当前位置:文档之家› 8.受扭构件承载力计算 一、目的要求 1.掌握纯扭、剪扭、弯剪扭构件 ...

8.受扭构件承载力计算 一、目的要求 1.掌握纯扭、剪扭、弯剪扭构件 ...

8.受扭构件承载力计算 一、目的要求 1.掌握纯扭、剪扭、弯剪扭构件 ...
8.受扭构件承载力计算 一、目的要求 1.掌握纯扭、剪扭、弯剪扭构件 ...

8.受扭构件承载力计算

一、目的要求

1.掌握纯扭、剪扭、弯剪扭构件的受扭承载力计算

2.掌握剪扭相关性的含义

3.受扭塑性抵抗矩的推导方法

4.掌握抗扭纵筋和箍筋的构造要求

二、重点难点

1.剪扭相关性的应用

2.弯剪扭构件受扭承载力的计算

三、主要内容

8.1概述

钢筋混凝土构件的扭转可分为两类:平衡扭转和协调扭转。

平衡扭转:若构件中的扭矩由荷载直接引起,其值可由平衡条件直接求出, 协调扭转:若扭矩是由相邻构件的位移受到该构件的约束而引起该构件的扭转,

这种扭矩值需结合变形协调条件才能求得,这类扭转称为协调扭转。

构件在扭矩作用下将产生剪应力和相应的主拉应力,当主拉应力超过混凝土的抗拉强度时,构件便会开裂,因此需要配置钢筋来提高构件的受扭承载力。

8.2 构件的开裂扭矩

8.2.1矩形截面构件的开裂扭矩

(1)匀质弹性材料受扭应力分布

由材料力学可知,匀质弹性材料的矩形截面受扭时,

截面上将产生剪应力τ (图8.2),截面剪应力的分布如图

8.3a 所示,最大剪应力产生在矩形长边中点。由微元体

平衡可知,主拉应力τσ=tp 其方向与构件轴线成450角。

当主拉应力超过混凝土的抗拉强度时,首先将在截面长边

中点处垂直于主拉应力方向上开裂,然后逐渐伸展,裂缝与纵轴线大致成450角。

(2)理想塑性材料受扭应力分布

对于理想的塑性材料来说,截面上某一点的应力达到强度权

限时,构件并不立即破坏,只意味着局部材料开始进入塑性状态,构件仍能承受荷载,直到截面上的应力全部达到强度极限时,构件才达到其极限受扭承载力,这时截面上剪应力的分布如图8.3b 所示。

(3)弹塑性材料受扭应力分布

由于混凝土既不是理想的弹性材料又不是理想的塑性材料,而是介于两者之间的弹塑性材料。与实测的开裂扭矩相比,按理想的弹性应力分布计算的值偏低,而按理想的塑性应力分布计算的值又馆高。要想准确地确定截面真实的应力分布是十分困难的,比较切实可行的办法是在按塑性应力分布计算的基础上,根据试验结果乘以一个降低系数。

设矩形截面的边长长边为h ,短边为b ,根据塑性力学理论,当截面上各点的剪应力都达到混凝土的抗拉强度六时,构件才达到其极限扭矩。为了便于计算,可近似将截面上的剪应力分布划分为四个部分,即两个梯形和两个三角形(8.3c)。计算各部分剪应力的合力及相应组成的力偶,对截面的扭转中心O 点取矩,可求得按塑性应力分布时截面所能承受的极限扭矩为

混凝土不是理想塑性材料。试验表明,对于高强度混凝土,其降低系数约为0.7,对于低强度混凝土,其降低系数接近0.8,为计算方便统一取0.7。又由于素混凝土构件的开裂扭矩和极限扭矩基本相同,因此可以得开裂扭矩的计算公式为T cr =0.7t t W f

受扭塑性抵抗矩t W 的计算公式也可以借助堆沙模拟法得到。设砂堆安息角各斜面均为α,沙堆体积为V ,则截面的受扭塑性抵抗矩为αtan 2V W t =

一般可取方便的α值,如取450,相应的1tan =α

矩形截面,取45=α0,则2

b H =,这样 )3(6

])2(31[2)])((21[222

b h b H b b b h bH V W t -=?+-==

8.2.2 T 形截面构件的开裂扭矩

对于T 形、I 形、倒I 。形截面的受扭构件,可近似地将其截面视为由若干个矩形截面组成。当构件受扭整个截面转动θ角时,组成截面的各矩形分块也将各自扭转相同的角度θ,构件的截面受扭塑性抵抗矩t W ,为各矩形分块的受扭塑性抵抗矩之和,即

将T 形、Ⅰ形、倒L 形等截面分成矩形截面的方法与复板的宽度有关,当腹板的宽度大于上下翼缘的高度时,按图8.6a 所示方式划分计算比较方便;当腹板的宽度小于上下翼缘的高度时,按图8.6b 所示方式划分计算比较方便。

计算时取用的翼缘宽度尚应符合)6('

'

f f h b b +≤及)6(f f h b b +≤的规定。

8.3 纯扭构件的受扭承载力计算

8.3.1抗扭配筋的形式

扭矩在构件中引起的主拉应力轨迹线与构件的轴线成450角,从这一点看,合理的抗扭配筋似乎应该是沿与构件的轴线成450角方向布置的螺旋状箍筋.但由于螺旋状箍筋在受力上只能适应一个方向的扭转,而在实际工程中扭矩沿构件全长不改变方向的情况是比较少的,当扭矩改变方向时,螺旋状箍筋也必须相应地改变方向,这在构造上是很困难的。所以,在实际结构中都是采用横向封闭箍筋与纵向受力钢筋组成的空间骨架来抵抗扭矩。

8.3.2受扭构件的试验研究结果

钢筋混凝土纯扭构件的试验表明,配筋对提高构件开裂扭矩的作用不大,但配筋的数量及形式对构件的极限扭矩有很大的影响,构件的受扭破坏形态和极限扭矩随配筋数量的不同而变化。

如果抗扭钢筋配得过少或过稀,裂缝一出现,钢筋很快屈服,配筋对破坏扭矩的影响不大,构件的破坏扭矩和开裂扭矩非常接近,这种破坏过程迅速而突然,属于脆性破坏,也称为少筋破坏。当配筋数量过多,受扭构件在破坏前的螺旋裂缝会更多更密,这时构件由于混蟹土被压碎而破坏,破坏时箍筋和纵筋均未屈服。这种破坏与受弯构件的超筋梁类似,破坏时钢筋的强度没有得到充分利用,属于脆性破坏,也称为超筋破坏。少筋破坏和超筋破坏均呈脆性,所以在设计中应予

避免。

由于抗扭钢筋由纵筋和箍筋两部分组成,纵筋和箍筋的配筋比例对构件的受扭承载力也有影响。当抗扭箍筋配置相对抗扭纵筋较少时,构件破坏时箍筋屈服而纵筋可能达不到屈服强度;反之,当抗扭纵筋配置相对抗扭箍筋较少时,构件破坏时纵筋屈服而箍筋可能达不到屈服强度;这种破坏称为部分超筋破坏。部分超筋构件的延性比适筋构件要差一些,但还不是完全超筋,在设计中允许使用,只是不够经济。

抗扭纵筋和抗扭箍筋数量的比例用纵筋与箍筋的配筋强度比来表示,设抗扭箍筋单肢的截面面积为A 1st ,间距为s ,抗扭纵筋总的截面面积为且A stl ,矩形截面的边长长边为h ,短边为b(图8.7)。b cor 和h cor 分别为从箍筋内表面计算的截面核芯部分的短边和长边边长,u cor 为截面核芯部分的周长,u cor =2(b cor + h cor ),y f 和yv f 分别为纵筋和箍筋的抗拉强度设计值,则定义纵筋与箍筋的配筋强度比ζ为

cor

sv yv stl y sv yv cor stl

y u A f s A f s

A f u A f 11==ζ 根据试验结果,当0.5≤≤ζ 2.0时,纵筋和箍筋一般都能较好地发挥其抗扭作用,为了稳妥起见,《规范》规定ζ的限制范围为0.6≤≤ζ 1.7,当>ζ 1.7时,取ζ=1.7。工程结构中常用的范围为ζ=1.0~1.3。

8.3.3矩形截面纯构件承载力计算

当抗扭钢筋配置适当时,穿过裂缝的纵筋和箍筋在破坏时都可以达到屈服强度,不发生超筋破坏和少筋破坏。试验结果表明,构件的受扭承载力T u 由可认为混凝土承担的扭矩T c 和抗扭钢筋承担的扭矩T s 两部分组成,即

T u = T c + T s

根据国内大量试验研究的结果,《规范》建议钢筋混凝土矩形截面纯扭构件的受扭承载力按下列公式计算

s

A A f W f T st yv t t cot 12.135.0ξ+≤

cor st yv stl y u A f s

A f 1=ξ

式中 T ——扭矩设计值;

W t ——截面受扭塑性抵抗矩;

t f ——混凝土抗拉强度设计值;

ξ——受扭构件纵向钢筋与箍筋的配筋强度比值;

yv f ——受扭箍筋抗拉强度设计值;

1st A ——受扭计算中沿截面周边所配置箍筋的单肢截面面积;

cor A ——截面核芯部分的面积,cor cor cor h b A =,此处cor b 和cor h 分别为从箍筋内表

面计算的截面核芯部分的短边和长边边长

s ——抗扭箍筋的间距;

y f ——抗扭纵筋抗拉强度设计值;

stl A ——受扭计算中取对称布置的全部纵向钢筋的截面面积;

cor u ——截面核芯部分的周长,)(2cor cor cor h b u +=;

8.3.4 T 形和I 形截面纯扭构件承载力计算

试验研究表明,对于T 形和I 形截面纯扭构件,第一条

斜裂缝首先出先现在腹板侧面中部,其破坏形态和规律与矩

形截面纯扭构件相似。图8.9为一腹板宽度大于翼缘高度的

T 形截面纯扭构件的裂缝开展情况,如果将其悬挑翼缘部分

去掉,可以见到腹板裂缝与其顶面的裂缝基本相连,形成了大致相互贯通的螺旋形斜裂缝。这说明腹板裂缝的形成有其自身的独立性,受翼缘影响不大,可将腹板和翼缘分别进行抗扭计算。

在计算T 形和I 形截面纯扭构件的承载力时,可像计算开裂扭矩一样,将截面划分为几个矩形截面,并将扭矩了按照各矩形分块的截面受扭塑性抵抗矩分配给各个矩形,以求得各矩形分块所匝承担的扭矩。各矩形分块所承担的扭矩设计值可按下列规定计算:

8.4 弯剪扭构件承载力的计算

在实际工程中,单纯的受扭构件是很少的,大多数情况是承受弯矩,剪力和扭矩的共同作用,构件处于弯、剪、扭共同作用的复合受力状态。构件的受扭与受弯、受剪承载力是相互影响的,这种相互影响的性质称为相关性。由于构件受扭、受弯与受剪承载力之间的邗互影响问题过于复杂,采用统一的相关方程来计算比较困难。为了简化计算,《规范》对弯剪扭构件的计算采用了对混凝土提供的抗力部分考虑相关性,而对钢筋提供的抗力部分采用叠加的方法,现分别说明如下。

8.4.1剪扭构件承载力的计算

在受扭和受剪承载力的计算公式中都有一项是反映混凝土所提供的抗力,即受扭计算中的0.35t t W f ,和受剪计算中的0.70bh f t (或00

.175.1bh f t +λ)。显然,在扭矩和剪力的共同作用下,混凝土部分所能承受的扭矩和剪力是相互影响的.图

8.10给出了无腹筋构件在不同的扭矩与剪力比值下承载力的试验结果,图中纵

坐标为0c c V V ,横坐标为0

c c T T 。这里0c V 和co T 分别表示无膻筋构件在单纯受剪力或扭矩作用时的受剪或受扭承载力,c V 和c T 分别表示构件同时承受剪力和扭矩作用时受剪和受扭承载力。从图中可见,无腹筋的受剪和受扭承载力的相关关系大致按四分之一圆弧规律变化,即随着同时作用着的扭矩

的增大,构件的受剪承载力逐渐降低,当扭矩达到纯扭

构件的承载力时,其受剪承载力下降为零.反过来也是

如此。

对于有膻筋的剪扭构件,其混疑土部分所提供的受

剪承载力c V 和受扭承载力c T 之间可以认为也存在四分

之一圆弧相关关系,这时坐标系中的0c V 和co T 。可分别

取有腹筋构件受剪承载力公式中的混凝土作用项,以及

受纯扭承载力公式中的混凝土作用项,即

``

将(8.20)式、(8.21)式代入上式,并用构件承受的剪力设计值与扭矩设计

值之比T V 代替公式中的c c T V ,则可得到t β的计算公式t β=0

5.015.1Tbh VW t + t β称为剪扭构件混凝土受扭承载力降低系数。

当t β小于0.5时,取t β等于0.5;当t β大于1.0时,取t β等于1.0。因此,当构件中有剪力和扭矩共同作用时,应考虑混凝土作用项的相关作用,对受剪剪扭构件的受剪承载力

-≤5.1(7.0V 0025.1)h s

A f bh f sv yv t t +β 式中 -sv A 受剪承载力所需要的箍筋截面面积。

剪扭构件的受扭承载力

s

A A f W f T cor st yv t t t 12.135.0ζβ+≤ 对集中荷载作用下独立的混凝土剪扭构件(包括作用有多种荷载,且集中荷载对支座截面或节点边缘所产生的剪力值占总剪力值75%以上的情况,上述公式应该为:

剪扭构件混凝土受扭承载力降低系数

0)1(2.015

.1Tbh VW t t ++=λβ

剪扭构件的受剪承载力

-≤5.1(V 000.175.1)h s

A f bh f sv yv t t ++λβ 剪扭构件的受扭承载力

s

A A f W f T cor st yv t t t 12.135.0ζβ+≤ 8.4.2在弯、剪、扭共同作用下承载力的计算

构件在弯矩和扭矩的共同作用下的受力状态比较复杂,为了简化计算,在试验研究的基础上,《规范》建议采用叠加方法进行计算。即先按受弯构件和受扭构件分别计算其纵筋和箍筋的面积,然后将所求得的相应的钢筋截面面积相叠加。

结合上述剪扭构件的计算方法,对于在弯矩、剪力和扭矩共同作用下的构件

承载力的计算,可按下述方法进行:

(1)按受弯构件计算在弯矩作用下所需的纵向钢筋的截面面积。

(2)按剪扭构件计算承受剪力所需的箍筋截面面积以及计算承受扭矩所需的纵向钢筋截面面积和箍筋

截面面积。

(3)叠加上述计算所得到的纵向钢筋截面面积和箍筋截面面积,即得最后所需的纵向钢筋截面面积和

箍筋截面面积。

当满足V ≤0.350bh f t 或V ≤0

.1875.0+λ0bh f t 时,可仅按受弯构件的正截面受弯承载力和纯扭构件的受扭承载力分别进行计算。当满足T ≤t t W f 175.0时,可仅按受弯构件的正截面受弯承载力和斜截面受剪承载力分别进行计算。

当构件上的扭矩比较小时,只需按构造配置抗扭钢筋。《规范》规定,对纯扭构件,当截面中的设计扭矩较小,满足T ≤t t W f 7.0,时,可不进行抗扭计算,而只儒按构造配置抗扭钢筋。

《规范》也规定,符合以下条件时,可不进行抗扭和抗剪承载力计算,而仅需按构造配置箍筋和抗扭纵筋:

t T

f W T bh V 7.00≤+,此时要考虑抗扭构件的截面限制条件。 对于在弯矩、剪力和扭矩共同作用下的T 形和I 形截面构件的承载力计算,可与计算纯扭构件一样,先将截面划分为几个矩形分块,将扭矩了按各矩形分块的截面受扭塑性抵抗矩分配给各个矩形分块,然后按上述方法分别进行计算。但应注意,抗弯纵筋应按整个T 形或I 形截面计算;腹板应承担全部的剪力和相应分配的扭矩;受压和受拉翼缘不考虑其承受剪力,按其所分配的扭矩按纯扭构件计算。具体计算步骤可参考例8.2e

有些构件,如钢筋混凝土结构中框架柱等除了承受弯矩、剪力和扭矩的作用外,还同时承受轴向压力。轴

向压力可以抵消部分拉应力,延缓裂缝的出现,对提高构件的受扭和受剪承载力是有利的,《规范》中的计算公式类似于弯、剪、扭构件的计算公式,但考虑了

轴向压力的有利影响.

8 .4.3 计算公式的适用范围和构造要求

8.4.3.1 截面限制条件

如前所述,当构件配筋过多时,在钢筋屈服以前便由于混凝土被压碎而破坏。此时,即使进一步增加配筋,构件的承载力几乎不再增大,也就是说,其承载力取决于混凝土的强度和截面尺寸。《规范》规定,对

b h w ≤6的矩形、T 形和I 形截面构件,其截面应符合下列公式的要求。

当b

h w (或w w t h )≤4时,c c t f W T bh V β025.8.00≤+ 当

b h w (或w w t h )=6时,

c c t f W T bh V β02.8.00≤+ 当4

h w (或w w t h )<6时,直线插入。 式中 T —扭矩设计值;

b--矩形截面的短边尺寸;

W t --受扭构件的截面受扭塑性抵抗矩;

h w —截面的腹板高度,矩形截面取有效高度ho ,T 形截面取有效高度减去

翼缘高度,I 形截面取腹板净高;

t β—混凝土强度影响系数,当混凝土强度等级不超过C50时,取c β=1.0;

当混凝土强度等级为C80时,取c β=0.8,其间按线性内插法取用;

c f —混疑土轴心抗压强度设计值;

w t --箱形截面壁厚

当不满足上式的要求时,应加大截面尺寸或提高混凝土强度等级。

8.4.3.2 最小配筋率和构造要求

粱内受扭纵向钢筋的配筋率lt ρ应符合下列要求

式中 s t l

A —沿截面周边布置的受扭纵向钢筋的总截面面积; b--矩形截面的宽度,T 形或I 形截面的腹板宽度。

当>Vb T 2.0时,取=Vb

T 2.0。沿截面周边布置的受扭纵向钢筋的间距不应大于200mm 和粱截面短边长度;除应在粱截面四角设置受扭纵向钢筋外,其余受扭纵向钢筋宜沿截面周边均匀对称布置。当梁支座边作用有较大扭矩时,受扭纵向钢筋应按受拉钢筋锚固在支座内。

在弯剪扭构件中,剪扭箍筋的配箍率~应符合下列要求

(8.32)

式中sv A 为配置在同一截面内箍筋各肢的全部截面面积,箍筋的最大间距和最小直径应符合受剪构件的要求。受扭所需箍筋应做成封闭式,且应沿截面周边布置;当采用复合箍筋时,位于截面内部的箍筋不应计人受扭所需的箍筋面积;受扭所需箍筋的末端应做成1350弯钩,弯钩端头平直段长度不应小于10d(d 为箍筋直径)。

2020年整合混凝土结构设计原理习题之四五含答案钢筋混凝土受压受拉构件承载力计算试题名师资料

混凝土结构设计原理习题集之四6 钢筋混凝土受压构件承载力计算 一、填空题: 1.偏心受压构件的受拉破坏特征是______________________________________ , 通常称之 为_____ ;偏心受压构件的受压破坏特征是 _________________________________ , 通常称之为_______ 。 2.矩形截面受压构件截面,当l/h __ 时,属于短柱范畴,可不考虑纵向弯曲的影0响,即 取___ ;当l/h ___ 时为细长柱,纵向弯曲问题应专门研究。0 3.矩形截面大偏心受压构件,若计算所得的ξ≤ξ,可保证构件破坏时 ____ ;b x=ξ≥2a′可保证构件破坏时_______ 。h s0b 4.对于偏心受压构件的某一特定截面(材料、截面尺寸及配筋率已定),当两种荷载组合同为大偏心受压时,若内力组合中弯矩M值相同,则轴向N越__ 就越危险;当两种荷载组合同为小偏心受压时,若内力组合中轴向力N 值相同,则弯矩M 越__ 就越危险。 5.由于轴向压力的作用,延缓了__ 得出现和开展,使混凝土的__ 高度增 加,斜截面受剪承载力有所___ ,当压力超过一定数值后,反而会使斜截面受剪承载力__ 。 6.偏心受压构件可能由于柱子长细比较大,在与弯矩作用平面相垂直的平面内发生 _____ 而破坏。在这个平面内没有弯矩作用,因此应按______ 受压构件进行承载 力复核,计算时须考虑______ 的影响。 7.矩形截面柱的截面尺寸不宜小于mm,为了避免柱的长细比过大,承载力降低过多,常取l/b≤,l/d≤(b为矩形截面的短边,d为圆形截面直径,l000为柱的计算长度)。 8.《规范》规定,受压构件的全部纵向钢筋的配筋率不得小于___ _ ,且不应超过 ___ 。 9.钢筋混凝土偏心受压构件在纵向弯曲的影响下,其破坏特征有两种类型:_______ 和 _________ ;对于短柱和长柱属于______ ;细长柱属于______ 。 二、选择题: <2a′时,受拉钢筋截面面积A1.在矩形截面大偏心受压构件正截面强度计算中,当x的ss求法是() A.对受压钢筋的形心取矩求得,即按x=2a′求得。s B.要进行两种计算:一是按上述A的方法求出A,另一是按A′=0,x为未知,而求出ss A,然后取这两个A值中的较大值。ss C.同

第八章 受拉构件承载力计算

第八章受拉构件承载力计算 学习要求与目标 1.理解大、小偏心受拉构件的判别方法,掌握大、小偏心受拉构件正截面承载力的计算方 法。 2.了解偏心受拉构件的斜截面受剪承载力计算。 截面承受拉力作用的构件称为受拉构件,截面承受的拉力通过截面形心轴的构件称为轴心受拉构件。这类构件包括屋架没有节间荷载作用时的下弦杆,屋架中的受拉腹杆,圆形截面蓄水池的池壁等。轴向拉力作用点和截面形心之间存在偏心距的构件称为偏心受拉构件。这类构件包括工业厂房中使用的钢筋混凝土双肢柱的柱肢,混凝土屋架的上弦杆,矩形截面蓄水池的池壁等,如图8-1所示为常用的受拉构件。 图8-1 常用的受拉构件 第一节轴心受拉构件 轴心受拉构件受力较小时钢筋和混凝土共同承担外载荷的作用,随着构件承受的外荷载不断增加,截面承受的拉应力也不断增加,在轴向力增加的过程中混凝土很快达到其抗拉极限应变和抗卡设计强度而开裂;构件开裂的同时原来由混凝土承受的拉应力就转嫁给了截面上配置的钢筋,钢筋应力瞬间快速增加。随后伴随荷载的上升,截面所配的受拉钢筋的拉应力持续上升,最后达到屈服强度,构件达到承载力的极限状态(图8-2)。可见轴心受拉构件的承载力就等于截面配置的纵向受拉钢筋屈服时提供的总的拉力。 N≤f y A s(8-1) 式中N——构件截面承受的轴向拉力设计值; f y——钢筋抗拉力强度设计值; A s——轴向受拉钢筋的全部截面面积。

图8-2 轴心受拉构件破坏时截面应力图 第二节 矩形截面偏心受拉构件承载力计算 矩形截面偏心受拉构件正截面上所配钢筋,拉力较大的离轴向偏心拉力较近的用A s 表示,拉力较小的离轴向偏心力较远的钢筋用A ’s 表示。为了内力分析的方便假定,当截面承 受的轴向偏心拉力作用点在A s 和A ’s 之间,即偏心距e o ≤h 2 -a s 时,为小偏心构件。当截面承受的轴向偏心拉力作用点在A s 和A ’s 之外,即偏心距e o >h 2 -a s 时,为大偏心受拉构件。 一、大偏心受拉构件 1. 基本计算公式及适用条件 当满足式(8-2)时可以判定为大偏心受拉构件 e o >h 2 -a s (8-2) 大偏心受拉构件当采用不对称配筋时,在轴向偏心力作用下截面应力不均匀,轴向力N 作用的近侧拉力较大,混凝土最先开裂,钢筋受到的拉应力也较轴向力的远侧钢筋制的拉力大,同时截面另一侧由于偏心弯矩的作用出现压应力,随着受力过程的持续,首先A s 屈服,最后另一侧的A ’s 和受压混凝土分别达到各自的抗压设计强度f ’c 和f c 而破坏。大偏心受拉构件截面内力分布图如图8-3(b )所示。计算公式为式(8-3)和式(8-4)。 图 8-3 偏心受拉构件截面受力分布图

第8章受扭构件的扭曲截面承载力习题答案

第8章 受扭构件的扭曲截面承载力 8.1选择题 1.下面哪一条不属于变角度空间桁架模型的基本假定:( A )。 A . 平均应变符合平截面假定; B . 混凝土只承受压力; C . 纵筋和箍筋只承受拉力; D . 忽略核心混凝土的受扭作用和钢筋的销栓作用; 2.钢筋混凝土受扭构件,受扭纵筋和箍筋的配筋强度比7.16.0<<ζ说明,当构件破坏时,( A )。 A . 纵筋和箍筋都能达到屈服; B . 仅箍筋达到屈服; C . 仅纵筋达到屈服; D . 纵筋和箍筋都不能达到屈服; 3.在钢筋混凝土受扭构件设计时,《混凝土结构设计规范》要求,受扭纵筋和箍筋的配筋强度比应( D )。 A . 不受限制; B . 0.20.1<<ζ; C . 0.15.0<<ζ; D . 7.16.0<<ζ; 4.《混凝土结构设计规范》对于剪扭构件承载力计算采用的计算模式是:( D )。 A . 混凝土和钢筋均考虑相关关系; B . 混凝土和钢筋均不考虑相关关系; C . 混凝土不考虑相关关系,钢筋考虑相关关系; D . 混凝土考虑相关关系,钢筋不考虑相关关系; 5.钢筋混凝土T 形和I 形截面剪扭构件可划分为矩形块计算,此时( C )。 A . 腹板承受全部的剪力和扭矩; B . 翼缘承受全部的剪力和扭矩; C . 剪力由腹板承受,扭矩由腹板和翼缘共同承受; D . 扭矩由腹板承受,剪力由腹板和翼缘共同承受; 8.2判断题 1.钢筋混凝土构件在弯矩、剪力和扭矩共同作用下的承载力计算时,其所需要的箍筋由受弯构件斜截面承载力计算所得的箍筋与纯剪构件承载力计算所得箍筋叠加,且两种公式中均不考虑剪扭的相互影响。( × ) 2.《混凝土结构设计规范》对于剪扭构件承载力计算采用的计算模式是混凝土和钢筋均考虑相关关系;( × ) 3. 在钢筋混凝土受扭构件设计时,《混凝土结构设计规范》要求,受扭纵筋和箍筋的配筋强度比应不受限制( × )

受扭构件承载力问答题参考答案

第八章 受扭构件承载力 问答题参考答案 1.钢筋混凝土纯扭构件有几种破坏形式?各有什么特点?计算中如何避免少筋破坏和完全超筋破坏? 答:钢筋混凝土纯扭构件有三种破坏形式。受力特点如下: (1)适筋纯扭构件 当纵向钢筋和箍筋的数量配置适当时,在外扭矩作用下,混凝土开裂并退出工作,钢筋应力增加但没有达到屈服点。随着扭矩荷载不断增加,与主斜裂缝相交的纵筋和箍筋相继达到屈服强度,同时混凝土裂缝不断开展,最后形成构件三面受拉开裂,一面受压的空间扭曲破坏面,进而受压区混凝土被压碎而破坏,这种破坏与受弯构件适筋梁类似,属延性破坏,以适筋构件受力状态作为设计的依据。 (2)超筋纯扭构件 当纵向钢筋和箍筋配置过多或混凝土强度等级太低,会发生纵筋和箍筋都没有达到屈服强度,而混凝土先被压碎的现象,这种破坏与受弯构件超筋梁类似,没有明显的破坏预兆,钢筋未充分发挥作用,属脆性破坏,设计中应避免。为了避免此种破坏,《混凝土结构设计规范》对构件的截面尺寸作了限制,间接限定抗扭钢筋最大用量。 (3)少筋纯扭构件 当纵向钢筋和箍筋配置过少(或其中之一过少)时,混凝土开裂后,混凝土承担的拉力转移给钢筋,钢筋快速达到屈服强度并进入强化阶段,其破坏特征类似于受弯构件的少筋梁,破坏扭矩与开裂扭矩接近,破坏无预兆,属于脆性破坏。这种构件在设计中应避免。为了防止这种少筋破坏,《混凝土结构设计规范》规定,受扭箍筋和纵向受扭钢筋的配筋率不得小于各自的最小配筋率,并应符合受扭钢筋的构造要求。 2.简述素混凝土纯扭构件的破坏特征。 答:素混凝土纯扭构件在纯扭状态下,杆件截面中产生剪应力。对于素混凝土的纯扭构件,当主拉应力产生的拉应变超过混凝土极限拉应变时,构件即开裂。第一条裂缝出现在构件的长边(侧面)中点,与构件轴线成45°方向,斜裂缝出现后逐渐变宽以螺旋型发展到构件顶面和底面,形成三面受拉开裂,一面受压的空间斜曲面,直到受压侧面混凝土压坏,破坏面是一空间扭曲裂面,构件破坏突然,为脆性破坏。 3.在抗扭计算中有两个限值,t f 7.0和c c f β25.0,它们起什么作用? 答:当符合下列条件:t t f W T bh V 7.00≤+ 则不需对构件进行剪扭承载力计算,而根据最小配筋率和构造要求配筋(纵向钢筋和箍筋)。在受扭构件设计中,为了保证结构截面尺寸及混凝土材料强度不至于过小,为了避免超筋破坏,对构件的截面尺寸规定了限制条件。《混凝土结构设计规范》在试验的基础上,对h w /b ≤6的钢筋混凝土构件,规定截面限制条件如下式

第8章___受扭构件承载力计算1

第8章 受扭构件承载力计算 一、填空题 1、 素混凝上纯扭构件的承载力t t u W f T 7.0=介于__________和__________分析结果之间。t W 是假设________ 导出的。 2、 钢筋混凝土受扭构件随着扭矩的增大,先在截面________最薄弱的部位出现斜裂缝,然后形成大体连续的 _________。 3、 由于配筋量不同,钢筋混凝土纯扭构件将发生__________破坏、________破坏、___________破坏、_________ 破坏。 4、 钢筋混凝土弯、剪、扭构件,剪力的增加将使构件的抗扭承载力___________;扭矩的增加将使构件的抗剪承载 力_____________。 5、 为了防止受扭构件发生超筋破坏,规范规定的验算条件是_____________。 6、 抗扭纵向钢筋应沿__________布置,其间距______________。 7、 T 行截面弯、剪、扭构件的弯矩由___________承受,剪力由___________承受,扭矩由__________承受。 8、 钢筋混凝土弯、剪、扭构件箍筋的最小配筋率min ,sv ρ= __________,抗弯纵向钢筋的最小筋率ρ= __________, 抗扭纵向钢筋的最小配筋率tl ρ= ___________。 9、 混凝土受扭构件的抗扭纵筋与箍筋的配筋强度比ζ应在___________范围内。 10、为了保证箍筋在整个周长上都能充分发挥抗拉作用,必须将箍筋做成________形状。,且箍筋的两个端头应 ______________________。 二、判断题 1、钢筋混凝土构件受扭时,核芯部分的混凝土起主要抗扭作用。 ( ) 2、素混凝土纯扭构件的抗扭承载力可表达为t t u W f T 7.0=,该公式是在塑性分析方法基础上建立起来的。 ( ) 3、受扭构件中抗扭钢筋有纵向钢筋和横向箍筋,它们在配筋方面可以互相弥补,即一方配置少时,可由另一方多配置一些钢筋以承担少配筋一方所承担的扭矩。( ) 4、受扭构件设计时,为了使纵筋和箍筋都能较好地发挥作用,纵向钢筋与箍筋的配筋强度比值ζ应满足以下条件:0.6≤ζ≤1.7。 ( ) 5、在混凝土纯扭构件中,混凝土的抗扭承载力和箍筋与纵筋是完全独立的变量。( ) 6、矩形截面钢筋混凝土纯扭构件的抗扭承载力计算公式cor stl yv t t A S A f W f T ζ 2.135.0+≤只考虑混凝土和箍 筋提供的抗扭计算。 ( ) 7、在纯扭构件中,当t t W f T 175.0≤时,可忽略扭矩的影响,仅按普通受弯构件的斜截面受剪承载力公式计算箍 筋用量。 ( ) 8、在弯、剪、扭构件中,当0035.0bh f V t c ≤或05 .11 .0bh f V t c +≤ λ时,可忽略剪力的影响,按纯扭构件的受 承载力公式计算箍筋用量。 ( )

受扭计算总结及算例

受扭构件承载力计算 7.1 概述 混凝土结构构件除承受弯矩、轴力、剪力外,还可能承受扭矩的作用。也就是说,扭转是 钢筋混凝土结构构件受力的基本形式之一,在工程中经常遇到。例如:吊车梁、雨蓬梁、平 面曲梁或折梁及与其它梁整浇的现浇框架边梁、螺旋楼梯梯板等结构构件在荷载的作用下, 截面上除有弯矩和剪力作用外,还有扭矩作用。 图7-1受扭构件的类型(平衡扭转) (a)雨蓬梁的受扭 (b )吊车梁的受扭 按照引起构件受扭原因的不同,一般将扭转分为两类。一类构件的受扭是由于荷载的直 接作用引起的,其扭矩可根据平衡条件求得,与构件的抗扭刚度无关,一般称平衡扭转,如 图7-1(a )(b )所示的雨篷梁及受吊车横向刹车力作用的吊车梁,截面承受的扭矩可从静力 平衡条件求得,它是满足静力平衡不可缺少的主要内力之一。如果截面受扭承载力不足,构 件就会破坏,因此平衡扭转主要是承载能力问题,必须通过本章所述的受扭承载力来平衡和 抵抗全部的扭矩。 还有一类构件的受扭是超静定结构中由于变形的协调所引 起的扭转称为协调扭转。如图7-2所示的框架边梁。当次梁受弯 产生弯曲变形时,由于现浇钢筋混凝土结构的整体性和连续性, 边梁对与其整浇在一起的次梁端支座的转动就要产生弹性约束, 约束产生的弯矩就是次梁施加给边梁的扭转,从而使边梁受扭。 协调扭转引起的扭矩不是主要的受力因素,当梁开裂后,次 梁的抗弯刚度和边梁的抗扭刚度都将发生很大变化,产生塑性内 力的重分布,楼面梁支座处负弯矩值减小,而其跨内弯矩值增大; 框架 图 7-2受扭构件的类型(协调扭转) 边梁扭矩也随扭矩荷载减小而减小。 (c) 现浇框架的边梁 由于本章介绍的受扭承载力计算公式主要是针对平衡扭转而言的。对属于协调扭转钢筋混 凝土构件,目前的《规范》对设计方法明确了以下两点: 1、支承梁(框架边梁)的扭矩值采用考虑内力重分布的分析方法。将支承梁按弹性分析 所得的梁端扭矩内力设计值进行调整,弹T T )1(β-=。 根据国内的试验研究:若支承梁、柱为现浇的整体式结构,梁上板为预制板时,梁端扭 矩调幅系数β不超过4.0;若支承梁、板柱为现浇整体式结构时,结构整体性较好,现浇板 通过受弯、扭的形式承受支承梁的部分扭矩,故梁端扭矩调幅系数可适当增大。 2.经调幅后的扭矩,进行受弯、剪扭构件的承载力计算,并确定所需的抗扭钢筋(周 边纵筋及箍筋)并满足有关的配筋构造要求。 7.2 纯扭构件的实验研究及破坏形态 以纯扭矩作用下的钢筋混凝土矩形截面构件为例,研究纯扭构件的受力状态及破坏特 征。当结构扭矩内力较小时,截面内的应力也很小,其应力与应变关系处于弹性阶段,此时

混凝土结构设计原理习题集之六(钢筋混凝土受扭构件承载力计算)试题

混凝土结构设计原理习题集之六 8 钢筋混凝土受扭构件承载力计算 一.填空题: 1 抗扭钢筋包括和。钢筋混凝土构件的受扭破坏形态主要与有关。 2 钢筋混凝土构件在弯矩、剪力和扭矩共同作用下的承载力计算,纵筋应通过和计算求得的纵向钢筋进行配筋;箍筋应按构件的计算求得的箍筋进行配置。 3 承受扭矩的纵向钢筋,除应沿截面布置外,其余宜沿截面布置,其间距不应大于和。 4 工程中,钢筋混凝土结构构件的扭转可分为两类,一类是,另一类是。 5 《规范》中,受扭构件是按理论来进行强度计算的。 6 在进行剪扭构件设计时,假定具有的抗剪和抗扭承载力是相互联系的;而的抗剪和抗扭承载力是相互独立的。另外,对T形截面,假定剪力由承担,扭矩由承担。 二.选择题: 1 受扭构件中,抗扭纵筋应()。 A.在截面上下边放置B.在截面左右边放置C.沿截面周边对称放置 2 对于剪力和扭矩共同作用下的构件承载力计算,《规范》在处理剪、扭相关作用时()。A.不考虑两者之间的相关性B.考虑两者之间的相关性 C.混凝土的承载力考虑剪扭相关作用,而钢筋的承载力不考虑剪扭相关性 D.混凝土和钢筋的承载力都考虑剪扭相关作用 3 一般说来,,钢筋混凝土受扭构件的破坏是属于()。 A.脆性破坏B.延性破坏 4 矩形截面抗扭纵筋布置首先考虑角隅处然后考虑()。 A.截面长边中点B.截面短边中点C.另外其它地方 5 钢筋混凝土受扭构件,受扭纵筋和箍筋的配筋强度比0.6<ζ<1.7 说明,当构件破坏时,()。 A.纵筋和箍筋都能达到屈服;B.仅箍筋达到屈服; C.仅纵筋达到屈服;D.纵筋和箍筋都不能达到屈服; 6 钢筋混凝土T形和I形截面剪扭构件可划分为矩形块计算,此时()。 A.腹板承受全部的剪力和扭矩;B.翼缘承受全部的剪力和扭矩; C.剪力由腹板承受,扭矩由腹板和翼缘共同承受; D.扭矩由腹板承受,剪力由腹板和翼缘共同承受; .7 在钢筋混凝土受扭构件设计时,《混凝土结构设计规范》要求,受扭纵筋和箍筋的配筋强度比? 应()。 A.不受限制;B.ζ>1.7 ;C.ζ<0.6 ;D.0.6<ζ<1.7; 三.判断题: 1 受扭构件上的裂缝,在总体上成螺旋形,但不是连续贯通的,而是断断续续的。() 2 在剪力和扭矩共同作用下的构件其承载力比剪力和扭矩单独作用下的相应承载力要低() 3 钢筋混凝土构件在弯矩、剪力和扭矩共同作用下的承载力计算时,其所需要的箍筋由受弯构件斜截面承载力计算所得的箍筋与纯剪构件承载力计算所得箍筋叠加,且两种公式中

受扭构件承载力计算

第六章受扭构件承载力计算 思考题 6.1在实际工程中有哪些构件有扭矩作用? ①詹口竖向荷载作用的挑詹梁。 ②受水平作用的吊车梁。 ③现浇框架的边梁。 6.2在抗扭矩计算中如何避免少筋破坏和超筋破坏? 为了防止出现混凝土先压碎的超筋构件的脆性破坏,配筋率的上限以截面限制条件的形式给出 T≤0.2βfcWt 最小配箍率ρsumin对纯扭构件取:ρsvmin=0.28ft fyv 最小纵筋配筋率ρtl,min = 0.85 ft fyv 6.3什么是配筋强度比?配筋强度比的范围为什么要加以限制?即纵筋与箍筋的体积比和强度比的乘积 ξ=fyAstls / Fyv AstlUcor 加以限制才能保证构件破坏时纵筋和箍筋的强度都得以充分利用。 6.4《规范》抗扭承载力计算公式中βt 的物理意义是什么? Βt 称为剪扭构件混凝土强度降低系数。用来考虑剪扭构件混凝土抵抗剪力和扭矩之间的相关性。物理意义为随着同时作用的扭矩增大,物件的抗剪承受力逐渐降低;当扭矩达到纯扭构件的承载力时,其抗剪承载力下降为零。反之亦然。

6.5受扭构件中纵筋和箍筋的配置应注意哪些问题? ⑴剪扭构件中,箍筋的配筋率ρsv(ρ=Asv / Bs)不应小于0.28ft/ fyv ,箍筋间距应符合表5-1的规定。箍筋应做成封闭。箍筋末端应做成135°弯钩。其平直段长度不应小于5倍箍筋直径或50mm。当采用多肢箍筋受剪时,受扭所需箍筋应采用沿截面周面布置的封闭箍筋,受剪箍筋壳采用复合箍筋。(2)纵向钢筋的配筋率,不应小于受拉构件纵向受拉钢筋的最小 ρ之和。 配筋率和受扭纵向钢筋的最小配筋率 tl ,min

受扭构件配筋计算

受扭构件配筋计算受扭构件配筋计算 项目名称_____________日期_____________ 设计者_____________校对者_____________ 一、构件编号: L-1 二、依据规范: 《混凝土结构设计规范》 (GB 50010-2002) 三、计算信息 1.几何参数: 截面类型: 矩形 截面宽度: b=250mm 截面高度: h=550mm 2.材料信息: 混凝土强度等级: C25 纵筋种类: HRB400 箍筋种类: HRB335 箍筋肢数: n=2 箍筋间距: s=100mm 最小配筋率: ρtl,min=0.400% 最小配箍率: ρsv,min=0.200% 纵筋合力点至近边距离: as=25mm 混凝土保护层厚度: c=20mm 3.荷载信息: 扭矩设计值: T=20.000kN*m

4.其它信息: 结构重要性系数: γo=1.0 四、计算过程 1.计算受扭构件的截面受扭塑性抵抗矩: Wt=b*(3*h-b)/6=250*(3*550-250)/6=14.583*10mm 2.计算截面有效高度和腹板高度: ho=h-as=550-25=525mm hw=ho=525mm 3.确定受扭截面是否符合条件: 当hw/b=525/250=2.100≤4时 T=20.000kN*m≤(0.25*βc*fc*0.8*Wt)/γo=(0.25*1.0*11.9*0.8*14.583*10)/1.0=34.70 8kN*m 截面符合要求 4.确定是否需要按构造配筋: T=20.000kN*m>(0.7*ft*Wt)/γo=(0.7*1.27*14.583*10)/1.0=12.965kN*m 矩形需按计算配置抗扭钢筋。 5.计算截面核心部分的面积和周长: bcor=b-2c=250-2*20=210mm hcor=h-2c=550-2*20=510mm Acor=bcor*hcor=210*510=107100mm 2662263fc=11.9N/mm ft=1.27N/mm 222 受扭纵筋与箍筋的配筋强度比值: δ=1.00 fy=360N/mm fyv=300N/mm 2 Ucor=2*(bcor+hcor)=2*(210+510)=1440mm 6.计算受扭配筋面积: 单肢受扭箍筋面积: Asv1=(T-0.35*ft*Wt)*s/(1.2*sqrt(δ)*fyv*Acor) =(20.000*10-0.35*1.27*14.583*10)*100/(1.2*sqrt(1.00)*300*107100)

砌体构件承载力计算

第五章砌体构件承载力计算 学习本章的意义和内容:无筋砌体受压构件的破坏形态和影响受压承载力的主要因素,无筋砌体受压构件的承载力计算方法,梁下砌体局部受压承载力和梁下设置刚性垫块时的局部受压承载力验算方法以及有关的构造要求,无筋砌体受弯、受剪以及受拉构件的破坏特征及承载力的计算方法。 通过本章学习可以掌握土木工程中砌体结构构件计算的基本理论,为砌体结构设计奠 定基础。 本章习题内容主要涉及:无筋砌体受压构件承载力的主要因素及承载力计算公式的应用;局部受压构件破坏的类型及公式的应用;砌体受拉、受弯、受剪构件的计算及应用范围。 一、概念题 (一)填空题: 1.无筋砌体受压构件按高厚比的不同以及荷载作用偏心矩的有无,可分为____________、____________、____________、____________、____________。 2.在截面尺寸和材料强度等级一定的条件下,在施工质量得到保证的前提下,影响无筋砌体受压承载力的主要因素是____________和____________。 3.在设计无筋砌体偏心受压构件时,《砌体规范》对偏心距的限制条件是___________。为了减少轴向力的偏心距,可采用____________或____________等构造措施。 4.通过对砌体局部受压的试验表明,局部受压可能发生三种破坏,即 ____________、____________、____________。其中,____________是局部受压的基本破坏形态;____________是由于发生突然,在设计中应避免发生,____________仅在砌体材料强度过低时发生。 5.砌体在局部受压时,由于未直接受压砌体对直接受压砌体的约束作用以及力的扩散作用,使砌体的局部受压强度_______________________。局部受压强度用____________表示。 6.对局部抗压强度提高系数进行限制的目的是__________________________________。 7.局部受压承载力不满足要求时,一般采用____________的方法,满足设计要求。 8.当梁端砌体局部受压承载力不足时,与梁整浇的圈梁可作为垫梁。垫梁下砌体的局部受压承载力,可按集中荷载作用下___________计算。 9.砌体受拉、受弯构件的承载力按材料力学公式进行计算,受弯构件的弯曲抗拉强度的取值应根据___________。受剪构件承载力计算采用变系数的___________。 (二)选择题 1.一偏心受压柱,截面尺寸为490mm×620mm,弯矩沿截面长边作用,该柱的最大允许偏 心距为[ ]: a、217mm; b、186mm; c、372mm; d、233mm。 2.一带壁柱的偏心受压窗间墙,截面尺寸如图1-5-1所示,轴向力偏向壁柱一侧,该柱的最大允许偏心距为[ ]: a、167mm; b、314mm; c、130mm; d、178mm。

习题-第五章 受扭承载力计算

第5章 受扭构件承载力计算 一、填空题 1、素混凝土纯扭构件的承载力0.7u t t T f w =介于 和 分析结果之间。t w 是假设 导出的。 2、钢筋混凝土受扭构件随着扭矩的增大,先在截面 最薄弱的部位出现斜裂缝,然后形成大体连续的 。 3、由于配筋量不同,钢筋混凝土纯扭构件将发生 破坏、 破坏、 破坏和 破坏。 4、钢筋混凝土弯、剪、扭构件,剪力的增加将使构件的抗扭承载力 ;扭矩的增加将使构件的抗剪承载力 。 5、为了防止受扭构件发生超筋破坏,规范规定的验算条件是 。 6、抗扭纵向钢筋应沿 布置,其间距 。 7、T 形截面剪、扭构件的剪力由 承受,扭矩由 承受。 8、钢筋混凝土弯、剪、扭构件箍筋的最小配筋率,min sv ρ= ,抗弯纵向钢筋的最小配筋率ρ= ,抗扭纵向钢筋的最小配筋率tl ρ= 。 9、混凝土受扭构件的抗扭纵筋与箍筋的配筋强度比ζ应在 范围内。 10、为了保证箍筋在整个周长上都能充分发挥抗拉作用,必须将箍筋做成 形状,且箍筋的两个端头应 。 11、钢筋混凝土受扭构件计算中应满足10.6 1.7stl y st yv cor A f s A f u ζ??≤=≤??,其中 0.6ζ≤的目的是保证 在极限状态时屈服, 1.7ζ≤的目的是保证 在极限状态时屈服。 二、判断题 1、构件中的抗扭纵筋应尽可能地沿截面周边布置。 2、在受扭构件中配置的纵向钢筋和箍筋可以有效地延缓构件的开裂,从而大大提高开裂扭矩值。 3、受扭构件的裂缝在总体上成螺旋形,但不是连贯的。 4、钢筋混凝土构件受扭时,核芯部分的混凝土起主要抗扭作用。 5、素混凝土纯扭构件的抗扭承载力可表达为0.7U t t T f w =,该公式是在塑性分析方法基础上建立起来的。

8.受扭构件承载力计算 一、目的要求 1.掌握纯扭、剪扭、弯剪扭构件 ...

8.受扭构件承载力计算 一、目的要求 1.掌握纯扭、剪扭、弯剪扭构件的受扭承载力计算 2.掌握剪扭相关性的含义 3.受扭塑性抵抗矩的推导方法 4.掌握抗扭纵筋和箍筋的构造要求 二、重点难点 1.剪扭相关性的应用 2.弯剪扭构件受扭承载力的计算 三、主要内容 8.1概述 钢筋混凝土构件的扭转可分为两类:平衡扭转和协调扭转。 平衡扭转:若构件中的扭矩由荷载直接引起,其值可由平衡条件直接求出, 协调扭转:若扭矩是由相邻构件的位移受到该构件的约束而引起该构件的扭转, 这种扭矩值需结合变形协调条件才能求得,这类扭转称为协调扭转。 构件在扭矩作用下将产生剪应力和相应的主拉应力,当主拉应力超过混凝土的抗拉强度时,构件便会开裂,因此需要配置钢筋来提高构件的受扭承载力。 8.2 构件的开裂扭矩 8.2.1矩形截面构件的开裂扭矩 (1)匀质弹性材料受扭应力分布 由材料力学可知,匀质弹性材料的矩形截面受扭时, 截面上将产生剪应力τ (图8.2),截面剪应力的分布如图 8.3a 所示,最大剪应力产生在矩形长边中点。由微元体 平衡可知,主拉应力τσ=tp 其方向与构件轴线成450角。 当主拉应力超过混凝土的抗拉强度时,首先将在截面长边 中点处垂直于主拉应力方向上开裂,然后逐渐伸展,裂缝与纵轴线大致成450角。 (2)理想塑性材料受扭应力分布 对于理想的塑性材料来说,截面上某一点的应力达到强度权

限时,构件并不立即破坏,只意味着局部材料开始进入塑性状态,构件仍能承受荷载,直到截面上的应力全部达到强度极限时,构件才达到其极限受扭承载力,这时截面上剪应力的分布如图8.3b 所示。 (3)弹塑性材料受扭应力分布 由于混凝土既不是理想的弹性材料又不是理想的塑性材料,而是介于两者之间的弹塑性材料。与实测的开裂扭矩相比,按理想的弹性应力分布计算的值偏低,而按理想的塑性应力分布计算的值又馆高。要想准确地确定截面真实的应力分布是十分困难的,比较切实可行的办法是在按塑性应力分布计算的基础上,根据试验结果乘以一个降低系数。 设矩形截面的边长长边为h ,短边为b ,根据塑性力学理论,当截面上各点的剪应力都达到混凝土的抗拉强度六时,构件才达到其极限扭矩。为了便于计算,可近似将截面上的剪应力分布划分为四个部分,即两个梯形和两个三角形(8.3c)。计算各部分剪应力的合力及相应组成的力偶,对截面的扭转中心O 点取矩,可求得按塑性应力分布时截面所能承受的极限扭矩为 混凝土不是理想塑性材料。试验表明,对于高强度混凝土,其降低系数约为0.7,对于低强度混凝土,其降低系数接近0.8,为计算方便统一取0.7。又由于素混凝土构件的开裂扭矩和极限扭矩基本相同,因此可以得开裂扭矩的计算公式为T cr =0.7t t W f 受扭塑性抵抗矩t W 的计算公式也可以借助堆沙模拟法得到。设砂堆安息角各斜面均为α,沙堆体积为V ,则截面的受扭塑性抵抗矩为αtan 2V W t = 一般可取方便的α值,如取450,相应的1tan =α 矩形截面,取45=α0,则2 b H =,这样 )3(6 ])2(31[2)])((21[222 b h b H b b b h bH V W t -=?+-==

受压构件承载力计算复习题(答案)

受压构件承载力计算复习题 一、填空题: 1、小偏心受压构件的破坏都是由于 而造成 的。 【答案】混凝土被压碎 2、大偏心受压破坏属于 ,小偏心破坏属 于 。 【答案】延性 脆性 3、偏心受压构件在纵向弯曲影响下,其破坏特征有两 种类型,对长细比较小的短柱属于 破坏,对长细比较大的细长柱,属于 破坏。 【答案】强度破坏 失稳 4、在偏心受压构件中,用 考虑了纵向弯曲的 影响。 【答案】偏心距增大系数 5、大小偏心受压的分界限是 。 【答案】b ξξ= 6、在大偏心设计校核时,当 时,说明s A '不屈 服。 【答案】s a x '2 7、对于对称配筋的偏心受压构件,在进行截面设计时, 和 作为判别偏心受压类型的唯一依据。

【答案】b ξξ≤ b ξξ 8、偏心受压构件 对抗剪有利。 【答案】轴向压力N 9、在钢筋混凝土轴心受压柱中,螺旋钢筋的作用是使截面中间核心部分的混凝土形成约束混凝土,可以提高构件的______和______。 【答案】承载力 延性 10、偏心距较大,配筋率不高的受压构件属______受压情况,其承载力主要取决于______钢筋。 【答案】大偏心 受拉 11、受压构件的附加偏心距对______受压构件______受压构件影响比较大。 【答案】轴心 小偏心 12、在轴心受压构件的承载力计算公式中,当f y <400N /mm 2 时,取钢筋抗压强度设计值f y '=______;当f y ≥400N /mm 2时,取钢筋抗压强度设计值f y '=______N /mm 2。 【答案】f y 400 二、选择题: 1、大小偏心受压破坏特征的根本区别在于构件破坏时,( )。 A 受压混凝土是否破坏 B 受压钢筋是否屈服 C 混凝土是否全截面受压 D 远离作用力N 一侧钢筋是否屈服

结构设计原理第五章受扭构件习题及答案

第五章 受扭构件扭曲截面承载力 一、填空题 1、素混凝土纯扭构件的承载力0.7u t t T f w =介于 和 分析结果之间。t w 是假设 导出的。 2、钢筋混凝土受扭构件随着扭矩的增大,先在截面 最薄弱的部位出现斜裂缝,然后形成大体连续的 。 3、由于配筋量不同,钢筋混凝土纯扭构件将发生 破坏、 破坏、 破坏和 破坏。 4、钢筋混凝土弯、剪、扭构件,剪力的增加将使构件的抗扭承载力 ;扭矩的增加将使构件的抗剪承载力 。 5、为了防止受扭构件发生超筋破坏,规范规定的验算条件是 。 6、抗扭纵向钢筋应沿 布置,其间距 。 7、T 形截面弯、剪、扭构件的弯矩由 承受,剪力由 承受,扭矩由 承受。 8、钢筋混凝土弯、剪、扭构件箍筋的最小配筋率,min sv ρ= ,抗弯纵向钢筋的最小配筋率ρ= ,抗扭纵向钢筋的最小配筋率tl ρ= 。 9、混凝土受扭构件的抗扭纵筋与箍筋的配筋强度比ζ应在 范围内。 10、为了保证箍筋在整个周长上都能充分发挥抗拉作用,必须将箍筋做成 形状,且箍筋的两个端头应 。 二、判断题 1、构件中的抗扭纵筋应尽可能地沿截面周边布置。 2、在受扭构件中配置的纵向钢筋和箍筋可以有效地延缓构件的开裂,从而大大提高开裂扭矩值。 3、受扭构件的裂缝在总体上成螺旋形,但不是连贯的。 4、钢筋混凝土构件受扭时,核芯部分的混凝土起主要抗扭作用。 5、素混凝土纯扭构件的抗扭承载力可表达为0.7U t t T f w =,该公式是在塑性分析方法基础上建立起来的。 6、受扭构件中抗扭钢筋有纵向钢筋和横向箍筋,它们在配筋方面可以互相弥补,即一方配置少时,可由另一方多配置一些钢筋以承担少配筋一方所承担的扭矩。 7、受扭构件设计时,为了使纵筋和箍筋都能较好地发挥作用,纵向钢筋与

结构设计原理第五章受扭构件习题及答案

第五章受扭构件扭曲截面承载力 一、填空题 1、素混凝土纯扭构件的承载力T u=0.7f t W t介于___________ 和______ 分析结果之间。W t是假设_______导出的。 2、钢筋混凝土受扭构件随着扭矩的增大,先在截面 ___________ 最薄弱的部位 出现斜裂缝,然后形成大体连续的__________ o 3、由于配筋量不同,钢筋混凝土纯扭构件将发生 ____________ 破坏、_______ 破 坏、__________ 破坏和 ________ 破坏。 4、钢筋混凝土弯、剪、扭构件,剪力的增加将使构件的抗扭承载力 __________ ; 扭矩的增加将使构件的抗剪承载力___________ o 5、为了防止受扭构件发生超筋破坏,规范规定的验算条件是 ___________ o 6抗扭纵向钢筋应沿_________ 布置,其间距________ o 7、T形截面弯、剪、扭构件的弯矩由________ 承受,剪力由_______ 承受,扭 矩由_______ 承受。 8、钢筋混凝土弯、剪、扭构件箍筋的最小配筋率?时= ___________ ,抗弯纵向钢筋的最小配筋率—___________ ,抗扭纵向钢筋的最小配筋率心二__________ 9、混凝土受扭构件的抗扭纵筋与箍筋的配筋强度比?应在________ 范围内。 10、为了保证箍筋在整个周长上都能充分发挥抗拉作用,必须将箍筋做成_ 形 状,且箍筋的两个端头应— 二、判断题 1、构件中的抗扭纵筋应尽可能地沿截面周边布置。 2、在受扭构件中配置的纵向钢筋和箍筋可以有效地延缓构件的开裂,从而大大提高 开裂扭矩值。 3、受扭构件的裂缝在总体上成螺旋形,但不是连贯的。 4、钢筋混凝土构件受扭时,核芯部分的混凝土起主要抗扭作用。 5、素混凝土纯扭构件的抗扭承载力可表达为 T U=0.7舌",该公式是在塑性分析方法基础上建立起来的。 6受扭构件中抗扭钢筋有纵向钢筋和横向箍筋,它们在配筋方面可以互相弥补,即一

受扭构件承载力计算

第六章 受扭构件承载力计算 思考题 6.1在实际工程中有哪些构件有扭矩作用? ①詹口竖向荷载作用的挑詹梁。 ②受水平作用的吊车梁。 ③现浇框架的边梁。 6.2在抗扭矩计算中如何避免少筋破坏和超筋破坏? 为了防止出现混凝土先压碎的超筋构件的脆性破坏,配筋率的上限以截面限制条件的形式给出 T≤0.2βfcWt 最小配箍率ρsumin对纯扭构件取:ρsvmin=0.28ft fyv 最小纵筋配筋率ρtl,min = 0.85 ft fyv 6.3什么是配筋强度比?配筋强度比的范围为什么要加以限制?即纵筋与箍筋的体积比和强度比的乘积 ξ=fyAstls / Fyv AstlUcor 加以限制才能保证构件破坏时纵筋和箍筋的强度都得以充分利用。 6.4《规范》抗扭承载力计算公式中βt 的物理意义是什么? Βt 称为剪扭构件混凝土强度降低系数。用来考虑剪扭构件混凝土抵抗剪力和扭矩之间的相关性。物理意义为随着同时作用的扭矩增大,物件的抗剪承受力逐渐降低;当扭矩达到纯扭构件的承载力时,其抗剪承载力下降为零。反之亦然。 6.5受扭构件中纵筋和箍筋的配置应注意哪些问题?

⑴剪扭构件中,箍筋的配筋率ρsv(ρ=Asv / Bs)不应小于0.28ft/ fyv ,箍筋间距应合表5-1的规定。箍筋应做成封闭。箍筋末端应做成135°弯钩。其平直段长度不应小于5倍箍筋直径或50mm。当采用多肢箍筋受剪时,受扭所需箍筋应采用沿截面周面置的封闭箍筋,受剪箍筋壳采用复合箍筋。(2)纵向钢筋的配筋率,不应小于受拉构件纵向受拉钢筋的最小配筋率和受扭纵向钢筋的最小配筋率之和。 习题 6.1已知钢筋混凝土矩形截面构件,b×h=250mm×400mm,支座处承受 扭矩设计值T=8kN.m,弯矩设计值M=45kN.m,均布荷载产生的剪力设 计值V=46kN,采用C20混凝土,纵筋和箍筋均采用HPB235钢筋,试计 算其配筋。 解:(1)验算截面尺寸。C20混凝土f c=9.6N/mm2,f t=1.1N/mm2, HPB235钢筋f y=210N/mm2, . 截面尺寸符合要求。 (2)验算是否需要按计算配置受扭钢筋 故需按计算配置抗扭和抗剪钢筋。 (3)确定计算方法 故不能忽略剪力和扭矩的影响,应该按弯剪扭共同计算。 (4)计算抗剪箍筋 由,采用双肢箍,n=2,则 (5)计算抗扭箍筋 由,取 (6) 计算抗扭纵筋 (7)计算抗弯纵筋 ,查表=0.626,为适筋。 (8)计算抗弯纵筋 选Ф8双肢箍,㎜2,则箍筋间距。 取

(完整)混凝土结构设计原理习题之四、五(含答案)钢筋混凝土受压受拉构件承载力计算试题,推荐文档

混凝土结构设计原理习题集之四 6 钢筋混凝土受压构件承载力计算 一、填空题: 1.偏心受压构件的受拉破坏特征是______________________________________ ,通常称之 为_____ ;偏心受压构件的受压破坏特征是_________________________________ , 通常称之为_______ 。 2.矩形截面受压构件截面,当l0/h__ 时,属于短柱范畴,可不考虑纵向弯曲的影响,即 取___ ;当l0/h___ 时为细长柱,纵向弯曲问题应专门研究。 3.矩形截面大偏心受压构件,若计算所得的ξ≤ξb,可保证构件破坏时____ ;x=ξb h0≥2a s′可保证构件破坏时_______ 。 4.对于偏心受压构件的某一特定截面(材料、截面尺寸及配筋率已定),当两种荷载组合同为大偏心受压时,若内力组合中弯矩M值相同,则轴向N越__ 就越危险;当两种荷载组合同为小偏心受压时,若内力组合中轴向力N 值相同,则弯矩M 越__ 就越危险。 5.由于轴向压力的作用,延缓了__ 得出现和开展,使混凝土的__ 高度增加,斜截面受剪承载力有所___ ,当压力超过一定数值后,反而会使斜截面受剪承载力__ 。 6.偏心受压构件可能由于柱子长细比较大,在与弯矩作用平面相垂直的平面内发生_____ 而破坏。在这个平面内没有弯矩作用,因此应按______ 受压构件进行承载力复核,计算时须考虑______ 的影响。 7.矩形截面柱的截面尺寸不宜小于mm,为了避免柱的长细比过大,承载力降低过多,常取l0/b≤,l0/d≤(b为矩形截面的短边,d为圆形截面直径,l0为柱的计算长度)。 8.《规范》规定,受压构件的全部纵向钢筋的配筋率不得小于___ _ ,且不应超过___ 。 9.钢筋混凝土偏心受压构件在纵向弯曲的影响下,其破坏特征有两种类型:_______ 和 _________ ;对于短柱和长柱属于______ ;细长柱属于______ 。二、选择题: 1.在矩形截面大偏心受压构件正截面强度计算中,当x<2a s′时,受拉钢筋截面面积A s的求法是() A.对受压钢筋的形心取矩求得,即按x=2a s′求得。 B.要进行两种计算:一是按上述A的方法求出A s,另一是按A s′=0,x为未知,而求出A s,然后取这两个A s值中的较大值。 C.同上述B,但最后取这两个A s值中的较小值。 2.钢筋混凝土柱子的延性好坏主要取决于()。 A.纵向钢筋的数量B.混凝土强度等级 C.柱子的长细比D.箍筋的数量和形式 3.矩形截面大偏心受压构件截面设计时要令x=ξb h0,这是为了()。

第7章 受扭构件承载力讲解

第7章 受扭构件承载力 一、判断题 1.钢筋混凝土构件在弯矩、剪力和扭矩共同作用下的承载力计算时,其所需要的箍筋由受弯构件斜截面承载力计算所得的箍筋与纯剪构件承载力计算所得箍筋叠加,且两种公式中均不考虑剪扭的相互影响。( F ) 2.《混凝土结构设计规范》对于剪扭构件承载力计算采用的计算模式是混凝土和钢筋均考虑相关关系。( F ) 3.在钢筋混凝土受扭构件设计时,《混凝土结构设计规范》要求,受扭纵筋和箍筋的配筋强度比应不受限制。( F ) 4.钢筋混凝土构件在弯矩、剪力和扭矩共同作用下的承载力计算时,其所需要的箍筋由受弯构件斜截面承载力计算所得的箍筋与纯剪构件承载力计算所得箍筋叠加,且两种公式中均不考虑剪扭的相互影响。( F ) 5.《混凝土结构设计规范》对于剪扭构件承载力计算采用的计算模式是混凝土和钢筋均考虑相关关系;( F ) 6. 在钢筋混凝土受扭构件设计时,《混凝土结构设计规范》要求,受扭纵筋和箍筋的配筋强度比应不受限制( F ) 二、单选题 1.钢筋混凝土受扭构件中受扭纵筋和箍筋的配筋强度比7.16.0<<ζ说明,当构件破坏时,( A )。 A 、纵筋和箍筋都能达到屈服; B 、仅箍筋达到屈服; C 、仅纵筋达到屈服; D 、纵筋和箍筋都不能达到屈服。 2.在钢筋混凝土受扭构件设计时,《混凝土结构设计规范》要求,受扭纵筋和箍筋的配筋强度比应( D )。 A 、不受限制; B 、 0.20.1<<ζ; C 、 0.15.0<<ζ; D 、7.16.0<<ζ。 3.《混凝土结构设计规范》对于剪扭构件承载力计算采用的计算模式是:( D )。 A . 混凝土和钢筋均考虑相关关系; B . 混凝土和钢筋均不考虑相关关系; C . 混凝土不考虑相关关系,钢筋考虑相关关系; D . 混凝土考虑相关关系,钢筋不考虑相关关系。 4.钢筋混凝土T 形和I 形截面剪扭构件可划分为矩形块计算,此时( C )。 A . 腹板承受全部的剪力和扭矩; B . 翼缘承受全部的剪力和扭矩; C . 剪力由腹板承受,扭矩由腹板和翼缘共同承受;

相关主题
文本预览
相关文档 最新文档