当前位置:文档之家› 阀用螺管式电磁铁的双线圈优化设计

阀用螺管式电磁铁的双线圈优化设计

阀用螺管式电磁铁的双线圈优化设计
阀用螺管式电磁铁的双线圈优化设计

阀用螺管式电磁铁的双线圈优化设计

作者:周兰, 庄圣贤, 李昊, 霍连文, 许永衡, 李宏强, ZHOU Lan, ZHUANG Sheng-xian, LI Hao,HUO Lian-wen, XU Yong-heng, LI Hong-qiang

作者单位:周兰,庄圣贤,许永衡,ZHOU Lan,ZHUANG Sheng-xian,XU Yong-heng(西南交通大学电气工程学院,四川成都,610031), 李昊,LI Hao(西南交通大学电气工程学院,四川成都610031;西安久和能源科技有限公司,陕西

西安710018), 霍连文,李宏强,HUO Lian-wen,LI Hong-qiang(西安久和能源科技有限公司,陕西西安

,710018)

刊名:

磁性材料及器件

英文刊名:Journal of Magnetic Materials and Devices

年,卷(期):2012,43(2)

本文链接:https://www.doczj.com/doc/831056842.html,/Periodical_cxcljqj201202018.aspx

Infolytica软件电磁铁解决方案

INFOLYTICA专业电磁场仿真软件 ――电磁铁解决方案 海基科技 2010 年 1月

目录 1. 采用电磁有限元软件分析电磁铁的重要性 (3) 2.应用INFOLYTICA软件分析电磁铁的优点 (3) 2.1主要优点概述 (3) 2.2在电磁铁分析中的优点 (4) 2.2.1 CAD接口功能 (4) 2.2.2 动态仿真能力 (5) 2.2.3 与simulink联合仿真 (6) 2.2.4 磁热耦合计算 (7) 2.2.5 优化设计 (8) 3. INFOLYTICA软件在电磁铁中的应用实例 (9) 3.1问题描述 (9) 3.2仿真结果 (10) 3.2.1 磁场分布 (10) 3.2.2 新老模型吸合过程比较 (11) 3.2.3新老模型提升过程比较 (15) 3.2.4 老模型提升过程(500ms) (21) 3.2.5新模型提升过程(500ms) (23) 4. 软硬件配置建议 (25) 5. 部分客户列表 (26) 6. 海基公司简介 (26)

1. 采用电磁有限元软件分析电磁铁的重要性 电磁铁利用通电线圈激磁产生电磁力,驱动阀芯运动以开启和关闭阀门,结构紧凑、尺寸小、重量轻、密封良好、维修简便、可靠性高,是自动控制领域的重要部件。但是,电磁铁的电磁设计目前往往还停留在基于磁路的方式、凭经验公式或模仿国外同类产品,产品性能靠估算和事后测试。 比例电磁铁关系是到电子调速器可靠性的重要装置,其功能是将输入的电流信号,转换成力或位移信号输出,其轴向推力与线圈电流成正比且在有效行程范围内保持恒定。由于影响比例电磁铁性能特性的结构参数较多,传统设计一般采用磁路法,对各个结构参数作用评估往往不够具体和准确,需要采用电磁有限元方法进行准确计算。 在电喷系统中,高速电磁阀借助于控制电磁铁产生的电磁吸力,使得电磁阀芯正、反向高速运动,从而实现液流在阀口处的交替通、断功能。其高速响应特性是高速电磁阀设计应考虑的重要指标。通过电磁阀材料的选择、结构优化及驱动电路设计等方面进行综合优化,可以获得较好的动态响应特性。电磁力的计算并获得其数值的大小是进行理论分析的基础,但是在实际计算中都采用磁路法,进行了较多的简化,其计算结果与实际结果必然相差较大。因此。目前在电磁阀研究中,采用磁路法给出定性的指导,大量工作是通过试验进行优化研究,这将大大增加研发周期和成本。 随着计算机技术的发展,电磁场数值计算技术已用于电机工程领域,有限元法因几何适应性强、易于处理非线性、非均匀媒质等优点,已成为最有效、应用最广泛的方法。采用电磁场有限元方法对电磁阀进行计算,可以考虑磁场分布中的漏磁现象和磁场饱和现象,计算结果更加接近实际结果。采用有限元法可大大缩短电磁阀开发设计的周期,增加阀的多样性,提高产品的性能,增强市场竞争力。 2.应用Infolytica软件分析电磁铁的优点 2.1 主要优点概述 Infolytica的软件作为专业而且历史悠久的电、磁、热仿真软件,无论从操作上或是求解精度或是技术支持上,别的软件都是无法比拟的,其优点主要可以总结为以下几点: 9真实和友好的视窗界面,使用户容易迅速了解软件功能。 9模型的所有参数和求解结果等存储在一个压缩的文件内,减少存储空间,便于统一管理。 9非常方便的几何建模能力,可以快速处理各种复杂几何形状。 9与其他三维设计软件的接口能力,包括:AutoCAD, SAT,CATIA,IGES,Pro/E,TEP,Inventor,etc. 9所建立的模型,在MagNet,ThermNet,ElecNet任一软件中建立的模型可以直接在另外两个软件内使用,无须重复建模。 9可编辑和自定义的材料属性。 9隐含网格剖分,和自适应网格。 9方便的定义边界条件。 9可以定义与模型连接的电路。 9领先于其他软件厂商同类产品的高效稳定的求解器。 9求解器可以分析2D/3D模型的:静磁场,时间谐振场,瞬态场,有运动部件模型的瞬态场。 9运动求解器支持多个运动部件的任意运动。 9提供详细和精确的仿真结果,使设计人员可以全面的了解所设计模型的性能。 9求解量的自动化的图表处理。 9Infolytica的磁场分析软件Magnet 可以和热场分析软件ThermNet进行耦合求解。 9强大的参数化功能,可将模型几何,材料,激励,网格属性等量参数化,进行多个工况的求解。 9完备的脚本语言,可以容易的对软件进行二次开发。 9基于ActiveX,可以和其他基于同样技术的软件接口,如MatLab, Excel,等。 9多个实用的插件可以免费下载供用户使用,并且在不断扩充。 9大量的在线应用实例,提供各种类型的应用实例,包括多个TEAM 的基准算例。

电磁铁吸力计算(20201004205208)

电磁铁相关知识 (参考电磁铁设计手册) 、磁和电的关系: 螺皆経圏的禺塢 、电磁铁型式: 电谶鉄的型式 磁桶若向 a)螺管式电磁铁;

b)盘式电磁铁; c), d)拍合式电磁铁; e)n式电磁铁; f)装甲螺管式电磁铁; g)E形电磁铁; 应用举例: 电鈴的工作隔邂 磁通和磁感应強度 磁場旣然是假宦由許多磁力綫所构成的,郑么描述与計算磴場的数尽黄系时’用磁力耀的槪念也是最淸楚的门在电工半上規宜.矗吃撑二^积;S的磁力繙潼称为丽\通常用符号龙来表示U磁通的单位为麦克斯屯(簡称麦儿怛是仅仅用磁通的多少尸还不能确切地表达出磁場的强弱,必勿用单位載面积上斯洗过的磁力綫数的多少”才能說明該处的礁場大小〉因此,規定单位噩面租上寡过的磁力綫数称为磁感应靈度,或BS通密度,用字母E表示Q琳感应强度B的单位为高斯,用於式表%: B^S~ 式中B——磁感应强宦(高斯); 必——硝通(麦); S——戰面枳(平方厦米)e 应用上式于磁堀我磁歛內部』貝更如逍某裁面&中的镒通切为多少,就可計算出融感应强度占来,反之亦然。

凡是硝通都耍沿一定的路徑閉伞而成回賂。如果我們用一根鉄俸捕入上节所述的燥管踐圈卡,另外再在饌棒两端用鉄条联成閉路°那么,我們将发現在綫圈磴势相同的信况下,其1K通将比空心綫圈时大为增加,而且大都分的滋通都会集中地流入鉄棒和鉄条内'而沿鉄棒外碁他路徑閉合的磁通非常之少弋这是因也墜和a±t銚比通过空气阪力小僵多a因此我們把鋼鉄之类的金属称作鉄磁物质,作为磁通賂徑的鉄磁体叫做导磁体口 通常应用的电磁鉞,就是将経圈歩在一定形状的号做体上所构成的。衽这样的綫圈中'只耍通进很小的激礦电流J就可以产生很强的砸堀(即很多磁砸),产生强大的毀力。 磁势=磁通*磁阻 磁势二电流*线圈的匝数 C *R m*10-8=IW 磁阻的大小与磁胳的长度成;正此,而与硝路裁面积成反? 比〔图2-8),这个关系可表示为: = (2-4) 式中心一磁阻(1/亨); I——磁賂长度(厘二 米); 4——导磁系数(亨/厘来”

电磁阀的计算选型

电磁阀的计算选型 电磁阀就是电厂热工自动化中应用相当广泛的设备之一。它可以用来控制一定压力下的某些工质在管道中的自动通断,成为特定的执行器,如锅炉的燃油快关阀、汽轮机组调速保安系统油路上的电磁滑阀、给水泵组密封水管路的切换阀以及采暖工程的热水阀等。它还可以作为气动、液动回路自动切换或顺序控制的执行元件,它就成了该气动、液动执行器的电——气、电——液执行元件,这方面的应用更为普遍。如主厂房锅炉的气动安全门、汽轮机组气动或液动的抽汽逆止门等都就是由电磁阀控制通向操作装置的气路、液(水)路的通断来完成其开关动作的,辅助车间及其系统众多气动执行机构的自动控制也离不开电磁阀这一设备。再如,过去在锅炉各段烟道压力的常规检测中也使用过电磁阀切换做到一台表计的多点测量。可见,电磁阀在电厂热工测量、控制及保护联锁上都就是一项基础元件设备,对电磁阀的关注熟悉、正确选用乃就是热工自动化设计的一项基础工作。基于此,本文着重讨论电磁阀在选型与控制上的一些问题,有些见解仅就是笔者一家之言,期盼同仁指正。 1 电磁阀的结构原理及其分类 1.1 电磁阀的结构原理 电磁阀的结构并不复杂,它由两个基本功能单元组成,一就是电磁线圈(电磁铁)与磁芯,另一就是滑阀,即包含数个孔的阀体。电磁线圈带电或失电时,磁芯的运动导致工质流体通过阀体或被切断。 上述用来在工艺管道中直接通断的作为特定执行器的电磁阀,电磁线圈带电时,磁芯 直接开启常闭阀的孔或关闭常开阀的孔,阀门能从0(无压差)至其最大额定压力间开启或关闭。而上述用来在气动、液动执行器充当执行元件的电磁阀,则要借助动力源(压缩空气、有压头的水或油等液体)来操作电磁阀上的先导孔与旁通孔。电磁线圈带电时,磁芯开启先导孔,通过阀的出口消除膜片或活塞顶部的压力,且将其推离主孔,阀门得以开启。电磁线圈失电时,先导孔关闭,动力源的压头通过旁通孑L作用于膜片或活塞顶部而产生阀座力,阀门得以关闭。这就是因为受这些执行机构控制的工艺阀门一般口径都较大, 要求执行机构接受动力源的压头也大(如DNl50及以上的气动隔膜阀、气动蝶阀的操作压力》0.5MPa),则传递动力源的电磁阀的孑L尺寸及工质流体压力势必也要大,只有将电磁线圈做大才足以开启电磁阀来传递执行机构所需的动力源。为了解决这一矛盾,保持电磁线圈的小尺寸,就不再使用磁芯直接启闭阀体孔的直接操作的(直动式)电磁阀, 而改用磁芯启闭先导孔的导向操作的(先导式)电磁阀。 1.2 电磁阀的分类 电磁阀的分类无定式,随分类方式不同而异, 实际上,上表并不能涵盖所有电磁阀的种类。如两通、三通直动式及单电控两位四通、五通(五个接口)电磁阀还有电脉冲控制的,电磁线圈非连续带电,而用磁闪锁控制。还如不同于两个电磁线圈控制的“双稳”先导式电磁阀,另一种“双稳”先导式电磁阀就是由双 外部压力源控制的(先导式要有压力源,丽一种说得更确切,就是由电磁线圈及主压力源控制),已无电气部件——电磁线圈。再如由两个电磁先导阀、一个滑阀及其连接体组成的三位三通、三位五通电磁阀。这些或应用相对较少,或仅就是一个滑阀,就不再列入分

电磁铁设计

直流电磁铁设计 共26 页 编写: 校对:

直流电磁铁设计 电磁铁是一种执行元件,它输入的是电能,输出的是机械能。电能和机械能的变换是通过具体的电磁铁结构来实现的。合理的电磁铁结构是能量变换效率提高的保证。电磁铁设计的任务是合理的确定电磁铁的各种结构参数。确定电磁铁的各种结构参数是一个相当复杂的任务,下面我们探讨确定电磁铁结构参数的一般方法。电磁铁吸合过程是一个动态过程,设计是以静态进行计算. 一、基本公式和一般概念 1、均匀磁场B= S Φ(T ) 2、磁势F=NI,电流和匝数的乘积(A ) 3、磁场强度H= L NI (A/m ),建立了电流和磁场的关系。 该公式适用于粗细均匀的磁路 4、磁导率μ= H B 建立了磁场强度和磁感应强度(磁通密度)的关系。 μ0=4π×10-7享/米 相对磁导率μr =0 μμ 5、 磁通Φ= M R NI 磁阻R M = s l μ 这称为磁路的欧姆定律,由于铁磁材料的磁导率μ不是常数,使用磁阻计算磁路并不方便,磁阻计算一般只用于定性。

6、磁感应强度的定义式B=qv F ,磁感应强度与力的关系。 7、真空中无限长螺线管B=μ0nI 。对于长螺线管,端面处的 B=21 μ0nI 。 面积Ⅰ为断电后剩留的能量,面积Ⅱ为作功前电磁铁储存的能量,面积Ⅲ为电磁铁作的功。

我们的目的是使Ⅰ和Ⅱ的面积最小,Ⅲ的面积最大。 面积Ⅰ表示电磁铁作完功后的剩磁,(1)减小面积Ⅰ可用矫顽力小的电铁。(2)提高制造精度,使吸合后气隙最小,但要防止衔铁粘住。 面积Ⅱ表示作功前所储存的能量,在衔铁位置一定时,取决于漏磁通,漏磁通大,面积Ⅱ就大。 9、机械效率 A K1= A A:输出的有效功 A0:电磁铁可能完成的最大功。 10、重量经济性系数 G K2= A G=电磁铁重量。 A0:电磁铁可能完成的最大功。 K2不仅取决于磁效率和机械效率,而且还取决于磁性材料的正确利用,电磁铁的类型和主要外形尺寸之间保持合理的比例关系。11、结构系数Kυ 每一类型的电磁铁,都有一定的吸力和行程。按最优设计方法设计的电磁铁重量最轻。一般来说,长行程的电磁铁比短行积的电磁铁长,吸力大的电磁铁比吸力小的电磁铁外径大。 为了按最小材料消耗率比较电磁铁,引入结构系数K J这个判据。

交流电磁铁课程设计

课程设计任务书 课程名称:电器课程设计题目:交流电磁铁的设计 专业班级: 学生姓名:学号: 指导老师: 审批: 任务书下达日期:2012年月日设计完成日期:2012年月日

目录 第一章手工计算 (1) 1.1 反力特性计算 (1) 1.1.1 电磁铁工作气隙计算 (1) 1.1.2 各部分反力计算 (1) 1.1.3 衔铁各位置反力计算 (2) 1.2 选择电磁铁结构形式并确定设计点 (5) 1.3 电磁铁的初步设计 (6) 1.3.1 确定铁芯尺寸 (6) 1.3.2 计算线圈的匝数 (6) 1.3.3 初算线圈磁势 (6) 1.3.4 计算线圈的尺寸 (7) 1.3.5 分磁环设计 (7) 1.3.6 确定其它结构尺寸 (8) 1.4 性能验算 (10) 1.4.1 线圈电阻 (10) 1.4.2 计算衔铁闭合位置工作气隙磁通 (10) 1.4.3 计算衔铁闭合位置线圈电流 (11) 1.4.4 计算线圈温升 (13) 1.4.5 计算衔铁在设计点的气隙磁通 (13) 1.4.6 计算线圈感抗 (14) 1.4.7 计算线圈电流 (14) 1.4.8 计算线圈反电动势 (15) 1.4.9 计算工作气隙磁通 (15) 1.4.10 计算平均吸力 (15)

1.4.11 计算衔铁闭合位置最小吸力 (15) 1.5 计算电磁铁材料重量及经济重量 (17) 第二章计算机优化设计 (18) 2.1 准备 (18) 2.2计算机优化设计步骤 (18) 2.3计算机优化设计结果 (19) 2.4 反力特性和吸力特性曲线 (21) 第三章制图 (21) 3.1 制图要求 (21) 3.2 电磁铁总装配图 (21) 结语 (22) 附录电磁铁总装配图 (23) 参考文献 (24) 电器课程设计评分表 (25)

电磁阀密封泄漏率模型与计算

Hydraulics Pneumatics &Seals/No.04.2016 doi:10.3969/j.issn.1008-0813.2016.04.004 收稿日期:2016-02-23 作者简介:殷图源(1988-),男,北京人,硕士研究生,研究方向为密封技术。 1概述 本文研究加工表面精度和形貌特征对电磁开关截 止阀密封泄漏率影响,尤其对初始泄漏率影响,通过有限元对提取的特征表面进行接触分析,从而提出泄漏率模型计算密封泄漏率。 该阀座为平板状软质PTFE 基聚合物,其金属阀芯圆弧表面与阀座配合密封,密封漏率范围反映阀门密封性能,在阀门装配后用氦质谱检漏,此时漏率称为初始泄漏率,在工作过程中密封接触区形成吻合带,在密封界面逐渐形成了一定量级泄漏通道,会存在一个稳 定期。阀芯一般用数控车加工成型,初始密封偶件泄 漏率的计算过程共有四个过程,第一步表征实际阀芯粗糙峰特征参数,建立泄漏通道的几何模型,第二步,用理想光滑表面有限元接触分析结果得出粗糙峰接触带宽,也就得出接触峰数,第三步,按显微镜下断峰高度给定泄漏模型和接触密封的刃入软表面深度判据,第四步根据泄漏流态和粗糙峰接触后残余孔径计算漏率。 2阀门的工作条件 电磁截止阀:密封偶件结构如图1所示,上面钢件为阀芯,下面PTFE 材料为阀芯,图2为氟塑料原始加工表面,阀芯与阀芯的接触几何形态为线或窄面; 检漏试验介质:He 气体;试验压力:0.10MPa ;内泄漏率:≤1×10-2Pa·L/s ;外泄漏率:≤1×10-6Pa·L/s 。 电磁阀密封泄漏率模型与计算 殷图源1,董志峰1,魏大盛2 (1.中国矿业大学(北京)机电与信息工程学院,北京100083;2.北京航空航天大学能源与动力工程学院,北京100191) 摘要:该文介绍一种常闭式电磁开关阀门,采用圆弧型面的金属阀芯与PTFE 光滑平面阀座,形成线接触密封型式,表征实际金属阀芯粗糙峰特征,建立泄漏通道几何模型,利用有限元分析方法确定泄漏率与粗糙度等级及粗糙峰特征的定量关系。对表征的金属阀芯粗糙峰与光滑阀板进行有限元接触分析,得出接触变形后泄漏通道。假设只存在涡旋形泄漏通道,以粘滞-分子流态泄漏,得出了初始密封泄漏率的计算结果。采用有限元方法避免了利用统计学对表面进行复杂数学处理,通过对电磁截止氦质谱仪检测表明,阀门泄漏率计算结果与测试结果具有较好吻合性,同时发现粗糙峰特征对PTFE 光滑阀板容易形成应力集中,粗糙峰形貌特征对阀门密封性能具有重要影响。 关键词:电磁阀;泄漏率模型;粗糙度表征;有限元接触分析;漏率计算中图分类号:TH137;TH138;TB42 文献标志码:A 文章编号:1008-0813(2016)04-0013-05 Electromagnetic Valve Seal Leak Rate Model Calculation YIN Tu-yuan 1,DONG Zhi-fen 1,WEI Da-sheng 2 (1.School of Mechatronic and Information Engineering, China University of Mining &Technology(Beijing),Beijing 100083,China ;2.School of energy and power engineering,Beihang University,Beijing 100191,China) Abstract :This article introduces a normally closed electromagnetic valve,which adopts the line contact seal mode between the circular-sur-face metal spool and the smooth PTFE valve plane seat.The actual roughness characteristic of the metal spool is represented.A geometry model of the leak path is established.And the quantitative relations of the leakage rate between with the roughness class and the roughness characteristic is determined by FEA method.Through the contact analysis of the metal spool and the smooth PTFE plate,the leak path after contact deformation is obtained.Assuming that there is only volute leak path,the initial leak rate of the valve is calculated under the pattern of viscous-molecular flow state leakage.The FEA contact analysis avoids the complex mathematical processing to characterize the surface by traditional statistics.According to the helium leak detection,the calculation results of the valve leakage rate coincide with the testing re-sults.Meanwhile,the stress concentration on the smooth PTFE valve plane produced by the roughness peak is observed.It is concluded that the roughness characteristic has an important effect on the sealing property of valves. Key words :electromagnetic valve;leak rate model;roughness characteristic;FEA contact analysis;leak rate calculation 13

日本新电元SHINDENGEN公司一直致力于高品质长寿命电

日本新电元SHINDENGEN公司一直致力于高品质,长寿命电磁铁螺线管的设计和制造,为保障原厂品质,工厂一直坚持在日本本土生产,在外国没有代工或者加工工厂。新电元SHINDENGEN公司为世界著名电磁铁制造商! 我们代理销售日本原装进口新电元Shindengen全系列电磁铁,螺线管,旋转马达,旋转电机,长期备库存,单价全国最低,交期最短,我们是大陆唯一优质新电元电磁铁特约销售商,特约售后服务代理商,提供专业的选型技术服务。我们的工程师为你提供贴心的技术咨询服务和设计选型服务和电磁铁培训知识! 新电元SHINDENGEN电磁铁马达电机使用案列 LED高速固晶机,LED固晶机专用编带机,LED高速分光机,全自动大功率高速分光机,LED焊接机常用型号F13035HL,M192C-6V,F192C-6V,M250C33P M301C30P,F13035HL,M25031H, M192-24V, M194-6V,M194-12V,M194-24V,,激光焊机用旋转电磁铁:M30134181R, M40137142R,M40137147R 弹簧机检查机用旋转电磁铁:M40137142R,M120169R,M40137147R,M120170R 分色分光机升级版,包装编带机升级版,分色分光机,包装编带机,自动开关包装机,自动绕线机,自动绕线点焊机,零件测试包装机,背膜机推挽式电磁铁:M194C-24V,M194C-12V, M194C-6V,F194C-24V,F194C-12V,F194C-6V; 钽电容测试分选机、切脚成型机、贴片三极管测试编带机用日本新电元Shindengen旋转电磁铁M59031137R ,马达电机M59031137RL长寿命型; 全自动分选式赋能机电容器设备,电容生产检测设备用日本新电元Shindengen旋转电磁铁M59031137R ,马达电机M59031137RL长寿命型; 石英晶体谐振器简易自动编带机:F13035HL,M25031H 双针拉链机,门襟缝纫机,高速自动拼接橡筋车:F13035HL 商标自动剪折机用、超声波剪折机、剪折机、商标切唛机、织唛剪折机、超声波剪折机、润超剪折机、多功能剪折机用M25031H;票据鉴别仪、硬币机、验钞机、点钞机用F13035HL LED编带机, 电容编带机F13035HL,M25031H;票据鉴别仪、硬币机、验钞机、点钞机用F13035HL;声波大功率焊接机/广东超声波大功率焊接机用M060414H 我们的电磁铁是大陆同品牌,同款电磁铁中最便宜的。原装进口日本新电元Shindengen电磁铁,质量有保障。一、应用范围: 广泛 应用与办公自动化机械,医药和科学仪器仪表及轻工等行业。电磁铁在日常生活中有极其广泛的应用。电磁铁是电流磁效应(电生磁)的一个应用,与生活联系紧密,如电磁继电器、电磁起重机、磁悬浮列车等。电磁铁可以分为直流电磁铁和交流电磁铁两大类型。如果按照用途来划分电磁铁,主要可分成以下五种:(1)牵引电磁铁——主要用来牵引机械装置、开启或关闭各种阀门,以执行自动控制任务。(2)起重电磁铁——用作起重装置来吊运钢锭、钢材、铁砂等铁磁性材料。(3)制动电磁铁——主要用于对电动机进行制动以达到准确停车的目的。(4)自动电器的电磁系统——如电磁继电器和接触器的电磁系统、自动开关的电磁脱扣器及操作电磁铁等。(5)其他用途的电磁铁——如磨床的电磁吸盘以及电磁振动器等。二、特点(1)微型电

电磁铁计算公式

第一章常用低压电器 电器:电能的生产、输送、分配与应用起着控制、调节、检测和保护的作用。 根据外界的信号和要求,自动或手动接通或断开电路,断续或连续地改变电路参数,以实现对电路或非电路对象的切换、控制、保护、检测、变换和调节用的电气设备。 定义:一种能控制电能的器件。 第一节电磁式低压电器的结构和工作原理 ●低压电器:用于交流1200V、直流1500V以下电路的器件 ●高压电器:用于交流1200V、直流1500V以上电路的电器。 电力传动系统的组成: 1)主电路:由电动机、(接通、分断、控制电动机)接触器主触点等电器元件所组成。 特点:电流大 2)控制电路:由接触器线圈、继电器等电器元件组成。 特点:电流小 ●任务:按给定的指令,依照自动控制系统的规律和具体的工艺要求对主电路进行控制。 一、低压电器的分类 1、按使用的系统

1)低压配电电器 用于低压供电系统。电路出现故障(过载、短路、欠压、失压、断相、漏电等)起保护作用,断开故障电路。(动动稳定性、热稳定性) 例如:低压断路器、熔断器、刀开关和转换开关等。 2)低压控制电器 用于电力传动控制系统。能分断过载电流,但不能分断短路电流。(通断能力、操作频率、电气和机械寿命等) 例如:接触器、继电器、控制器及主令电器等。 2、按操作方式 1)手动电器:刀开关、按钮、转换开关 2)自动电器:低压断路器、接触器、继电器 3、按工作原理 1)电磁式电器:电磁机构控制电器动作 2)非电量控制电器:非电磁式控制电器动作 ◆电磁式电器由感测和执行两部分组成。 感测部分(电磁机构):接受外界输入的信号,使执行部分动作,实现控制的目的。 执行部分:触点系统。 二、电磁机构

电磁阀 计算1

螺线管计算分析案例(Amperes)1. 模型简介 下图为螺线管模型的外观图: 1.1 模型尺寸 单位:英寸(inch)

尺寸如上图所示,此模型为旋转对称模型(RS),对称轴在x=0的直线上。根据以上图形建立模型。 1.2 模型物性设置 模型分为五个部分,分别为Plugnut,Coil,Core,Yoke,Bonnet。Coil内通有幅度为10000安培的电流,方向为从纸面内指向纸面外(负值)。 Plugnut为非线性磁介质SS430,B-H曲线如下图所示: Core为永磁体NEO35,剩磁Br=1.25T,矫顽力Hc=-9.47e-5(H/m),如下图所示磁化曲线,磁化方向为Z的负方向。

Yoke与Bonnet所用材料相同,都是冷轧钢Cold Rolled Steel,是非线性磁介 质,B-H曲线如下图所示: SS430和冷轧钢的B-H数据如下面两个数据表格所示: SS430 冷轧钢 H(A/m) B(Tesla) H(A/m) B(Tesla) 0 0 0 0 1.4300000e+002 1.2500000e-001 1.0800000e+003 8.5800000e-001 1.8000000e+002 2.0600000e-001 1.4800000e+003 1.0600000e+000 2.1900000e+002 3.9400000e-001 2.0900000e+003 1.2600000e+000 2.5900000e+002 5.8900000e-001 3.1200000e+003 1.4400000e+000 2.9800000e+002 7.4300000e-001 5.1600000e+003 1.6100000e+000 3.3800000e+002 8.5300000e-001 9.9300000e+003 1.7700000e+000 3.7800000e+002 9.3200000e-001 1.5500000e+004 1.8600000e+000 4.3800000e+002 1.0100000e+000 2.5000000e+004 1.8800000e+000 5.1700000e+002 1.0800000e+000 3.5000000e+004 1.9000000e+000 5.9700000e+002 1.1100000e+000 7.1600000e+002 1.1600000e+000 9.5500000e+002 1.2000000e+000 1.5900000e+003 1.2700000e+000 3.9800000e+003 1.3700000e+000 6.3700000e+003 1.4300000e+000 1.1900000e+004 1.4900000e+000 2.3900000e+004 1.5500000e+000 3.9800000e+004 1.5900000e+000 以上的磁介质电导率很小,都可以看作是完全绝缘的。

电磁铁的设计计算

电磁铁的设计计算 1原始数据 YDF-42 电磁铁为直流电磁铁工作制式为长期根据产品技术条件已知电磁铁的工作参数 额定工作电压UH=24V 额定工作电压时的工作电流IH ≤1A 2 测试数据 测试参数工作行程δ=1mm 吸力F=7.5kg 电阻R=3.5Ω 4 设计程序 根据已测绘出的基本尺寸通过理论计算确定线圈的主要参数并验算校核所设计出的电磁铁性能 4.1 确定衔铁直径dc 电磁铁衔铁的工作行程比较小因此电磁吸力计算时只需考虑表面力的作用已知工作行程δ=1mm 时的吸合力F=7.5kg 则电磁铁的结构因数 K = F/δ7.5/0.1=27 (1) 电磁铁的结构形式应为平面柱挡板中心管式 根据结构因数查参考资料,可得磁感应强度BP=10000 高斯 当线圈长度比衔铁行程大的多时,可以不考虑螺管力的作用,认为全部吸力都由表面力产生由吸力公式 F= (Bp/5000)2×Π/4×dc2 (2) 式中Bp磁感应强度(高斯) dc 活动铁心直径(毫米) 可以求得衔铁直径为 dc= 5800×F Bp = 5800×7.510000 =1.59cm=15.9mm 取dc=16 mm 4.2 确定外壳内径D2 在螺管式电磁铁产品中它的内径D2与铁心直径dc之比值n 约为2~ 3 ,选取n=2.7 D2=n ×dc=2.76×16=28.16 毫米(3) 式中D2 外壳内径毫米 4.3 确定线圈厚度 bk= D2?dc 2 ?Δ(4) 式中bk -----线圈厚度毫米 Δ------线圈骨架及绝缘厚度毫米今取Δ=1.7 毫米 bk= 28.16?16 2 ?1.7 =4.38毫米 今取bk=5 毫米 4.4 确定线圈长度 线圈的高度lk与厚度bk比值为β,则线圈高度

气浮法设计计算

气浮法设计计算一.气浮法分类及原理 二.气浮法设计参数

三.气浮法设计计算

四.不同温度下的K T值和736K T值

例:2×75m3 / h气浮池 气浮池设置在絮凝池侧旁,沉淀池上方。气浮类型较多,有全部压力溶气气浮、分散空气气浮、电解凝聚气浮、内循环射流气浮等,这里选择适用于城镇给水处理的部分回流压力溶气气浮。 气浮适用于含藻类及有机杂质、水温较低、常年浊度低于100NTU的原水;它依靠微气泡粘附絮粒,实现絮粒强制性上浮,达到固、液分离,由于气泡的重度远小于水,浮力很大,促使絮粒迅速上浮,提高固、液分离速度。气浮依靠无数微气泡去粘附絮粒,对絮粒的重度、大小要求不高,能减少絮凝时间,节约混凝剂量;带气絮粒与水的分离速度快,单位面积产水量高,池容及占地减少,造价降低;气泡捕足絮粒的机率很高,跑矾花现象很少,有利于后级滤池延长冲洗周期,节约水耗;排渣方便,浮渣含水率低,耗水量小;池深浅,构造简单,可随时开、停,而不影响出水水质,管理方便。 ●结构尺寸: 取回流比R=20%,气浮池处理水量:Q3=(1+R)Q2=1.2×75=90m3/h 接触区底部上升段纵截面为矩形,上升流速10~20mm/s,取U J1=18mm/s=64.8m/h 接触区底部通水平面面积:F J1=90/64.8=1.389≈1.4m2 接触区宽与絮凝池相同,B=2m,接触区底部平面池长方向尺寸:L J1=1.4/2=0.7m 接触区上端扩散段纵截面为倒直角梯形,出口流速5~10mm/s,取U J2=7.5mm/s=27m/h 接触区上端扩散出口通水平面面积:F J2=90/27=3.333m2 接触区宽与絮凝池相同,B=2m,接触区上端扩散出口平面池长方向尺寸:L J2=3.333/2=1.6665≈1.7m 扩散段水平倾角α=35°,扩散段高:h K=(1.7-0.7)tan35°=0.7m 扩散段容积:V K=〔(1.7+0.7)/2〕×0.7×2=1.68m3 接触区停留时间需大于60s,取t J=90s=1.5min,接触区容积:V J=90×1.5/60=2.25m3 接触区底部上升段高:h D=(V J-V K)/F J1=(2.25-1.68)/1.4=0.4m 分离区清水下降流速1.5~2.5mm,取U3=2.5mm/s=9m/h

电磁阀原理图解

电磁阀原理图解 电磁阀原理上分为三大类:直动式、分步直动式、先导式。 一、直动式电磁阀 原理:常闭型通电时,电磁线圈产生电磁力把敞开件从阀座上提起,阀门打开;断电时,电磁力消失,弹簧把敞开件压在阀座上,阀门敞开。(常开型与此相反) 特点:在真空、负压、零压时能正常工作,但通径一般不超过25mm。

二、分步直动式电磁阀 原理:它是一种直动和先导式相结合的原理,当入口与出口没有压差时,通电后,电磁力直接把先导小阀和主阀关闭件依次向上提起,阀门打开。当入口与出口达到启动压差时,通电后,电磁力先导小阀,主阀下腔压力上升,上腔压力下降,从而利用压差把主阀向上推开;断电时,先导阀利用弹簧力或介质压力推动关闭件,向下移动,使阀门关闭。 特点:在零压差或真空、高压时亦能可动作,但功率较大,要求必须水平安装。

三、间接先导式电磁阀

原理:通电时,电磁力把先导孔打开,上腔室压力迅速下降,在敞开件周围形成上低下高的压差,流体压力推动敞开件向上移动,阀门打开;断电时,弹簧力把先导孔敞开,入口压力通过旁通孔迅速腔室在关阀件周围形成下低上高的压差,流体压力推动敞开件向下移动,敞开阀门。 特点:体积小,功率低,流体压力范围上限较高,可任意安装(需定制)但必须满足流体压差条件 工作原理 电磁阀里有密闭的腔,在不同位置开有通孔,每个孔连接不同的油管,腔中间是活塞,两面是两块电磁铁,哪面的磁铁线圈通电阀体就会被吸引到哪边,通过控制阀体的移动来开启或关闭不同的排油孔,而进油孔是常开的,液压油就会进入不同的排油管,然后通过油的压力来推动油缸的活塞,活塞又带动活塞杆,活塞杆带动机械装置。这样通过控制电磁铁的电流通断就控制了机械运动。

selection solenoid valve(电磁阀选择)

电磁阀选型与控制 电磁阀的关注熟悉、正确选用是热工自动化设计的一项基础工作。文中介绍了电磁阀的分类、流通能力的计算乃至其选型,并对电磁阀的控制提出一些个人见解。 电磁阀是电厂热工自动化中应用相当广泛的设备之一。它可以用来控制一定压力下的某些工质在管道中的自动通断,成为特定的执行器,如锅炉的燃油快关阀、汽轮机组调速保安系统油路上的电磁滑阀、给水泵组密封水管路的切换阀以及采暖工程的热水阀等。它还可以作为气动、液动回路自动切换或顺序控制的执行元件,它就成了该气动、液动执行器的电——气、电——液执行元件,这方面的应用更为普遍。如主厂房锅炉的气动安全门、汽轮机组气动或液动的抽汽逆止门等都是由电磁阀控制通向操作装置的气路、液(水)路的通断来完成其开关动作的,辅助车间及其系统众多气动执行机构的自动控制也离不开电磁阀这一设备。再如,过去在锅炉各段烟道压力的常规检测中也使用过电磁阀切换做到一台表计的多点测量。可见,电磁阀在电厂热工测量、控制及保护联锁上都是一项基础元件设备,对电磁阀的关注熟悉、正确选用乃是热工自动化设计的一项基础工作。基于此,本文着重讨论电磁阀在选型与控制上的一些问题,有些见解仅是笔者一家之言,期盼同仁指正。 1 电磁阀的结构原理及其分类 1.1 电磁阀的结构原理 电磁阀的结构并不复杂,它由两个基本功能单元组成,一是电磁线圈(电磁铁)和磁芯,另一是滑阀,即包含数个孔的阀体。电磁线圈带电或失电时,磁芯的运动导致工质流体通过阀体或被切断。 上述用来在工艺管道中直接通断的作为特定执行器的电磁阀,电磁线圈带电时,磁芯直接开启常闭阀的孔或关闭常开阀的孔,阀门能从0(无压差)至其最大额定压力间开启或关闭。而上述用来在气动、液动执行器充当执行元件的电磁阀,则要借助动力源(压缩空气、有压头的水或油等液体)来操作电磁阀上的先导孔和旁通孔。电磁线圈带电时,磁芯开启先导孔,通过阀的出口消除膜片或活塞顶部的压力,且将其推离主孔,阀门得以开启。电磁线圈失电时,先导孔关闭,动力源的压头通过旁通孑L作用于膜片或活塞顶部而产生阀座力,阀门得以关闭。这是因为受这些执行机构控制的工艺阀门一般口径都较大,要求执行机构接受动力源的压头也大(如DNl50及以上的气动隔膜阀、气动蝶阀的操作压力》0.5MPa),则传递动力源的电磁阀的孑L尺寸及工质流体压力势必也要大,只有将电磁线圈做大才足以开启电磁阀来传递执行机构所需的动力源。为了解决这一矛盾,保持电磁线圈的小尺寸,就不再使用磁芯直接启闭阀体孔的直接操作的(直动式)电磁阀,而改用磁芯启闭先导孔的导向操作的(先导式)电磁阀。 1.2 电磁阀的分类 电磁阀的分类无定式,随分类方式不同而异,详见下表。

电磁铁设计

电磁铁设计

直流电磁铁设计

直流电磁铁设计 电磁铁是一种执行元件,它输入的是电能,输出的是机械能。电能和机械能的变换是通过具体的电磁铁结构来实现的。合理的电磁铁结构是能量变换效率提高的保证。电磁铁设计的任务是合理的确定电磁铁的各种结构参数。确定电磁铁的各种结构参数是一个相当复杂的任务,下面我们探讨确定电磁铁结构参数的一般方法。电磁铁吸合过程是一个动态过程,设计是以静态进行计算. 一、基本公式和一般概念 1、均匀磁场B= S Φ (T ) 2、磁势F=NI,电流和匝数的乘积(A ) 3、磁场强度H= L NI (A/m ),建立了电流和磁场的关系。 该公式适用于粗细均匀的磁路 4、磁导率μ= H B 建立了磁场强度和磁感应强度(磁通密度)的关系。 μ0=4π×10-7享/米 相对磁导率μr =0 μμ 5、 磁通Φ= M R NI 磁阻R M = s l μ 这称为磁路的欧姆定律,由于铁磁材料的磁导率μ不是常数,使用磁阻计算磁路并不方便,磁阻计算一般只用于定性。

6、磁感应强度的定义式B= qv F ,磁感应强度与力的关系。 7、真空中无限长螺线管B=μ0nI 。对于长螺线管,端面处的 B=2 1μ0nI 。 面积Ⅰ为断电后剩留的能量,面积Ⅱ为作功前电磁铁储存的能量,面积Ⅲ为电磁铁作的功。

我们的目的是使Ⅰ和Ⅱ的面积最小,Ⅲ的面积最大。 面积Ⅰ表示电磁铁作完功后的剩磁,(1)减小面积Ⅰ可用矫顽力小的电铁。(2)提高制造精度,使吸合后气隙最小,但要防止衔铁粘住。 面积Ⅱ表示作功前所储存的能量,在衔铁位置一定时,取决于漏磁通,漏磁通大,面积Ⅱ就大。 9、机械效率 A K1= A A:输出的有效功 A0:电磁铁可能完成的最大功。 10、重量经济性系数 G K2= A G=电磁铁重量。 A0:电磁铁可能完成的最大功。 K2不仅取决于磁效率和机械效率,而且还取决于磁性材料的正确利用,电磁铁的类型和主要外形尺寸之间保持合理的比例关系。11、结构系数Kφ 每一类型的电磁铁,都有一定的吸力和行程。按最优设计方法设计的电磁铁重量最轻。一般来说,长行程的电磁铁比短行积的电磁铁长,吸力大的电磁铁比吸力小的电磁铁外径大。 为了按最小材料消耗率比较电磁铁,引入结构系数K J这个判据。

电磁铁设计计算书

电磁铁设计计算书 河北科技大学电气工程学院 张刚 电磁铁设计中有许多计算方法,但有许多计算原理表达的不够清晰,本人参照“电 磁铁设计手册”一书,对相关内容进行了整理补充,完成了一个直流110V 拍合式电磁铁的计算。 设计一个拍合式电磁铁,它的额定工作行程为4mm ,该行程时的电磁吸力为0.8公 斤,用在电压110V 直流电路上,线圈容许温升为65℃。 1) 初步设计 第一步:计算极靴直径 电磁铁的结构因数为: 0.8 2.2F K φδ = = ≈ 查空气气隙磁感应强度与结构因数的经济表格,如下图所示: 从图中可查得,气隙磁感应强度最好取为p B =2000Gs 。 极靴的表面积为: 2 2 2500050000.852000n p S F cm B ????==?= ? ? ????? 极靴直径为: 445 2.52 3.14 n n S d cm π ?= = = 取n d =2.5cm ,则2 4.9n S cm =。磁感应强度p B 增加为2040Gs 。 第二步,计算铁芯直径 材料采用低碳钢,其磁感应强度取cm B =11000Gs ,漏磁系数σ取2,则:

222040 4.9 1.1811000 p n cm cm B S S cm B σ??= = = 铁芯直径为: 1.52c d cm = = = 取 1.5c d cm =,则2 1.77cm S cm = 第三步,计算线圈磁动势 线圈的磁动势NI 为工作气隙磁动势、铁芯磁动势和非工作气隙磁动势的和,记 为: ()()()cm n NI NI NI NI δ=++ 计算中,可取: ()()()cm n NI NI a NI += 这里a=0.15~0.3,也就是铁芯磁动势和非工作气隙磁动势的和约占总磁动势的 15%~30%。 因此,线圈的磁动势应为: ()()() 42 7 102040100.4109321141010.3p p B B NI a a δ μδμπ---????==?=≈--?-安匝 系统一般要求电压降到85%U n 时仍能正常工作,在额定电压U n 下的磁动势为: ()1 10950.85 NI NI = =安匝 计算温升时,一般取额定电压U n 的1.05~1.1倍,此时的磁动势为: ()2 1.051150NI NI =?=安匝 第四步,计算线圈尺寸 1)推导计算线圈厚度公式 线圈的温升公式为: m P S θμ= ? 这里: θ:温升,单位℃; P :功率,单位W ; m μ:线圈的散热系数,单位2/W cm ?℃;

交流电磁铁课程设计

湖南工程学院 课程设计任务书 课程名称:电器课程设计题目:交流电磁铁的设计 专业班级: 学生姓名:学号: 指导老师: 审批: 任务书下达日期:2012年月日设计完成日期:2012年月日

目录 第一章手工计算 (1) 1.1 反力特性计算 (1) 1.1.1 电磁铁工作气隙计算 (1) 1.1.2 各部分反力计算 (1) 1.1.3 衔铁各位置反力计算 (2) 1.2 选择电磁铁结构形式并确定设计点 (5) 1.3 电磁铁的初步设计 (6) 1.3.1 确定铁芯尺寸 (6) 1.3.2 计算线圈的匝数 (6) 1.3.3 初算线圈磁势 (6) 1.3.4 计算线圈的尺寸 (7) 1.3.5 分磁环设计 (7) 1.3.6 确定其它结构尺寸 (8) 1.4 性能验算 (10) 1.4.1 线圈电阻 (10) 1.4.2 计算衔铁闭合位置工作气隙磁通 (10) 1.4.3 计算衔铁闭合位置线圈电流 (11) 1.4.4 计算线圈温升 (13) 1.4.5 计算衔铁在设计点的气隙磁通 (13) 1.4.6 计算线圈感抗 (14) 1.4.7 计算线圈电流 (14) 1.4.8 计算线圈反电动势 (15) 1.4.9 计算工作气隙磁通 (15) 1.4.10 计算平均吸力 (15)

1.4.11 计算衔铁闭合位置最小吸力 (15) 1.5 计算电磁铁材料重量及经济重量 (17) 第二章计算机优化设计 (18) 2.1 准备 (18) 2.2计算机优化设计步骤 (18) 2.3计算机优化设计结果 (19) 2.4 反力特性和吸力特性曲线 (21) 第三章制图 (21) 3.1 制图要求 (21) 3.2 电磁铁总装配图 (21) 结语 (22) 附录电磁铁总装配图 (23) 参考文献 (24) 电器课程设计评分表 (25)

相关主题
文本预览
相关文档 最新文档