小,但频率并不是一个完全确定的数. 随着试验次数的不同,产生的频率也可能不同,所以频率无法从根本上刻画事件发生的可能性的大小,但人们从大量的重复试验中发现:随着试验次数的无限增加,事件发生的频率会稳定在某一固定的值上,即在无限次重复试验下,频率具有某种稳定性.

(2)概率是一个常数,它是频率的科学抽象. 当试验次数无限多时,所得到的频率就会近似地等于概率. 另外,概率大,并不表示事件一定会发生,只能说明事件发生的可能性大,但在一次试验中却不一定会发生.

四、事件的关系与运算

1、包含关系

一般地,对于事件与事件,如果事件发生时,事件一定发生,则我们称BAABB?AA?B).(或(或称事件事件包含事件包含于事件),记作BBAA

2、相等关系

一般地,对于事件与事件,如果事件发生时,事件一定发生,并且如果BBAAB?AA?B,则我们称事件事件发生时,事件且与事件一定发生,即若AAB相等,记作. BAB?

3、并事件

如果某事件发生当且仅当事件或事件发生,则我们称该事件为事件与事件AAB,记作(或). 的并事件(或和事件)B??ABAB

3.

4、交事件

如果某事件发生当且仅当事件发生且事件也发生,则我们称该事件为事件ABA

与事件的交事件(或积事件),记作(或). BAA?B?B

5、互斥事件

如果事件与事件的交事件为不可能事件(即),则我们称事??A?BBAAB?件与事件互斥,其含义是:事件与事件在任何一次试验中都不会同时发BBAA生.

6、对立事件

如果事件与事件的交事件为不可能事件(即),而事件与?A?B?ABB?AA事件的并

事件为必然事件(即),则我们称事件与事件互B?A?B?B?ABA为对立事件,其含

义是:事件与事件在任何一次试验中有且仅有一个发生. BA

【注】事件的关系与运算可以类比集合的关系与运算. 例如,事件包含事件BA

类比集合包含集合;事件与事件相等类比集合与集合相等;事件AAABBAB与事件的并事件类比集合与集合的并集;事件与事件的交事件类比BBBAA集合与集合的交集……BA

五、互斥事件与对立事件

互斥事件与对立事件是今后考察的重点,因此关于互斥事件与对立事件,我们很有必要再作进一步的说明.

1、互斥事件与对立事件的关系

互斥事件与对立事件都反映的是两个事件之间的关系. 互斥事件是不可能同时发生的两个事件,而对立事件除了要求这两个事件不同时发生以外,还要求这两个事件必须有一个发生. 因此,对立事件一定是互斥事件,而互斥事件不一定是对立事件. 例如,掷一枚骰子,事件:“出现的点数是1”与事件:“出现的点数是偶数”是互斥事件,但不是对立事件;而事件:“出现的点数是奇数”与事件:“出现的点数是偶数”既是互斥事件,也是对立事件.

4.

2、互斥事件的概率加法公式

(1)两个互斥事件的概率之和

如果事件与事件互斥,那么;)B)?P(A?B)?P(AP(BA(2)有限多个互斥事件的概率之和

AAA?A?L?AA发生”一般地,如果事件两两互斥,那么事件“,,…,nn1221AAA中至少有一个发生)的概率等于这,…,,个事件分别发生(指事件

n n21P(A?A?L?A)?P(A)?P(A)?L?P(A).的概率之和,即nn2211【注】上述这两个公式叫作互

斥事件的概率加法公式. 在运用互斥事件的概率加法公式时,一定要首先确定各事件是否彼此互斥(如果这个条件不满足,则公式不适用),然后求出各事件分别发生的概率,再求和.

3、对立事件的概率加法公式

对于对立的两个事件与而言,由于在一次试验中,事件与事件不会同时BABA发生,因此事件与事件互斥,并且,即事件或事件必有一个BB??AAB?A发生,所以对立事件与的并事件发生的概率等于事件发生的概率与ABBAA?事件发生的概率之和,且和为,即B1,或. )(B)?1??)?P(B)1PP(A(BP(P?)?(A?)?PA【注】上述这个公式为我们求事件的概率提供了一种方法,当我们直接)(AP A求有困难时,可以转化为先求其对立事件的概率,再运用公式)BP(P(A)B即可求出所要求的事件的概率. )AP()?AP()?1P(B A

4、求复杂事件的概率的方法

求复杂事件的概率通常有两种方法:一种是将所求事件转化为彼此互斥的事件的和,然后再运用互斥事件的概率加法公式进行求解;另一种是先求其对立事件的概率,然后再运用对立事件的概率加法公式进行求解. 如果采用方法一,一定要准确地将所求事件拆分成若干个两两互斥的事件,不能有重复和遗漏;如果采用方法二,一定要找准所求事件的对立事件,并准确求出对立事件的概率.

5.

六、概率的基本性质

1、任何事件的概率都在之间,即对于任一事件,都有. 1)??P(A01:0A

2、必然事件的概率为,不可能事件的概率为. 01

3、若事件与事件互斥,

则. )(B(A)?PP?P(AB)?BA4、两个对立事件的概率之和为,即若事件与事件对立,则. 1B)?(?AP()P BA1

6.

随机信号分析期末总复习提纲重点知识点归

第 一 章 1.1不考 条件部分不考 △雅柯比变换 (随机变量函数的变换 P34) △随机变量之间的“不相关、正交、独立” P51 (各自定义、相关系数定义 相互关系:两个随机变量相互独立必定互不相关,反之不一定成立 正交与不相关、独立没有明显关系 结合高斯情况) △随机变量的特征函数及基本性质 (一维的 P53 n 维的 P58) △ 多维高斯随机变量的概率密度和特征函数的矩阵形式、三点性质 P61 ( )()() () ( ) ()()2 2 1 () 2112 2 22 11 ,,exp 2 2exp ,,exp 22T T x m X X X X X n n X T T jU X X X X X n X M X M f x f x x U U u Q u j m Q u u E e jM U σπσμ---?? --??= = -????? ? ?? ?? ?? ??=-==- ?? ??? ????? ?? C C C u u r u u r u u r u u r u u r u u r L u r u r u u r u r L 另外一些性质: []()20XY XY X Y X C R m m D X E X m ??=-=-≥??

第二章 随机过程的时域分析 1、随机过程的定义 从三个方面来理解①随机过程(),X t ζ是,t ζ两个变量的函数②(),X t ζ是随时间t 变化的随机变量③(),X t ζ可看成无穷多维随机矢量在0,t n ?→→∞的推广 2、什么是随机过程的样本函数?什么是过程的状态?随机过程与随机变量、样本函数之间的关系? 3、随机过程的概率密度P7 4、特征函数P81。(连续、离散) 一维概率密度、一维特征函数 二元函数 4、随机过程的期望、方差、自相关函数。(连续、离散) 5、严平稳、宽平稳的定义 P83 6、平稳随机过程自相关函数的性质: 0点值,偶函数,周期函数(周期分量),均值 7、自相关系数、相关时间的定义 P88 2 2 2() ()()()()(0)()X X X X X X X X X X C R m R R R R τττρτσ σ--∞= = -∞= 非周期 相关时间用此定义(00()d τρττ∞ =?) 8、两个随机过程之间的“正交”、“不相关”、“独立”。 (P92 同一时刻、不同时刻) 9、两个随机过程联合平稳的要求、性质。P92

随机事件的概率知识点总结

随机事件的概率 一、事件 1.在条件S下,一定会发生的事件,叫做相对于条件S的必然事件. 2.在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件. 3.在条件S下,可能发生也可能不发生的事件,叫做相对于条件S的随机事件. 二、概率和频率 1.用概率度量随机事件发生的可能性大小能为我们决策提供关键性依据. 2.在相同条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现 的次数n A为事件A出现的频数,称事件A出现的比例f n(A)=n A n 为事件A出现的频率. 3.对于给定的随机事件A,由于事件A发生的频率f n(A)随着试验次数的增加稳定于概率P(A),因此可以用频率f n(A)来估计概率P(A). 三、事件的关系与运算

四、概率的几个基本性质 1.概率的取值范围:0≤P(A)≤1. 2.必然事件的概率P(E)=1. 3.不可能事件的概率P(F)=0. 4.概率的加法公式: 如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B). 5.对立事件的概率: 若事件A与事件B互为对立事件,则A∪B为必然事件.P(A∪B)=1,P(A)=1-P(B). 1.掷一枚均匀的硬币两次,事件M:一次正面朝上,一次反面朝上;事件N:至少一次正面朝上.则下列结果正确的是( ) A.P(M)=1 3 P(N)= 1 2 B.P(M)=1 2 P(N)= 1 2 C.P(M)=1 3 P(N)= 3 4 D.P(M)=1 2 P(N)= 3 4 解析:选D 由条件知事件M包含:(正、反)、(反、正).事件N包含:(正、正)、(正、反)、(反、正). 故P(M)=1 2 ,P(N)= 3 4 . 2.(2012·)从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( ) A.至少有一个红球与都是红球 B.至少有一个红球与都是白球 C.至少有一个红球与至少有一个白球 D.恰有一个红球与恰有二个红球 解析:选D A中的两个事件不互斥,B中两事件互斥且对立,C中的两个事件不互斥,D

随机过程知识点汇总

第一章 随机过程得基本概念与基本类型 一.随机变量及其分布 1.随机变量, 分布函数 离散型随机变量得概率分布用分布列 分布函数 连续型随机变量得概率分布用概率密度 分布函数 2.n 维随机变量 其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量得数字特征 数学期望:离散型随机变量 连续型随机变量 方差: 反映随机变量取值得离散程度 协方差(两个随机变量): 相关系数(两个随机变量): 若,则称不相关。 独立不相关 4.特征函数 离散 连续 重要性质:,,, 5.常见随机变量得分布列或概率密度、期望、方差 0-1分布 二项分布 泊松分布 均匀分布略 正态分布 指数分布 6.N维正态随机变量得联合概率密度 )}()(2 1ex p{||)2(1 ),,,(121221a x B a x B x x x f T n n ---=-π ,,正定协方差阵 二.随机过程得基本概念 1.随机过程得一般定义 设就是概率空间,就是给定得参数集,若对每个,都有一个随机变量与之对应,则称随机变量族就是上得随机过程。简记为。 含义:随机过程就是随机现象得变化过程,用一族随机变量才能刻画出这种随机现象得全部统计规律性。另一方面,它就是某种随机实验得结果,而实验出现得样本函数就是随机得。 当固定时,就是随机变量。当固定时,时普通函数,称为随机过程得一个样本函数或轨道。 分类:根据参数集与状态空间就是否可列,分四类。 也可以根据之间得概率关系分类,如独立增量过程,马尔可夫过程,平稳过程等。 2.随机过程得分布律与数字特征 用有限维分布函数族来刻划随机过程得统计规律性。随机过程得一维分布,二维分布,…,维分布得全体称为有限维分布函数族。随机过程得有限维分布函数族就是随机过程概率特征得完整描述。在实际中,要知道随机过程得全部有限维分布函数族就是不可能得,因此用某些统计特征来取代。 (1)均值函数 表示随机过程在时刻得平均值。

知识讲解_随机事件的概率_提高

随机事件的概率 【学习目标】 1.了解必然事件,不可能事件,随机事件的概念; 2.正确理解事件A 出现的频率的意义; 3.正确理解概率的概念和意义,明确事件A 发生的频率f n (A)与事件A 发生的概率P(A)的区别与联系. 【要点梳理】 要点一、随机事件的概念 在一定的条件下所出现的某种结果叫做事件. (1)必然事件:在条件S 下,一定会发生的事件,叫做相对于条件S 的必然事件,简称必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫做相对于条件S 的不可能事件,简称不可能事件; 确定事件:必然事件与不可能事件统称为相对于条件S 的确定事件,简称确定事件. (3)随机事件:在条件S 下可能发生也可能不发生的事件,叫做相对于条件S 的随机事件,简称随机事件. 要点诠释: 1.随机事件是指在一定条件下出现的某种结果,随着条件的改变其结果也会不同,因此强调同一事件必须在相同的条件下进行研究; 2.随机事件可以重复地进行大量实验,每次的实验结果不一定相同,但随着实验的重复进行,其结果呈现规律性. 要点二、随机事件的频率与概率 1.频率与频数 在相同条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数A n 为事件A 出现的频数,称事件A 出现的比例()A n n f A n 为事件A 出现的频率。 2.概率 事件A 的概率:在大量重复进行同一试验时,事件A 发生的频率 n m 总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作P(A). 由定义可知0≤P(A)≤1,显然必然事件的概率是1,不可能事件的概率是0. 要点诠释: (1)概率从数量上反映了随机事件发生的可能性的大小. 求事件A 的概率的前提是:大量重复的试验,试验的次数越多,获得的数据越多,这时用 A n n 来表示()P A 越精确。 (2)任一事件A 的概率范围为0()1P A ≤≤,可用来验证简单的概率运算错误,即若运算结果概率 不在[01], 范围内,则运算结果一定是错误的. 3.概率与频率的关系 (1)频率是概率的近似值。 随着试验次数的增加,频率会越来越接近概率,在实际问题中,事件的概率未知时,常用频率作为它的估计值。 (2)频率是一个随机数 频率在试验前不能确定,做同样次数的重复试验得到的频率可能相同也可能不同。 (3)概率是一个确定数 概率是客观存在的,与每次试验无关。

通信原理知识点归纳

1.2.1 通信系统的一般模型 1.2.3 数字通信的特点 (1) 抗干扰能力强,且噪声不积累 (2) 传输差错可控 (3) 便于处理、变换、存储,将来自不同信源的信号综合到一起传输 (4) 易于集成,使通信设备微型化,重量轻 (5) 易于加密处理,且保密性好 1.3.1 通信系统的分类 按调制方式分类:基带传输系统和带通(调制)传输系统 。调制传输系统又分为多种 调制,详见书中表1-1。 按信号特征分类:模拟通信系统和数字通信系统 按传输媒介分类:有线通信系统和无线通信系统 3.1.2 随机过程的数字特征 均值(数学期望): 方差: 相关函数 3.2.1 平稳随机过程的定义 (1)其均值与t 无关,为常数a ; (2)自相关函数只与时间间隔τ 有关。 把同时满足(1)和(2)的过程定义为广义平稳随机过程。 3.2.2 各态历经性 如果平稳过程使下式成立 则称该平稳过程具有各态历经性。 3.2.4 平稳过程的功率谱密度 非周期的功率型确知信号的自相关函数与其功率谱密度是一对傅里叶变换。这种关系对平稳随机过程同样成立,即有 []∫∞∞?=dx t x xf t E ),()(1ξ} {2)]()([)]([t a t E t D ?=ξξ2121212212121),;,()] ()([),(dx dx t t x x f x x t t E t t R ∫∫ ∞∞?∞∞?==ξξ???==)()(τR R a a ∫∫ ∞ ∞?∞∞??==ω ωπτττωωτξωτξd e P R d e R P j j )(21)()()(

3.3.2 重要性质 广义平稳的高斯过程也是严平稳的。 高斯过程经过线性变换后生成的过程仍是高斯过程。 3.3.3 高斯随机变量 (1)f (x )对称于直线 x = a ,即 (2) 3.4 平稳随机过程通过线性系统 输出过程ξo (t )的均值: 输出过程ξo (t )的自相关函数: 输出过程ξo (t )的功率谱密度: 若线性系统的输入是平稳的,则输出也是平稳的。 如果线性系统的输入过程是高斯型的,则系统的输出过程也是高斯型的。 3.5 窄带随机过程 若随机过程ξ(t )的谱密度集中在中心频率f c 附近相对窄的频带范围Δf 内,即满足Δf << f c 的条件,且 f c 远离零频率,则称该ξ(t )为窄带随机过程。 3.7 高斯白噪声和带限白噪声 白噪声n (t ) 定义:功率谱密度在所有频率上均为常数的噪声 - 双边功率谱密度 - 单边功率谱密度 4.1 无线信道 电磁波的分类: 地波:频率 < 2 MHz ;距离:数百或数千千米 天波:频率:2 ~ 30 MHz ;一次反射距离:< 4000 km 视线传播:频率 > 30 MHz ;距离: 4.3.2 编码信道模型 P(0 / 0)和P(1 / 1) - 正确转移概率,P(1/ 0)和P(0 / 1) - 错误转移概率 P (0 / 0) = 1 – P (1 / 0) P (1 / 1) = 1 – P (0 / 1) 2)(0 n f P n =)(+∞<

统计概率知识点梳理总结

统计概率知识点梳理总结 第一章随机事件与概率 一、教学要求 1?理解随机事件的概念,了解随机试验、样本空间的概念,掌握事件之间的关系与 运算. 2?了解概率的各种定义,掌握概率的基本性质并能运用这些性质进行概率计算. 3.理解条件概率的概念,掌握概率的乘法公式、全概率公式、贝叶斯公式,并能运用这些公式进行概率计算. 4?理解事件的独立性概念,掌握运用事件独立性进行概率计算 5?掌握贝努里概型及其计算,能够将实际问题归结为贝努里概型,然后用二项概率计算有关事件的概率. 本章重点:随机事件的概率计算. 二、知识要点 1?随机试验与样本空间 具有下列三个特性的试验称为随机试验: (1)试验可以在相同的条件下重复地进行; (2)每次试验的可能结果不止一个,但事先知道每次试验所有可能的结果; (3)每次试验前不能确定哪一个结果会出现. 试验的所有可能结果所组成的集合为样本空间,用门表示,其中的每一个结果用 e 表示,e 称为样本空间中的样本点,记作门二 {e} . 2?随机事件

在随机试验中,把一次试验中可能发生也可能不发生、而在大量重复试验中却呈现 某种规律性的事情称为随机事件(简称事件)?通常把必然事件(记作】)与不可能事件(记作) 看作特殊的随机事件. 3 . **事件的关系及运算 (1)包含:若事件A发生,一定导致事件B发生,那么,称事件B包含事件A , 记作A B(或B二A). ⑵相等:若两事件A与B相互包含,即A二B且B二A ,那么, 称事件A与B相等,记作A二B . (3)和事件:“事件A与事件B中至少有一个发生”这一事件称为A与B的和事件, 记作A _? B n个事件A A2,山,A中至少有一事件发生”这一事件称为 n IJ A A, A2,III,A n 的和,记作A l A2 11( A n (简记为宫). (4)积事件:“事件A与事件B同时发生”这一事件称为A与B的积事件,记作 A^B(简记为AB);“n个事件A,A川,A n同时发生”这一事件称为 n 1A A, A2,川,A n的积事件,记作A i 「A2-山-人(简记为AAJHA n或L ). (5)互不相容:若事件A和B不能同时发生,即AB = ? ?,那么称事件A与B互不相 容(或互斥),若n个事件A1,A2,山,A n 中任意两个事件不能同时发生,即 AA j = (1 < i

随机过程知识点

第一章:预备知识 §1、1 概率空间 随机试验,样本空间记为Ω。 定义1、1 设Ω就是一个集合,F 就是Ω的某些子集组成的集合族。如果 (1)∈ΩF; (2)∈A 若F ,∈Ω=A A \则F; (3)若∈n A F , ,,21=n ,则 ∞=∈1n n A F; 则称F 为-σ代数(Borel 域)。(Ω,F )称为可测空间,F 中的元素称为事件。 由定义易知: . 216\,,)5)4(111F A A A i F A F B A F B A F i i n i i n i i i ∈=∈∈∈∈?∞ === ,,则,,,)若(; 则若(; 定义1、2 设(Ω,F )就是可测空间,P(·)就是定义在F 上的实值函数。如果 ()()()()∑∞ =∞==???? ???=?≠=Ω≤≤∈1121,,,31210,)1(i i i i j i A P A P A A j i A A P A P F A 有 时,当)对两两互不相容事件(; )(; 任意 则称P 就是()F ,Ω上的概率,(P F ,,Ω)称为概率空间,P(A)为事件A 的概率。 定义1、3 设(P F ,,Ω)就是概率空间,F G ?,如果对任意 G A A A n ∈,,,21 , ,2,1=n 有: (),1 1∏===???? ??n i i n i i A P A P 则称G 为独立事件族。 §1、2 随机变量及其分布 随机变量X ,分布函数)(x F ,n 维随机变量或n 维随机向量,联合分布函 数,{}T t X t ∈,就是独立的。 §1、3随机变量的数字特征 定义1、7 设随机变量X 的分布函数为)(x F ,若?∞ ∞-∞<)(||x dF x ,则称 )(X E =?∞ ∞-)(x xdF 为X 的数学期望或均值。上式右边的积分称为Lebesgue-Stieltjes 积分。 方差,()()[]EY Y EX X E B XY --=为X 、Y 的协方差,而 DY DX B XY XY = ρ 为X 、Y 的相关系数。若,0=XY ρ则称X 、Y 不相关。 (Schwarz 不等式)若,,22∞<∞

随机事件及其概率教案(精)

<随机事件及其概率>教案 (一)教学目标: 1、知识目标: 使学生掌握必然事件,不可能事件,随机事件的概念及概率的统计定义,并了解实际生活中的随机现象,能用概率的知识初步解释这些现象 2、能力目标: 通过自主探究,动手实践的方法使学生理解相关概念,使学生学会主动探究问题,自主实践,分析问题,总结问题。 3、德育目标: 1.培养学生的辩证唯物主义观点. 2.增强学生的科学意识 (二)教学重点与难点: 重点:理解概率统计定义。 难点:认识频率与概率之间的联系与区别。 (三)教学过程: 一、引入新课: 试验1:扔钥匙,钥匙下落。 试验2:掷色子,数字几朝上。 讨论:下列事件能否发生? (1)“导体通电时,发热”---------------必然发生(2)“抛一石块,下 落”---------------必然发生 (3)“在常温下,铁熔化” -------------不可能发生 (4)“某人射击一次,中靶” -----可能发生也可能不发生(5)“掷一枚硬币,国徽朝上” -----可能发生也可能不发生(6)“在标准大气压下且温度低于0℃时,冰融化” ---不可能发生思考: 1、“结果”是否发生与“一定条件”有无直接关系? 2、按事件发生的结果,事件可以如何来分类? 二、新授: (一)随机事件: 定义1、在一定条件下必然要发生的事件叫必然事件。 定义2、在一定条件下不可能发生的事件叫不可能事件。 定义3、在一定条件下可能发生也可能不发生的事件叫随机事件。 例1、指出下列事件是必然事件,不可能事件,还是随机事件: (1)扬中明年1月1日刮西北风; x (2)当x是实数时,20 (3)手电筒的电池没电,灯泡发亮; (4)一个电影院某天的上座率超过50%。 (5)从分别标有1,2,3,4,5,6,7,8,9,10的10张号签中任取一张,得到4号签。讨论:各举一个你生活或学习中的必然事件、不可能事件、随机事件的例子 做一做:(投币实验)抛掷一枚硬币,观察它落地时哪一面朝上?(两人一组) 1.你的结果和其他同学一致吗?为什么会出现这样的情况? 2.重复试验10次并记录结果(正面朝上的次数)。(一人试验,一人记录)

人教版高中数学【必修三】[知识点整理及重点题型梳理]_随机事件的概率_提高

人教版高中数学必修三 知识点梳理 重点题型(常考知识点)巩固练习 随机事件的概率 【学习目标】 1.了解必然事件,不可能事件,随机事件的概念; 2.正确理解事件A 出现的频率的意义; 3.正确理解概率的概念和意义,明确事件A 发生的频率f n (A)与事件A 发生的概率P(A)的区别与联系. 【要点梳理】 要点一、随机事件的概念 在一定的条件下所出现的某种结果叫做事件. (1)必然事件:在条件S 下,一定会发生的事件,叫做相对于条件S 的必然事件,简称必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫做相对于条件S 的不可能事件,简称不可能事件; 确定事件:必然事件与不可能事件统称为相对于条件S 的确定事件,简称确定事件. (3)随机事件:在条件S 下可能发生也可能不发生的事件,叫做相对于条件S 的随机事件,简称随机事件. 要点诠释: 1.随机事件是指在一定条件下出现的某种结果,随着条件的改变其结果也会不同,因此强调同一事件必须在相同的条件下进行研究; 2.随机事件可以重复地进行大量实验,每次的实验结果不一定相同,但随着实验的重复进行,其结果呈现规律性. 要点二、随机事件的频率与概率 1.频率与频数 在相同条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数A n 为事件A 出现的频数,称事件A 出现的比例()A n n f A n 为事件A 出现的频率。 2.概率 事件A 的概率:在大量重复进行同一试验时,事件A 发生的频率 n m 总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作P(A). 由定义可知0≤P(A)≤1,显然必然事件的概率是1,不可能事件的概率是0. 要点诠释: (1)概率从数量上反映了随机事件发生的可能性的大小. 求事件A 的概率的前提是:大量重复的试验,试验的次数越多,获得的数据越多,这时用 A n n 来表示()P A 越精确。 (2)任一事件A 的概率范围为0()1P A ≤≤,可用来验证简单的概率运算错误,即若运算结果概率不在[01],范围内,则运算结果一定是错误的.

随机过程知识点汇总

第一章随机过程的基本概念与基本类型 一.随机变量及其分布 1.随机变量,分布函数 离散型随机变量的概率分布用分布列分布函数 连续型随机变量的概率分布用概率密度分布函数 2.n维随机变量 其联合分布函数 离散型联合分布列连续型联合概率密度 3.随机变量的数字特征 数学期望:离散型随机变量连续型随机变量 方差:反映随机变量取值的离散程度 协方差(两个随机变量): 相关系数(两个随机变量):若,则称不相关。 独立不相关 4.特征函数离散连续 重要性质:,,, 5.常见随机变量的分布列或概率密度、期望、方差 0-1分布 二项分布 泊松分布均匀分布略 正态分布 指数分布 6.N维正态随机变量的联合概率密度 ,,正定协方差阵 二.随机过程的基本概念 1.随机过程的一般定义 设是概率空间,是给定的参数集,若对每个,都有一个随机变量与之对应,则称随机变量族是上的随机过程。简记为。 含义:随机过程是随机现象的变化过程,用一族随机变量才能刻画出这种随机现象的全部统计规律性。另一方面,它是某种随机实验的结果,而实验出现的样本函数是随机的。 当固定时,是随机变量。当固定时,时普通函数,称为随机过程的一个样本函数或轨道。 分类:根据参数集和状态空间是否可列,分四类。也可以根据之间的概率关系分类,如独立增量过程,马尔可夫过程,平稳过程等。 2.随机过程的分布律和数字特征 用有限维分布函数族来刻划随机过程的统计规律性。随机过程的一维分布,二维分布,…,维分布的全体称为有限维分布函数族。随机过程的有限维分布函数族是随机过程概率特征的完整描述。在实际中,要知道随机过程的全部有限维分布函数族是不可能的,因此用某些统计特征来取代。(1)均值函数表示随机过程在时刻的平均值。 (2)方差函数表示随机过程在时刻对均值的偏离程度。 (3)协方差函数且有 (4)相关函数(3)和(4)表示随机过程在时刻,时的线性相关程度。

随机事件及其概率(知识点总结)Word版

随机事件及其概率 一、随机事件 1、必然事件 在一定条件下,必然会发生的事件叫作必然事件. 2、不可能事件 在一定条件下,一定不会发生的事件叫作不可能事件. 3、随机事件 在一定条件下,可能发生,也可能不发生的事件叫作随机事件,一般用大写字母A,B,C来表示随机事件. 4、确定事件 必然事件和不可能事件统称为相对于随机事件的确定事件. 5、试验 为了探索随机现象发生的规律,就要对随机现象进行观察或模拟,这种观察或模拟的过程就叫作试验. 【注】(1)在一定条件下,某种现象可能发生,也可能不发生,事先并不能判断将出现哪种结果,这种现象就叫作随机现象. 应当注意的是,随机现象绝不是杂乱无章的现象,这里的“随机”有两方面意思:①这种现象的结果不确定,发生之前不能预言;②这种现象的结果带有偶然性. 虽然随机现象的结果不确定,带有某种偶然性,但是这种现象的各种可能结果在数量上具有一定的稳定性和规律性,我们称这种规律性为统计规律性. 统计和概率就是从量的侧面去研究和揭示随机现象的这种规律性,从而实现随机性和确定性之间矛盾的统一.

(2)必然事件与不可能事件反映的是在一定条件下的确定性现象,而随机事件反映的则是在一定条件下的随机现象. (3)随机试验满足的条件:可以在相同条件下重复进行;所有结果都是明确可知的,但不止一个;每一次试验的结果是可能结果中的一个,但不确定是哪一个. 随机事件也可以简称为事件,但有时为了叙述的简洁性,也可能包含不可能事件和必然事件. 二、基本事件空间 1、基本事件 在试验中不能再分的最简单的随机事件,而其他事件都可以用它们进行描述,这样的事件称为基本事件. 2、基本事件空间 所有基本事件构成的集合称为基本事件空间,常用大写字母Ω来表示,Ω中的每一个元素都是一个基本事件,并且Ω中包含了所有的基本事件. 【注】基本事件是试验中所有可能发生的结果的最小单位,它不能再分,其他的事件都可以用这些基本事件来表示;在写一个试验的基本事件空间时,应注意每个基本事件是否与顺序有关系;基本事件空间包含了所有的基本事件,在写时应注意不重复、不遗漏. 三、频率与概率 1、频数与频率 在相同条件S 下进行了n 次试验,观察某一事件A 是否出现,则称在n 次试验中事件A 出现的次数A n 为事件A 出现的频数;事件A 出现的比例()A n n f A n =为事件A 出现的频率.

随机过程习题及答案

第二章 随机过程分析 学习指导 1.1.1 要点 随机过程分析的要点主要包括随机过程的概念、分布函数、概率密度函数、数字特征、通信系统中常见的几种重要随机过程的统计特性。 1. 随机过程的概念 随机过程是一类随时间作随机变化的过程,它不能用确切的时间函数描述。可从两种不同角度理解:对应不同随机试验结果的时间过程的集合,随机过程是随机变量概念的延伸。 2. 随机过程的分布函数和概率密度函数 如果ξ(t )是一个随机过程,则其在时刻t 1取值ξ(t 1)是一个随机变量。ξ(t 1)小于或等于某一数值x 1的概率为P [ ξ(t 1) ≤ x 1 ],随机过程ξ(t )的一维分布函数为 F 1(x 1, t 1) = P [ξ(t 1) ≤ x 1] (2-1) 如果F 1(x 1, t 1)的偏导数存在,则ξ(t )的一维概率密度函数为 1111111 (,) (, ) (2 - 2)?=?F x t f x t x 对于任意时刻t 1和t 2,把ξ(t 1) ≤ x 1和ξ(t 2) ≤ x 2同时成立的概率 {}212121122(, ; , )(), () (2 - 3)F x x t t P t x t x ξξ=≤≤ 称为随机过程 (t )的二维分布函数。如果 2212122121212 (,;,) (,;,) (2 - 4)F x x t t f x x t t x x ?=??? 存在,则称f 2(x 1, x 2; t 1, t 2)为随机过程 (t )的二维概率密度函数。 对于任意时刻t 1,t 2,…,t n ,把 {}n 12n 12n 1122n n ()(),(),,() (2 - 5) =≤≤≤L L L F x x x t t t P t x t x t x ξξξ,,,;,,,称为随机过程 (t )的n 维分布函数。如果 n n 12n 12n n 12n 12n 12n (x )() (2 - 6)?=???L L L L L F x x t t t f x x x t t t x x x ,,,;,,,,,,;,,, 存在,则称f n (x 1, x 2, …, x n ; t 1, t 2, …, t n )为随机过程 (t )的n 维概率密度函数。 3. 随机过程的数字特征 随机过程的数字特征主要包括均值、方差、自相关函数、协方差函数和互相关函数。 随机过程 (t )在任意给定时刻t 的取值 (t )是一个随机变量,其均值为 []1()(, )d (2 - 7)E t xf x t x ξ∞ -∞ =?

概率论知识点总结

概率论知识点总结 基本概念随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E 表示。随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件:在试验中必然出现的事情,记为Ω。 样本点:随机试验的每个基本结果称为样本点,记作ω、样本空间:所有样本点组成的集合称为样本空间、样本空间用Ω表示、一个随机事件就是样本空间的一个子集。基本事件多点集一个随机事件发生,当且仅当该事件所包含的一个样本点出现。事件的关系与运算(就是集合的关系和运算)包含关系:若事件A 发生必然导致事件B发生,则称B包含A,记为或。 相等关系:若且,则称事件A与事件B相等,记为A=B。事件的和:“事件A与事件B至少有一个发生”是一事件,称此事件为事件A与事件B的和事件。记为A∪B。事件的积:称事件“事件A与事件B都发生”为A与B的积事件,记为A∩ B或AB。事件的差:称事件“事件A发生而事件B不发生”为事件A 与事件B的差事件,记为 A-B。用交并补可以表示为。互斥事件:如果A,B两事件不能同时发生,即AB=Φ,则称事件A与事件B是互不相容事件或互斥事件。互斥时可记为A+B。对立事

件:称事件“A不发生”为事件A的对立事件(逆事件),记为。对立事件的性质:。事件运算律:设A,B,C为事件,则有(1)交换律:A∪B=B∪A,AB=BA(2)结合律: A∪(B∪C)=(A∪B)∪C=A∪B∪C A(BC)=(AB)C=ABC(3)分配律:A∪(B∩C)=(A∪B)∩(A∪C) A(B∪C)=(A∩B)∪(A∩C)= AB∪AC(4)对偶律(摩根律): 第二节事件的概率概率的公理化体系:(1)非负性: P(A)≥0;(2)规范性:P(Ω)=1(3)可数可加性:两两不相容时概率的性质:(1)P(Φ)=0(2)有限可加性:两两不相容时当AB=Φ时P(A∪B)=P(A)+P(B)(3)(4)P(A-B)=P(A)- P(AB)(5)P(A∪B)=P(A)+P(B)-P(AB)第三节古典概率模型 1、设试验E是古典概型, 其样本空间Ω由n个样本点组成,事件A由k个样本点组成、则定义事件A的概率为 2、几何概率:设事件A是Ω的某个区域,它的面积为 μ(A),则向区域Ω上随机投掷一点,该点落在区域 A 的概率为假如样本空间Ω可用一线段,或空间中某个区域表示,则事件A 的概率仍可用上式确定,只不过把μ理解为长度或体积即可、第四节条件概率条件概率:在事件B发生的条件下,事件A发生的概率称为条件概率,记作 P(A|B)、乘法公式:P(AB)=P(B)P(A|B)=P(A)P(B|A)全概率公式:设是一个完备事件组,则

随机过程知识点汇总

随机过程知识点汇总

第一章 随机过程的基本概念与基本类型 一.随机变量及其分布 1.随机变量X , 分布函数)()(x X P x F ≤= 离散型随机变量X 的概率分布用分布列 ) (k k x X P p == 分 布函数∑=k p x F )( 连续型随机变量X 的概率分布用概率密度)(x f 分布函数?∞ -=x dt t f x F )()( 2.n 维随机变量) ,,,(2 1 n X X X X Λ= 其联合分布函数) ,,,,(),,,()(2211 2 1 n n n x X x X x X P x x x F x F ≤≤≤==ΛΛ 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征 数学期望:离散型随机变量X ∑=k k p x EX 连续型随 机变量X ?∞ ∞-=dx x xf EX )( 方差:2 22 )() (EX EX EX X E DX -=-= 反映随机变量取值的 离散程度 协方差(两个随机变量Y X ,): EY EX XY E EY Y EX X E B XY ?-=--=)()])([( 相关系数(两个随机变量Y X ,): DY DX B XY XY ?= ρ 若 0=ρ,则称Y X ,不相关。 独立?不相关?0=ρ

4.特征函数)()(itX e E t g = 离散 ∑=k itx p e t g k )( 连续 ?∞ ∞ -=dx x f e t g itx )()( 重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0( 5.常见随机变量的分布列或概率密度、期望、方差 0-1分布 q X P p X P ====)0(,)1( p EX = pq DX = 二项分布 k n k k n q p C k X P -==)( np EX = npq DX = 泊松分布 ! )(k e k X P k λλ -== λ =EX λ =DX 均匀分布 略 正态分布),(2 σa N 2 22)(21)(σσ πa x e x f -- = a EX = 2 σ=DX 指数分布 ?? ?<≥=-0, 00,)(x x e x f x λλ λ 1 = EX 2 1 λ = DX 6.N维正态随机变量) ,,,(2 1 n X X X X Λ=的联合概率密度 ),(~B a N X )} ()(2 1 ex p{| |)2(1),,,(12 12 21a x B a x B x x x f T n n ---= -πΛ ) ,,,(21n a a a a Λ=,),,,(2 1 n x x x x Λ=,n n ij b B ?=)(正定协方差阵 二.随机过程的基本概念 1.随机过程的一般定义 设) , (P Ω是概率空间,T 是给定的参数集,若对每 个T t ∈,都有一个随机变量X 与之对应,则称随机变量

《事件的概率》资料:随机事件的概率知识点总结

随机事件的概率知识点总结 事件的分类 1、确定事件 必然发生的事件:当A 是必然发生的事件时,P (A )=1 不可能发生的事件:当A 是不可能发生的事件时,P (A )=0 2、随机事件:当A 是可能发生的事件时,0<P (A )<1 概率的意义 一般地,在大量重复试验中,如果事件A 发生的频率m n 会稳定在某个常数p 附近 那么这个常数p 就叫做事件A 的概率。 概率的表示方法 一般地,事件用英文大写字母A ,B ,C ,…,表示事件A 的概率p ,可记为P (A )=P 概率的求解方法 1.利用频率估算法:大量重复试验中,事件A 发生的频率 m n 会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率(有些时候用计算出A发生的所有频率的平均值作为其概率). 2.狭义定义法:如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,考察事件A 包含其中的m 中结果,那么事件A 发生的概率为P (A )= n m 3.列表法:当一次试验要设计两个因素,可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.其中一个因素作为行标,另一个因素作为列标. 特别注意放回去与不放回去的列表法的不同.如:一只箱子中有三张卡片,上面分别是数字1、2、3,第一抽出一张后再放回去再抽第二次,两次抽到数字为数字1和2或者2和1的概率是多少?若不放回去,两次抽到数字为数字1和2或者2和1的概率是多少? 放回去P (1和2)=9 2不放回去P (1和2)=62

4.树状图法:当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率. 注意:求概率的一个重要技巧:求某一事件的概率较难时,可先求其余事件的概率或考虑其反面的概率再用1减——即正难则反易. 概率的实际意义 对随机事件发生的可能性的大小即计算其概率.一方面要评判一些游戏规则对参与游戏者是否公平,就是要看各事件发生概率.另一方面通过对概率的学习让我们更加理智的对待一些买彩票抽奖活动. (3,3) (3,2) (3,1) 3 (2,3)(2,2)(2,1)2(1,3)(1,2)(1,1)1第一次 结果3 2 1 第二次(3,2) (3,1) 3 (2,3) (2,1)2(1,3)(1,2) 1第一次 结果3 2 1第二次

数学随机事件与概率知识点归纳

数学随机事件与概率知识点归纳 一、随机事件 主要掌握好(三四五) (1)事件的三种运算:并(和)、交(积)、差;注意差A-B可以表示成A与B的逆的积。 (2)四种运算律:交换律、结合律、分配律、德莫根律。 (3)事件的五种关系:包含、相等、互斥(互不相容)、对立、相互独立。 二、概率定义 (1)统计定义:频率稳定在一个数附近,这个数称为事件的概率; (2)古典定义:要求样本空间只有有限个基本事件,每个基本事件出现的可能性相等,则事件A所含基本事件个数与样本空间所含基本事件个数的比称为事件的古典概率; (3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,事件A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算; (4)公理化定义:满足三条公理的任何从样本空间的子集集合到[0,1]的映射。 三、概率性质与公式 (1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B); (2)差:P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则 P(A-B)=P(A)-P(B); (3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B); (4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果, 贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;

如果一个事件B可以在多种情形(原因)A1,A2,....,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式. (5)二项概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n. 当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式.

几种常用的随机过程

第十讲 几种常用的随机过程 10.1 马尔可夫过程 10.1.1马尔可夫序列 马尔可夫序列是指时间参数离散,状态连续的马尔可夫过程。 一个随机变量序列x n (n=1,2,…),若对于任意的n 有 )|(),...,,|(112 1 x x F x x x x F n n X n n n X ---= (10.1) 或 )|(),...,,|(112 1 x x f x x x x f n n X n n n X ---= (10.2) 则称x n 为马尔可夫序列。x n 的联合概率密度为 ) ()|( ) |()|(),...,,(1 1 2 2 11 2 1 x f x x f x x f x x f x x x f X X n n X n n X n X ??---= (10.3) 马尔可夫序列有如下性质: (1) 一个马尔可夫序列的子序列仍为马尔

可夫序列。 (2) ) |(),...,,|(1 21x x f x x x x f n n X k n n n n X -+++= (10.4) (3) )|(),...,|(111x X x x X n n n n E E --= (10.5) (4) 在一个马尔可夫序列中,若已知现在, 则未来与过去相互独立。即 ) |() |()|,(1 x x f x x f x x x f r s X n n X r s n X -= ,n>r>s (10.6) (5) 若条件概率密度)|(1 x x f n n X -与n 无关, 则称马尔可夫序列是齐次的。 (6) 若一个马尔可夫序列是齐次的,且所 有的随机变量X n 具有同样的概率密度,则称该马尔可夫序列为平稳的。 (7) 马尔可夫序列的转移概率满足切普曼 —柯尔莫哥洛夫方程,即 ) |()| ()|(x x f x x f x x f s r X r n X s n X ? ∞ ∞ -= , n>r>s (10.7) 10.1.2马尔可夫链 马尔可夫链是指时间参数,状态方程皆

(完整版)随机过程知识点汇总

第一章随机过程 的基本概念与基本类型 一.随机变量及其分布 X ,分布函数 F (x) P(X x) 1.随机变量 离散型随机变量 X 的概率分布用分布列 p P(X x k ) F(x) p k f (t)dt 分布函数 k x X 的概率分布用概率密度 f (x) F(x) 分布函数 连续型随机变量 2.n 维随机变量 X (X ,X , , X ) 1 2 n F(x) F(x ,x , ,x ) P(X x , X 2 x , , X n x n ,) 其联合分布函数 1 2 n 1 1 2 离散型 联合分布列 连续型联合概率密度 3.随机变量 的数字特征 数学期望:离散型随机变量 X EX x p k k X EX xf (x)dx 连续型随机变量 2 DX E(X EX) 2 EX (EX) 2 方差: 反映随机变量取值 的离散程度 协方差(两个随机变量 X ,Y ): B E[( X EX)(Y EY)] E(XY) EX EY XY B XY 相关系数(两个随机变量 X,Y ): 0,则称 X ,Y 不相关。 若 XY DX DY 独立 不相关 itX g(t) E(e ) itx e p k 连续 g(t) k e itx f (x)dx 4.特征函数 离散 g(t) 重要性质: g(0) 1, g(t) 1 g( t) g(t) , , g (0) i EX k k k 5.常见随机变量 的分布列或概率密度、期望、方差 0-1分布 二项分布 P( X 1) p,P( X 0) q EX p DX pq P(X k) C p q n k k k EX np DX n p q n k 泊松分布 P( X k) e k! EX DX 均匀分布略 ( x a)2 1 2 N(a, ) f (x) 2 2 2 EX a 正态分布 e DX 2

相关主题
文本预览
相关文档 最新文档