当前位置:文档之家› 数学期望和概率

数学期望和概率

数学期望和概率
数学期望和概率

数学期望

2017:(12分)

为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布.

(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在之外的零件数,求及的数学期望;

(2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.

(ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:

,其中为抽取的第个零件的尺寸,.

用样本平均数

作为的估计值,用样本标准差作为的估计

值,利用估计值判断是否需对当天的生产过程进行检查?剔除

之外的数据,用剩下的数据估计和(精确到0.01).

附:若随机变量服从正态分布,则

2(,)N μσ(3,3)μσμσ-+(1)P X ≥X (3,3)μσμσ-+1

9.97

16i i x x ===∑0.212s ==≈i x i 1,2,,16i =???x μ?μs σ?σ????(3,3)μσμσ-+μσZ 2(,)N μσ(33)0.997 4P Z μσμσ-<<+=

2016:选择题第4题:某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是

(A )(B )(C )(D )

(12分)

某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图: 以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,

n 表示购买2台机器的同时购买的易损零件数.

(I )求X 的分布列;

(II )若要求()0.5P X n ≤≥,确定n 的最小值;

(III )以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个?

2015:选择题第4题:.投篮测试中,每人投3次,至少投中2次才能通过测试。已知某同学每次投篮投中的概率为0.6,且各次投篮是

160.997 40.959 2=0.09≈13122334

否投中相互独立,则该同学通过测试的概率为() (A )0.648 (B )0.432 (C )0.36 (D )0.312

(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费i x 和年销售量i y (i =1,2,·,8)数据作了初步处理,得到下面的散点图及一些统计量的值.

,w =

(Ⅰ)根据散点图判断,y=a+bx 与y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由) (Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程; (Ⅲ)已知这种产品的年利率z 与x 、y 的关系为z=0.2y-x.根据(Ⅱ)

的结果回答下列问题:

(ⅰ)年宣传费x=49时,年销售量及年利润的预报值是多少? (ⅱ)年宣传费x 为何值时,年利率的预报值最大?

附:对于一组数据11(,)u v ,22(,)u v ,……,(,)n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分别为:

2014 :选择题第5题:.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率().

A .

18B .38C .58D .78

(12分)

从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:

(Ⅰ)求这500件产品质量指标值的样本平均数x 和样本方差2s (同

一组数据用该区间的中点值作代表);

(Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值Z 服从正态分布2(,)N μδ,其中μ近似为样本平均数x ,2δ近似为样本方差2s .

(i )利用该正态分布,求(187.8212.2)P Z <<;

(ii )某用户从该企业购买了100件这种产品,记X 表示这

100件产品中质量指标值为于区间()187.8,212.2的产品件数,利用(i )的结果,求EX .

12.2≈,若Z ~2(,)N μδ,则()0.6826P Z μδμδ-<<+=,

(22)0.9544P Z μδμδ-<<+=.

2013 :选择题第3题;为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是( ) A 、简单随机抽样 B 、按性别分层抽样 C 、按学段分层抽样 D 、系统抽样

(12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n 。如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验。

假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立

(1)求这批产品通过检验的概率;

(2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望。

2012:填空题第15题:某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为.

18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.

(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.

(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:

以100天记录的各需求量的频率作为各需求量发生的概率. (i )若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列,数学期望及方差;

(ii )若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.

答案

2017-(1)

由题意可得,X 满足二项分布, 因此可得 (2)

1由(1)可得,属于小概率事件, 故而如果出现的零件,需要进行检查。

2由题意可得, 故而在范围外存在9.22这一个数据,因此需要进行检查。 此时:,

。 2016-【答案】B

()()1611010.997410.95920.0408P X P X ≥=-=

=-=-=()~16,0.0016X B ()16,0.0016160.00160.0256EX ==?=()10.04085%P X ≥=<(3,3)μσμσ-+ 9.97,0.21239.334,310.606μσμσμσ==?-=+=()9.334,10.6069.97169.22

10.0215

x μ?-==

=0.09σ=≈

【详细解答】小明可以到达车站时长为40分钟,可以等到车的时长为20分钟,则他等车时间不超过10分钟的概率是201

402

P ==,故B 选项正确.

【详细解答】(I )这100台机器更换的易损零件数为8,9,10,11时的频率为分别为15,25,15,15

,故1台机器更换的易损零件数为8,9,10,11时发生的概率分别为15,25,15,15

,每台机器更换与否相互独立,

16,17,18,19,20,21,22X =,故两台机器更换易损零件个数及对应概率如

下表:

所以求X 的分布列为:

(II )111171(1),(1)252252P X 8P X 9≤=

<≤=≥,所以n 的最小值为19 (III )1466521

1617181920212218.225252525252525

EX =?+?+?+?+?+?+?=

故至少购买

19件,若买19件时费用期望为

52120019500100015004040252525

?+?

+?+?=(元),

若买20件时费用期望为2120020500100040802525

?+?+?=(元) 所以应选用19n =.

2015-【答案】A

【解析】根据独立重复试验公式得,该同学通过测试的概率为

2

2330.60.40.6C ?+=0.648,故选A.

【答案】适合作为年销售y 关于年宣传费用x 的回归方程类型;

46.24 【解析】

试题分析:(Ⅰ)由散点图及所给函数图像即可选出适合作为拟合的函数;,先求出建立y 关于w 的线性回归方程,即可y 关于x 的回归方程;(Ⅲ)(ⅰ)利用y 关于x 的回归方程先求出年销售量y 的预报值,再根据年利率z 与x 、y 的关系为z=0.2y-x 即可年利润z 的预报值;(ⅱ)根据(Ⅱ)的结果知,年利润z 的预报值,列出关于x 的方程,利用二次函数求最值的方法即可求出年利润取最大值时的年宣传费用. 试题解析:

适合作为年销售y 关于年宣传费用x 的回归方程类型.

(Ⅱ

)令,先建立y 关于w 的线性回归方程,

由于

×6.8=100.6. ∴y 关于w 的线性回归方程为 100.668y w =+, ∴y 关于x 的回归方程为

(Ⅲ)(ⅰ)由(Ⅱ)知,当x =49时,年销售量y 的预报值

, 576.60.24966.32z

=?-= . (ⅱ)根据(Ⅱ)的结果知,年利润z 的预报值

,即46.24x =时,z

取得最大值. 故宣传费用为46.24千元时,年利润的预报值最大.……12分 2014-解:

(1)抽取产品的质量指标值的样本平均数

1700.021800.091900.222000.33x =?+?+?+? 2100.242200.082300.02+?+?+? 200=

()()()2

2

2

2300.02200.09100.22s =-?+-?+-?

22200.33100.24200.08300.02+?+?+?+?

150=

(2)(1)由(1)知,()~200,150Z ,从而

()()187.8212.220012.220012.20.6826P Z P Z <<=-<<+=

(2)由(1)知,一件产品的质量指标值位于区间()187.8,212.2的概率为0.6826

依题意知()~100,0.6826X B ,所以1000.682668.26EX =?= 2013-【答案】C ;

【解析】不同的学段在视力状况上有所差异,所以应该按照年段分层抽样.

【答案】(1)记该批产品通过检验为事件A ;则

4

4

344

11113()()222264

P A C ????

??=+= ? ?

?????

?? ; (2)X 的可能取值为400、500、800;

4111(400)1161616P X ==-

-=,1(500)16P X ==,1

(800)4

P X ==,则X 的分布列为

()506.25E x =

【解析】(1)利用相互独立事件模型计算概率;(2)在(1)的基础上,利用对立事件算出X 为400、500、800时的概率,进而列出分布列,求出期望.

【考点定位】本题考查相互独立事件的概率计算、离散型随机变量的分布列、期望,考查学生的逻辑推理能力以及基本运算能力. 2012-三个电子元件的使用寿命均服从正态分布N (1000,502) 得:三个电子元件的使用寿命超过1000小时的概率为

设A={超过1000小时时,元件1、元件2至少有一个正常},B={超过1000小时时,元件3正常} C={该部件的使用寿命超过1000小时} 则P (A )=

,P (B )=

P(C)=P(AB)=P(A)P(B)=×=

18.(1)

(2)(i)

EX=60×0.1+70×0.2+80×0.7=76

DX=162×0.1+62×0.2+42×0.7=44

(ii)购进17枝时,当天的利润的期望为y=(14×5﹣3×5)×0.1+(15×5﹣2×5)×0.2+(16×5﹣1×5)×0.16+17×5×0.54=76.4

∵76.4>76,∴应购进17枝

事件概率及数学期望

事件和的概率 引入:从52张扑克牌中抽取一张,求恰好抽到黑桃或A的概率. 1、概念: 事件A出现或事件B出现: 图示: 加法公式: 理解: 2.例题分析 例1:把1、2、3、4、5、6、7、8、9、10分别写在10个形状大小一样的卡片上,随机抽取一张卡片,求卡片上出现偶数或出现大于6的数的概率. 例2:某远程教育网在某时段播放20套不同的节目,其中,9套是公民学历教育类节目,8套是外语类节目,5套既是公民学历教育类节目,又是外语类节目. 求在该时段随机选择一套节目,选到公民学历教育类节目或外语类节目的概率. 例3:. 把1、2、3、4、5、6、7、8、9、10分别写在10个形状大小一样的卡片上,随机抽取一张卡片,求卡片上出现小于3或大于6的数的概率. 概念: 提问:“对立事件”和“互不相容事件”有什么区别? 例4:从一副混合后的扑克牌(52张)中随机抽取一张,求下列事件A与事件B的和的概率: (1)事件A为“出现J”,事件B为“出现K”; (2)事件A为“出现K”,事件B为“出现梅花”; (3)事件A为“出现红色牌”,事件B为“出现黑色牌”; (4)事件A为“出现有人头的牌”,事件B为“出现红色牌”.

独立事件积的概率 概念---互相独立事件 如果事件A出现和事件B出现,相互之间没有影响,那么称事件A和事件B互相独立. 注1. 对立事件性质 注2.互不相容事件或互斥事件 注3.如果事件A和事件B互相独立.则对立事件的性质: 概率乘法公式 2、例题精析 例1 如果100件产品有5件次品,那么返回抽取2件产品都是次品的概率是多少? 例2从一副52张的扑克牌中随机抽取2张牌,求下列事件的概率: (1)在放回抽取的情况下,两张牌都是K; (2)在不放回抽取的情况下,两张牌都是K. 例3从一副52张的扑克牌中第一张抽取到Q,重新放回第二张抽取到有人头的牌,求这两事件都发生的概率. 例4从一副52张的扑克牌中随机抽取4张牌,求下列事件的概率: (1)在放回抽取的情况下,4张牌都是A; (2)在不放回抽取的情况下,4张牌都是A. 例4 试证明:将一颗骰子接连抛掷4次至少出现一次6点的可能性大于将两颗骰子接连抛掷24次至少出现一次双6点的可能性. 例5一名工人维护甲乙丙3台独立的机床,在一小时内,甲乙和丙需要维护的概率分别为0.9、0.8、0,85,求一小时内下列事件的概率 (1)没有一台机床需要维护; (2)至少有一台机床不需要维护. 例6 如图所示的电路中,己知A、B、C三个开关(图中从上往下三个开关分别ABC)断开的概率分别是0.3、0.2、0.2,求电路不通的概率. 例7 在射击训练中,小强射中9环及以上频率为0.20,射中7环及8环频率0.40,射中3环至6环频率0.10,计算小强射击成绩7环及以上频率和射击成绩3环及以下频率.

61随机变量的概率分布、期望与方差1

如皋市薛窑中学2011届高三理科数学一轮复习 61随机变量的概率分布、期望与方差 【考点解读】 离散型随机变量及其分布列:A;超几何分布:A;条件概率及相互独立事件:A; n次独立重复试验的模型及二项分布:B;离散型随机变量的均值与方差:B 【复习目标】 1?了解取有限值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;会求某些简单的离散型随机变量的分布列。 2?了解超几何分布及其导出过程,并能进行简单的应用。 3?了解条件概率和两个事件相互独立的概念( 对条件概率的应用题不作要求 )。 4 ?理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题。 5?了解取有限值的离散型随机变量的均值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。 活动一:基础知识 1. 随机变量: 1) 定义: _________________________________________________________ 。 2) ____________________________________ 表示方法:。 2. 随机变量分布列的定义: 假定随机变量X有n个不同的取值,它们分别是X1,X2丄X n且P(X=x i)=p i ,i=1,2, -n,① 称①为随机变量X 的概率分布列,简称X的分布列 3. 概率分布表 将①用表的形式表示如下: 4. 分布列的性质: 概率分布列中P(i 1,2L n)满足以下两个条件: (1) ______________________________ (2) ______________________________ 5. 两点分布 如果随机变量X只取两个可能值_0 和__________ 1 ___ ,则称该随机变量X服从0-1分布或两点分布并记为X?0-1或X?两点分布. 其概率分布表为: 其中丨min{ M , n},且n N,M N,n,M,N N .称分布列

2019年秋浙教版初中数学九年级下册《简单事件的概率》单元测试(含答案) (626)

浙教版初中数学 九年级数学下册《简单事件的概率》测试卷 学校:__________ 一、选择题 1.(2分)一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球( ) A .28个 B .30个 C .36个 D .42个 2.(2分)从分别写着A 、B 、C 、D 、E 的 5 张卡片中,任取两张,这两张上的字母恰好按字母顺序相邻的概率是( ) A .15 B .25 C . 110 D .12 3.(2分)抛掷一枚普通的骰子(各个面分别标 12、3、4、5、6),朝上一面是偶数的概率为( ) A .16 B .12 C .13 D .14 4.(2分)如果小强将镖随意投中如图所示的正方形木板,那么镖落在阴影部分的概率为( ) A . 6 1 B . 8 1 C . 9 1 D . 12 1 5.(2分)下列事件,是必然事件的是( ) A .掷一枚均匀的普通正方形骰子,骰子停止后朝上的点数是1 B .掷一枚均匀的普通正方形骰子,骰子停止后朝上的点数是偶数 C .打开电视,正在播广告 D .抛掷一枚硬币,掷得的结果不是正面就是反面 6.(2分)在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它都完全相同,小明通过多次试验后发现其中摸到红色、黑色的频率分别为15%和45%,则口袋中白色球的个数很可能是( ) A .6 B .16 C .18 D .24

7.(2分)“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等),任取一个两位数,是“上升数”的概率是() A.1 B. 5 2 C. 5 3 D. 18 7 二、填空题 8.(3分)一个袋子里装有一双红色、一双绿色手套,两双手套除颜色外其它完全相同,随机的 从袋中摸出两只恰好是一双的概率是. 9.(3分)某口袋里有红色、蓝色玻璃球共 60 个. 小明通过多次摸球实验后,发现模到红球的频率为 15%,则可估计口袋中红色玻璃球的数目是. 10.(3分)某单位内线电话的号码由 3 个数字组成,每个数字可以是 1,2,3 的一个,如果不知道某人的内线电话号码,任意拨一个号码接通的概率是. 11.(3分)一只口袋内装有3个红球,3 个白球,5个黄球,这些球除颜色外没有其它区别,从中任意取一球,则取得红球的概率为. 12.(3分)从 1、2、3、4、5 中任选两个数,这两个数的和恰好等于 7 的概率是.13.(3分)一只口袋里有相同的红、绿、蓝三种颜色的小球,其中有6个红球,5个绿球.若 任意摸出一个绿球的概率是1 4 ,则任意摸出一个蓝球的概率是. 14.(3分)掷两枚硬币,一枚硬币正面朝上,另一枚硬币反面朝上的概率是. 15.(3分)在一次抽奖活动中,中奖概率是0.12,则不中奖的概率是. 16.(3分)如图,是一个圆形转盘,现按1:2:3:4分成四个部分,分别涂上红,黄,蓝,绿四种颜色,自由转动转盘,停止后指针落在绿色区域的概率为. 17.(3分)已知29 x ,则3x= . 18.(3分)一个口袋中有12个白球和若干个黑球,在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,求出其中白球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程5次,得到的白球数与10的比值分别为:0.4,0.1,0.2,0.1,0.2.根据上述数据,小亮可估计口袋中大约有个黑球. 19.(3分)某商场在“五一”期间推出购物摸奖活动,摸奖箱内有除颜色以外完全相同的红色、白色乒乓球各两个.顾客摸奖时,一次摸出两个球,如果两个球的颜色相同就得奖,颜色不同则不得奖.那么顾客摸奖一次,得奖的概率是. 20.(3分)在一个布袋里装有红、自、黑三种颜色的玻璃球各一个,它们除颜色外没有其它

历年数学一概率(1987-2015)..

历年考研数学一真题1987-2014 (经典珍藏版) 1987年全国硕士研究生入学统一考试 数学(一)试卷 十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上) (1)设在一次实验中,事件A 发生的概率为,p 现进行n 次独立试验,则A 至少发生一次的概率为____________;而事件A 至多发生一次的概率为____________. (2)有两个箱子,第1个箱子有3个白球,2个红球, 第2个箱子有4个白球,4个红球.现从第1个箱子中随机地取1个球放到第2个箱子里,再从第2个箱子中取出1个球,此球是白球的概率为____________.已知上述从第2个箱子中取出的球是白球,则从第一个箱子中取出的球是白球的概率为____________. (3)已知连续随机变量X 的概率密度函数为2 21 (),x x f x -+-=则X 的数学期望为____________,X 的方差为____________. 十一、(本题满分6分) 设随机变量,X Y 相互独立,其概率密度函数分别为 ()X f x = 10 01x ≤≤其它 ,()Y f y = e 0 y - 00 y y >≤, 求2Z X Y =+的概率密度函数.

1988年全国硕士研究生入学统一考试 数学(一)试卷 十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上) (1)设在三次独立试验中,事件A出现的概率相等,若 已知A至少出现一次的概率等于19, 27 则事件A在一次试验中出现的概率是____________. (2)若在区间(0,1)内任取两个数,则事件”两数之和 小于6 5 ”的概率为____________. (3)设随机变量X服从均值为10,均方差为0.02的正态分布,已知 2 2 (),(2.5)0.9938, u x x du φφ - == ? 则X落在区间(9.95,10.05)内的概率为____________. 十一、(本题满分6分) 设随机变量X的概率密度函数为 2 1 (), (1) X f x x π = - 求随 机变量1 Y=-的概率密度函数(). Y f y 1989年全国硕士研究生入学统一考试 数学(一)试卷 十、填空题(本题共3小题,每小题2分,满分6分.把答 案填在题中横线上) (1)已知随机事件A的概率()0.5, P A=随机事件B的概 率()0.6 P B=及条件概率(|)0.8, P B A=则和事件A B的概率 () P A B=____________. (2)甲、乙两人独立地对同一目标射击一次,其命中 率分别为0.6和0.5,现已知目标被命中,则它是甲射中 的概率为____________. (3)若随机变量ξ在(1,6)上服从均匀分布,则方程 210 x x ξ ++=有实根的概率是____________. 十一、(本题满分6分) 设随机变量X与Y独立,且X服从均值为1、标准差(均 方差) 的正态分布,而Y服从标准正态分布.试求随 机变量23 Z X Y =-+ 的概率密度函数.

概率分布与数学期望

概率分布与数学期望

例谈离数型随机变量概率分布与数学期望 数学期望=每个个数X每个它的概率,再相加从2008年全国各省市高考数学试题中,概率统计考题,可谓“军书十二卷,卷卷有爷名”,显然它是高考的必考内容,特别是离散型随机变量概率分布与数学期望内容的考题分布极为广泛,确实是一个重要考点,但纵观其解法,可以归纳为定义法、公式法、分析法与变量推理法四种,2009年考生务必对上述四种解题方法引起高度重视,本文就其命题特点,解题规律作专题阐述,以飨读者。 一、定义法求解概率分布与数学期望 定义法即根据随机事件的概率、随机变量、概率分布、数学期望的定义求解概率分布与数学期望的方法。 可使用本法解题的考题,一般以古典离散型概率为特征,它可直接利用排列组合的加法原理与乘法原理写出离散型随机变量概率的计算式,进而求得随机变量各值条件下的概率分布与数学期望。此类题型解题思路明确,利用定义法求解,其方法容易掌握。

例1,(08浙江理)一个袋中装有若干个大小相同的黑球,白球和红球.已知从袋中任意摸出1 ;从袋中任意摸出2个球,得到黑球的概率是2 5 . 个球,至少得到1个白球的概率是7 9 (1)若袋中共有10个球,(1)若袋中共有10个球,(ⅰ)求白球的个数;(ⅱ)从袋中任意摸出3个球,记得到白球的个数为ξ,求随机变量ξ的数学期望Eξ. (2)求证:从袋中任意摸出2个球,至少得到1 .并指出袋中哪种颜色的个黑球的概率不大于7 10 球个数最少. 分析:本题是以古典概率为题材的高考题,由于从袋中摸球是有回放地摸球,且每次摸球都是互相独立的,系互不影响事件,所发生的概率是等可能的。故可根据概率定义,利用排列组合计算方法求解随机变量各值的概率。 解:袋中共有10个球,且至少得到1个白球7,设其中有X个白球,我们将至少得到的概率为 9 7,又∵P(A)一个白球的事件为A,则P(A)= 9

概率论中数学期望的概念

毕业论文(设计) 题目:概率论中数学期望的概念 姓名: 学号:0411******* 教学院:数学与计算机科学学院 专业班级:数学与应用数学专业2008级1班 指导教师: 完成时间:2012年04月10日 毕节学院教务处制

概率论中数学期望概念 摘要:数学期望是现代概率论中最重要的基本概念之一,无论在理论上还是在应用中都具有重要的地位和作用。但是,数学期望这一概念对许多学者来说却又是一个难点,特别是对概念的理解和对这一数学工具的使用上都很难掌握。本文从离散型随机变量的来源、定义、分布及其理解上详细阐述概率论中的数学期望的概念及其性质,并介绍说明这一数学工具在实际生活中的应用。目的是希望能给更多的学者提供一些参考及帮助。 关键词:离散型;随机变量;分布;函数;期望 Mathematical expection concept

in theory of probability Candidate:Xiong Xiao-ping Major:Mathematics and applied mathematics Student No:0411******* Advisor:Xue Chao-kui(Lecturer) Abstract:Mathematical expectation is the modern theory of probability in the most important one of the basic concept, whether in theory or in the applications has an important position and role. But, mathematical expectation is a difficult concept for many scholars, especially for the understanding of concepts and the mathematical tools to the use of all difficult to master. This article from source of discrete random variable, definition, distribution and understand the detail on the mathematics of the concept of probability theory and its properties expectations, and introduces the mathematical tools that in the actual life application. The main purpose is to give more scholars can provide some reference and help. Keywords:discrete; Random variable, Distribution; Functions; expect

互斥事件与对立事件的概率

考点165 互斥事件与对立事件的概率 1.(11湖北T12) 在30瓶饮料中,有3瓶已过了保质期.从这30瓶饮料中任取2瓶,则至少取到1瓶已过了保质期饮料的概率为 .(结果用最简分数表示) 【测量目标】对立事件的概率. 【难易程度】容易 【参考答案】 145 28 【试题解析】从这30瓶饮料中任取2瓶,设至少取到1瓶已过了保质期饮料为事件A ,从这30瓶饮料中任取2瓶,没有取到1瓶已过了保质期饮料为事件B ,则A 与B 是对立事件,因为 ()2272 30C 2713 C 1529 P B ?==?,(步骤1) 所以()()145282915132711=??- =-=B P A P ,所以填145 28 .(步骤2) 2.(11重庆T13) 将一枚均匀的硬币投掷6次,则正面出现的次数比反面出现的次数多的概率为_______. 【测量目标】互斥事件的概率. 【难易程度】中等 【参考答案】 1132 【试题解析】由题意知本题是一个n 次独立重复试验中恰好发生k 次的概率,(步骤1) 正面出现的次数比反面出现的次数多包括 正面出现4次,反面出现2次; 正面出现5次,反面出现1次; 正面出现6次,共有三种情况,这三种情况是互斥的,(步骤2) ∴正面出现的次数比反面出现的次数多的概率是 242611()()22C +55611()()22 C +61()2=1561646464++=1132(步骤3) 故答案为:11 32 3. (10辽宁T3) 两个实习生每人加工一个零件.加工为一等品的概率分别为 23和3 4 ,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为 ( ) A. 12 B.512 C.14 D.16 【测量目标】互斥事件与对立事件的概率. 【难易程度】容易 【参考答案】B 【试题解析】12()()()P A P A P A =+= 21135 343412 ?+?=.

概率分布以及期望和方差

概率分布以及期望和方差 上课时间: 上课教师: 上课重点:掌握两点分布、超几何分布、二项分布、正态分布的概率分布及其期望和方差 上课规划:解题技巧和方法 一 两点分布 ⑴两点分布 如果随机变量X 的分布列为 X 1 0 P p q 其中01p <<,1q p =-,则称离散型随机变量X 服从参数为p 的二点分布. 二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X 为任意抽取一件产品得到的结果,则X 的分布列满足二点分布. X 1 0 P 0.8 0.2 两点分布又称01-分布,由于只有两个可能结果的随机试验叫做伯努利试验,所以这种分布又称为伯努利分布. (2)典型分布的期望与方差: 二点分布:在一次二点分布试验中,离散型随机变量X 的期望取值为p ,在n 次二点分布试验中,离散型随机变量X 的期望取值为np . 1、在抛掷一枚图钉的随机试验中,令10X ?=? ? ,针尖向上; ,针尖向下.,如果针尖向上的 概率为p ,试写出随机变量X 的概率分布. 2、从装有6只白球和4只红球的口袋中任取一只球,用X 表示“取到的 知识内容 典例分析

白球个数”,即???=,当取到红球时, ,当取到白球时, 01X ,求随机变量X 的概率分布. 3、若随机变量X 的概率分布如下: X 1 P 29C C - 38C - 试求出C ,并写出X 的分布列. 3、抛掷一颗骰子两次,定义随机变量 ?? ?=)(,1)(,0的点数数等于第二次向上一面当第一次向上一面的点 面的点数数不等于第二次向上一当第一次向上一面的点 ξ 试写出随机变量ξ的分布列. 4、篮球运动员比赛投篮,命中得1分,不中得0分,已知运动员甲投篮命中率的概率为P . ⑴ 记投篮1次得分X ,求方差()D X 的最大值; ⑵ 当⑴中()D X 取最大值时,甲投3次篮,求所得总分Y 的分布列及Y 的期望与方差. 二 超几何分布

数学期望与分布列专题

离散型随机变量的数学期望 称E(X)= 切七+…曲+…7竹为随机变帚K 的均 侑或数学期犁,它反映了离散型随机变最取值的士均 水平. A.丄 B. 1 C. — D.— 18 9 9 20 鱸析由分布列的件质, 可得2x+3x+7x+2x+3r^x=l f 几芹=/. A E(X)=0X2xHX 3E 2 X 7x+3 X 2工+4 X 3JT +5JC 20 =40x= — 9 2.已知某一随机变量占的槪率分布列如F, M 日门= 电3, !(|陆的值为 (C ) J B.6 C. 7 D.B 解析 由分布列性虞知,0?&+O.1+U 0. 4. :? E? 4X0.5+aX0. 1+9X0, 4-6,3, :,a-l. 某中学组建了 A 、B 、C 、D 、E 五个不同 的社团组织,为培养学生的兴趣爱好 必须参加,且只能参加一个社团 ?假定某班级的甲、乙、丙三名学生对这五个社团的选择是 ,要求每个学生

等可能的. (1) 求甲、乙、丙三名学生参加五个社团 的所有选法种数; (2) 求甲、乙、丙三人中至少有两人参加同一社团的 概率; (3) 设随机变量E为甲、乙、丙这三名学生参加A社 团的人数,求E的分布列与数学期望. 有一批产品,其中有12件正品和4件次品,从中任取3件,若E表示取到次品的个 数 E(E )=_ 某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量E 选出的志 表示愿者中女生的人数,则数学期望E(E)=_ 袋中有相同的5个球,其中3个红球,2个黄球,现从中随机且不放回地摸球,每次摸1个,当 两种颜色的球都被摸到时,即停止摸球,记随机变量E为此时已摸球的次数,求: (1)随机变量E的概率分布列; (2)随机变量E的数学期望与方差

浙教版数学九年级上册2.2《简单事件的概率》word教案

2.2简单事件的概率(1) 教学目标: 1、了解事件A 发生的概率为()n m A P = ; 2、掌握用树状图和列表法计算涉及两步实验的随机事件发生的概率。 3、通过实验提高学生学习数学的兴趣,让学生积极参与数学活动,在活动中发展学生的合作交流意识和能力。 教学重点: 进一步经历用树状图、列表法计算随机事件发生的概率。 教学难点: 正确地利用列表法计算随机事件发生的概率。 教学过程: 一、实验操作,探索新知。 师:盒子中装有只有颜色不同的3个黑棋子和2个白棋子,从中摸出 一棋子,是黑棋子的可能性是多少? 生:由几名学生动手摸一摸。 (教师准备一个不透明的小袋子,里面装有3个黑围棋和2个白围棋) 师:在数学中,我们把事件发生的可能性的大小称为事件发生的概率,如果事件发生的 各种可能结果的可能性相同,结果总数为n(事件A 发生的可能的结果总数为m),事 件A 发生的概率为()n m A P = 。 二、新课教学。 1、热身练习: 如图,三色转盘,每个扇形的圆心角度数相等,让转盘自由转 动一次, “指针落在黄色区域”的概率是多少? 师:结合定义作详细分析,为两个例题教学做准备。 (分析:转盘中红、黄、蓝三种颜色所在的扇形面积相同,即指针落在各种颜色区域 的可能性相同,所有可能的结果总数为3=n ,其中“指针落在黄色区域”的可能结果 总数为1=m 。若记“指针落在黄色区域”为事件A ,则()n m A P = 3 1 =。 ) 设计说明:通过练习,让学生及时回味知识的形成过程,使学生在学会数学的过程中会学数学。 2、例题讲解: 例1 如图,有甲、乙两个相同的转盘。让两个转盘分别自由转动一次,当转盘停止转 动,求(1)转盘转动后所有可能的结果; (2)两个指针落在区域的颜色能配成紫色(红、蓝两色混合配成)的概率; (3)两个指针落在区域的颜色能配成绿色(黄、蓝两色混合配成)或紫色的概率; 例题解析: (1) 例1关键是让学生学会 分步思考的方法。 (2) 教师分析并让学生学会画树状图(教师板演)。 3、巩固练习:任意抛掷两枚均匀硬币,硬币落地后,

概率论中几种具有可加性的分布与关系

. 目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1 几种常见的具有可加性的分布 (1) 1.1 二项分布 (2) 1.2 泊松分布(Possion分布) (3) 1.3 正态分布 (4) 1.4 伽玛分布 (6) 1.5 柯西分布 (7) 1.6 卡方分布 (7) 2 具有可加性的概率分布间的关系 (8) 2.1 二项分布的泊松近似 (8) 2.2 二项分布的正态近似 (9) 2.3 正态分布与泊松分布间的关系 (10) 2.4 正态分布与柯西分布、卡方分布及卡方分布与伽玛分布的关系 (11) 3 小结 (12) 参考文献 (12) 致 (13)

概率论中几种具有可加性的分布及其关系 概率论中几种具有可加性的分布及其关系 摘要 概率论与数理统计中概率分布的可加性是一个十分重要的容.所谓分布的可加性指的是同一类分布的独立随机变量和的分布仍属于此类分布.结合其特点,这里给出了概率论中几种具有可加性的分布:二项分布,泊松分布,正态分布,柯西分布,卡方分布以及伽玛分布.文章讨论了各类分布的性质及其可加性的证明,这里给出了证明分布可加性的两种方法,即利用卷积公式和随机变量的特征函数.除此之外,文章就可加性分布之间的各种关系,如二项分布的泊松近似,棣莫佛-拉普拉斯中心极限定理等,进行了不同层次的讨论. 关键词 概率分布 可加性 相互独立 特征函数 Several Kinds of Probability Dstribution and its Relationship with Additive Abstract Probability and mathematical statistics in the probability distribution of additivity is a very important content.The distribution of the so-called additivity refers to the distribution of the same kind of independent random variables and distribution are still belong to this kind of https://www.doczj.com/doc/8310841894.html,bined with its characteristics, here given several has additivity distribution in probability theory: the binomial distribution, poisson distribution and normal distribution and cauchy distribution, chi-square distribution and gamma distribution.Article discusses the nature of all kinds of distribution and its proof of additivity, additive of proof distribution are also given two methods, namely using convolution formula and characteristic function of a random variable. In addition, this paper the relationships between the additive property distribution, such as the binomial distribution of poisson approximation, Di mo - Laplace's central limit theorem, and so on, has carried on the different levels of discussion. Key Words probability distribution additivity property mutual independence characteristic function 引言 概率论与数理统计是研究大量随机现象的统计规律性的学科,在概率论与数理统计中,有时候我们需要求一些随机变量的和的分布,在这些情形中,有一种求和类型比较特殊,即有限个相互独立且同分布的随机变量的和的分布类型不变,这一求和过程称为概率分布的“可加性”.概率分布中随机变量的可加性是一个相当重要的概念,本文给出了概率论中常见的六种具有可加性的分布,包括二项分布,泊松分布,正态分布,伽玛分布,柯西分布和卡方分布.文章最后讨论了几项分布之间的关系,如二项分布的泊松近似,正态近似等等. 1 几种常见的具有可加性的分布 在讨论概率分布的可加性之前,我们先来看一下卷积公式和随机变量的特征函数,首先来看卷积公式[1]: ①离散场合的卷积公式 设离散型随机变量ξζ,彼此独立,且它们的分布列分别是n k a k P k ,1,0,)(???===ζ和.,,1,0,)(n k b k P k ???===ξ则ξζ?+=的概率分布列可表示

高中数学-概率专题

课题:概率与统计知识点与题型 2.1随机事件的概率及概率的意义 1、基本概念: (1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件; (4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件; (5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试 验中事件A 出现的次数nA 为事件A 出现的频数;称事件A 出现的比例 fn(A)=n n A 为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数 的增加,事件A 发生的频率fn(A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。 (6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA 与试验总次数n 的比值n n A ,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数 的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率 2.2 概率的基本性质 1、基本概念: (1)事件的包含、并事件、交事件、相等事件 (2)若A ∩B 为不可能事件,即A ∩B=ф,那么称事件A 与事件B 互斥; (3)若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件; (4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);若事件A 与B 为对立事 件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B) 2、概率的基本性质: 1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;

【浙教版】九年级数学上册 第二章 简单事件的概率 自我评价测试(一)及答案

第二章 简单事件的概率每周自我评价测试 (第一周) 一.选择题(共10小题,每小题3分,共30分) 温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来! 1.一个盒子内装有大小.形状相同的四个球,其中红球1个.绿球1个.白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( ) 21.A 41.B 61.C 12 1.D 2.在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④,随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是( ) 161. A 163. B 41. C 16 5.D 3.一个布袋里面装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是( ) A.16 B.15 C.25 D.35 4.在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于4的概率是( ) A. B. C. D. 5.以上说法合理的是( )

A.小明在10次抛图钉的试验中发现3次钉尖朝上,由此他说钉尖朝上的概率是30% B.抛掷一枚普通的正六面体骰子,出现6的概率是1/6的意思是每6次就有1次掷得6 C.某彩票的中奖机会是2%,那么如果买100张彩票一定会有2张中奖。 D.在一次课堂进行的试验中,甲.乙两组同学估计硬币落地后,正 面朝上的概率分别为0.48和0.51。 6.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情 况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球() A.28个 B.30个 C.36个 D.42个 7.有6张背面相同的扑克牌,正面上的数字分别是4,5,6,7,8, 9.若将这六张牌背面 朝上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是9的概率为() A. 2 3 B. 1 2 C. 1 3 D. 1 6 8.如图的转盘被划分成六个相同大小的扇形,并分别标上1,2,3, 4,5,6这六个数字,指针停在每个扇形的可能性相等,四位同学各自发表了下述见解:甲:如果指针前三次都停在了3号扇形,下次就一定不会停在3号扇形了乙:只要指针连续转六次,一定会有一次停在6号扇形丙:指针停在奇数号扇形的概率和停在偶数号扇形的概率相等丁:运气好的时候,只要在转动前默默想好

高中数学-选修2-3-第八章统计和概率

概率与统计知识点: 1、随机变量:如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母 ξ、η等表示。 2、离散型随机变量:在上面的射击、产品检验等例子中,对于随机变量X 可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. 3、离散型随机变量的分布列:一般的,设离散型随机变量X 可能取的值为x 1,x 2,..... ,x i ,......,x n X 取每一个值 x i (i=1,2,......)的概率P(ξ=x i )=P i ,则称表为离散型随机变量X 的概率分布,简称分布列 4、分布列性质① p i ≥0, i =1,2, … ;② p 1 + p 2 +…+p n = 1. 5、二项分布:如果随机变量X 的分布列为: 其中0=A P A P AB P A B P )()()(B P A P B A P ?=?)(k P =ξk n k k n q p C - =

概率统计与数学期望

龙源期刊网 https://www.doczj.com/doc/8310841894.html, 概率统计与数学期望 作者:汪元忠 来源:《课程教育研究·学法教法研究》2018年第36期 【摘要】随着人类社会的进步,科学技术的发展,经济全球化的日益进程,数学在生活 中的应用越来越广,生活中的数学无处不在.而数学中的一个非常重要的分支——概率统计, 在众多领域内扮演着越来越重要的角色,取得越来越广泛的应用。正如英国逻辑学家和经济学家杰文斯所说:概率论是“生活真正的领路人,如果没有对概率的某种估计,我们就寸步难行,无所作为”。 【关键词】概率统计数学期望 【中图分类号】G623.5 【文献标识码】A 【文章编号】2095-3089(2018)36-0117-01 数学期望在解数学题和实际生活中的一些应用,通过围绕数学期望在证明一些数学不等式、分析彩票中奖概率、医学普查及投资等实际问题中的应用,进一步揭示概率统计中数学期望与数学本身及实际生活的密切联系,为应用概率知识解决实际问题,数学模型的建立,学科知识的迁移奠定一定的理论基础。概率统计的分支学科—数学期望的应用尤为广泛,随着科学技术的发展与计算机的普及,它已广泛地应用于各行各业,成为研究自然科学,社会现象,处理工程和公共事业的有力工具,下面浅谈数学期望在实际生活中的一些应用: 数学期望在商品出售获利方面的应用:按节气出售的某种节令商品,每售出1斤可获利a 元,过了节气处理剩余的这种商品,每售出1斤净亏损b元。设商店在季度内这种商品的销量是一随机变量,在区间内服从均匀分布。为使商店所获利润的数学期望最大,问该商店应进多少货? 分析如下:设t表示进货数,进货t所获利润记为Y,则Y是随机变量, 令=0,得驻点t=由此可知,该店应进公斤商品,才能使利润的数学期望最大。 数学期望在医学普查中的应用:某地区的群众患有肝炎的概率为0.004左右,假若要对该地区5000人经行肝炎感染的普查,问用分组检验方法是否比逐个检查减少了次数? 分析如下:设将这5000人分成5000/K组,每组k人,每人所需检验的次数为随机变量,则的概率分布为: 每人平均所需检验次数的期望为:

浙教版九年级数学第二章简单事件的概率全章教案

课题:2.1事件的可能性 教学目标: 1、通过生活中的实例,进一步了解概率的意义; 2、理解等可能事件的概念,并准确判断某些随机事件是否等可能; 3、体会简单事件的概率公式的正确性; 4、会利用概率公式求事件的概率。 教学重点: 等可能事件和利用概率公式求事件的概率。 教学难点:判断一些事件可能性是否相等。 教学过程:第一课时 一、引言 出示投影: (1)1998年,在美国密歇根州的一个农场里出生了一头白色奶牛。据统计平均出生1千万头牛才会有一头是白色的。你认为出生一头白色奶牛的概率是多少? (2)设置一只密码箱的密码,若要使不知道秘密的人拨对密码的概率小于999 1 ,则密码的位数至少需要多少位? 这些问题都需要我们进一步学习概率的知识来解决。本章我们将进一步学习简单事件的概率的计算、概率的估计和概率的实际应用。 二、简单事件的概率 1、引例:盒子中装有只有颜色不同的3个黑棋子和2个白棋子,从中摸出一棋子,是黑棋子的可能性是多少? 小结:在数学中,我们把事件发生的可能性的大小,称为事件发生的概率 如果事件发生的各种可能结果的可能性相同,结果总数为n ,事件A 发生的可能的结果总数为m ,那么事件A 发生的概率是n m A P )(。 2、练习: 如图 三色转盘,每个扇形的圆心角度数相等,让转盘自由转动一次, “指针落在黄色区域”的概率是多少? 3、知识应用: 例1、如图,有甲、乙两个相同的转盘。让两个转盘分别自由转动一次,当转盘停止转动,求

(1)转盘转动后所有可能的结果; (2)两个指针落在区域的颜色能配成紫色(红、蓝两色混合配成)的概率; 3)两个指针落在区域的颜色能配成绿色(黄、蓝两色混合配成)或紫色的概率; 解:将两个转盘分别自由转动一次,所有可能的结果可表示为如图,且各种结果的可能性相同。所以所有可能的结果总数为n =3×3=9 (1)能配成紫色的总数为2种,所以P = 9 2 。 (2)能配成绿色或紫色的总数是4种,所以P = 9 4。 练习:课本第32页课内练习第1题和作业题第1题。 例2、 一个盒子里装有4个只有颜色不同的球,其中3个红球,1个白球。从盒子里摸出一个球,记下颜色后放回,并搅匀,再摸出一个球。 (1)写出两次摸球的所有可能的结果; (2)摸出一个红球,一个白球的概率; (3)摸出2个红球的概率; 解:为了方便起见,我们可将3个红球从1至3编号。根据题意,第一次和第二摸球的过程中,摸到4个球中任意一个球的可能性都是相同的。两次摸球的所有的结果可列表表示。 (1)事件发生的所有可能结果总数为n = 4×4=16。 (2)事件A 发生的可能的结果种数为m =6, ∴n m A P = )(= 83 166= (2)事件B 发生的可能的结果的种数 m =9 ∴16 9)(== n m B P 练习:课本第32页作业题第2、3、4题 三、课堂小结: 1、概率的定义和概率公式。 2、用列举法分析事件发生的所有可能请况的结果数一般有列表和画树状图两种方法。 3、在用列表法分析事件发生的所有情况时往往第一次在列,第二次在行。表格中列在前,行在后,其次若有三个红球,要分红1、红2、红3。虽然都是红球但摸到不同的红球时不能表达清楚的。 四、布置作业:见课课通

高中数学概率与统计(理科)常考题型归纳

高中数学概率与统计 ( 理科 ) 常考题型归纳 题型一 :常见概率模型的概率 几何概型、古典概型、相互独立事件与互斥事件的概率、条件概率是高考的热点,几何概型主要 以客观题考查,求解的关键在于找准测度 (面积,体积或长度 );相互独立事件,互斥事件常作为解答题的一问考查,也是进一步求分布列,期望与方差的基础,求解该类问题要正确理解题意,准确判定概率模型,恰当选择概率公式 . 【例 1】现有 4 个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择 .为增加趣味性,约 定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏, 掷出点数为 1 或 2 的人去参加甲游 戏,掷出点数大于 2 的人去参加乙游戏 . (1)求这 4 个人中恰有 2 人去参加甲游戏的概率; (2)求这 4 个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率; (3)用 X , Y 分别表示这 4 个人中去参加甲、乙游戏的人数,记 ξ= |X -Y|,求随机变量 ξ的分布列 . 解 依题意,这 4 个人中,每个人去参加甲游戏的概率为 1 2 3,去参加乙游戏的概率为 3. 设“这 4 个人中恰有 i 人去参加甲游戏”为事件 Ai = ,,,, 4). ( i 0 1 2 3 i 1 i 2 4-i 则 P(Ai)=C4 3 3 . (1)这 4 个人中恰有 2 人去参加甲游戏的概率 212 2 2 8 P(A2)=C4 3 3 =27. (2)设“这 4 个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件 3+A4,且 A3 B ,则 B = A 与 A4 互斥, ∴P(B)=P(A3+A4 = 3 1 3 2 4 1 4 1 3 + 4 = = 4 3 × +C4 3 9. ) P(A ) P(A ) C 3 (3)依题设, ξ的所有可能取值为 0,2,4. 且 A 1与 A 3 互斥,A 0 与 A 4互斥. 8 则 P(ξ=0)= P(A2)= 27, P(ξ=2)=P(A1+ A3)= P(A1)+P(A3) 1 1 1 2 3 3 1 3 2 40 =C4 3 · 3 +C4 3 ×3=81, P(ξ=4)=P(A0+ A4)= P(A0)+P(A4) 0 2 4 4 1 4 17 = .

相关主题
文本预览
相关文档 最新文档