当前位置:文档之家› 回旋加速器中带电粒子产生同步辐射的必要条件

回旋加速器中带电粒子产生同步辐射的必要条件

回旋加速器中带电粒子产生同步辐射的必要条件
回旋加速器中带电粒子产生同步辐射的必要条件

新型无辐射矩形同步回旋加速器设计原理 梅晓春 俞 平

(福州原创物理研究所)

内容摘要 按照经典电磁理论,带电粒子做加速运动时会辐射电磁波,然而实际情况并非总是如此。实验表明,带电粒子做直线加速运动是几乎不辐射的。目前为研究希格斯粒子准备建造的国际大型直线加速器,就基于这个结果。在电子感应加速器中,当电磁和磁场同时存在时,也没有观察到电子辐射电磁波(布鲁埃特实验)。本文严格讨论带电粒子在电磁场中的相对论运动,与经典电磁辐射公式相结合,从理论上证明带电粒子做直线加速运动和在电子感应加速器中做加速运动时的辐射极小,可以认为几乎是不辐射的。由此就可以将同步回旋加速器设计成矩形的形状,并在弯角处采用电子感应加速器的运动轨道。在这种矩形同步回旋加速器中,带电粒子可以被加速到无限接近光速的高能状态,但几乎不产生辐射损耗。 关键词:狭义相对论,同步辐射,电子感应加速器,同步回旋加速器,矩形同步回旋加速器

一. 无辐射矩形同步回旋加速器的设计

作者于2012年2月曾在加拿大《Applied Physics Research 》上发表一篇文章,题为“带电粒子在电磁场中相对论运动稳定性分析与建造无辐射损耗同步回旋加速器的可能性”()1。文中提出一种无辐射损耗同步回旋加速器的设计原理,这种加速器是圆环型的,对辐射损耗的计算略显粗糙。本文提出一种更简单、更高效的无辐射损耗同步回旋加速器设计原理。这种加速器是矩形的,在弯角处改用螺线型轨道。本文同时对带电粒子在直线和螺线加速运动过程的辐射做严格的计算,证明矩形无辐射损耗同步回旋加速器是完全可能的。

按照经典电磁理论,带电粒子做加速运动时会产生电磁波辐射。这种辐射与推迟电磁场有关,与加速度有关的辐射可以传播到远处,与加速度无关的电磁场在近处就严重衰减。如果粒子的加速度与运动速度平行,比如粒子做直线运动,辐射功率为()2:

322302

211)/1(6c V c a q P **-=πε (1)

如果加速度与速度垂直,比如电子在磁场中运动, 辐射功率为:

2223022)/1(6c V c a q p **⊥-=

πε (2)

式中*V 是推迟速度,*a 是推迟加速度。 然而实验证明情况并非如此,带电粒子做加速运动在某些情况下会辐射电磁波,在某些情况下却是几乎不辐射的。比如电子做直线加速运动时,就是几乎不辐射。2013年欧洲核子研究中的LHC 上发现拟似希格斯粒子的粒子后,世界各国开始考虑建造的国际直线加速器,就是基于这个结果。

发现带电粒子辐射电磁波的历史是很有趣的。早在1944年,美国通用电器公司在纽约州申纳塔底有一台能量为100MeV 的电子感应加速器。物理学家布鲁埃特负责调试这台设备时,希望能发现电子的辐射。布鲁埃特用一个非常灵敏的,频率从Hz Hz 810~50的的探测器,相当于无线电从超长波到超短波的波段。

能量100MeV 的电子的运动速度已经接近光速,按经典电磁理论,辐射的功率应该是相当大的。然而无论布鲁埃特将探测器放在电子感应加速器的真空室内还是室外,始终未能探测到电磁波的幅射

()3。 就在同一实验室,波拉克于1947年建造了一台70MeV 电子同步加速器。由于该加速器的真空室是透光的,在调试过程中工人却无意中看到了透出的辐射光

()4,3)(。然而为什么布鲁埃特在电子感应加速器上没有发现辐射呢?至今似乎没有人深究这个问题,虽然布鲁埃特的加速器的能量比波拉克的加速器的能量还

高30MeV 。

事实上在一般低频交直流线圈中,也只有电阻产生的热辐射,没有在电流运动方向上的电磁波辐射。低温超导实验中,电流在环形金属圈中稳定流动,也没有辐射电磁波。(2)式描述的辐射主要出现在电子运动速度的方向,与空间各项同性的热辐射不同,在实验上很容易区别。热鲁埃特当年在电子感应加速器上寻找辐射时,实验室的工程师就告诉过他,电子在感应加速器中转动就如直流电做圆周运动,是不会有非热电磁波辐射的。

根据带电粒子做直线加速运动不辐射和电子在感应加速器中运动也不辐射的实验事实,我们可以设计一种新型的无辐射矩形同步回旋加速器,其基本结构如下图所示:

图1. 无辐射矩形同步回旋加速器基本结构图

在图中直线部分运动的带电粒子用电场加速,e F 是电场力。在转弯部分由电场力与磁场力b F 共同作用,磁场力用来约束电子的运动轨道,电场力用来加速电子。转弯的轨道不是圆形的,而是感应加速器中的螺旋形轨道。按照这种设计,可以使带电粒子在整个轨道加速运动过程中几乎不产生电磁波辐射,其物理原理分析如下。 二. 无辐射矩形同步回旋加速器的物理原理

2.1 带电粒子在电磁场中的相对论运动

由于带电粒子加速运动过程的辐射是宏观电磁效应,本文只在宏观物理的范围内讨论问题,不涉及量子力学。电子的静止质量为0m ,运动质量为m ,电荷为q ,在电磁场中的相对论运动方程为:

())(/1220B V E q c

V V

m dt d V m dt d ?+=-= (3)

或:

)()/1(//12/32220220B V E q dt dV c V c V V m dt V d c

V m ?+=-+- (4) 令a 是电子的加速度,有: V a V dt dV V V dt dV V

V dt dV V V V V V dt d dt dV z z y y x x z y x ?=++=++=222 (5) 将上式代入(4)式,得:

b e F F B V E q

c V c a V V m c V a

m +=?+=-?+-)()/1(/)(/12/32220

220 (6) 按照上式,带电粒子在电磁场中做相对论运动时,由于等号左边第二项与速度的方向有关,加速度的方向与力的方向是不相同的,但磁力的方向与速度的方向仍然是相互垂直的,情况如图2所示。

图2. 感应加速器中带电粒子速度,加速度和力的方向

2.2 带电粒子在电场中的直线运动

设电子在均匀电场E 中沿x 轴方向做直线加速运动,运动方程为:

qE c V V m dt d =-2

20/1 (7) 将上式左边微分,得到:

qE c V a m =-2

/3220)/1( (8) 其中dt dV a /=是加速度。考虑到dt dx V /=,运动方程(7)式可以写为:

qE c V V m dx d V c V V m dt d =-=-2

20220/1/1 (9) 设电子在0x x =时速度0=V ,将上式分部积分,可得:

2

020

20)(1???? ??-+-=x x qE c m c m c V (10) 当∞→x 时,c V →时,粒子的速度趋向于光速。如果用推迟量来表示,即令a a =*,相当于在运动方程

(7)式中所有的量都用推迟量来表示。将(8)式的加速度代入(1)式,得到电子做直线加速运动的辐射功率:

20

302

4116m c E q P πε= (11) 可见辐射功率只与电场强度有关,与电子的运动速度无关。已知电子静止质量3101011.9-?=m 千克,电荷191060.1-?=q 库伦。假设电场强度610=E 伏/米,加速运动距离1000=-x x 米。按(10)式计算,电子

的终速度c V 999987.0=。按照狭义相对论公式计算,电子的动能9106.1-?=T 焦耳。按(11)式计算,

电子的辐射功率W P 191110

75.1-?=。设电子从初速为零加速到接近光速,平均速度为c 5.0。电子通过100米距离大约花费时间711067.6-?=?t 秒,大约辐射出能量2511110

17.1-?=?=t P E 焦耳,远小于电子的动能。 按照这种辐射功率,要使电子的速度从c 变为零,大约需要时间91121014.9/?==P T t ?秒289=年。

设电子辐射波长为7107-?米的红光,能量为1921084.2-?=E 焦耳。有7211012.4/-?=E E ,意味着电子在整个加速过程中发射的红光光子数远小于一个,等于说电子在整个加速过程中实际上没有辐射。这个结果与实际实验是一致的,实验表明直线加速器可以忽略电子的辐射()5,4)(。

2.3 带电粒子在均匀磁场中的运动

设磁场均匀且沿z 轴方向,按照(6)式,电子的相对论运动方程为:

b F B V q dt

dm V dt V d m =?=+)( (12) 由于电子的相对论总能量为202c m K mc E +==,20c m E K -=是粒子的动能。考虑到粒子单位时间能量的变化等于电磁场力做功的功率,我们有:

0)(=??=?=B V V q V F dt

dm B (13) (12)式可以简化为:

b F B V q c

V a m dt V d m =?=-=)(/1220 (14) 考虑到R V a /2

=和V B ⊥,a 的方向与B F 的方向一样。因此电子在磁场中做圆周运动,令R 代表圆周半径,p 是电子的相对论动量,从上式得:

qB

p c V qB V m R =-=

220/1 (15) 加速度为: 0

2

2022/1/1m c V F m c V qVB a B -=-= (16) 将(16)式代入(2)式,令a a ~*,V V ~*

,得电子做圆周运动的辐射功率: )/1(62220302

24c V m c B V q p -=⊥πε (17)

电子的辐射与磁场强度和速度有关,与(11)式比较,当电子速度不是很大且610=E ~VB 时(比如

m/s V 610=,1=B 特拉斯),辐射功率很小。当c V →时∞→⊥p 。因此带电粒子在同步回旋加速器中的运动速度接近光速时,有强烈的辐射,能量损耗很大。

2.4 带电粒子在感应加速器中的运动

电子在感应加速器中运动时,除了磁力的作用外还有电场沿轨道方向的加速作用,因此0/≠dt m d 。用速度V

点乘运动方程(6)式,得: E V q c V c a V V m c

V a V m ?=-?+-?2/32220220)/1(/)(/1 (18) 如图2所示,设电场与速度的夹角是?,速度与加速度的夹角是θ。有?VEcos E V =? 和θVacos a V =? ,

(18)式变成:

?θcos qE c V a m =-2/3220)

/1(cos (19) 此时粒子沿螺旋轨道运动,如果用(2)式近似代表辐射功率,将上式代入,得:

θ

πε?2203022224cos 6)

/1(cos m c c V E q P -≈⊥ (20) 只要电场足够地强,可以使θcos 足够大。不考虑因子22/1c V -,(20)式与(11)式就有相同的数量级,

带电粒子的辐射很小。如果考虑因子22/1c V -,c V →时0→⊥P ,因此电子在感应加速器中做加速运

动是基本不辐射的。当粒子的运动速度接近光速时,速度的增加非常缓慢,图2中加速度与速度的夹角θ就接近是一个常数。因此粒子速度接近光速时,矩形加速器弯角部分的轨道形状可以是固定的。

三. 结 论

按照经典电磁理论,带电粒子做加速运动时会产生电磁波辐射,然而辐射的大小需要根据实际情况确定。本文考虑带电粒子在电磁场中的相对论运动方程,利用经典电磁辐射公式,证明带电粒子做直线加速运动和在感应加速器中做加速运动的辐射极小,基本上可以认为是不辐射的。由此可以设计出新型的无辐射矩形同步回旋加速器,在较小的加速器上将带电粒子加速到极高能量而几乎没有辐射损耗。

参考文献

1. Yu Ping, Mei Xiachun, The Stability Analysis of the Relativity Motion of Charged Particles in Electromagnetic Fields and the Possibility to Establish Synchrocyclotron without Radiation Losses, Applied Physics Research Vol. 4, No. 2, 2012, 56-70.

2. 蔡圣善,朱耘,经典电动力学,复旦大学出版社, 1985,p. 465.

3. 洗鼎昌,神奇的光—同步辐射,湖南教育出版社,1998, p.16.

4. 刘祖平,同步辐射光源物理引论,中国科技大学出版社,2009, p.1, 10, 93.

5. John, P. Blewett, Radiation Losses in the Induction Electron Accelerator, Phys. Rev. 1946, p. 69, 87-95.

最新高考物理速度选择器和回旋加速器解题技巧及练习题

最新高考物理速度选择器和回旋加速器解题技巧及练习题 一、速度选择器和回旋加速器 1.如图所示的直角坐标系xOy ,在其第二象限内有垂直纸面向里的匀强磁场和沿y 轴负方向的匀强电场。虚线OA 位于第一象限,与y 轴正半轴的夹角θ=60°,在此角范围内有垂直纸面向外的匀强磁场;OA 与y 轴负半轴所夹空间里存在与OA 平行的匀强电场,电场强度大小E =10N/C 。一比荷q =1×106C/kg 的带电粒子从第二象限内M 点以速度v =2.0×103m/s 沿x 轴正方向射出,M 点到x 轴距离d =1.0m ,粒子在第二象限内做直线运动;粒子进入第一象限后从直线OA 上的P 点(P 点图中未画出)离开磁场,且OP =d 。不计粒子重力。 (1) 求第二象限中电场强度和磁感应强度的比值0 E B ; (2)求第一象限内磁场的磁感应强度大小B ; (3)粒子离开磁场后在电场中运动是否通过x 轴?如果通过x 轴,求其坐标;如果不通过x 轴,求粒子到x 轴的最小距离。 【答案】(1)32.010m/s ?;(2)3210T -?;(3)不会通过,0.2m 【解析】 【详解】 (1)由题意可知,粒子在第二象限内做匀速直线运动,根据力的平衡有 00qvB qE = 解得 30 2.010m/s E B =? (2)粒子在第二象限的磁场中做匀速圆周运动,由题意可知圆周运动半径 1.0m R d == 根据洛伦兹力提供向心力有 2 v qvB m R = 解得磁感应强度大小 3210T B -=? (3)粒子离开磁场时速度方向与直线OA 垂直,粒子在匀强电场中做曲线运动,粒子沿y 轴负方向做匀减速直线运动,粒子在P 点沿y 轴负方向的速度大小 sin y v v θ=

加速器辐射防护

加速器辐射防护 OCPA2010 王庆斌/IHEP 2010年8月

加速器辐射防护 射线与物质的相作 射线与物质的相互作用 加速器的辐射源 加速器的辐射屏蔽与防护 加速器的辐射监测 加速器的非辐射危害和防护 加速器的安全

一射线与物质的相互作用 射线与物质的相互作用分为 射线与物质的相互作用分为: ?带电粒子与物质的相互作用; ?不带电粒子与物质的相互作用; 带电粒子可以引起物质的电离和激发 ?电离是高速带电粒子在某一壳层电子旁掠过时,由于库仑引力的作用,使电子获得能量而脱离原子核束缚成为自由电子的过程。 ?激发是获得能量的电子,从较低能级跃迁到较高能级的过程。 不带电粒子可以引起物质的电离和激发 ?不带电粒子,中子和光子不能引起物质电离,但它们在与物质作用时会产生次级带电粒子,近而再引起物质的电离,X射线和γ射线 都是光子。

一射线与物质的相互作用(续1) 光子与物质的相互作用有三种机制 光子与物质的相互作用有三种机制: ?光电效应(photoelectric effect):一个光子由于从原子中打出一个轨道电子而损耗掉其全部能量的过程; ?康普顿散射(Compton scattering):光子在自由电子上散射,并给与自由电子以一定的动能。光电效应和康普顿散射二者之间本质上的不同,在由电子以定的动能光电效应和康普顿散射二者之间本质上的不同在 于光电效应中光子完全消失了;而在康普顿散射中光子被保留下来,不过 其能量要比入射光子的能量低。 ?电子对效应(Pair production):光子被核场吸收产生出一对正负电子对。

一射线与物质的相互作用(续2) 中子与物质作用的对象是原子核而不是核外电子 中子与物质作用的对象是原子核,而不是核外电子。 中子与原子核作用的形式有三种: 散 ?弹性散射; ?非弹性散射; ?中子俘获。 快中子在轻介质中主要通过弹性散射损失能量; 损失能量 在重介质中通过非弹性散射损失能量; 中子俘获是中子的能量被原子核吸收后放出一个或几个光子的过程。 中子能量损失的过程称为中子的慢化,在轻介质材料中(如聚乙烯和石蜡)中子的慢化进程被加快,所以用聚乙烯和石蜡屏蔽中子的效果比较好。 比较好

加速器的百年历程-ChinaXiv

加速器的百年历程 朱雄伟 中国科学院高能物理研究所 【摘要】本文分析讨论了加速器的百年历史, 从思想的萌芽、理论的突破与准备、技术的准备与储存、实验的成功、加速器的未来与展望等几个方面进行了论述。 关键词: 加速器, 电子, 质子, 重离子。 1. 思想的萌芽 加速器的历史可以追溯到上世纪二十年代【1,2】, 带电粒子加速这一思想与概念来自于原子散射, 加速器科学与技术历经百年沧桑。 大约1918年, 英国卢瑟福实验室的 Rutherford 运用氘氚粒子轰击原子核, 从而研究原子结构, 他需要有更高能量的带电粒子去产生原子反应。 这是加速带电粒子的最早的思想萌芽。 从那时起, 诞生了一门学科, 这就是加速器学科。 十九世纪麦克斯韦高度、系统总结了电磁理论,麦克斯韦方程组成为电磁理论的基础, 电磁场的源头就是带电粒子。 而带电粒子在电磁场中感受到洛伦兹力的作用, 所以很自然的, 人们想到用电磁场来加速带电粒子。 这就是加速器的思想萌芽。 图一、粒子加速器的 Livingston 图 从上世纪二十年代至今已达百年, 如今加速器在全世界范围内广泛存在。 高能加速器从最初的桌面实验装置发展为大型的科学工程, 占地面积高达上千平方公里。 各种加速器思想相互碰撞有力地推动了加速器科学的发展。 图一为最近的高能加速器的 Livingston 图表。 2. 理论的突破、准备 带电粒子的加速依赖于电磁场,带电粒子在电磁场中感受到洛仑兹 c h i n a X i v :201807.00040v 1

F =q(E +V ×B)。 因此带电粒子能量的改变为 dW dt =qE ?V , 所以带电粒子与电场有能量交换,而与磁场没有能量交换。由麦克斯韦方程可知, 加速器最终运用电场来直接加速带电粒子, 静电场与射频电场都能用来加速带电粒子, 这对应于静电加速器与射频加速器。静电加速器属于早期的加速器,而现代加速器基本属于射频加速器, 我们只讨论射频加速器。电磁场满足基本的麦克斯韦方程。各种加速结构中电磁场属于闭合场理论。 目前常用或研究的加速结构有金属结构、介质结构、等离子体腔体。 电磁波的一个主要特性是它的色散关系,电磁波的色散关系是它的频率和波数之间的函数关系f (ω,k )=0, 电磁波的相速 v p =ωk , 群速 v g =dωdk 。相速大于光速的电磁波属于快波,而相速小于光速的电磁波属于慢波。加速结构中电磁波的色散关系。 考虑一个带电粒子在电磁场中运动 ( v =βc ), 而电磁场由麦克斯韦方程所描述,如果 (1)忽略运动电荷的辐射, P rad ≈0。 (2)带电粒子以近光速运动, β≈1。 (3)带电粒子运动区域没有其他自由电荷, q =0。 (4)带电粒子以近似直线运动, 没有其他的静电场、静磁场E static =0,B static =0。 (5)带电粒子运动介质没有折射率, N =1。 (6)带电粒子在远场区域运动, 远离其他场源, r/λ?1。 那么粒子没有获得加速。这就是普遍的加速定理。由以上普遍的加速定理, 可以演化出各种加速方法以及相应的加速器。 从最早的静电加速器到现代的共振加速器, 加速器的种类有静电加速器、回旋加速器、射频直线加速器、感应加速器、同步加速器、对撞机。 静电加速器由于高压技术的限制, 难以向高能方向发展。 回旋加速器属于弱聚焦加速器, 也难以向高能发展。 稳相原理、强聚焦原理的出现 , 使得射频直线加速器、同步加速器应运而生。 稳相原理使得粒子束团在相稳区振荡运动从而被捕获在相稳区。 强聚焦原理使得束团的横向捕获聚焦得以实现, 解决了设备庞大的问题。 不需要大型的磁铁技术。 3. 技术的准备与储存 加速器的发展伴随着技术的进步, 现代加速器集众多的高技术于一体。 笔者认为电磁波的开发极大推动了人类物质文明与精神文明的进步。 静场属于频率为零的电磁波。 加速器是一门主要研究带电粒子与电磁场的相互作用的学问。 人类已经开发的电磁波波谱从千米波到伽马射线【3】。 太赫兹波段在电磁波谱中占有特殊地位,太赫兹波段处于微波与红外光之间。 无论是经典力学向短波长逼近, 还是量子力学向长波长逼近, 在太赫兹尺度都遇到了困难, 笔者认为在太赫兹尺度可能需要诞生一门新的力学, 进而研究太赫兹波段的物理现象。 至今太赫兹波段的物理现象我们主要采用经典力学来分析解决问题。 加速器技术主要涉及高频技术、磁铁技术、电源技术、真空技术、束流测量技术、控制技术。 4. 实验的成功 加速器是一门实验科学, 强调的是 hands on 经验。 加速器理论的成功与否c h i n a X i v :201807.00040v 1

高中物理速度选择器和回旋加速器专题训练答案及解析

高中物理速度选择器和回旋加速器专题训练答案及解析 一、速度选择器和回旋加速器 1.如图所示,有一对水平放置的平行金属板,两板之间有相互垂直的匀强电场和匀强磁场,电场强度为E =200V/m ,方向竖直向下;磁感应强度大小为B 0=0.1T ,方向垂直于纸面向里。图中右边有一半径R 为0.1m 、圆心为O 的圆形区域内也存在匀强磁场,磁感应强度大小为B = 3 3 T ,方向垂直于纸面向里。一正离子沿平行于金属板面,从A 点垂直于磁场的方向射入平行金属板之间,沿直线射出平行金属板之间的区域,并沿直径CD 方向射入圆形磁场区域,最后从圆形区域边界上的F 点射出已知速度的偏向角θ=π 3 ,不计离子重力。求: (1)离子速度v 的大小; (2)离子的比荷 q m ; (3)离子在圆形磁场区域中运动时间t 。(结果可含有根号和分式) 【答案】(1)2000m/s ;(2)2×104C/kg ;(3)4310s 6 π -? 【解析】 【详解】 (1)离子在平行金属板之间做匀速直线运动,洛仑兹力与电场力相等,即: B 0qv =qE 解得: 2000m/s E v B = = (2)在圆形磁场区域,离子做匀速圆周运动,轨迹如图所示

由洛仑兹力公式和牛顿第二定律有: 2 v Bqv m r = 由几何关系有: 2 R tan r θ = 离子的比荷为: 4 210C/kg q m =? (3)弧CF 对应圆心角为θ,离子在圆形磁场区域中运动时间t , 2t T θπ= 2m T qB π= 解得: 43106 t s π -= 2.如图,正方形ABCD 区域内存在着竖直向下的匀强电场和垂直纸面向里的匀强磁场,已知该区域的边长为L 。一个带电粒子(不计重力)从AD 中点以速度v 水平飞入,恰能匀速通过该场区;若仅撤去该区域内的磁场,使该粒子以同样的速度v 从AD 中点飞入场区,最后恰能从C 点飞出;若仅撤去该区域内的电场,该带电粒子仍从AD 中点以相同的速度v 进入场区,求: (1)该粒子最后飞出场区的位置; (2)仅存电场与仅存磁场的两种情况下,带电粒子飞出场区时速度偏向角之比是多少?

回旋加速器原理和考点分析

回旋加速器原理和考点分析 作者:丑佳丽 黑龙江省铁力职业教育中心学校 【内容摘要】 回旋加速器的原理和意义,并利用原理解决相关问题。增大加速电压或微粒的核质比增大,能使一个带电粒子获得很大的速度(能量), 但所占的空间范围大。能不能在较小的范围内实现多级加速呢因此人们创造出回旋加速器。回旋加速器的构造:两个D 形金属盒,粒子源,半径为R D ,大型电磁铁,高频振荡交变电压U.回旋加速器是产生大量高能量的带电粒子的实验设备.交变电压的周期与带电粒子做匀速圆周运动的周期相等。高频交流电源的周期与带电粒子在D 形盒中运动的周期相同是加速条件。回旋加速器的优点是体积小,缺点是粒子的能量不会很高。高频考点:回旋加速器中的D 形金属盒,它的作用是静电屏蔽。带电粒子从电场中获得能量。 做题过程中注意应用公式推导和运算。 【关键词】 带电粒子 加速 回旋加速器 一、如何能使带电粒子在较小的范围内实现多级加速 1.如何使一个带电的微粒获得速度(能量) 由动能定理K E W ?= 221mv qU = m qU v 2= 2.如何使一个带电粒子获得很大的速度(能量) 拓展:如: ①增大加速电压;②使微粒的核质比增大,等等。 3.带电粒子一定,即q/m 一定,要使带电粒子获得的能量增大,可采取什么方法 4.实际所加的电压,能不能使带电粒子达到所需要的能量(不能)怎么办 多级加速::带电粒子增加的动能为 ) (2 121321212 02n n U U U U q qU qU qU qU mv mv E ++++=+++==-= ? 分析:方法可行,但所占的空间范围大。能不能在较小的范围内实现多级加速呢因此人们创造出回旋加速器。 二、 回旋加速器的原理和考点 回旋加速器 图1 图2 图3

同步辐射原理与应用简介

第十五章 同步辐射原理与应用简介§ 周映雪 张新夷 目 录 1. 前言 2.同步辐射原理 2.1 同步辐射基本原理 2.2 同步辐射装置:电子储存环 2.3 同步辐射装置:光束线、实验站 2.4 第四代同步辐射光源 2.4.1自由电子激光(FEL) 2.4.2能量回收直线加速器(ERL)同步光源 3. 同步辐射应用研究 3.1 概述 3.2 真空紫外(VUV)光谱 3.3 X射线吸收精细结构(XAFS) 3.4 在生命科学中的应用 3.5 同步辐射的工业应用 3.6 第四代同步辐射光源的应用 4.结束语 参考文献 §《发光学与发光材料》(主编:徐叙瑢、苏勉曾)中的第15章:”同步辐射原理与应用 简介”,作者:周映雪、张新夷,出版社:化学工业出版社 材料科学与工程出版中心;出版日期:2004年10月。

1. 前言 同步辐射因具有高亮度、光谱连续、频谱范围宽、高度偏振性、准直性好、有时间结构等一系列优异特性,已成为自X光和激光诞生以来的又一种对科学技术发展和人类社会进步带来革命性影响的重要光源,它的应用可追溯到上世纪六十年代。1947年,美国通用电器公司的一个研究小组在70MeV的同步加速器上做实验时,在环形加速管的管壁,首次迎着电流方向,用一片镜子观测到在电子束轨道面上的亮点,而且发现,随加速管中电子能量的变化,该亮点的发光颜色也不同。后来知道这就是高能电子以接近光速在作弯曲轨道运动时,在电子运动轨道的切线方向产生的一种电磁辐射。图1是当时看到亮点的电子同步加速器的照片,图中的箭头指出亮点所在位置。那时,科学家还没有意识到这种同步辐射其实是一种性能无比优越的光源,高能物理学家抱怨,因为存在电磁辐射,同步加速器中电子能量的增加受到了限制。大约过了二十年的漫长时间,科学家(非高能物理学家)才真正认识到它的用处,但当时还只是少数科学家利用同步辐射光子能量在很大范围内可调,且亮度极高等特性,对固体材料的表面开展光电子能谱的研究。随着同步辐射光源和实验技术的不断发展,越来越多的科学家加入到同步辐射应用研究的行列中来,同步辐射的优异特性得到了充分的展示,尤其是在红外、真空紫外和X射线波段的性能,非其他光源可比,很多以往用普通X光、激光、红外光源等常规光源不能开展的研究工作,有了同步辐射光源后才得以实现。到上世纪九十年代,同步辐射已经在物理学、化学、生命科学、医学、药学、材料科学、信息科学和环境科学等领域,当然也包括发光学的基础和应用基础研究,得到了极为广泛的应用。目前,无论在世界各国的哪一个同步辐射装置上,对生命科学和材料科学的研究都具

专项训练磁场测试卷.docx

专题训练:磁场单元 1. 关于电场强度E与磁感应强度仪下列说法中错误的是() A.电场强度E是矢量,方向与正电荷受到的电场力方向相同 B.磁感应强度B是欠量,方向与小磁针N极的受力方向相同 C.电场强度定义式为E =匚,但电场中某点的电场强度E与尸、9无关 q D.磁感应强度定义式R -匚,同样的电流元〃在磁场中同一点受到的力一定相同 H 2.如图所示,均匀绕制的螺线管水平放置,在具正屮心的上方附近用绝缘绳水平吊起通电直导 线/并处于平衡状态,/与螺线管垂肓,M导线中的电流方向垂玄纸面向里,开关S闭仑后,绝缘绳 对/拉力变化情况是() A.增人 B.减小 C.不变 D.无法判断 3.如图所示,在兀轴上方存在垂直于纸面向里的匀强磁场,磁感应强度为3。在xOy内, 从原点O处沿与x轴疋方向成0角(0<〃<兀)以速率v发射一个带正电的粒子(重力不计)。则下列说法正确的 A.若卩一定,&越大,则粒子在磁场中运动的时间越短 B.若u—定,0越人,则粒子在离开磁场的位置距O点越远 C.若0—定,v越人,则粒子在磁场屮运动的时间越短 D.若&一定,v越大,则粒了在磁场中运动的角速度越大 4.如图所示为电视机显像管偏转线圈的示意图,当 线圈通以图示的直流电吋,形成的磁场如图所示,一束沿着管颈轴线射向纸内的电子将() A.向上偏转 B.向下偏转 C.向左偏转 D.向右偏转 5.如图所示,光滑的平行导轨与电源连接后,与水平方向成&角倾斜放置,导轨上另放一个质量为加的金属导体棒。通电后,在棒所在区域内加-个合适的匀强磁场,可以使导体棒静止平衡,图中分别加了不同方向的磁场,其中一定不能平衡的是() 6.关于回旋加速器加速带电粒了所获得的能量,下列结论中正确的是() A.只与加速器的半径有关,半径越大,能量越大 B.与加速器的磁场和半径均有关,磁场越强、半径越人,能量越人 C.只与加速器的电场有关,电场越强,能量越大 D.与带电粒子的质量和电荷量均有关,质量和电荷量越大,能量越大 7.如图所示,冇一四面体OABC处在Ox方向的匀强磁场中,下列关于穿过各个面的 磁通量的说法错误的 是() XXX /XXX A.13.

高中物理速度选择器和回旋加速器技巧(很有用)及练习题及解析

高中物理速度选择器和回旋加速器技巧(很有用)及练习题及解析 一、速度选择器和回旋加速器 1.某一具有速度选择器的质谱仪原理如图所示,A 为粒子加速器,加速电压为U 1;B 为速度选择器,磁场与电场正交,电场方向向左,两板间的电势差为U 2,距离为d ;C 为偏转分离器,磁感应强度为B 2,方向垂直纸面向里。今有一质量为m 、电荷量为e 的正粒子(初速度忽略,不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动,打在照相底片D 上。求: (1)磁场B 1的大小和方向 (2)现有大量的上述粒子进入加速器A ,但加速电压不稳定,在11U U -?到11U U +?范围内变化,可以通过调节速度选择器两板的电势差在一定范围内变化,使得加速后的不同速度的粒子都有机会进入C ,则打在照相底片D 上的宽度和速度选择器两板的电势差的变化范围。 【答案】(1)2112U m B d U e = 2)()()11112222m U U m U U D B e e +?-?=,()11min 1 U U U U U -?=() 11max 1 U U U U U +?=【解析】 【分析】 【详解】 (1)在加速电场中 2112 U e mv = 12U e v m = 在速度选择器B 中

2 1U eB v e d = 得 1B = 根据左手定则可知方向垂直纸面向里; (2)由可得加速电压不稳后获得的速度在一个范围内变化,最小值为 1v = 1 12 mv R eB = 最大值为 2v = 2 22 mv R eB = 打在D 上的宽度为 2122D R R =- 22D B = 若要使不同速度的粒子都有机会通过速度选择器,则对速度为v 的粒子有 1U eB v e d = 得 U=B 1vd 代入B 1 得 2U U = 再代入v 的值可得电压的最小值 min U U =最大值 max U U =

同步辐射光源及其应用_沈元华

同步辐射光源及其应用 沈元华 (复旦大学物理教学实验中心上海200433) 摘 要:介绍了同步辐射光源的产生、特点及其应用. 关键词:同步辐射;光源;加速器 Synchrotron radiation source and its applications SHEN Yuan-hua (Central Labo rato ry fo r Phy sics Educatio n,Fudan University,Shang hai,200433) Abstract:The forma tio n,characteristics and applicatio ns of synchro tro n radiatio n so urce are introduced. Key words:synchrotron radiatio n;ligh t source;accelerato r 在著名科学家谢希德、杨福家等院士的倡议下,一座投资十亿的宏伟建筑即将耸立在上海浦东高科技园区,它就是世界瞩目的第三代同步辐射光源——上海光源. 什么是同步辐射光源?它与普通光源有什么区别?它有什么重大的科学意义和应用价值?本文将做一简要介绍. 1 同步辐射光源的产生 同步辐射光源是由同步加速器的发展而产生的.著名原子物理学家尼·玻尔说过,高速粒子与物质相互作用时发生的各种效应,是获取原子结构信息最主要的来源之一.事实上,科学家们往往要用高速运动的粒子去轰击原子核,观察撞击时发生的种种变化,才能了解原子的结构和原子内部的各种秘密.各种加速器正是为获得这种高速运动的粒子而建造的.早期的加速器是直线型的,要获得的粒子速度越快,其长度也要越长.为了缩短加速器的长度,可用磁场使带电粒子发生偏转而作回旋运动,这就是回旋加速器.这种加速器利用强大的磁场,使带电粒子作回旋运动而不断加速.由于在一定的磁场作用下,粒子的回旋轨道半径随其速度的增加而增加,故磁场空间必须很大.因此,这种高能回旋加速器的磁铁是极其笨重的. 为了减轻磁铁的重力,并进一步提高粒子的速度,人们设计出采用环形电磁铁并不断改变磁场强度,使粒子的轨道半径保持恒定的加速器.这种固定轨道、用调变磁场的方法实现电场对粒子的同步加速的加速器,就称为同步加速器.带电粒子在同步加速器中按同一轨道作圆周运动,可以大大提高粒子的能量和速度.然而,当粒子的能量越来越大时,人们发现要进一步加速却越来越困难了.其根本原因之一就是带电粒子改变运动方向(转弯)时,必然伴随着电磁波的辐射,即光波的发射;粒子的能量越大,辐射就越强.虽然早在1898年理论物理学家Lienard就预言带电粒子作圆周运动时会产生辐射而发光,但是直到本世纪四十年代末,才由Pollack等人在美国通用电气公司的一台同

粒子加速器辐射防护规定.

粒子加速器辐射防护规定 L 总则 1.1 为加强对拉子加速器辐射防护工作的管理,保护环境,保障上作人员和邻近居民的健康与安全,根据GBJ8一74《放射防护规定》,参照国际辐射防护有关标准,并结合国内加速器的辐射防护状况,特制定本规定。。 1.2 本规定适用于加速粒子的单核能量低于100MeV。的粒子加速器(不包括医疗用加速器和象密封型中子管之类的可移动加速器)设施。 1.3 凡有粒子加速器的单位,必须根据本规定的要求,结合本单位加速器的特点,制定出实施细则。 1.4 在加速器辐射防护工作中,应当在降低剂量所获得的效益和为此而付出的代价之间进行权衡,使该设施运行中产生的集体剂量保持在可以合理做到的尽可能低的水平,并保证个人所接受的剂量当量不得超过剂量当量限值。 1.5 新建、扩建和改建加速器设施的单位,必须编写该设施对环境质显影响的评价报告,报请当地环境保护部门批准,否则不得设计和(或)施工。与此同时,还必须向当地公安部门登记 1.6 要关心在加速器上工作的人员的身体健康,加强健康管理。这类人员应当事受劳动保护部门和其他部门规定的劳保待遇。 1.7 本规定由当地辐射防护主管部门监督执行。 2 剂量当量限值 2.1 职业放射性工作人员全身受到均匀照射的剂量当量或全身受到不均匀照射的有效剂量当量,均不得超过每年50mSv(5rem);公众中的个人,均不得超过每年5mSv(0<5rem)。 2.2 职业放射性工作人员跟晶体的剂量当量不得超过每年50mSv(5ren),其他组织或器官的剂量当量均不得超过每年500mSv(50rem)公众中的个人任何器官或组织的剂量当量,均不得超过每年50mSv(5rem)。 2.3 在只受到外照射的情况下,深部剂量当量指数应低于每年50mSv(5rem)。 2.4 在只受到内照射的情况下,每年摄入的放射性物质数量应低于附录C(补充件)所列ALI。 2.5 在受到内外合并照射的情况下,为保证不超过年剂量当量限值,必须同时满足下列两个公式: 式中:Hid --年深部剂量当量指数,Sv(rem) HL--年深部剂量当量限值,Sv(rem); Ij第j种放射性核素的年摄入量,Bq(Ci); (ALI)j--第j种放射性核素的年摄入量限值,Bq(Ci) His--年浅表剂量当量指数,Sv(rem); HSKL――皮肤的年剂量当量限值,500mSv(50rem)。 2.6 必要时经辐射安全机构批准,可允许职业放射性工作人员接受超过年剂量当量限值的照射。但1小次事件接受的剂量当量或剂量当量负担,不得超过年限值的2倍;一生中这种照射总共接受的剂量当量或剂量当量负担,不得大于年限值的5倍。 具有生育能力的妇女和未满18周岁者,不得接受这种照射 2.7 从事放射性工作的孕妇,授乳妇以及年龄在16~18周岁的实习人员、应在1年的照射不超过年剂量当量限值3/10的条件下工作,并要求剂量当置率比较均匀。 未满16周岁者,禁止从事放射性工作。

加速器类型

粒子加速器:particle accelerator 一种用人工方法产生快速带电粒子束的装置。粒子加速器有三个基本组成部分:粒子源;真空加速系统和导引、聚焦系统。粒子加速器的效能通常以粒子所能达到的能量来表征。粒子能量在100MeV以下的称为低能加速器,能量在0.1~1GeV间的称为中能加速器,能量在1GeV以上的称为高能加速器。按照被加速粒子的种类,加速器可分为电子加速器、质子加速器和重粒子加速器等。按照加速电场和粒子轨道的形态,又可分为四大类:直流高压式加速器、电磁感应式加速器、直线谐振式加速器和回旋谐振式加速器。它们各自都有适于工作的粒子品种、能量范围以及性能特色。近年来,大中型的粒子加速器(如重离子加速器和高能加速器等)往往采用多种加速器的串接组合:例如由直流高压型加速器作预加速器,注入直线谐振式加速器加速至中间能量,再注入回旋谐振式加速器加速至终能量。这样的系统有利于发挥每一类加速器的效率和特色。(撰写:陈佳滠审订:关遐令) 串列加速器:tandem accelerator 利用一个高压使带电粒子获得两次加速的静电型加速器。串列加速器的直流高压通常由输电系统将电荷从低电位输送到高压电极上而形成。它的工作原理是将由负离子源产生负离子注入到加速器主体中,在高压电极的正电场的作用下,经低能段加速管被第一次加速。当负离子到达高压电极后,通过电子剥离器并被剥掉2个或多个电子,变为正离子。在高压电极作用下,正离子经高能段加速管再次被加速。图为中国原子能科学研究院的HI-13串列加速器主体外貌。(撰写:秦久昌审订:关遐令) 高压倍加器:Cockcroft-Walton accelerator 利用倍压整流方法产生直流高压,对离子或电子加速。其倍压整流工作原理如图所示,主要由高压变压器,高压整流器和高压电容器等组成。在无负载时,倍压整流线路输出的高压V随倍压级数n增加而线性增加,可表达为V-2nVa,式中Va为高压变压器T的次级绕组交流电压峰值。当有负载时,随着级数n的增加,线路的电压降和电压波动会严重增加,因此级数n不能太高。一般倍压整流器可输出直流高压从几百千伏(大气中)到兆伏级(高气压下)。高压倍加器由高压倍压整流电源,离子源(或电子枪),加速管、聚焦和传输系统,真空和控制系统组成。高压倍加器的输出功率较大,可以用作较理想的中子源,X光源少离子注入机。(撰写:秦久昌审订:关遐令) 静电加速器:electrostatic accelerator; Van de Graff accelerator 一种利用直流高压静电场对带电普子进行加速的高压型加速器。1933年美国范德格拉夫首先提出一种新的起电原理:一个圆筒形金属高压电极由几根绝缘柱支承。位于底部的电晕针排加电压后,电晕放电产生的离子(或电子),由橡胶带输送到高压电极上形成直流高压。早期静电加速器工作在大气中,由于气体击穿,限制了高压进一步升高,最高电压为6MV。后来发展为高气压型静电加速器,即把静电发生器,离子源和加速管等封在钢筒内,充以高压绝缘气体,大大地提高了电场击穿场强。静电加速器结构如图所示。静电加速器较其他加速器有如下特点:被加速离子的能量连续可调、离子的能量单一、可加速多种离子或电子、离子束聚焦良好、离子束靶点小。静电加速器是低能核物理实验的理想工具,同时还广泛应用于离子注入,材料分析、材料辐照等领域。(撰写:秦久昌审订:关遐令) 电子直线加速器:electron linac; electron linear accelerator 利用射频电场来加速电子的直线轨道加速器,由电子枪、加速管、射频功率源、射频传输、真空、冷却水、束流引出和控制等系统组成。迄今全世界已有数千台电子直线加速器用于放射治疗、无损探测、辐照加工和科学研究诸多领域。电子能量从几兆电子伏到几十吉电子伏,长度从几十厘米到几千米。现有的大部分电子直线加速器都工作在S波段,目前正在研制X波段加速结构。这种新结

高考物理速度选择器和回旋加速器解题技巧讲解及练习题

高考物理速度选择器和回旋加速器解题技巧讲解及练习题 一、速度选择器和回旋加速器 1.某一具有速度选择器的质谱仪原理如图所示,A 为粒子加速器,加速电压为U 1;B 为速度选择器,磁场与电场正交,电场方向向左,两板间的电势差为U 2,距离为d ;C 为偏转分离器,磁感应强度为B 2,方向垂直纸面向里。今有一质量为m 、电荷量为e 的正粒子(初速度忽略,不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动,打在照相底片D 上。求: (1)磁场B 1的大小和方向 (2)现有大量的上述粒子进入加速器A ,但加速电压不稳定,在11U U -?到11U U +?范围内变化,可以通过调节速度选择器两板的电势差在一定范围内变化,使得加速后的不同速度的粒子都有机会进入C ,则打在照相底片D 上的宽度和速度选择器两板的电势差的变化范围。 【答案】(1)2112U m B d U e = 2)()()11112222m U U m U U D B e e +?-?=,()11min 1 U U U U U -?=() 11max 1 U U U U U +?=【解析】 【分析】 【详解】 (1)在加速电场中 2112 U e mv = 12U e v m = 在速度选择器B 中

2 1U eB v e d = 得 1B = 根据左手定则可知方向垂直纸面向里; (2)由可得加速电压不稳后获得的速度在一个范围内变化,最小值为 1v = 1 12 mv R eB = 最大值为 2v = 2 22 mv R eB = 打在D 上的宽度为 2122D R R =- 22D B = 若要使不同速度的粒子都有机会通过速度选择器,则对速度为v 的粒子有 1U eB v e d = 得 U=B 1vd 代入B 1 得 2U U = 再代入v 的值可得电压的最小值 min U U =最大值 max U U =

2020届高考物理冲刺专项训练21 带电粒子在复合场中的运动 (原卷版)

带电粒子在复合场中的运动 一、单选题 1.(2020·全国高三专题练习)作用在导电液体上的安培力能起到推动液体流动的作用,这样的装置称为电磁泵,它在医学技术上有多种应用,血液含有离子,在人工心肺机里的电磁泵就可作为输送血液的动力.某电磁泵及尺寸如图所示,矩形截面的水平管道上下表面是导体,它与磁感强度为B的匀强磁场垂直,并有长为的部分在磁场中,当管内充满血液并通以横穿管子的电流时血液便能向前流动.为使血液在管内不流动时能产生向前的压强P,电流强度I应为 A.B.C.D. 2.(2020·全国高三专题练习)笔记本电脑机身和显示屏对应部位分别有磁体和霍尔元件.当显示屏开启时磁体远离霍尔元件,电脑正常工作:当显示屏闭合时磁体靠近霍尔元件,屏幕熄灭,电脑进入休眠状态.如图所示,一块宽为a、长为c的矩形半导体霍尔元件,元件内的导电粒子是电荷量为e的自由电子,通入方向向右的电流时,电子的定向移动速度为υ.当显示屏闭合时元件处于垂直于上表面、方向向下的匀强磁场中,于是元件的前、后表面间出现电压U,以此控制屏幕的熄灭.则元件的() A.前表面的电势比后表面的低 B.前、后表面间的电压U与υ无关 C.前、后表面间的电压U与c成正比 D.自由电子受到的洛伦兹力大小为eU a 3.(2020·江苏省高三月考)回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电极相连接的两个D形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D 形金属盒处于垂直于盒底的匀强磁场中,如图所示,要增大带电粒子射出时的动能,则下列说法中正确的

是 A .增大匀强电场间的加速电压 B .增大磁场的磁感应强度 C .减小狭缝间的距离 D .减小D 形金属盒的半径 4.(2020·江苏省高三月考)磁流体发电机的结构简图如图所示。把平行金属板A 、B 和电阻R 连接,A 、B 之间有很强的磁场,将一束等离子体(即高温下电离的气体,含有大量正、负带电粒子)以速度v 喷入磁场,A 、B 两板间便产生电压,成为电源的两个电极。下列推断正确的是( ) A .A 板为电源的正极 B .电阻R 两端电压等于电源的电动势 C .若减小两极板的距离,则电源的电动势会减小 D .若增加两极板的正对面积,则电源的电动势会增加 5.(2020·四川省高三二模)反质子的质量与质子相同,电荷与质子相反。一个反质子从静止经电压U 1加速后,从O 点沿角平分线进入有匀强磁场(图中未画岀)的正三角形OAC 区域,之后恰好从A 点射岀。已知反质子质量为m ,电量为q ,正三角形OAC 的边长为L ,不计反质子重力,整个装置处于真空中。则( ) A B .保持电压U 1不变,增大磁感应强度,反质子可能垂直OA 射出

直线加速器机房放射防护安全制度标准范本

管理制度编号:LX-FS-A30285 直线加速器机房放射防护安全制度 标准范本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

直线加速器机房放射防护安全制度 标准范本 使用说明:本管理制度资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 1、按照国家《放射性同位素与射线装置放射防护条例》的要求加强放射卫生防护管理 2、直线加速器的防护性能应符合《医用远距离治疗X线卫生防护规则》的标准要求 3、参加放射治疗工作的技术人员必须经过严格的放射卫生防护知识培训并合格后,并取得“大型医用设备使用人员上岗证”才能进行上机操作 4、直线加速器的操作人员必须严格遵守各项才做规程,并经常检测防护设施的性能,及时处理发现的问题,严禁在直线加速器异常的情况下进行放射治

电场磁场计算题专项训练及答案

电场磁场计算题专项训练 【注】该专项涉及运动:电场中加速、抛物线运动、磁场中圆周 1、(2009浙江)如图所示,相距为d 的平行金属板A 、B 竖直放置,在两板之间水平放置一绝缘平板。有一质量m 、电荷量q (q >0)的小物块在与金属板A 相距l 处静止。若某一时刻在金属板A 、B 间加一电压U AB =- q mgd 23μ,小物块与金属板只发生了一次碰撞,碰撞后电荷量变为-q /2,并以与碰前大小相等的速度反方向弹回。已知小物块与绝缘平板间的动摩擦因数为μ,若不计小物块几何量对电场的影响和碰撞时间。则 (1)小物块与金属板A 碰撞前瞬间的速度大小是多少? (2)小物块碰撞后经过多长时间停止运动?停在何位置? 2、(2006天津)在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度应大小为B 、方向垂直于纸面向里的匀强磁场,如图所示。一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,它恰好从磁场边界的交点C 处沿+y 方向飞出。 (1)判断该粒子带何种电荷,并求出其比荷q /m ; (2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B /,该粒子仍以A 处相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B /多大?此粒子在磁场中运动所用时间t 是多少? 3、(2010全国卷Ⅰ)如下图,在a x 30≤ ≤区域内存在与xy 平面垂直的匀强磁场,磁感 应强度的大小为B 。在t = 0时刻,一位于坐标原点的粒子源在xy 平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y 轴正方向夹角分布在0~180°范围内。已知 B

医用直线加速器放射安全与职业防护管理

CHINESE HOSPITAL ARCHITECTURE & EQUIPMENT | 96依据现行的射线装置分类办法,医用电子直线加速器属于II类射线装置,属于中危险射线装置,发生事故时可以使受照射人员产生较严重的放射损伤,大剂量照射甚至导致死亡。医用电子直线加速器对工作场所及周围环境产生的辐射水平及其防护问题已经引起了社会的普遍注意和关切。各相关医疗机构在医用加速器的使用中应高度重视辐射防护问题,在做好医学放射工作人员职业防护的同时,更应确保机房周围环境的放射安全,保护好公众安全。 一、直线加速器结构、工作原理及辐射特征 医用电子直线加速器能量一般指X射线治疗方式下的加速电位,即X射线的最高能量。通常按能量10MV为界区分,以采取与之相应的放射防护措施。它还可以按照产生X射线的种类分为单光子、双光子和多光子直线加速器。加速系统是医用电子直线加速器的核心,由加速管、微波功率源、微波传输系统、电子注入系统、高压脉冲调制系统、聚焦系统、真空系统、电源和控制系统、附属设备等组成。 其工作过程是:调制器产生两个脉冲高压,一个加到功率源(速调管和磁控管),功率源产生的微波功率经微波传输系统,馈入加速管,并在其中建立加速场;另一个脉冲高压加到电子枪,引出电子束,电子束注入加速管,受到其中加速场的加速。 医用电子直线加速器运行时,被加速的带电粒子从加速器的真空区引出后,这些带电粒子与被撞击的物质相互作用时产生轫致辐射 医用直线加速器放射安全与职业防护管理 MEDICAL LINEAR ACCELERATOR RADIATION SAFETY AND OCCUPATIONAL PROTECTION MANAGEMENT 文|党升强 曹小军 谢龙 韩良辅 摘 要 文章介绍了医用电子直线加速器的结构和工作原理,分析了其辐射特征和危害,详细阐述了医院应采取的防护措施和工作人员注意事项,建议加强放射安全及职业防护管理。关键词 直线加速器 放射安全 防护管理Abstract The article introduces medical linear accelerator structure and working principle; analyzes the features and hazards of radiation; explains the protective measures and cautions for the medical staff; proposes to strengthen the safety and occupational radiation protection management.Keywords Linear accelerator Radiation Protection doi:10.3969/j.issn.1671-9174.2013.09.007 X射线、特征X射线、瞬间γ射线、中子射线和缓发射线(能量≥10MeV时)。而且,由于射线作用于空气及次级辐射等因素,可产生臭氧、氮氧化物和微量气载放射物质。 1.初级射线辐射。是指来自加速器准直器孔直接发射的射线。当光阑完全打开时,从辐射头靶端出射的X射线为一个半角为14度的锥形线束,其能量特性决定于选择的X射线能量级别。辐射防护主要依据X 射线能量。 2.露射线辐射。是指穿过加速器组装壳体的泄露射线,与主射线相比,泄露剂量率 比主射线束发射剂量率要低得多。 3.散射线辐射。是指受有用射线束和泄漏辐射直接照射的照射对象、装置部件以及建筑物室壁的散射辐射。 4.中子辐射。是指在高能X线模式下会产生一定数量的中子,通常无论在高能电子线或低能X线模式都只有很低能量级水平。但在高于10MV的X线模式中,迷路入口的设计必须对中子剂量加以考虑。 5.辐射活化的产生。是指直线加速器工作高于8MeV的能量级时,会发生光核效应,特别是高于12MeV时增加更快。这样会造成辐射头、室内其他物质包括周围空气在内的放射线核素的形成,产生少量的放射性气体,如13N(半衰期10min)和15O(半衰期2min)等。 二、直线加速器异常情况下的辐射危害(事故照射) 当加速器装置损坏、调试和操作失误

加速器概述

加速器概述 accelerator 定义 定义:一种使带电粒子增加速度(动能)的装置。加速器可用于原子核实验、放射性医学、放射性化学、放射性同位素的制造、非破坏性探伤等。粒子增加的能量一般都在0.1兆电子伏以上。加速器的种类很多,有回旋加速器、直线加速器、静电加速器、粒子加速器、倍压加速器等。加速器是用人工方法把带电粒子加速到较高能量的装置。利用这种装置可以产生各种能量的电子、质子、氘核、α粒子以及其它一些重离子。利用这些直接被加速的带电粒子与物质相作用,还可以产生多种带电的和不带电的次级粒子,象γ粒子、中子及多种介子、超子、反粒子等。目前世界上的加速器大多是能量在100兆电子伏以下的低能加速器,其中除一小部分用于原子

核和核工程研究方面外,大部分用于其他方面,象化学、放射生物学、放射医学、固体物理等的基础研究以及工业照相、疾病的诊断和治疗、高纯物质的活化分析、某些工业产品的辐射处理、农产品及其他食品的辐射处理、模拟宇宙辐射和模拟核爆炸等。近年来还利用加速器原理,制成各种类型的离子注入机。以供半导体工业的杂质掺杂而取代热扩散的老工艺。使半导体器件的成品率和各项性能指标大大提高。很多老工艺不能实现的新型器件不断问世,集成电路的集成度因此而大幅度提高。加速器的发展 1919年英国科学家卢瑟福(E.Rutherford)用天然放射源中能量为几个MeV、速度为2×109厘米/秒的高速α 粒子束(即氦核)作为“炮弹”,轰击厚度仅为0.0004厘米的金属箔的“靶”,实现了人类科学史上第一次人工核反应。利用靶后放置的硫化锌荧光屏测得了粒子散射的分布,发现原子核本身有结构,从而激发了人们寻求更高能量的粒子来作为“炮弹”的愿望。 静电加速器(1928年)、回旋加速器(1929年)、倍压加速器(1932年)等不同设想几乎在同一时期提了出来,并先后建成了一批加速装置。 粒子加速器particle accelerator 用人工方法产生高速带电粒子的装置。是探索原子核和

相关主题
文本预览
相关文档 最新文档