当前位置:文档之家› 概率论与数理统计剖析

概率论与数理统计剖析

概率论与数理统计剖析
概率论与数理统计剖析

《概率论与数理统计》课程论文浅谈概率论的思想发展及应用

能源科学与工程学院

于晓滢

1130240415

哈尔滨工业大学

摘要

概率论是一门历史悠久的学科,关于它的起源众说纷纭,不过大家都承认的是,概率论是研究偶然、随机现象的规律性的数学理论,它拥有着自己独立的研究问题和有代表性的思想方法,并在现代生活的多个方面发挥着作用,拥有着不可替代的地位。本文将总结概率论中所应用的几种典型思想方法及演变,并陈述概率论在当代生活中的几种必要应用,让我们对这一学科有一个更深刻的了解。

目录

摘要 ................................................................................................................................................. I 第1章概率论的诞生 (1)

1.1前言 (1)

1.2诞生与发展 (1)

第2章概率论的思想 (2)

2.1古典概型思想 (2)

2.2几何概型思想 (2)

2.3分析概率论 (2)

2.4分析研究的深入 (3)

2.5公理化思想 (3)

第3章概率论思想的应用 (4)

3.1前言 (4)

3.2与数学建模思想的融合 (4)

3.3临床诊断的应用 (4)

3.4不等式的证明 (5)

结论 (7)

参考文献 (8)

1.1前言

英国数学家格雷舍(Glaisber,1848一1928)曾经说过: “任何企图将一种科目和它的历史割裂开来,我确信,没有哪一种科目比数学的损失更大。”每一种理论的产生都有其历史背景与历史渊源,了解概率论的产生的历史背景,有助于了解对该学科研究对象、研究方法的深入理解,有利于总结成功和失败的经验教训,为后人的研究奠定坚实的基础,方便对这一学科做出更大的贡献。

1.2诞生与发展

人们对偶然现象的规律性探求,经历了很长的时期,但因受到生产力水平和科技水平的限制,研究很难继续进行下去,速度缓慢,以至人们一直认为偶然现象的规律性是“神秘且难以捉摸”的,直到唯物辩证法产生,人们才开始从研究偶然性与必然性这一对矛盾的对立统一中加深了认识。在文艺复兴时期,工业革命逐步蔓延,随着工业、航海等事业的不断发展,各类问题随之出现,急需一门分析研究随机现象的数学学科,这时概率论应时应景地出现了。

对于起源,很多人说是源于赌博其实这并不全面,以研究赌博问题著称的惠更斯在他1657年出版的《论赌博中的计算》集子中有一段很深刻的话:“在任何场合我认为如果读者仔细研究对象,当可注意到你所处理的不只是赌博而已,其中实际上包含着很有趣很深刻的理论的基础。”

从十七世纪开始到现在,概率论一步步地发展:有贝努利在大数定律的证明及对独立重复试验的研究;德莫哇佛尔在正态分布概型和中心极限定理方面的贡献;法国博物学家蒲丰对于探讨概率的统计定义和概率的几何定义所作出的贡献。虽然期间也存在着许多波折,但在如切比雪夫,马尔科夫,李雅普诺夫等多名优秀科学家所做的不懈研究中,概率论朝着越来越好的方向发展,直至目前,作为数学的分支, 概率论的高度抽象性、广泛应用性、严谨性的特点愈来愈明显地显示出来,并在不同方面、不同领域得以广泛应用为人们的生产生活做出了巨大贡献。

2.1古典概型思想

从赌博问题开始讨论的初级概率论,主要是研究有限个基本事件且每个事件出现的概率相等,但是通常考虑的是一个事件反复出现的情况,当N 非常大的时候并不便于计算,不过大家发现大量重复进行实验时,某一事件出现的频率趋近于某一固定值,体现了“大数定律”的思想,该种思想由贝努利证明。继贝努利后,棣莫弗也有了重大贡献,如定义了独立事件的乘法定理,给出了二项分布,斯特林公式等等。

2.2几何概型思想

现实生活中人们必须把等可能思想应用到含无穷多个事件的情况,就产生了几何概率。其中较著名的就是“蒲丰投针试验”。

关于这个问题不得不提到的就是“贝叶斯定理”假定A 1,A 2,..., A k 是两两不相容事件,且对一切i 有P (A i ) >0,则对任意事件B ,有: ),...2,1()|()()

|()()|(1n i A B P A P A B P A P B A P n j j

j i i i ==∑=此时P(A i )叫做先验概率,而P ( A i | B)是后验概率。他的方法是,在计算一个事件的概率时,使用了人们对这个事件概率的一个估计,即先验概率。

2.3分析概率论

自牛顿和莱布尼茨创立微积分以来, 18世纪的数学家对这一领域进行了深入的研究,从而形成了“分析”这样一个在观念和方法上都具有鲜明特征的数学领域。可以说分析是统治18世纪数学的特殊领域。

在这其中,最有代表性的拉普拉斯,他极大地发展了概率论, 在研究概率论时他运用了微分方程, 特征函数,积分等分析工具。1812年拉普拉斯出版了他的《概率的分析理论》,开创了概率论发展的新阶段, 实现了概率论研究由组合技巧向分析方法的过渡。《概率的分析理论》明确地给出了概率的古典定义(事件的概率等于有利于事件的结果数与所有可能的结果数之比); 独立事件的加法、乘法法则,推广了伯努利在大数定律方面的工作, 导出了二项分布渐近于正态分布的中心极限定理。

2.4分析研究的深入

法国的数学家,尤其是拉普拉斯和泊松,他们对概率论的研究很快被人们了解,而且在俄国取得了进一步的发展。保险业,人口统计,对观测的数学处理以及数学发展内在逻辑的需要,这些都促进了概率论在俄国的发展。

从雅各布·伯努利到切比雪夫以及马尔可夫等数学家,他们对大数定律的研究实质上是对大数定律条件的推广,即扩大了满足大数定律的随机变量序列的范围,其科学价值在于发现了大数定律的一般条件,而这揭示了平均值的统计稳定性,即随机的规律性。

2.5公理化思想

最早对概率论进行公理化尝试的是俄国数学家伯恩斯坦和奥地利数学家米泽斯。1927年伯恩斯坦发表了一篇“论概率论的公理化基础”的文章,同年的《概率论》第一版出版。该书给出了一个详细的概率论公理体系。伯恩斯坦在这里引进了三个公理:(1)概率的可比较性公理(2)不相容事件公理(3) 事件组合公理,他们构造了概率论的整个大厦。

从20世纪20年代开始,通过对概率论基本概念—事件与概率的仔细分析,人们发现事件的运算与集合的运算完全类似概率与测度有相同的性质。在这其中成就最卓越的是原苏联数学家柯尔莫戈洛夫,他通过函数论的方法和概念,建立大数定律的充分必要条件。

法国数学家莱维(1886-1971),原苏联数学家辛钦,日本数学家伊藤清(1915-)等又在公理化基础上取得了一系列理论突破。如,莱维从样本函数角度研究随机过程的思想,辛钦证明了重对数律,20世纪40年代伊藤清率先对布朗运动引进随机积分由此建立了概率论的一个新分支—随机分析学。

简言之,公理化就是将概率概念从具体频率解释抽象出来,然后再从公理化系统回到现实世界之中。这样,概率论的应用范围大大拓宽了。

第3章 概率论思想的应用

3.1前言

概率论现在是一门应用相当广泛的学科,其思想方法渗透到自然科学和社会科学等多个方面,因为它属于数学的一门重要分支,所以与数学的相关知识联系相当紧密,所以接下来将简单介绍概率论在医学,不等式证明,数学公式及定理的推导中的妙用。

3.2与数学建模思想的融合

数学建模是用数学符号表示出来的一个或一组数学表达式,以及图表、图像、图示等,描述现实系统特征及其内在联系的一种抽象工具其中包括问题的简化与假设,模型的建立与求解,模型的分析与评价及模型的检验与应用。而在现实生活和生产实践中,模型的应用无处不在,而这些模型中有很多是概率模型,可以说,概率模型是来源于实践又最快地应用于实践。

概率论的出现主要与赌资分配有关,举一个简单的情形:甲、乙两个人赌博,投掷一枚均匀硬币,猜正反面.两人各拿出100元,共200元,约定谁先胜3局,则甲赢得全部赌注200元.因为某种原因,在赌完3局之后,赌局被中断,此时甲2胜1负,问这200元赌资该如何分配,才算公平.这个问题可以在第一次课时留给大家思考,而在学完等可能概型及全概率公式之后,给出两种计算方法. 对于等可能概型,甲、乙两人只要赌完5局,一定有人可以赢得赌资.已赌3局,后2局有4种可能结果,这些结果中甲赢的有3种,乙赢只有1种,所以赌注的公平分配应按3:1的比例,即甲得150元,乙得50元.

对于全概率公式,若甲、乙进行第4局,甲胜和甲负构成完备事件组,甲胜则赢得全部赌资,若负,甲在第5局胜的概率也为胜,所以甲赢得全部赌资的概率为43412112

1=?+?,结果与使用等可能概型的方法一致.

3.3临床诊断的应用

问题:常用检测手段用于人群普查时为什么失灵”

对一些病人的诊断中,医生根据病人的口述及表现,再加上临床经验,作出

大体的判断,再进一步做化验或检查,依据结果,就能做出较准确的判断。此时,化验或检查的准确率相当高。但是在人群普查时,这些化验或检查手段往往失灵”,增加患者心理负担,也使人怀疑这些检测手段是否可靠。事实上,由贝叶斯公式,这些问题都能得到圆满解答。

例:假如患肺结核的人通过胸透能被诊断出患肺结核病的概率是0. 95,而没有患肺结核的人通过胸透被误诊为患肺结核的概率是0. 002。又设某人群患肺结核的概率是0. 001,现在对该人群进行普查,若有一人进行胸透检查被诊断为患肺结核,试问他确实患肺结核的概率是多少?

解:设事件D 表示事实上确患肺结核”,事件T 表示驹透检查诊断他患肺结核”。依题意可知:

()999;

0.= P(D)001, 0.=CD P 002.0)|(,998.0)|(,05.0)|(,95.0)|(====D T P D T P D T P D T P

用全概率公式得:

002948.0)|()()|()()(=?+?=D T P D P D T P D P T P

用贝叶斯公式得:

32225.0002948.0/95.0001.0)()|()()|(=?=?=T P D T P D P T D P

通过实验表明,即使检查手段的灵敏度和特异度都较高,检测结果的准确率也只有32%。

其实,许多有经验的医师其实都是不自觉的概率统计学者。临床医学的特点决定了它与概率统计的关系。所以,如果一位青年医务工作者或者医学科学工作者能够掌握概率统计的方法,并把它作为工具来分析实验结果或临床中遇到的一些问题,那么他一定可以在短时间内成为较有经验的医师或医学科学家。

3.4不等式的证明

证明不等式是初等数学的难点,如果能灵活运用概率的概念、公式和性质,恰当地构造事件或者随机变量,就可以证明一些不等式,达到意想不到的效果。下面举一个实例来说明这个问题。

{}{}???? ?????? ??≤??? ??∑∑∑∞=∞=∞=1i 1i 2

1i ,n n n n n n n b a b a b b a 均为正的收敛数列,则设 {}∑∞==≥==11

,0P ,i k k n n C C a a 显然)(变量也可以构造离散型随机列证明:对于正的收敛数ξ

1

1

E E 11

≥?ξξξξ,即于的数学期望的乘积不小的数学期望和其函数再利用随机变量

代入上式即可证得选取得0C ,1111≥=≥???? ?????? ??∑∑∑∞==∞=i n

n n n i n n i n n b b a c c a

利用概率论的思想方法证明等式、不等式等数学公式有一定的优越性,其关 键问题是根据式子的具体形式如何构造出概率模型,再利用概率的有关概率分布、性质、中心极限定律、大数定律等来解决问题,同时我们还发现,运用概率论思想来证明问题时其方法的简捷、独特,值得我们恰当利用概率思想分析以前的数学问题,寻求解法创新,有助于加深对概率知识的理解和掌握。

结论

概率论是数学学科的一门重要分支,凭借独特的思想性和广泛的应用性越来越受到人们的青睐,随着科技的发展和社会的进步,概率论不仅仅局限于数学方面的单一应用,它的作用在更多的方面得到了发挥,如临床诊断,统计学,大数据等,从数据中挖掘出更多值得利用的东西,更大的程度上给人们的生活带来了更多方便。

在日常教学中,概率论这门课一般在大学里开设,有了高等数学的工具,概率论的计算有了解决方法,而在这门课的学习中,最重要的是思想的理解与应用,所以对于学生来说想学好这门课,重中之重是思想方法的掌握,这样才算是找到进入概率论的最好捷径,切记不要单纯地背公式,最后根本没有掌握概率论的核心,最后只是徒劳;因此对于老师来说较重要的也是将教学重点放在思想的传授,在课堂教学中较重要的是所用定理的证明的“推导”在推导中让学生更好地领会所用的思想方法,这样才能使学生更好地理解。

参考文献

[1]徐国君.例谈概率论方法之应用[J].中学数学研究,2010,02:23-25.

[2]杜卓勋.概率论思想的发展历程浅述[J].考试周刊,2011,63:64-65.

[3]马发强,李建,郭晓敏.概率论中的数学分析思想[J].才智,2008,19:215.

[4]张宏广.概率论思想的妙用[J].承德民族师专学报,2008,02:10-11.

[5]余宏旺.概率论思想方法在代数中的应用[J].安徽农业技术师范学院学报,2001,01:54-56.

[6]阮丹,徐赐文.概率论方法证明数学公式的若干实例[J].中央民族大学学报(自然科学版),2013,S1:94-97.

[7]侯嫚丹.数学建模思想融入概率论与数理统计的研究[J].高师理科学刊,2013,03:76-79.

[8]张艳娥,孙建平,曹艳霞.临床诊断中的概率思想[J].数理医药学杂志,1999,02:77-78.

[9]叶林,邓筱红.将数学建模思想、方法融入概率论与数理统计课程教学的一点尝试[J].工程数学学报,2003,08:93-96.

[10]刘银萍,赵志文.若干问题的概率论解法[J].吉林师范大学学报(自然科学版),2003,04:15-16.

[11]高聿清.在概率论教学中培养学生学习兴趣的做法[J].高等农业教育,1988,01:37-39.

[12]鲍德林.浅谈概率论中的数学思想[J].淮阴师范学院教育科学论坛,2008,03:70-71.

[13]周红霞.利用概率思想解题探讨[J].湖北大学成人教育学院学报,2002,01:73-75.

概率论与数理统计期末复习资料(学生)

概率论与数理统计期末复习资料 一 填空 1.设A ,B 为两个随机事件,若A 发生必然导致B 发生,且P (A )=0.6,则P (AB ) =______. 2.设随机事件A 与B 相互独立,且P (A )=0.7,P (A -B )=0.3,则P (B ) = ______. 3.己知10件产品中有2件次品,从该产品中任意取3件,则恰好取到一件次品的概率等于______. 4.已知某地区的人群吸烟的概率是0.2,不吸烟的概率是0.8,若吸烟使人患某种疾病的概率为0.008,不吸烟使人患该种疾病的概率是0.001,则该人群患这种疾病的概率等于______. 5.设连续型随机变量X 的概率密度为? ??≤≤=,,0; 10,1)(其他x x f 则当10≤≤x 时,X 的分布函数F (x )= ______. 6.设随机变量X ~N (1,32 ),则P{-2≤ X ≤4}=______.(附:)1(Φ=0.8413) 7.设二维随机变量(X ,Y )的分布律为 则P {X <1,Y 2≤}=______. 8.设随机变量X 的期望E (X )=2,方差D (X )=4,随机变量Y 的期望E (Y )=4,方差D (Y )=9,又E (XY )=10,则X ,Y 的相关系数ρ= ______. 9.设随机变量X 服从二项分布)3 1,3(B ,则E (X 2 )= ______. 10.中心极限定理证明了在很一般条件下,无论随机变量Xi 服从什么分布,当n →∞时,∑=n i i X 1 的极限分布是 _________________ 11.设总体X ~N (1,4),x 1,x 2,…,x 10为来自该总体的样本,∑== 10 110 1 i i x x ,则)(x D = ______.· 12.设总体X ~N (0,1),x 1,x 2,…,x 5为来自该总体的样本,则 ∑=5 1 2i i x 服从自由度为______ 的2χ分布. 15.对假设检验问题H 0:μ=μ0,H 1:μ≠μ0,若给定显著水平0.05,则该检验犯第一类错误的概率为______. 16.设A ,B 为两个随机事件,且A 与B 相互独立,P (A )=0.3,P (B )=0.4,则P (A B )=__________. 17.盒中有4个棋子,其中2个白子,2个黑子,今有1人随机地从盒中取出2个棋子,则这2个棋子颜色相同的 概率为_________. 18.设随机变量X 的概率密度?? ???≤≤=,,0; 10 ,A )(2其他x x x f 则常数A=_________.

全国历自学考试概率论与数理统计(二)试题与答案

全国2011年4月自学考试概率论与数理统计(二) 课程代码:02197 选择题和填空题详解 试题来自百度文库 答案由王馨磊导师提供 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设A , B , C , 为随机事件, 则事件“A , B , C 都不发生”可表示为( A ) A .C B A B .C B A C .C B A D .C B A 2.设随机事件A 与B 相互独立, 且P (A )=5 1, P (B )=5 3, 则P (A ∪B )= ( B ) A .253 B .2517 C .5 4 D .2523 3.设随机变量X ~B (3, 0.4), 则P {X ≥1}= ( C ) A .0.352 B .0.432 C .0.784 D .0.936 解:P{X ≥1}=1- P{X=0}=1-(1-0.4)3=0.784,故选C. 4.已知随机变量X 的分布律为 , 则P {-2<X ≤4}= ( C ) A .0.2 B .0.35 C .0.55 D .0.8 解:P {-2<X ≤4}= P {X =-1}+ P {X =2}=0.2+0.35=0.55,故选C. 5.设随机变量X 的概率密度为4 )3(2 e 2 π21)(+-= x x f , 则E (X ), D (X )分别为 ( ) A .2,3- B .-3, 2 C .2,3 D .3, 2 与已知比较可知:E(X)=-3,D(X)=2,故选B. 6.设二维随机变量 (X , Y )的概率密度为? ??≤≤≤≤=,,0, 20,20,),(其他y x c y x f 则常数 c = ( A ) A .4 1 B .2 1 C .2 D .4 解:设D 为平面上的有界区域,其面积为S 且S>0,如果二维随机变量 (X ,Y )的概率密度为 则称 (X ,Y )服从区域D 上的均匀分布,

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

《概率论与数理统计》讲义#(精选.)

第一章 随机事件和概率 第一节 基本概念 1、排列组合初步 (1)排列组合公式 )! (! n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。 )! (!! n m n m C n m -= 从m 个人中挑出n 个人进行组合的可能数。 例1.1:方程 x x x C C C 765107 11=-的解是 A . 4 B . 3 C . 2 D . 1 例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少? (2)加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。 (3)乘法原理(两个步骤分别不能完成这件事):m ×n 某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。 例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法? 例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少? 例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜

色,且相邻区域的颜色必须不同,则共有不同的涂法 A.120种B.140种 C.160种D.180种 (4)一些常见排列 ①特殊排列 ②相邻 ③彼此隔开 ④顺序一定和不可分辨 例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单? ①3个舞蹈节目排在一起; ②3个舞蹈节目彼此隔开; ③3个舞蹈节目先后顺序一定。 例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法? 例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法? ①重复排列和非重复排列(有序) 例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法? ②对立事件 例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法? 例1.11:15人中取5人,有3个不能都取,有多少种取法? 例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?

概率论与数理统计知识点总结详细

概率论与数理统计知识点 总结详细 Newly compiled on November 23, 2020

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P

概率论与数理统计试题库

《概率论与数理统计》试题(1) 一 、 判断题(本题共15分,每小题3分。正确打“√”,错误打“×”) ⑴ 对任意事件A 和B ,必有P(AB)=P(A)P(B) ( ) ⑵ 设A 、B 是Ω中的随机事件,则(A ∪B )-B=A ( ) ⑶ 若X 服从参数为λ的普哇松分布,则EX=DX ( ) ⑷ 假设检验基本思想的依据是小概率事件原理 ( ) ⑸ 样本方差2n S = n 121 )(X X n i i -∑=是母体方差DX 的无偏估计 ( ) 二 、(20分)设A 、B 、C 是Ω中的随机事件,将下列事件用A 、B 、C 表示出来 (1)仅A 发生,B 、C 都不发生; (2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。 三、(15分) 把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 四、(10分) 已知离散型随机变量X 的分布列为 2101 31111115651530 X P -- 求2 Y X =的分布列. 五、(10分)设随机变量X 具有密度函数|| 1()2 x f x e -= ,∞< x <∞, 求X 的数学期望和方差. 六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤. x 0 0.5 1 1.5 2 2.5 3 Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 七、(15分)设12,,,n X X X 是来自几何分布 1 ()(1) ,1,2,,01k P X k p p k p -==-=<< , 的样本,试求未知参数p 的极大似然估计.

概率论与数理统计期末总结

第1章 概率论的基本概念 1.1 随机试验 称满足以下三个条件的试验为随机试验: (1)在相同条件下可以重复进行; (2)每次试验的结果不止一个,并且能事先明确所有的可能结果; (3)进行试验之前,不能确定哪个结果出现。 1.2 样本点 样本空间 随机事件 随机试验的每一个可能结果称为一个样本点,也称为基本事件。 样本点的全体所构成的集合称为样本空间,也称为必然事件。必然事件在每次试验中必然发生。 随机试验的样本空间不一定唯一。在同一试验中,试验的目的不同时,样本 空间往往是不同的。所以应从试验的目的出发确定样本空间。 样本空间的子集称为随机事件,简称事件。 在每次试验中必不发生的事件为不可能事件。 1.3 事件的关系及运算 (1)包含关系 B A ?,即事件A 发生,导致事件B 发生; (2)相等关系 B A =,即B A ?且A B ?; (3)和事件(也叫并事件) B A C ?=,即事件A 与事件B 至少有一个发生; (4)积事件(也叫交事件) B A AB C ?==,即事件A 与事件B 同时发生; (5)差事件 AB A B A C -=-=,即事件A 发生,同时,事件B 不发生; (6)互斥事件(也叫互不相容事件) A 、 B 满足φ=AB ,即事件A 与事件B 不同时发生; (7)对立事件(也叫逆事件) A A -Ω=,即φ=Ω=?A A A A ,。

1.4 事件的运算律 (1)交换律 BA AB A B B A =?=?,; (2)结合律 ()()()()C AB BC A C B A C B A =??=??,; (3)分配律 ()()()()()()C A B A BC A AC AB C B A ??=??=?,; (4)幂等律 A AA A A A ==?, ; (5)差化积 B A AB A B A =-=-; (6)反演律(也叫德·摩根律)B A AB B A B A B A B A ?==?=?=?,。 1.5 概率的公理化定义 设E 是随机试验,Ω为样本空间,对于Ω中的每一个事件A ,赋予一个实数P (A ),称之为A 的概率,P (A )满足: (1)1)(0≤≤A P ; (2)1)(=ΩP ; (3)若事件 ,,, ,n A A A 21两两互不相容,则有 () ++++=????)()()(2121n n A P A P A P A A A P 。 1.6 概率的性质 (1)0)(=φP ; (2)若事件n A A A ,, , 21两两不互相容,则())()()(2121n n A P A P A P A A A P +++=??? ; (3))(1)(A P A P -=; (4))()()(AB P B P A B P -=-。 特别地,若B A ?,则)()(),()()(B P A P A P B P A B P ≤-=-; (5))()()()(AB P B P A P B A P -+=?。

概率论与数理统计期末考试试题及解答

概率论与数理统计期末考 试试题及解答 Prepared on 24 November 2020

一、填空题(每小题3分,共15分) 1.设事件B A ,仅发生一个的概率为,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的概率为__________. 答案: 解: 即 所以 9.0)(1)()(=-==AB P AB P B A P . 2.设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则 ==)3(X P ______. 答案: 解答: 由 )2(4)1(==≤X P X P 知 λλλλλ---=+e e e 22 即 0122=--λλ 解得 1=λ,故 3.设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2X Y =在区间) 4,0(内的概率密度为=)(y f Y _________. 答案: 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故 另解 在(0,2)上函数2y x = 严格单调,反函数为()h y =所以 4.设随机变量Y X ,相互独立,且均服从参数为λ的指数分布,2)1(-=>e X P ,则=λ_________,}1),{min(≤Y X P =_________. 答案:2λ=,-4{min(,)1}1e P X Y ≤=- 解答: 2(1)1(1)P X P X e e λ-->=-≤==,故 2λ= 41e -=-. 5.设总体X 的概率密度为 ?????<<+=其它, 0, 10,)1()(x x x f θ θ 1->θ. n X X X ,,,21 是来自X 的样本,则未知参数θ的极大似然估计量为_________. 答案: 解答: 似然函数为 解似然方程得θ的极大似然估计为

概率论与数理统计模拟试题

模拟试题A 一.单项选择题(每小题3分,共9分) 1. 打靶3 发,事件表示“击中i发”,i = 0,1,2,3。那么事件 表示( )。 ( A ) 全部击中;( B ) 至少有一发击中; ( C ) 必然击中;( D ) 击中3 发 2.设离散型随机变量x 的分布律为则常数 A 应为 ( )。 ( A ) ;( B ) ;(C) ;(D) 3.设随机变量,服从二项分布B ( n,p ),其中0 < p < 1 ,n = 1,2,…,那么,对 于任一实数x,有等于( )。 ( A ) ; ( B ) ; ( C ) ; ( D ) 二、填空题(每小题3分,共12分) 1.设A , B为两个随机事件,且P(B)>0,则由乘法公式知P(AB) =__________ 2.设且有 ,,则 =___________。 3.某柜台有4个服务员,他们是否需用台秤是相互独立的,在1小时内每人需用台秤的概 率为,则4人中至多1人需用台秤的概率为:__________________。 4.从1,2,…,10共十个数字中任取一个,然后放回,先后取出5个数字,则所得5个数字全不相同的事件的概率等于___________。 三、(10分)已知,求证 四、(10分)5个零件中有一个次品,从中一个个取出进行检查,检查后不放回。直到查 到次品时为止,用x表示检查次数,求的分布函数: 五、(11分)设某地区成年居民中肥胖者占10% ,不胖不瘦者占82% ,瘦者占8% ,又知肥胖者患高血压的概率为20%,不胖不瘦者患高血压病的概率为10% ,瘦者患高血压病的概率为

5%, 试求: ( 1 ) 该地区居民患高血压病的概率; ( 2 ) 若知某人患高血压, 则他属于肥胖者的概率有多大? 六、(10分)从两家公司购得同一种元件,两公司元件的失效时间分别是随机变量和,其概率密度分别是: 如果与相互独立,写出的联合概率密度,并求下列事件的概率: ( 1 ) 到时刻两家的元件都失效(记为A), ( 2 ) 到时刻两家的元件都未失效(记为B), ( 3 ) 在时刻至少有一家元件还在工作(记为D)。 七、(7分)证明:事件在一次试验中发生次数x的方差一定不超过。 八、(10分)设和是相互独立的随机变量,其概率密度分别为 又知随机变量 , 试求w的分布律及其分布函数。 九、(11分)某厂生产的某种产品,由以往经验知其强力标准差为 7.5 kg且强力服从正态分布,改用新原料后,从新产品中抽取25 件作强力试验,算 得,问新产品的强力标准差是否有显著变化?( 分别 取和0.01,已知, ) 十、(11分)在考查硝酸钠的可溶性程度时,对一系列不同的温度观察它在100ml 的水中溶解的硝酸钠的重量,得观察结果如下:

(完整word版)概率论与数理统计期末试卷及答案

一、选 择 题 (本大题分5小题, 每小题4分, 共20分) (1)设A 、B 互不相容,且P(A)>0,P(B)>0,则必有( ) (A)0)(>A B P (B))()(A P B A P = (C)0)(=B A P (D))()()(B P A P AB P = (2)将3粒黄豆随机地放入4个杯子,则杯子中盛黄豆最多为一粒的概率为( ) 3311() () () ()32 8 168 A B C D (3)),4,(~2 μN X ),5,(~2 μN Y }5{},4{21+≥=-≤=μμY P p X P p ,则( ) (A)对任意实数21,p p =μ (B )对任意实数21,p p <μ (C)只对μ的个别值,才有21p p = (D )对任意实数μ,都有21p p > (4)设随机变量X 的密度函数为)(x f ,且),()(x f x f =-)(x F 是X 的分布函数,则对任意 实数a 成立的是( ) (A )? - =-a dx x f a F 0 )(1)( (B )?-= -a dx x f a F 0 )(21)( (C ))()(a F a F =- (D )1)(2)(-=-a F a F (5)已知1250,,,X X X L 为来自总体()2,4X N :的样本,记50 11,50i i X X ==∑ 则 50 21 1()4i i X X =-∑服从分布为( ) (A )4(2, )50N (B) 2 (,4)50 N (C )()250χ (D) ()249χ 二、填 空 题 (本大题5小题, 每小题4分, 共20分) (1) 4.0)(=A P ,3.0)(=B P ,4.0)(=?B A P ,则___________)(=B A P (2) 设随机变量X 有密度? ??<<=其它01 0,4)(3x x x f , 则使)()(a X P a X P <=> 的常数a = (3) 设随机变量),2(~2 σN X ,若3.0}40{=<

概率论与数理统计考研复习资料

概率论与数理统计复习 第一章 概率论的基本概念 一.基本概念 随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集. 必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算 1.A ?B(事件B 包含事件A )事件A 发生必然导致事件B 发生. 2.A ∪B(和事件)事件A 与B 至少有一个发生. 3. A ∩B=AB(积事件)事件A 与B 同时发生. 4. A -B(差事件)事件A 发生而B 不发生. 5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生. 6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B . 运算规则 交换律 结合律 分配律 德?摩根律 B A B A = B A B A = 三. 概率的定义与性质 1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ; (3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…), P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质 (1) P(Φ) = 0 , 注意: A 为不可能事件 P(A)=0 . (2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n , P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ?B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) . (5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n ()()() () +∑ + ∑ - ∑=≤<<≤≤<≤=n k j i k j i n j i j i n i i n A A A P A A P A P A A A P 111 21 …+(-1)n-1P(A 1A 2…A n ) 四.等可能(古典)概型 1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型. 2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率 1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0). 2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0). P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,有全概率公式 P(A)= ()()i n i i B A P B P ∑=1

概率论与数理统计必考大题解题索引

概率论与数理统计必考大题解题索引 编制:王健 审核: 题型一:古典概型:全概率公式和贝叶斯公式的应用。 【相关公式】 全概率公式: ()()()()()() n 1122S P()=|()||()() (|)() =()(|)()(|). i n n E S A E B A P A B P B P A B P B P A B P B P AB P B A P A P A P A B P B P A B P B +++= =+12设实验的样本空间为,为的事件,B ,B ,……,B 为的划分,且>0,则有: P ?…其中有:。特别地:当n 2时,有: 贝叶斯公式: ()()i 1 00(1,2,,),()(|)() (|)()(|)() =()(|)() (|)()(|)()(|)() i i i i n i i j E S A E A P B i n P B A P A B P B P B A P A P A B P B P AB P A B P B P B A P A P A B P B P A B P B =>>===== +∑12n 设实验的样本空间为。为的事件,B ,B ,……,B 为S 的一个划分,且P ,……则有:特别地: 当n 2时,有: 【相关例题】 1.三家工厂生产同一批产品,各工厂的产量分别占总产量的40%、25%、35%,其产品的不合格率依次为0.05、0.04、和0.02。现从出厂的产品中任取一件,求: (1)恰好取到不合格品的概率; (2)若已知取到的是不合格品,它是第二家工厂生产的概率。 解:设事件 表示:“取到的产品是不合格品”;事件i A 表示:“取到的产品是第i 家工 厂生产的”(i =123,,)。 则Ω== 3 1i i A ,且P A i ()>0,321A A A 、、两两互不相容,由全概率公式得 (1)∑=?=3 1 )|()()(i i i A A P A P A P 1000/37100 210035100410025100510040=?+?+?=

概率论与数理统计试题库及答案(考试必做)

<概率论>试题A 一、填空题 1.设 A 、B 、C 是三个随机事件。试用 A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生 2)A 、B 、C 中恰有一个发生 3)A 、B 、C 不多于一个发生 2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。则P(B )A U = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,U 则α= 4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为 5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和 0.5,现已知目标被命中,则它是甲射中的概率为 6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)k P X k A k ===???则A=______________ 7. 已知随机变量X 的密度为()f x =? ? ?<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________ 8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________ 9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率

为8081 ,则该射手的命中率为_________ 10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥=,4{0}{0}7 P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<= 13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<= 14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分布,则(x,y )关于X 的边缘概率密度在x = 1 处的值为 。 15.已知)4.0,2(~2-N X ,则2(3)E X += 16.设)2,1(~),6.0,10(~N Y N X ,且X 与Y 相互独立,则(3)D X Y -= 17.设X 的概率密度为2 ()x f x -=,则()D X = 18.设随机变量X 1,X 2,X 3相互独立,其中X 1在[0,6]上服从均匀分 布,X 2服从正态分布N (0,22),X 3服从参数为λ=3的泊松分布,记Y=X 1-2X 2+3X 3,则D (Y )= 19.设()()25,36,0.4xy D X D Y ρ===,则()D X Y += 20.设12,,,,n X X X ??????是独立同分布的随机变量序列,且均值为μ,方差为2σ,那么当n 充分大时,近似有X ~ 或 X ~ 。特别是,当同为正态分布时,对于任意的n ,都精确有 X ~ 或~ . 21.设12,,,,n X X X ??????是独立同分布的随机变量序列,且i EX μ=,

概率论与数理统计期末考试卷答案

《概率论与数理统计》 试卷A (考试时间:90分钟; 考试形式:闭卷) (注意:请将答案填写在答题专用纸上,并注明题号。答案填写在试卷和草稿纸上无效) 一、单项选择题(本大题共20小题,每小题2分,共40分) 1、A ,B 为二事件,则A B = U () A 、A B B 、A B C 、A B D 、A B U 2、设A ,B ,C 表示三个事件,则A B C 表示( ) A 、A , B , C 中有一个发生 B 、A ,B ,C 中恰有两个发生 C 、A ,B ,C 中不多于一个发生 D 、A ,B ,C 都不发生 3、A 、B 为两事件,若()0.8P A B =U ,()0.2P A =,()0.4P B =, 则( )成立 A 、()0.32P A B = B 、()0.2P A B = C 、()0.4P B A -= D 、()0.48P B A = 4、设A ,B 为任二事件,则( ) A 、()()()P A B P A P B -=- B 、()()()P A B P A P B =+U C 、()()()P AB P A P B = D 、()()()P A P AB P AB =+ 5、设事件A 与B 相互独立,则下列说法错误的是() A 、A 与 B 独立 B 、A 与B 独立 C 、()()()P AB P A P B = D 、A 与B 一定互斥 6、设离散型随机变量X 的分布列为 其分布函数为()F x ,则(3)F =() A 、0 B 、0.3 C 、0.8 D 、1 7、设离散型随机变量X 的密度函数为4,[0,1] ()0, cx x f x ?∈=??其它 ,则常数c = () A 、 15 B 、1 4 C 、4 D 、5

《概率论与数理统计》基本名词中英文对照表

《概率论与数理统计》基本名词中英文对照表英文中文 Probability theory 概率论 mathematical statistics 数理统计 deterministic phenomenon 确定性现象 random phenomenon 随机现象 sample space 样本空间 random occurrence 随机事件 fundamental event 基本事件 certain event 必然事件 impossible event 不可能事件 random test 随机试验 incompatible events 互不相容事件 frequency 频率 classical probabilistic model 古典概型 geometric probability 几何概率 conditional probability 条件概率 multiplication theorem 乘法定理 Bayes's formula 贝叶斯公式 Prior probability 先验概率 Posterior probability 后验概率 Independent events 相互独立事件 Bernoulli trials 贝努利试验 random variable 随机变量

probability distribution 概率分布 distribution function 分布函数 discrete random variable 离散随机变量distribution law 分布律hypergeometric distribution 超几何分布 random sampling model 随机抽样模型binomial distribution 二项分布 Poisson distribution 泊松分布 geometric distribution 几何分布 probability density 概率密度 continuous random variable 连续随机变量uniformly distribution 均匀分布exponential distribution 指数分布 numerical character 数字特征mathematical expectation 数学期望 variance 方差 moment 矩 central moment 中心矩 n-dimensional random variable n-维随机变量 two-dimensional random variable 二维离散随机变量joint probability distribution 联合概率分布 joint distribution law 联合分布律 joint distribution function 联合分布函数boundary distribution law 边缘分布律

概率论与数理统计复习题--带答案

概率论与数理统计复习题--带答案

;第一章 一、填空题 1.若事件A?B且P(A)=0.5, P(B) =0.2 , 则P(A -B)=(0.3 )。 2.甲、乙各自同时向一敌机炮击,已知甲击中敌 机的概率为0.7,乙击中敌机的概率为0.8.求 敌机被击中的概率为(0.94 )。 3.设A、B、C为三个事件,则事件A,B,C中 不少于二个发生可表示为(AB AC BC ++)。 4.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率 为(0.496 )。 5.某人进行射击,每次命中的概率为0.6 独立 射击4次,则击中二次的概率为 ( 0.3456 )。 6.设A、B、C为三个事件,则事件A,B与C都 不发生可表示为(ABC)。 7.设A、B、C为三个事件,则事件A,B,C中 不多于一个发生可表示为(AB AC BC I I); 8.若事件A与事件B相互独立,且P(A)=0.5, P(B) =0.2 , 则P(A|B)=(0.5 );

9.甲、乙各自同时向一敌机炮击,已知甲击中敌机 的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为(0.8 ); 10.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A-)=(0.5 ) 11.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为(0.864 )。 12.若事件A?B且P(A)=0.5, P(B) =0.2 , 则 P(B A)=(0.3 ); 13.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A)=(0.5 ) 14.A、B为两互斥事件,则A B= U(S )15.A、B、C表示三个事件,则A、B、C恰 有一个发生可表示为 (ABC ABC ABC ++) 16.若()0.4 P AB A B= U P AB=0.1则(|) P B=,() P A=,()0.2 ( 0.2 ) 17.A、B为两互斥事件,则AB=(S ) 18.保险箱的号码锁定若由四位数字组成,则一次 )。 就能打开保险箱的概率为(1 10000

概率论与数理统计基本知识

概率论与数理统计基本知识点 一、概率的基本概念 1.概率的定义: 在事件上的一个集合函数P ,如果它满足如下三个条件: (1)非负性 A A P ?≥,0)( (2)正规性 1)(=ΩP (3)可列可加性 若事件,...,2,1,=n A n 两两互斥 则称P 为概率。 2.几何概型的定义: 若随机试验的样本空间对应一个度量有限的几何区域S ,每一基本事件与S 内的点一一对应,则任一随机事件A 对应S 中的某一子区域D 。(若事件A 的概率只与A 对应的区域D 的度量成正比,而与D 的形状及D 在S 中的位置无关。)==(每点等可能性)则称为几何概型。 的度量 对应区域的度量 对应区域S D )()()(Ω=Ω= A m A m A P 3.条件概率与乘法公式: 设A,B 是试验E 的两个随机事件,且0)(>B P ,则称) () ()|(B P AB P B A P = 为事件B 发生的条件下,事件A 发生的条件概率。(其中)(AB P 是AB 同时发生的概率) 乘法公式:)|()()|()()(B A P B P A B P A P AB P == 4.全概率公式与贝叶斯公式: (全概率公式)定理:设n A A A ...,21是样本空间Ω的一个划分,n i A P i ,...,2,1,0)(=>,B 是任一事件,则有∑== n i i i A B P A P B P 1 )|()()(。 (贝叶斯公式)定理:设n A A A ...,21是样本空间Ω的一个划分,n i A P i ,...,2,1,0)(=>,B 是任一事件,则∑== =?n k k k i i A B P A P A B P A P B A P n i 1 ) |()() |()()|(,,...,2,1。 5.事件的独立性: 两事件的独立性:(定义)设A 、B 是任意二事件,若P(AB)= P(A)P(B),则称事件A 、B 是相互独立的。(直观解释)A 、B 为试验E 的二事件,若A 、 B 的发生互不影响。 二、随机变量和分布函数:

概率论与数理统计试题与答案

概率论与数理统计试题 与答案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

概率论与数理统计试题与答案(2012-2013-1) 概率统计模拟题一 一、填空题(本题满分18分,每题3分) 1、设,3.0)(,7.0)(=-=B A P A P 则)(AB P = 。 2、设随机变量p)B(3,~Y p),B(2,~X ,若9 5 )1(= ≥X p ,则=≥)1(Y p 。 3、设X 与Y 相互独立,1,2==DY DX ,则=+-)543(Y X D 。 4、设随机变量X 的方差为2,则根据契比雪夫不等式有≤≥}2EX -X {P 。 5、设)X ,,X ,(X n 21 为来自总体)10(2 χ的样本,则统计量∑==n 1 i i X Y 服从 分布。 6、设正态总体),(2σμN ,2σ未知,则μ的置信度为α-1的置信区间的长度 =L 。(按下侧分位数) 二、选择题(本题满分15分,每题3分) 1、 若A 与自身独立,则( ) (A)0)(=A P ; (B) 1)(=A P ;(C) 1)(0<

相关主题
文本预览
相关文档 最新文档