当前位置:文档之家› 第一章 随机事件及其概率总结

第一章 随机事件及其概率总结

第一章 随机事件及其概率总结
第一章 随机事件及其概率总结

第一章随机事件及其概率

一、基本概念、基本定理、基本计算公式

1.几个基本概念

互不相容事件(即互斥事件):事件A和B的交集为空,A与B就是互斥事件,也叫互不相容事件。也可叙述为:不可能同时发生的事件。如A∩B为不可能事件(A∩B=Φ),那么称事件A与事件B互斥,其含义是:事件A与事件B在任何一次试验中不会同时发生对立事件:对立事件亦称“逆事件”,不可能同时发生。若A交B为不可能事件,A并B 为必然事件,那么称A事件与事件B互为对立事件,其含义是:事件A与事件B在任何一次试验中有且仅有一个发生。定义:其中必有一个发生的两个互斥事件叫做对立事件。

独立事件:事件A(或B)是否发生对事件B(A)发生的概率没有影响,这样的两个事件叫做相互独立事件。

2.(1)随机事件

在随机试验中,可能发生也可能不发生的事件,称为随机事件,简称事件。随机事件具有以下特点:

首先,事件的发生具有偶然性。在一次试验中,它可能发生,也可能不发生;其次,在大量重复试验中,随机事件的发生具有某种规律性。

(2)概率

概率简单来说就是一个在 0 和 1 之间的数,用来度量在一定条件下事件发生的可能性大小。两个极端情况是,在一定条件下必定发生的事件,其概率是 1;在一定条件下不可能发生的事件,其概率是 0。任一事件的概率在 0 和 1 之间。

我们用 P(A)表示事件 A 的概率,用 S 表示必然事件,用 表示不可能事件,则有P(S)=1, 0≤P(A) ≤1.

(3)条件概率

a.条件概率P(A|B)与概率 P(A)的区别

条件概率P(A|B)是指在添加条件“事件 B 发生”时,事件 A 发生的可能性大小,及P(A|B)仍是概率。二者一般在数值上也不相同。

计算性质:

b.积事件 P(AB)与条件概率 P(A|B)的区别

初学者往往分不清求的是 P(A|B)还是P(AB),这是容易混淆的问题之一,尤其在实际计算问题中P(A|B)是指在 B 发生的条件下 A 发生的概率,而P(AB)是指 A、 B 同时发生的概率。

(4)独立性、相互独立

a.正确理解独立的概念

若两事件 A、B 满足 P(AB)=P(A)P(B)则称 A、B 相互独立,或 A、B 独立。即:设两事件 A、B, .若 A、B 相互独立,则P(A|B)=P(A) 反之亦然。若A与B相互独立,则

与与,与也相互独立。(别以为你穿马甲我就不认识你了)

A B A B A B

,

b.多个事件相互独立(判断条件,例题)

c .独立与互斥的区别

两个事件互斥是指两个时间不可能同时发生。因而,当两个时间的概率都大于零时,若它们互斥,一个事件的发生必导致另一个事件的不发生,即一个事件的发生影响另一个事件发生的概率,所以两个事件不独立。反之,若它们相互独立,即一个事件是否发生对另一个事件的概率没有影响,当然推不出一个事件发生,另一个事件不发生,所以两事件不互斥。有命题: 若P(A)>0, P(B)>0,则 A 、B 互斥与独立不能同时成立。

(5).从包含有n 个不同元素的总体中任意取出r (r ≤n )个元素排成一列,就成为一个排列。此时要顾及取出的顺序。(重点)

①有放回选取 每次选取的都是n 种可能,共有n^r 种取法;

②不放回选取 第一次选取有n 种可能,第二次选取有n-1种可能,……第r 次选取有n-r+1种可能,共有A n r =n n ?1 n ?2 …(n ?r +1)种。 i. 一次取一个

a.又放回 n r

b.无放回

ii. 一次去多个(m 次)

a.有放回 C n r m

b.无放回 C n r C n?r

r ……(m 次) 2.概率的两个定义

统计定义 ()n P A m

=

古典概型()k P A n

=

3.有关条件的三个定理 ①加法公式 、乘法公式

加法公式P(AUB)=P(A)+P(B)-P(AB),特别当AB 互斥时有P(AUB)=P(A)+P(B) ; 加法公式的推广

乘法公式:若P(A)>0,P(AB)=P(A)P(B|A) 乘法公式的推广

4.全概率公式和贝叶斯公式(必考大题)

定义1.1 设S 为样本空间,设1A ,2A ,n A 为S 的一个划分组,若它满足(1)i j =A A ?,i ,j

=1,2,…,n ,i ≠j ;(2)12·

··n A A A ∪∪∪=S .则称1A ,2A ,…n A 为一个完备事件组. 1.1 全概率公式

全概率公式是指若1A ,2A ,…n A 为一完备事件组,P (i A )>0(i =1,2…),则对于任意事

件B ,有 [1]

1

()()(|)

n

i i i P B P A P B A ==

.

全概率公式的直观意义是:某事件B 的发生有各种可能的原因i A (i =1,2…),并且这些

原因两两不能同时发生,如果B 是由原因i A 所引起的,若B 发生时,i BA 必同时发生,因而

()P B 与()i P B A (i =1,2…)有关,且等于其总和

1

1

()()(|)

n

n

i i i i i P B A P A P B A ===∑

∑.

全概率的全就是总和的含义,当然这个总和要能求出来,需已知概率()i P B A ,或已知各原因i A 发生的概率()i P A 及在i A 发生的条件下B 的条件概率(|)i P B A (i =1,2…).通俗地说,事件B 发生的可能性,就是其原因i A 发生的可能性与在i A 发生的条件下事件B 发生的可能性的乘积之和. 1.2 贝叶斯公式

贝叶斯公式是指若1A ,2A ,…n A 为一完备事件组,且()i P A >0(i =1,2,…),则对任何概率非零的事件B ,有

1

()(|)

()(|)

(|)()

()(|)

i i i i i n

j

j j P A P B A P A P B A P A B P B P A

P B A ==

=

∑.

在理论研究和实际中还会遇到一类问题,这就是需要根据试验发生的结果找原因,看看导致这一试验结果的各种可能的原因中哪个起主要作用,解决这类问题的方法就是使用贝叶斯公式.贝叶斯公式的意义是导致事件B 发生的各种原因可能性的大小,称之为后验概率.

1.3 全概率公式和贝叶斯公式的应用

从公式结构上看,全概率公式与贝叶斯公式关系密切,如何正确使用这两个公式是本文的一个重要的内容.无论全概率公式还是贝叶斯公式都需要正确的找出完备事件组.

如果所求概率的事件与前后两个实验有关,且这两个实验彼此关联,第一个试验的各种结果直接对第二个试验产生影响,而问第二个试验出现某结果的概率,这类问题是属于使用全概率公式的问题,将第一个试验的样本空间分解成若干个互不相容的事件的和,这些事件就是所求的一个完备事件组.至于在什么情况下使用贝叶斯公式,这就要看问题的提法.如果已知某事件已发生,要求该事件与完备事件组中某一事件一同发生的概率,应采用贝叶斯公式求之.

如果事件B 能且只能在原因1A ,2A ,…n A 下发生,且1A ,2A ,…n A 是两两互不相容,那么这些原因就是一个完备事件组.如果这些原因发生的概率()i P A 以及在原因i A 发生下事件B 的条件概率(|)i P B A (i =1,2,…)都是已知的,或都可求出,则:

(1) 可使用全概率公式计算事件B 的概率.

(2) 如果已知事件B 发生,要计算导致结果B 发生的原因i A 的可能性大小,即事件i A 的条件概率

(|)i P A B 的大小,可采用贝叶斯公式求之.显然如果把i A (i =1,2…)看成是导致事件B 发生的原因,那么全概

率公式与贝叶斯公式可分别说成由因求果与执果求因的概率计算公式.

例1.1 设甲箱中有3个白球和2个黑球,乙箱中有1个白球和2个黑球,自甲箱中任意取2球放入乙箱,然后再从乙箱中任意取出2球,试求:

(1) 从乙箱中取出的两球是白球的概率;

(2) 在乙箱中取出的两球是白球的条件下,从甲箱中取出的两球是白球的概率.

解 (1) 从乙箱中取球(第二个试验)之前,要从甲箱中任意取两球放入乙箱(第一个试验),而从甲箱中取球的结果影响到从乙箱中取球的结果,本题可用全概率公式来求解.

将第一个试验的样本空间分解,即可求得完备事件组.

因为从甲箱中任意取两球放入乙箱仅有3种可能:取得两白球,或者取得一黑球和一白球,或者取出两黑球,

分别用1A ,2A ,3A 表示,则1A ,2A ,3A 即为所求的一个完备事件组,又设B 为乙箱中取出的两球是白球,则有

2

11

2

33221232225

5

5

331(),(),(),105

10

C C C C P A P A P A C

C

C

=

=

=

=

=

=

2

2

32123225

5

31(|),(|),(|)010

10

C C P B A P B A P B A C

C

=

=

=

=

=.

由全概率公式得到3

1

()()(|)0.15i

i

i P B P A P B A ==

=∑.

(2)本题是在B 发生的条件下求导致这一试验结果发生的原因属于事件1A 的概率有多大,须用贝叶斯公式,

111113

1

()(|)

()(|)

(|)0.16()

()(|)

i

i

i P A P B A P A P B A P A B P A P A P B A ==

=

=∑.

例1.2 在数字通讯中,信号是由数字0和1的长序列组成的,由于随机干扰,发送的信号0或1各有可能错误接受为1或0,现假设发送信号为0和1的概率均为1/2;又已知发送0时,接受为0和1的概率分别为0.7和0.3;发送信号为1时,接受为1和0的概率分别为0.9和0.1.求已知收到信号0时,发出的信号是0(即没有错误接受)的概率.

解 设0A ={发送信号为0},1A ={发送信号为1},0B ={收到信号为0},1B ={收到信号为1},因为收到信号为0时,除来自发送信号确系为0外,还由于干扰原因,发送信号为1时,接受的信号也可能为0,因此导致事件0

B

发生的原因只有事件0A 与1A ,且它们互不相容,故0A 与1A 构成一完备事件组, 由题设,有0()P A =1()P A =

12

,00(|)P B A =0.7,01(|)P B A = 0.1,

故0()P B =0()P A 00(|)P B A +1()P A 01(|)P B A =

12

?0.7+

12

?0.1=0.4.

若接受信号0 时,发送信号是0的概率由贝叶斯公式得 000000()(|)

(|)0.875()

P A P B A P A B P B =

=

例1.3 甲、乙、丙三人同时对飞机进行射击,三人击中的概率分别为0.4,0.5,0.7,飞机被一人击中而被击落的概率为0.2,被两人击中而被击落的概率为0.6,若三人都击中,飞机必定被击落,求飞机被击落的概率. 解 由于飞机被击落,必然是飞机被一人、二人或三人击中,如令C 表示事件飞机被击落,i B 表示事件飞机被i 人击中(i =

0,1,2,3),1A ,2A ,3A 分别表示甲、乙、丙击中了飞机.因0B ,1B ,2B ,3B 两两互不相容,故0B ,1B ,2B ,3B 构成一个完备事件组,又由题设知1A ,2A ,3A 相互独立,且1()P A =0.4,2()P A =0.5,3()

P A =0.7,

故1()P B =123()P A A A +123()P A A A +123()P A A A =1()P A 2()P A 3()P A +1()P A 2()P A 3()P A +

1()P A 2()P A 3()P A =0.4?0.5?0.3+0.6?0.5?0.7+0.6?0.5?0.3=0.36.

同理可求2()P B =123()P A A A +123()P A A A +123()P A A A =0.4?0.5?0.3+0.4?0.5?0.7+0.6?0.5?0.7 = 0.41;3()P B =123()P A A A =0.4?0.5?0.7=0.14.

又()i P B >0(i =0,1,2,3),且由题设有0(|)P C B =0,1(|)P C B =0.2,2(|)P C B =0.6,3(|)P C B =1.

于是由全概率公式即得3

1

()()(|)i

i

i P C P B P C B ==

∑= 0.36?0.2+0.41?0.6+0.41=0.728

例1.4 两台车床加工同样的零件,第一台出现不合格品的概率是0.03,第二台出现不合格品的概率是0.06,加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多一倍.

(1)求任取一个零件是合格品的概率;(2)如果取出的零件是不合格品,求它是由第二台车床加工的概率. 解 记事件1A 为“取到第一台车床加工的零件”,则

12()3

P A =

,11()3

P A =

又记事件B 为“取到合格品”.显然1A ,1A 为一个完备事件组, 则知()()(|)()(|)P B P A P B A P A P B A =+=

210.970.940.963

3

?+

?=.

且用贝叶斯公式可得到1

0.06()(|)

3

(|)0.50.04

()

P A P B A P A B P B ?=

==

例1.5学生在做一道有4个选项的选择题时,如果他不知道问题的正确答案时,就做随机猜测.现从卷面上看题是答对了,试在以下情况求学生确实知道正确答案的概率.

(1)学生知道正确答案和胡乱猜想的概率都是

12

;(2)学生知道答案的概率是0.2.

解 记事件A 为“题目答对了”,事件B 为“知道正确答案”,则按题意有

(|)P A B =1,(|)P A B =0.25.

(1)此时有()P B =()P B =0.5,所以由贝叶斯公式得

()(|)

(|)()(|)()(|)

P B P A B P B A P B P A B P B P A B =

+=

0.510.510.50.25

??+?=0.8

(2)此时有()P B =0.2,()P B =0.8,所以由贝叶斯公式得

()(|)

(|)()(|)()(|)

P B P A B P B A P B P A B P B P A B =

+ =

0.210.210.80.25

??+?=0.5

例1.6 有两箱零件,第一箱装50件,其中10件是一等品;第二箱装30件,其中18件事一等品,现从两箱中任挑选出一箱,然后从该箱中先后任意取出两个零件试求:

(1)第一次取出的是一等品的概率.

(2)在第一次取出的是一等品的概率的情况下,第二次取出的仍是一等品的概率.

解 记事件i A 为“第i 次取出的是一等品”,i =1,2.又记事件i B 为“取到第i 箱的零件”,i =1,2.则1A ,2

A 为一个完备事件组.

(1)用全概率公式可得1111212110118()()(|)()(|)0.4250230

P A P B P A B P B P A B =+=?+?= (2)又因为

1211212122110911817()()(|)()(|)0.194232504923029

P A A P B P A A B P B P A A B =+=

??+??= 所以

例1.7甲、乙轮流掷一颗骰子,甲先掷.每当某人掷出1点时,则交给对方掷,否则此人继续掷.试求第n 次由甲掷的概率.

解 设事件i A 为“第i 次由甲掷骰子”,记()i i P P A =,i =1,2….则有11P =,15(|)6

i i P A A +=

,

11(|)6

i i P A A +=

,那么1A ,2A ,…n A 为一个完备事件组.

所以由全概率公式可知道1111()()(|)()(|)n n n n n n n P A P A P A A P A P A A ----=+ 则可得n 1115121(1)6

6

3

6

n n n P P P P ---=

+

-=+ ,2n ≥.

由此可得递推公式1121()23

2

n n P P --=-,2n ≥ ,所以得111

21

()()232

n n P P --

=-, 则将11P =,代入上式可得1112()2

23n n P --

=

由此得1121()23n n P -??

=+????

, n =2,3,… 例1.8假设只考虑天气的两种情况:有雨和无雨.若已知今天的天气情况,明天天气保持不变的概率为P ,变的概率为1P -.设第一天无雨,试求第n 天也无雨的概率.

解 设事件i A 为“第i 天无雨”,记()i i P P A =,i =1,2,…. 则有11P =,且

1(|)i i P A A P +=, 1(|)1i i P A A P +=-.

那么1A ,2A ,3A …为一个完备事件组

所以又全概率公式可得 11(1)(1)n n P PP P P --=+--1(21)1n P P P -=-+-, 2n ≥. 得递推公式 111(21)()2

2

n n P P P --

=--

,所以可知 1

111(21)

()2

2

n n P P P --

=--

,

则将11P =,代入上式可得 1

11

(21)

()2

2

n n P P --=- 由此可得 11

1(21)2n n P P -??=

+-?

? ,n =2,3,….

全概率公式用于已知原因求结果,而贝叶斯公式用于已知结果求原因。

随机事件的概率第一课时频率与概率

§3.1.1频率与概率 (韦文月陕西师范大学 710062) 【教材版本】北师大版 【教材分析】 本节课的教学内容是《数学必修3》第三章§1.1节互斥事件,教学课时为1课时.《标准》要求学生在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别.本节课主要是通过具体实例,理解概率与频率的联系与区别,进一步辨别随机试验结果的随机性与规律性的关系. 概率研究随机事件发生的可能性大小问题,这里既有随机性,又有随机中表现出的规律性,这是学生理解的难点.突破难点的最好办法是给学生亲自动手操作的机会,使学生在实践过程中形成对随机事件的随机性以及随机性中表现出的规律性的直接感知.通过试验,观察随机事件发生的频率,可以发现随着试验次数的增加,频率稳定在某个常数附近,然后再给出概率的定义.在这个过程中,体现了试验、观察、归纳和总结的思想方法.对随机事件的概率教学可以分为下面几个层次: 第一,由学生实际动手操作投掷硬币试验 第二,计算机模拟,使学生感受到随着试验次数的增加,正面朝上的频率在0.5附近摆动. 第三,展示历史上一些掷硬币的试验,使学生感受到随着试验次数的增加,正面朝上的频率在0.5附近摆动. 第四,解释这个常数代表的意义:这个常数越接近1,表明事件发生的频率越大,也就是它发生的可能性越大;这个常数越接近0,表明事件发生的频率越小,也就是发生的可能性越小.所以可以用这个常数度量事件发生的可能性的大小. 第五,引导学生对概率与频率的关系进行比较.频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率.频率是随机的,在试验前不能确定,但概率是一个确定的数,与每次试验无关. 【学情分析】

北师大版高中数学必修三第二课时随机事件的频率与概率教案(精品教学设计)

第二课时随机事件的频率与概率 一、教学目标:1.理解随机事件在大量重复试验的情况下,它的发生呈现的规律性;2.掌握概率的统计定义及概率的性质. 二、教学重点:随机事件的概念及其概率.教学难点:随机事件的概念及其概率. 三、探究讨论法 四、教学过程 (一)、新课引入 1.观察下列日常生活中的事件发生与否,各有什么特点?(1)金属丝通电时,发热;(2)抛一块石头,下落;(3)在常温下,焊锡熔化;(4)在标准大气压下且温度低于00C时,冰融化;(5)掷一枚硬币,出现正面;(6)某人射击一次,中靶. 分析结果: (1)(2)是必然要发生的,(3)(4)不可能发生,(5)(6)可能发生也可能不发生 2.(1)“如果a>b,那么a-b>0”; (2)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”; (3)“某电话机在1分钟内收到2次呼叫”;

(4)“没有水份,种子能发芽”; 分析结果:(略) 3.男女出生率 一般人或许认为:生男生女的可能性是相等的,因而推测出男婴和女婴的出生数的比因当是1:1,可事实并非如此.公元1814年,法国数学家拉普拉斯(Laplace 1794---1827)在他的新作《概率的哲学探讨》一书中,记载了一下有趣的统计.他根据伦敦,彼得堡,柏林和全法国的统计资料,得出了几乎完全一致的男婴和女婴出生数的比值是22:21,即在全体出生婴儿中,男婴占51.2%,女婴占48.8%.可奇怪的是,当他统计1745---1784整整四十年间巴黎男婴出生率时,却得到了另一个比是25:24,男婴占51.02%,与前者相差0.14%.对于这千分之一点四的微小差异!拉普拉斯对此感到困惑不解,他深信自然规律,他觉得这千分之一点四的后面,一定有深刻的因素.于是,他深入进行调查研究,终于发现:当时巴黎人”重男轻女”,又抛弃女婴的陋俗,以至于歪曲了出生率的真相,经过修正,巴黎的男女婴的出生比率依然是22:21. 4.π中数字出现的稳定性(法格逊猜想) 在π的数值式中,各个数码出现的概率应当均为1/10.随着计算机的发展,人们对π的前一百万位小数中各数码出现的频率进行了统计,得到的结果与法格逊猜想非常吻合.

随机事件的概率知识点总结

随机事件的概率 一、事件 1.在条件S下,一定会发生的事件,叫做相对于条件S的必然事件. 2.在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件. 3.在条件S下,可能发生也可能不发生的事件,叫做相对于条件S的随机事件. 二、概率和频率 1.用概率度量随机事件发生的可能性大小能为我们决策提供关键性依据. 2.在相同条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现 的次数n A为事件A出现的频数,称事件A出现的比例f n(A)=n A n 为事件A出现的频率. 3.对于给定的随机事件A,由于事件A发生的频率f n(A)随着试验次数的增加稳定于概率P(A),因此可以用频率f n(A)来估计概率P(A). 三、事件的关系与运算

四、概率的几个基本性质 1.概率的取值范围:0≤P(A)≤1. 2.必然事件的概率P(E)=1. 3.不可能事件的概率P(F)=0. 4.概率的加法公式: 如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B). 5.对立事件的概率: 若事件A与事件B互为对立事件,则A∪B为必然事件.P(A∪B)=1,P(A)=1-P(B). 1.掷一枚均匀的硬币两次,事件M:一次正面朝上,一次反面朝上;事件N:至少一次正面朝上.则下列结果正确的是( ) A.P(M)=1 3 P(N)= 1 2 B.P(M)=1 2 P(N)= 1 2 C.P(M)=1 3 P(N)= 3 4 D.P(M)=1 2 P(N)= 3 4 解析:选D 由条件知事件M包含:(正、反)、(反、正).事件N包含:(正、正)、(正、反)、(反、正). 故P(M)=1 2 ,P(N)= 3 4 . 2.(2012·)从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( ) A.至少有一个红球与都是红球 B.至少有一个红球与都是白球 C.至少有一个红球与至少有一个白球 D.恰有一个红球与恰有二个红球 解析:选D A中的两个事件不互斥,B中两事件互斥且对立,C中的两个事件不互斥,D

第一章 随机事件及其概率课后习题参考答案

第一章 随机事件及其概率 1. 1) {}01001,,,.n n n n Ω=L 2) {}{}10,11,12,13,,10.n n Z n Ω==∈≥L 3) 以"'',''"+-分别表示正品和次品,并以""-+--表示检查的四个产品依次为次品,正品,次品,次品。写下检查四个产品所有可能的结果S ,根据条件可得样本空间Ω。 , ,,,,,,,, ,,,,,,,,,,,,,,,. , ,,,S ++--++-++++-+++++---+--++-+-+-++?? =? ?-+---+-+-++--+++-------+--+---++??++--++-++++-+++++--+-+-+-++?? Ω=? ?-+---+-+-++--+++--?? 4) {}22(,)1.x y x y Ω=+< 2. 1) ()A B C ABC --=, 2) ()AB C ABC -=, 3) A B C A B C ++=U U , 4) ABC , 5) ()A B C ABC Ω-++=, 6) ()AB BC AC AB BC AC Ω-++=++, 7) ()ABC A B C Ω-=U U , 8) AB AC BC ++. 3. 解:由两个事件和的概率公式()()()()P A B P A P B P AB +=+-,知道 ()()()() 1.3(),P AB P A P B P A B P A B =+-+=-+ 又因为()(),P AB P A ≤ 所以 (1)当()()0.7P A B P B +==时,()P AB 取到最大值0.6。 (2)当()1P A B +=时,()P AB 取到最小值0.3。 4. 解:依题意所求为()P A B C ++,所以 ()()()()()()()() 1111 000(0()()0)44485.8 P A B C P A P B P C P AB P AC P BC P ABC P ABC P BC ++=++---+=++---+≤≤==Q 5. 解:依题意, ()()() () ()()()() ()()()() ()()0.70.5 0.25. ()()()0.70.60.5 P B A B P BA P B A B P A B P A B P BA BA BA A P A P B P AB P A P BA P A P B P AB ++= = ++=+=+---= ==+-+-Q 6. 解:由条件概率公式得到111()1()()(),(),34 12()2 P AB P AB P A P B A P B P A B ==?=== 所以1 111 ()()()().4 6123 P A B P A P B P AB +=+-=+-= 7. 解:

随机事件及其概率教案(精)

<随机事件及其概率>教案 (一)教学目标: 1、知识目标: 使学生掌握必然事件,不可能事件,随机事件的概念及概率的统计定义,并了解实际生活中的随机现象,能用概率的知识初步解释这些现象 2、能力目标: 通过自主探究,动手实践的方法使学生理解相关概念,使学生学会主动探究问题,自主实践,分析问题,总结问题。 3、德育目标: 1.培养学生的辩证唯物主义观点. 2.增强学生的科学意识 (二)教学重点与难点: 重点:理解概率统计定义。 难点:认识频率与概率之间的联系与区别。 (三)教学过程: 一、引入新课: 试验1:扔钥匙,钥匙下落。 试验2:掷色子,数字几朝上。 讨论:下列事件能否发生? (1)“导体通电时,发热”---------------必然发生(2)“抛一石块,下 落”---------------必然发生 (3)“在常温下,铁熔化” -------------不可能发生 (4)“某人射击一次,中靶” -----可能发生也可能不发生(5)“掷一枚硬币,国徽朝上” -----可能发生也可能不发生(6)“在标准大气压下且温度低于0℃时,冰融化” ---不可能发生思考: 1、“结果”是否发生与“一定条件”有无直接关系? 2、按事件发生的结果,事件可以如何来分类? 二、新授: (一)随机事件: 定义1、在一定条件下必然要发生的事件叫必然事件。 定义2、在一定条件下不可能发生的事件叫不可能事件。 定义3、在一定条件下可能发生也可能不发生的事件叫随机事件。 例1、指出下列事件是必然事件,不可能事件,还是随机事件: (1)扬中明年1月1日刮西北风; x (2)当x是实数时,20 (3)手电筒的电池没电,灯泡发亮; (4)一个电影院某天的上座率超过50%。 (5)从分别标有1,2,3,4,5,6,7,8,9,10的10张号签中任取一张,得到4号签。讨论:各举一个你生活或学习中的必然事件、不可能事件、随机事件的例子 做一做:(投币实验)抛掷一枚硬币,观察它落地时哪一面朝上?(两人一组) 1.你的结果和其他同学一致吗?为什么会出现这样的情况? 2.重复试验10次并记录结果(正面朝上的次数)。(一人试验,一人记录)

随机事件的频率与概率

随机事件的频率与概率 1.随机事件的频率 随机事件的频数与频率:在相同的条件下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例n n A f A n )(为事件A 出现的频率. 2.随机事件的概率 一般来说,随机事件A 在每次试验中是否发生是不能预知的,但是在大量重复试验后,随着试验次数的增加,事件A 发生的频率会逐渐稳定在区间[0,1]中的某个常数上,这个常数可以用来度量事件A 发生的可能性的大小,称为事件A 的概率,记作P(A). 3.频率与概率的区别和联系 (1) 频率本身是随机的,在试验前不能确定.做同样次数的重复试验得到事件的频率会不同. (2) 概率是一个确定的数,与每次试验无关.是用来度量事件发生可能性大小的量. (3) 频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率. 例1.某射击运动员在同一条件下进行练习,结果如下表所示: (1)计算表中击中10环的各个频率; (2)这名运动员射击一次,击中10环的概率是多少? 分析:(1)分清m ,n 的值,用公式n m 计算; (2)观察各频率是否与某一常数接近,且在它附近摆动. 解:(1)

(2)从上表可以看出,这名运动员击中10环的频率在0.9附近波动,且射击次数越多,频率越接近0.9,故可以估计,这名运动员射击一次,击中10环的概率约为0.9. 点评:在相同条件下,随着试验次数的增加,随机事件发生的频率会在某个常数附近摆动并趋于稳定,我们就可以用这个常数来刻画该随机事件发生的可能性的大小,而将频率作为其近似值.从中要进一步体会频率与概率的定义及它们的区别与联系.如果随机事件A 在n 次试验中发生了m 次,当试验的次数n 很大时,我们可以将事件A 发生的频率 n m 作为事件A 发生的概率的近似值,即P(A)≈n m . 例2.为了估计水库中的鱼的尾数,可以使用以下方法: 先从水库中捕出一定数量的鱼,例如2000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾,试根据上述数据,估计水库内鱼的尾数. 分析:用样本估计总体. 解:设水库中鱼的尾数为n,n 是未知的,现在要估计n 的值,将n 的估计值 记作n ?. 假定每尾鱼被捕的可能性是相等的,从库中任捕一尾鱼,设事件A 为“带有记号的鱼”,易知P(A)=n 2000. 第二次从水库中捕出500尾鱼,其中带有记号的鱼有40尾,即事件A 发生的频数n A =40,由概率的统计定义知50040)(≈ A P . 所以500 402000≈n .

随机事件与概率 考研试题

第一章 随机事件与概率 一、填空题 1.(1990年数学一)设随机事件A ,B 及其和事件A B 的概率分别是0.4,0.3和0.6若B 表示B 的对立事件,那么积事件AB 的概率P AB () =_________. 【解题分析】要求P AB ()时,一般应想到AB A B A AB =-=-,这是事件的差与事件的积之间常见的转化关系,AB A ?而,所以有, () ()()P AB P A P AB =-,这时只需要求出 ()P AB 即可. 解: ()()()()P A B P A P B P AB =+- , 又 () ()()P AB P AB P A +=, 所以 () ()()0.60.30.3P AB P A B P B =-=-= . 本题用文氏图考虑求解思路更为直观,见图10-1. 图10-1 注:本题()0.4P A =是多余的. 2.(1991年数学四)设A ,B 为随机事件,()0.7,P A =()0.3P A B -=,则 () P AB =________. 【解题分析】 要求() P AB ,由于AB AB 与是对立事件,只要求出()P AB 即可.利用关系A B A AB -=-,()()()P A B P A P AB -=-,可得()P AB . 解:由题设()()() 0.7,0.3P A P A B P AB =-==, 利用公式 AB AB A +=,知 ()()()0.70.30.4P AB P A P AB =-=-=, 故 () ()110.40.6P AB P AB =-=-=. 本题也可利用图10-1考虑求解思路. 3.(2000年数学一)设两个相互独立的事件A 和B 都不发生的概率为1 9 ,A 发生B 不发生的概率与B 发生A 不发生的概率相等,则()P A =________.

概率论与数理统计教程习题(第一章随机事件与概率)

习题1(随机事件及其运算) 一.填空题 1. 设A ,B ,C 是三个随机事件,用字母表示下列事件: 事件A 发生,事件B ,C 不都发生为 ; 事件A ,B ,C 都不发生为 ; 事件A ,B ,C 至少一个发生为 ; 事件A ,B ,C 至多一个发生为 . 2. 某人射击三次,用A i 表示“第i 次射击中靶”(i =1,2,3).下列事件的含义是: 1A 表示 ; 321A A A 表示 ; 321321321A A A A A A A A A ++表示 ; 321A A A 表示 . 3. 在某学院的学生中任选一人,用A 表示“选到的是男生”,用B 表示“选到的是二年级的学生”,用C 表示“选到的是运动员”。则式子ABC=C 成立的条件是 . 二.选择题 1. 在事件A ,B ,C 中,B 与C 互不相容,则下列式子中正确的是( ). ① A BC A = ; ② A BC A = ; ③ Φ=BC A ; ④ Ω=BC A . 2. 用A 表示“甲产品畅销,乙产品滞销”,则A 表示( ). ① “甲产品滞销,乙产品畅销”; ② “甲、乙产品都畅销”; ③ “甲产品滞销或乙产品畅销”; ④ “甲、乙产品都滞销”. 3. 若概率0)(=AB P ,则必有( ). ① Φ=AB ; ② 事件A 与B 互斥; ③ 事件A 与B 对立; ④ )()()(B P A P B A P += .

三.解答题 1. 将一枚骰子掷两次,记录点数之和,写出样本空间Ω及事件=A {点数之和为偶数};=B {点数之和能被3整除}. 2. 将一枚骰子掷两次,观察点数的分布,写出样本空间Ω及事件=A {点数之和为6};=B {点数之差为2}. 3. 某城市发行日报和晚报两种报纸。有15%的住户订日报,25%的住户订晚报,同时订两种报纸的住户有8%,求下列事件的概率:C ={至少订一种报};D ={恰订一种报};E ={不订任何报}. 4. 若已知,2.0)(,0)()(,3.0)()()(======BC P AC P AB P C P B P A P 求概率)(ABC P ;)(C B A P ;).(C B A P

随机事件及其概率(知识点总结)Word版

随机事件及其概率 一、随机事件 1、必然事件 在一定条件下,必然会发生的事件叫作必然事件. 2、不可能事件 在一定条件下,一定不会发生的事件叫作不可能事件. 3、随机事件 在一定条件下,可能发生,也可能不发生的事件叫作随机事件,一般用大写字母A,B,C来表示随机事件. 4、确定事件 必然事件和不可能事件统称为相对于随机事件的确定事件. 5、试验 为了探索随机现象发生的规律,就要对随机现象进行观察或模拟,这种观察或模拟的过程就叫作试验. 【注】(1)在一定条件下,某种现象可能发生,也可能不发生,事先并不能判断将出现哪种结果,这种现象就叫作随机现象. 应当注意的是,随机现象绝不是杂乱无章的现象,这里的“随机”有两方面意思:①这种现象的结果不确定,发生之前不能预言;②这种现象的结果带有偶然性. 虽然随机现象的结果不确定,带有某种偶然性,但是这种现象的各种可能结果在数量上具有一定的稳定性和规律性,我们称这种规律性为统计规律性. 统计和概率就是从量的侧面去研究和揭示随机现象的这种规律性,从而实现随机性和确定性之间矛盾的统一.

(2)必然事件与不可能事件反映的是在一定条件下的确定性现象,而随机事件反映的则是在一定条件下的随机现象. (3)随机试验满足的条件:可以在相同条件下重复进行;所有结果都是明确可知的,但不止一个;每一次试验的结果是可能结果中的一个,但不确定是哪一个. 随机事件也可以简称为事件,但有时为了叙述的简洁性,也可能包含不可能事件和必然事件. 二、基本事件空间 1、基本事件 在试验中不能再分的最简单的随机事件,而其他事件都可以用它们进行描述,这样的事件称为基本事件. 2、基本事件空间 所有基本事件构成的集合称为基本事件空间,常用大写字母Ω来表示,Ω中的每一个元素都是一个基本事件,并且Ω中包含了所有的基本事件. 【注】基本事件是试验中所有可能发生的结果的最小单位,它不能再分,其他的事件都可以用这些基本事件来表示;在写一个试验的基本事件空间时,应注意每个基本事件是否与顺序有关系;基本事件空间包含了所有的基本事件,在写时应注意不重复、不遗漏. 三、频率与概率 1、频数与频率 在相同条件S 下进行了n 次试验,观察某一事件A 是否出现,则称在n 次试验中事件A 出现的次数A n 为事件A 出现的频数;事件A 出现的比例()A n n f A n =为事件A 出现的频率.

高中数学随机事件的频率与概率

《随机事件的频率与概率》教案 一、[教学目标] 1、知识与技能:理解随机事件在大量重复试验的情况下,它的发生呈现的规律性;掌握概率的统计定义及概率的性质。 2、过程与方法目标:通过创设问题情境,引发学生思考、探究,在这个过程中体会学习条件概率的必要性,探寻解决问题的方法,培养学生分析问题、解决问题的能力。 3、情感态度价值观:在问题的解决过程中,学会探究、学会学习;体会数学的应用价值,发展学生学数学用数学的意识。 二、[教学重点] 随机事件的概念及其概率. 三、[教学难点] 随机事件的概念及其概率. 四、[教学方法] 探究讨论法。 五、[教学过程] (一)新课引入 1.观察下列日常生活中的事件发生与否,各有什么特点?(1)金属丝通电时,发热;(2)抛一块石头,下落;(3)在常温下,焊锡熔化;(4)在标准大气压下且温度低于00C时,冰融化;(5)掷一枚硬币,出现正面;(6)某人射击一次,中靶. 分析结果: (1)(2)是必然要发生的,(3)(4)不可能发生,(5)(6)可能发生也可能不发生 2.(1)“如果a>b,那么a-b>0”; (2)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”;(3)“某电话机在1分钟内收到2次呼叫”; (4)“没有水份,种子能发芽”;

分析结果:(略) (二)探究新课 1.事件的定义: 随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件. 说明:三种事件都是在“一定条件下”发生的,当条件改变时,事件的性质也可以发生变化. 2.随机事件的概率: (1)实验:随机事件在一次试验中是否发生是不确定,但在大量重复的试验情况下,它的发生呈现出一定的规律性. 实验一:抛掷硬币试验结果表: m n) 抛掷次数(n)正面朝上次数(m)频率(/ 2048 1061 0.5181 4040 2048 0.5069 12000 6019 0.5016 24000 12012 0.5005 30000 14984 0.4996 72088 36124 0.5011 当抛掷次数很多时,出现正面的频率值是稳定的,接近于常数0.5,并在它附近摆动. 实验二:某批乒乓球产品质量检查结果表: 抽取球数n50 100 200 500 1000 2000 优等品数m45 92 194 470 954 1902 m n0.9 0.92 0.97 0.94 0.954 0.951 频率/ 当抽查的球数很多时,抽到优等品的频率接近于常数0.95,并在它附近摆动

随机事件的概率教案(绝对经典)

§12.1 随机事件的概率 会这样考 1.考查随机事件的概率,以选择或填空题形式出现;2.考查互斥事件、对立事件的概率;3.和统计知识相结合,考查概率与统计的综合应用. 1.随机事件和确定事件 (1)在条件S 下,一定会发生的事件,叫作相对于条件S 的必然事件. (2)在条件S 下,一定不会发生的事件,叫作相对于条件S 的不可能事件. (3)必然事件与不可能事件统称为确定事件. (4)在条件S 下可能发生也可能不发生的事件,叫作相对于条件S 的随机事件. (5)确定事件和随机事件统称为事件,一般用大写字母A ,B ,C …表示. 2.频率与概率 (1)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=n A n 为事件A 出现的频率. (2)对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率,简称为A 的概率. 3. 4.概率的几个基本性质 (1)概率的取值范围:0≤P (A )≤1. (2)必然事件的概率P (E )=1. (3)不可能事件的概率P (F )=0. (4)互斥事件概率的加法公式 ①如果事件A 与事件B 互斥,则P (A +B )=P (A )+P (B ).

②若事件B 与事件A 互为对立事件,则P (A )=1-P (B ). ③事件A 的对立事件一般记为A , 则P (A )=1-P (A ) [难点正本 疑点清源] 1.频率和概率 (1)频率与概率有本质的区别,不可混为一谈.频率随着试验次数的改变而变化,概率却是一个常数,它是频率的科学抽象.当试验次数越来越多时,频率向概率靠近,只要次 数足够多,所得频率就可以近似地当作随机事件的概率. (2)概率从数量上反映了一个事件发生的可能性的大小;概率的定义实际上也是求一个事件的概率的基本方法. 2.互斥事件与对立事件 互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件,即“互斥”是“对立”的必要但不充分条件,而“对立”则是“互斥”的充分但不必要条件. 1.给出下列三个命题,其中正确命题有________个. ①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验, 结果3次出现正面,因此正面出现的概率是3 7 ;③随机事件发生的频率就是这个随机事件发生的概率. 答案 0解析 ①错,不一定是10件次品;②错,3 7 是频率而非概率;③错,频率不等于概率,这是两 个不同的概念. 2.在n 次重复进行的试验中,事件A 发生的频率为m n ,当n 很大时,P (A )与m n 的关系是( ) A .P (A )≈m n B .P (A )m n D .P (A )=m n 答案 A 解析 在n 次重复进行的试验中,试验次数很大时,频率可近似当作随机事件的概率. 3.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( ) A .至少有一个红球与都是红球 B .至少有一个红球与都是白球 C .至少有一个红球与至少有一个白球 D .恰有一个红球与恰有两个红球 答案 D 4.某射手的一次射击中,射中10环、9环、8环的概率分别为0.2、0.3、0.1,则此射手在一次射击中不超过8环的概率为________. 答案 0.5. 题型一 事件的关系及运算 例1 判断下列给出的每对事件,是互斥事件还是对立事件,并说明理由.从40张扑克牌(红桃、黑桃、 方块、梅花点数从1~10各10张)中,任取一张. (1)“抽出红桃”与“抽出黑桃”; (2)“抽出红色牌”与“抽出黑色牌”; (3)“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”. 解 (1)是互斥事件,不是对立事件. (2)既是互斥事件,又是对立事件.

概率论第一章随机事件及其概率答案2

概率论与数理统计练习题 系 专业 班 姓名 学号 第一章 随机事件及其概率(一) 一.选择题 1.对掷一粒骰子的试验,在概率论中将“出现奇数点”称为 [ C ] (A )不可能事件 (B )必然事件 (C )随机事件 (D )样本事件 2.下面各组事件中,互为对立事件的有 [ B ] (A )1A ={抽到的三个产品全是合格品} 2A ={抽到的三个产品全是废品} (B )1B ={抽到的三个产品全是合格品} 2B ={抽到的三个产品中至少有一个废品} (C )1C ={抽到的三个产品中合格品不少于2个} 2C ={抽到的三个产品中废品不多于2个} (D )1D ={抽到的三个产品中有2个合格品} 2D ={抽到的三个产品中有2个废品} 3.下列事件与事件A B -不等价的是 [ C ] (A )A AB - (B )()A B B ?- (C )AB (D )AB 4.甲、乙两人进行射击,A 、B 分别表示甲、乙射中目标,则A B ?表示 [ C ] (A )二人都没射中 (B )二人都射中 (C )二人没有都射着 (D )至少一个射中 5.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对应事件A 为. [ D ] (A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”; (C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销 6.设{|},{|02},{|13}x x A x x B x x Ω=-∞<<+∞=≤<=≤<,则AB 表示 [ A ] (A ){|01}x x ≤< (B ){|01}x x << (C ){|12}x x ≤< (D ){|0}{|1}x x x x -∞<

《事件的概率》资料:随机事件的概率知识点总结

随机事件的概率知识点总结 事件的分类 1、确定事件 必然发生的事件:当A 是必然发生的事件时,P (A )=1 不可能发生的事件:当A 是不可能发生的事件时,P (A )=0 2、随机事件:当A 是可能发生的事件时,0<P (A )<1 概率的意义 一般地,在大量重复试验中,如果事件A 发生的频率m n 会稳定在某个常数p 附近 那么这个常数p 就叫做事件A 的概率。 概率的表示方法 一般地,事件用英文大写字母A ,B ,C ,…,表示事件A 的概率p ,可记为P (A )=P 概率的求解方法 1.利用频率估算法:大量重复试验中,事件A 发生的频率 m n 会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率(有些时候用计算出A发生的所有频率的平均值作为其概率). 2.狭义定义法:如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,考察事件A 包含其中的m 中结果,那么事件A 发生的概率为P (A )= n m 3.列表法:当一次试验要设计两个因素,可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.其中一个因素作为行标,另一个因素作为列标. 特别注意放回去与不放回去的列表法的不同.如:一只箱子中有三张卡片,上面分别是数字1、2、3,第一抽出一张后再放回去再抽第二次,两次抽到数字为数字1和2或者2和1的概率是多少?若不放回去,两次抽到数字为数字1和2或者2和1的概率是多少? 放回去P (1和2)=9 2不放回去P (1和2)=62

4.树状图法:当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率. 注意:求概率的一个重要技巧:求某一事件的概率较难时,可先求其余事件的概率或考虑其反面的概率再用1减——即正难则反易. 概率的实际意义 对随机事件发生的可能性的大小即计算其概率.一方面要评判一些游戏规则对参与游戏者是否公平,就是要看各事件发生概率.另一方面通过对概率的学习让我们更加理智的对待一些买彩票抽奖活动. (3,3) (3,2) (3,1) 3 (2,3)(2,2)(2,1)2(1,3)(1,2)(1,1)1第一次 结果3 2 1 第二次(3,2) (3,1) 3 (2,3) (2,1)2(1,3)(1,2) 1第一次 结果3 2 1第二次

数学随机事件与概率知识点归纳

数学随机事件与概率知识点归纳 一、随机事件 主要掌握好(三四五) (1)事件的三种运算:并(和)、交(积)、差;注意差A-B可以表示成A与B的逆的积。 (2)四种运算律:交换律、结合律、分配律、德莫根律。 (3)事件的五种关系:包含、相等、互斥(互不相容)、对立、相互独立。 二、概率定义 (1)统计定义:频率稳定在一个数附近,这个数称为事件的概率; (2)古典定义:要求样本空间只有有限个基本事件,每个基本事件出现的可能性相等,则事件A所含基本事件个数与样本空间所含基本事件个数的比称为事件的古典概率; (3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,事件A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算; (4)公理化定义:满足三条公理的任何从样本空间的子集集合到[0,1]的映射。 三、概率性质与公式 (1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B); (2)差:P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则 P(A-B)=P(A)-P(B); (3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B); (4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果, 贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;

如果一个事件B可以在多种情形(原因)A1,A2,....,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式. (5)二项概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n. 当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式.

随机事件及其概率

第一章 随机事件及其概率 知识点释疑 问题一:随机事件是什么? 答:需要满足三个要素。1、相同条件下可重复试验;2、每次试验结果可以互不相同;3、试验结果事先知道只是不知道每次试验的结果。 问题2:事件和集合有什么关系? 答:以两个事件A ,B 为例,通俗理解是事件A 、B 能同时发生用集合角度理解是两个集合有交集也记做AB ,如果两个事件不能同时发生,那我们称A 、B 互斥,即?=AB 。 问题3:事件差如何理解? 答:比如A-B意思是从事件A发生但是事件B不发生;从集合角度理解就是集合A减去两个集合交集部分。由此我们可理解这一公式)()()(AB P A P B A P -=-。 问题4:如何理解条件概率公式) () ()(B P AB P B A P = ? 答:我们借助集合和几何概型的定义理解。假设事件A和事件B互斥,那么公式显然成立;现在考虑事件A和B有交集,我们知道此时事件B已经发生,那么事件A想发生必定是在其集合公共部分,根据几何概型的定义,其概率当然就是) () (B P AB P 。

福州大学历年考试试题 概率公式计算 例题:设,2 1 )(,31)(,41)(=== B A P A B P A P 则.__________)(=+B A P 解:根据条件可得,21 )()()(31)()()(41)(??? ? ? ????=====B P AB P B A P A P AB P A B P A P 于是有.61)(121)(41)(????????? ===B P AB P A P 因此.3 11216141)()()()(=-+= -+=+AB P B P A P B A P 总结:此类题型就是解方程组常见的有这几个:、、、、)()()()(B A P B A P A B P A P + )()()-(B P A P B A P 、、总之我们只要知道其中3个就可以求出其他几个。 注:) () ()()()()()()(A P AB P A P A P AB A P A P B A P A B P -= -== 排列组合公式计算概率 例题1:任意将10本书放在书架上,其中有两套书,一套含三卷,另一套含四卷,则两套各自放在一起的概率为? 解:首先明确样本总体是10本书任意排列一共有!1010 10=A 种排法,接下来考虑如何排。第一步取出其中一套书(含三卷),由于没要求这三卷如何排列,因此一共有33A 种排法;同理另一套有44A 种排法;现在将两套书看成2本书和剩下的3本书一起排列总共有55A 种排法;根据乘法原理一共有55 443 3A A A 种排法,因此其概率为 .210 1 !105 54433=A A A 这个方法称为捆绑法! 例题2:设一个袋中装有a 个黑球,b 个白球,现将求随机地一个个摸出,则第k 次摸出黑球的概率为? 解:我们从特殊情况入手。当1=k ,显然概率为 b a a +;当2=k ,则意味着出现两种情况,第一次摸到黑球或第一次摸到白球,于是概率为b a a C C a b b a a +=++22 2,因此我们猜想概率不变。 现在我们可以这样想,题目只要求第k 次要取到黑球,而其他次数不管,因此我们这样做,

人教A版高中数学必修三随机事件的概率教案

3.1.1随机事件的概率 (第一课时) 一、教学目标: 1、知识与技能:(1)了解随机事件、必然事件、不可能事件的概念;(2)正确理解事件A 出现的频率的意义;(3)正确理解概率的概念和意义,明确事件A 发生的频率f n (A )与事件A 发生的概率P (A )的区别与联系; 2、过程与方法:发现法教学,通过在抛硬币、抛骰子的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高; 3、情感态度与价值观:(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;(2)培养学生的辩证唯物主义观点,增强学生的科学意识. 二、重点与难点:(1)教学重点:事件的分类;概率的定义以及和频率的区别与联系;(2) 教学难点:用概率的知识解释现实生活中的具体问题. 三、学法与教学用具:1、引导学生对身边的事件加以注意、分析,结果可定性地分为三 类事件:必然事件,不可能事件,随机事件;指导学生做简单易行的实验,让学生无意识地发现随机事件的某一结果发生的规律性;2、教学用具:硬币数枚,计算机及多媒体教学. 四、教学设想: 1、创设情境:日常生活中,有些问题是很难给予准确无误的回答的。例如,你明天什么时间起床?7:20在某公共汽车站候车的人有多少?你购买本期福利彩票是否能中奖?等等。 2、基本概念: (1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件; (4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件; (5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数;称事件A 出现的比例f n (A)= n n A 为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。 (6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数n A 与试验总次数n 的比值 n n A ,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率 3、例题分析: 例1 判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件? (1)“抛一石块,下落”. (2)“在标准大气压下且温度低于0℃时,冰融化”; (3)“某人射击一次,中靶”; (4)“如果a >b ,那么a -b >0”; (5)“掷一枚硬币,出现正面”; (6)“导体通电后,发热”; (7)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”;

随机事件及其概率习题

第一章 随机事件及其概率 习题一 一、填空题 1.设样本空间}20|{≤≤=Ωx x ,事件}2 3 41|{ },121|{<≤=≤<=x x B x x A ,则B A Y 1 3{|0}{| 2}42x x x x =≤<≤≤U , B A 113{|}{|1}422 x x x x =≤≤<

频率与概率的关系

频率与概率的关系 在我们的日常生活中存在着大量随机事件,我们已经学习了用列表法和树形图法求某些随机事件发生的概率,但是当试验的所有可能结果不是有限个,或者各种可能结果发生的可能性不相等时,如何确定某些随机事件发生概率的大小呢?25.3节我们主要学习通过试验体会“某一随机事件发生的频率无限的接近于理论概率”这一重要规律,以及运用随机事件出现的频率估计随机事件发生的概率大小的重要方法. 一、关于在试验中感悟“频率稳定于概率”这一规律 通过大量的课内和课外的反复试验,我们发现尽管随机事件在每次试验中发生与否具有不确定性,但只要保持试验不变,当试验次数很大时,那么这一事件出现的频率就会随着试验次数的增大而趋于稳定,这个稳定值就可以作为该事件在每次试验中发生的可能性(即概率)的一个估计值.例如从一副52张(没有大小王)的牌中每次抽出一张,然后放回洗匀再抽,在这个试验中,我们可以发现,虽然每次抽取的结果是随机的、无法预测的,是一个随机事件,但是随着试验次数的增加,出现每一种花色牌的频率都稳定在25%左右,因此我们可以用平稳时的频率估计牌在每次抽出时的可能性,即概率的大小. 二、关于用频率估计概率的大小 在随机事件中。虽然每次试验的结果都是随机的、无法预测的,但是不确定事件的发生并非完全没有规律.随着试验次数的增加,隐含的规律会逐渐显现,事件出现的频率会逐渐稳定到某一个值.大量试验表明:当试验次数足够多时,事件A 发生的频率会稳定到它发生的概率的大小附近,所以,我们常用频率估计事件发生的概率.用频率估计事件发生的概率时,需要说明以下几点: (1)频率和概率是两个不同的概念,二者既有区别又有联系.事件的概率是一个确定的常数,而频率是不确定的,当试验次数较少时,频率的大小摇摆不定,当试验次数增大时,频率的大小波动变小,并逐渐稳定在概率附近. (2)通过试验用频率估计概率的大小,方法多种多样,但无论选择哪种方法,都必须保证试验应在相同的条件下进行,否则结果会受到影响.在相同条件下,试验的次数越多,就越有可能得到较准确的估计值,但每个人所得的值并不一定相同. (3)频率和概率在试验中可以非常接近,但不一定相等,两者存在一定的偏差是正常的,也是经常的.如随机抛掷一枚硬币时,理论上“落地后国徽面朝上”发生的概率为21,可抛掷1000次硬币,并不能保证落地后恰好500次围徽面朝上,但经大量的重复试验发现,“落地后国徽面朝上”发生的频率就在2 1附近波动.

相关主题
文本预览
相关文档 最新文档