当前位置:文档之家› 如何建立信号完整性实验室

如何建立信号完整性实验室

如何建立信号完整性实验室
如何建立信号完整性实验室

高速数字和信号完整性测试建议书

暨如何建立信号完整性实验室

一建立信号完整性实验室的必要性

众所周知,当今世界数字技术飞速发展,无论是一位从事通信系统,计算机系统,雷达和卫星通信系统,或是高速半导体集成电路设计,高速光电收发模块,高速信号处理,高速互连器件(诸如高速接插件,高速数字传输电缆)等领域的研发及测试工程师都会面临着一个共同的挑战——Signal Integrity(SI)——信号完整性。

多年前我们所提到的数字产品,其时钟或数据频率大多在几十兆之内,信号的上升时间大多在几个纳秒,甚至几十纳秒以上。那时的数字化产品设计工程师进行的就是“数字设计”――只要掌握布尔代数等数字方面的诸多知识,保证逻辑正确,就能设计出其所期望的性能的产品。而现在的数字技术已经发展到几千兆,甚至几十千兆的传输速率,信号的上升时间大多在一纳秒以内,诸如串扰,阻抗匹配,EMI(电磁兼容),抖动等射频微波领域才会遇到的问题,如今变成了高速数字设计必须解决的关键性问题。这就要求我们的工程师不但要具备数字方面的设计知识,同时也要具备射频微波方面的设计知识;不但要掌握时域及逻辑域的测量分析技术,还要掌握频域的测量分析技术。

信号完整性到底是什么?

信号完整性这个概念,是针对高速数字信号提出来的,信号的实际波形会与理想波形存在着差别,SI 解决的就是信号传输过程中的信号质量问题。到底什么样的信号会涉及SI 问题,要从信号的速率以及信号的上升时间两个角度来考虑。拿PCB来说,当一段PCB 上的连线所造成的信号传输延时远远小于信号的上升时间时,可按简单的电路理论去设计;当一段PCB 上的连线所造成的信号传输延时与信号的上升时间类似时(有说是几倍于上升时间),则必须按传输线的理论去设计,此时的这段连线即是传输线。举个具体实例,如图1 所示:

图1 高速信号的传输

假设由驱动器发出的信号是高质量的时钟信号,如图 2 中理想方波波形所示。但是,在接收机端看到的却是质量变差的信号,如图2中变形的波形所示。什么原因造成的?假设接收电路也是好的,那么问题就出在信号的传输路径上。

图2 高速信号的传输质量变差

假设是信号的传输路径问题,比如存在着明显的阻抗不连续部分(过孔,线变宽/变窄等),为验证它们对信号的影响,我们可采用一脉冲/码型发生器产生高质量的信号接到这条传输线的一端,用一台高带宽示波器在另一端进行接收,我们看到发出的信号的眼图如图3 左边所示,而在另一端看到的眼图却变得较差(示波器的影响除外),如图3右边所示。这说明传输线的质量会对信号完整性构成显著的影响。

图3 脉冲码型发生器产生高质量的激励信号(左图),传输线的质量会对信号完整性构成显

著的影响(右图)

除了传输线质量的影响,我们还要考虑到这样一个问题:通常Driver 的输出阻抗为低阻,假设传输线的阻抗为5ohm,而接收端的输入阻抗为高阻,如图4 所示。这同样造成了阻抗的不匹配,引起反射,造成信号失真。解决的方法是可在输出端串联一特定阻值的电阻(可通过计算,仿真得到),比如40欧姆。结果,我们看到接收端的波形质量大为改观,如图4下面图所示。

图4 通过串联电阻使接收端的波形质量大为改观

影响信号完整性的因素很多,归纳起来,主要四大方面的原因:

●由于阻抗不连续所造成的单个网络内信号的质量问题;

●多个网络之间由于耦合所造成的串扰问题;

●电源层及地线层的阻抗不连续所造成的问题;

●来自系统其它部分的EMI 问题。

信号完整性分析在欧美,日本等技术先进国家近些年来已成为一个非常热门的行业,它是实现高性能数字化产品的基础,就如同一个城市的道路建设,只有路修得好,车才能跑得既稳又快。因此,国内外很多大公司都相继成立了信号完整性分析的研发力量。目前国内许多军工和国防研发机构在信号完整性分析方面的工具是不够完善的,非常有必要建立信号完整性分析平台,以适应新一代系统的研发需求。

信号完整性平台功能与组成

图5是在开发的不同阶段,所需要的工具图。信号完整性分析平台主要包括下面几个部分:信号完整性仿真分析、高速互连高级测试分析、高速信号测试分析、系统级激励响应测

试分析、系统级总线和系统测试分析等。后面针对具体的典型的工具做较具体的介绍。

图5 信号完整性分析的不同阶段和平台组成

二信号完整性仿真分析工具

解决信号完整性问题要从最初设计阶段着手,仿真工具是必不可少的,市场上有许多时域的,频域的仿真软件。可采用安捷伦的ADS 仿真工具,对高速传输线、关键器件、关键接插件、系统等进行仿真、建模,它能完成:

表1 ADS信号完整性工具能完成的功能

图6为对传输线模型进行时域仿真实例,仿真结果以时域眼图形式显示出来。图7 为首先进行版图设计,然后进行基于版图的电磁场仿真,将其的结果再进行时域仿真。传输线模型或版图模型还可以转换为SPICE 模型,供其它时域仿真软件使用。

图6 对传输线模型进行时域仿真实例仿真结果以时域眼图形式显示出来

图7 对基于版图的电磁场仿真结果再进行时域仿真

ADS提供了SI 分析所用的必要的仿真器,它还能与仪表相连,获取测量模型。ADS 中的设计指南提供SI 仿真指导,方便了操作和使用,ADS针对SI 的具体配置如下表。

表2 ADS针对SI应用的具体配置

三 PCB和互连测试分析工具

仿真之后,要制作出实物,如PCB、Connector、电缆等,由于制作工艺及综合设计等原因,可能会造成实物与期望的不符,所以,接下来要进行实物测试。

针对PCB和互连测试分析,我们不但需要传统的TDR/TDT(时域反射/时域传输)以及矢量网络分析仪(VNA),还需要针对信号完整性的特殊应用,比如基于TDR/TDT(时域反射/时域传输)以及矢量网络分析仪(VNA)的物理层测试系统。

如图8 所示,基于矢量网络分析仪的物理层测试系统由以下几个部分组成:

1.矢量网络分析仪:N5222A-400

2.测试电缆:N4419AK20(x4)

3.电子校准件:N4433A-010

4.物理层测试软件: N1930B-1FP/3FP/5FP

图8 基于矢量网络分析仪的物理层测试系统

基于N5222A的物理层测试系统主要指标如下:

1.4端口双源,频率范围:10MHz~26.5GHz

2.上升时间:30ps

3.最大输出功率:13dBm;功率扫描范围:38dB

4.动态范围:127dB(系统)和132dB(接收机)

5.本底噪声:-114dBm(在10Hz中频带宽时)

物理侧测试系统实现功能:

1.高速互连的时域分析:可以得出16个单端时域/TDR参数;可以得出16个混合模式(或差分模式)时域/TDR参数。

2. 高速互连的频域分析:可以得出16个单端频域/S参数;可以得出16个混合模式(或差分模式)频域/S参数。

3. 支持校准引导和多种校准模式,如:TRL,SOLT,AFR等。

4. 基于测量结果的眼图仿真:用户定义虚拟码型,进行眼图仿真。产生眼图后,可以用光标或自动进行参数测量,如:抖动,眼图张开,上升时间和下降时间等。也可以调用模板判断是否满足规范要求。

5. 支持频域S参数模型和时域RLGC模型提取,可以导到建模和仿真软件中,进行更精确的仿真分析。

如图9 所示,物理层测试系统软件提供了对被测件的全面特性描述。

图9 物理层测试系统软件提供了对被测件的全面特性描述

通过物理层测试系统对实物进行测试,把测量数据与模型参数进行对比,通过不断改进,得到符合要求的器件或电路板。也可将物理层测试系统测得的结果作为一个模型来供仿真软件使用,它支持市场上多种主流仿真软件,输出的数据格式包括Citifile,Touchstone等。

图10 建模和仿真过程

四高速信号测试分析工具

无源阶段的测试完成后,进入下一个研发阶段,将相应芯片等器件安装在电路板上,建立起可工作的系统之后,可采用实时示波器对实际的活的信号进行测试分析,包括波形参数测量,抖动测量,一致性测量等。若是针对大量的信号如高速并行总线需要同时测试,高速逻辑分析系统可对总线进行眼图扫描和分析,观察总线及每个通道的眼图质量。

高带宽实时采样数字示波器是用于在时域观察高速信号波形质量的必不可少的工具。安捷伦公司推出的DSAX96204Q 带宽高达63GHz,采样速率高达160Gsa/s,特别适合与高速总线的测量(图11)。

示波器通常用来进行在线测量,也就是必须用到探头去探测。示波器的探头往往会构成被测电路的一部分,被测电路也会构成探头的一部分,设计不当,会引起信号严重失真,所以探头成为了示波器测量系统的瓶颈。安捷伦公司不但提供了高带宽的示波器,通过进行深入的信号完整性分析,建立了合理的探头模型,研制出带宽可达30GHz的高带宽差分探头,保证了测试系统的最大带宽,忽略了探头对测量的确影响,也保护了用户的投资。

图12所示为采用50ohm 电缆作为连结与用30GHz 的高带宽有源探头作为连结测量同一高速信号的比较,可观察到用30GHz 的高带宽有源探头作为连结能逼真地反映信号的原始形状。

图11 DSAX96204Q高带宽实时示波器

图12 带宽有源探头系统能够确保高速信号的真实性

DSAX96204Q同时配备一系列测试分析应用软件,如抖动分析,串行数据分析,通信/雷达信号分析软件等,图13是一些软件界面。

图13 DSAX96204Q配备的各种分析软件(抖动,眼图,通信/雷达)

DSAX96204Q高带宽示波器系统的主要特点为:

●最高采样速率达160GSa/s, 带宽为63GHz的实时采样示波器;

●特有的MegaZoom 技术,存储深度可扩展至2Gpts,做到深存储,快速响应;

●采用磷化铟半导体技术,保证高性能和测试可靠性和重复性;

●抖动测量本底低至75fs,可精确测量信号的抖动;

●曾获得EDN 大奖的具有多种探头连接方式(浏览型,焊接型,插座型,SMA 连接

型)的InfiniiMax III系列高带宽有源探头,保证了最大的系统带宽,也保护了用户

的投资;

●易于使用的曾获业界大奖的基于Windows 7 的用户界面软件;

●针对高速总线的分析和一致性测试,提供了多种分析软件,包括:抖动噪声分析

软件,串行数据分析软件,低速串行数据分析软件,PCIe3,SAS12G, 10Gbase-T,

SATA,USB3.0,HDMI,GBE 等多种一致性分析软件,同时还提供了各种串行总线的协

议触发和译码功能;

●针对通信和雷达信号的分析,可以把89601B直接安装在示波器内部,进行通信和

雷达信号的矢量分析。

五误码率和接收机测试分析工具

误码率分析仪(BERT)是将已知的测试码型发送到被测系统,通过接收通道将系统输出的数据采集下来,并与参考数据进行实时比较,从而得出误码率显示。81250A(图14)是业界出现较早的并行误码率分析仪,它不但可以满足单通道的误码率测试需要,还可扩展至上百个通道,对复用/解复用器以及高速并行系统进行并行的误码率测试。

图14 安捷伦公司的81250A 并行误码率分析仪

81250A 的硬件基于VXI 的标准平台,采用模块化结构,通过选择不同速率的模块及收发前端,可进行灵活的系统配置,速率支持范围从333.3Kb/s 到13.5Gb/s。软件则基于WINDOWS 平台,易于对系统及数据做复杂控制和处理,也便于不断升级,以支持新的模块和功能。

图15 81250A的模块性能参数

81250A系统主要特点如下:

1.通过配置足够数量的通道可针对XAUI 及SFI-5 等应用进行测试;

2. 可产生PRBS 及PRWS,长度可达231-1;内置Memory,具有用户自定义码型功能;

3.有自动同步功能;

4.675 Mb/s速率下系统通道数最多可配置128个;

3.35 Gb/s速率下系统通道数最多可配置64个;

13.5 Gb/s, 7 Gb/s速率下系统通道数最多可配置30个。可满足10GbE,

OC-48,OC-192等应用的需求;

5.除误码率测试外,还可进行输出时序测量,包括建立/保持时间,通道间时差,相位余量,浴盆曲线,眼张开度、抖动(RJ/DJ/TJ),抖动频谱等;

6.具有抖动调制功能(13.5 Gb/s, 7 Gb/s 和3.35 Gb/s),进行抖动容限测量;

7.交叉点可变(13.5 Gb/s, 7 Gb/s 和3.35 Gb/s),提供实际信号压力模拟;

8.、通过增加模块,不断满足今后的测量需要;

9.单端或差分信号输入/输出。

抖动误码仪N4903B功能描述:

1.一台高性能误码仪:能够发抖动非常小,波形非常好的信号;能够接收信号和分析

误码率。

2.能够发带抖动的信号,并且抖动是经过校准的,设置输出多大抖动,实际就是多大

抖动,误差较小。

3.具备多种抖动产生能力:正弦波抖动SJ,周期性抖动PJ,码间干扰抖动ISI,随机抖

动RJ,边带不相关抖动BUJ等。

4.高速芯片接收器,高速背板,高速电缆/连接器等测试的最新工具。

图16 抖动误码仪J-BERT特征总览

抖动误码仪N4903B主要特点:

1.150Mbps-7Gbps或12.5Gbps或14.2Gbps的码型产生和误码检测能力;

2.双通道数据,时钟和触发都是差分输出;

3.可变输出电压,支持LVDS、ECL和CML输出;边沿时间<20ps;脉冲抖动峰峰值<9ps;

4.支持延迟控制输入;

5.集成的和校准的的抖动源:PJ,SJ,RJ,BUJ,ISI,SI;

6.子时钟输出,可产生任何参考时钟;

7.32Mbit码型深度;

8. 扩频时钟SSC输出;

9.真差分输入;内置CDR,并且可调谐锁相环带宽;采样点自动同步;

10.适合未知数据流的位恢复模式;支持Burst模式;

11.误码率测量和信号测量功能;快速眼图和模板测量;支持码型捕获;

12.支持自动抖动容忍度测试:PCI-E,SATA,FC,FB-DIMM,CEI,10GBE,XFP/XFI等。

六系统级总线测试分析工具

在高速并行总线的测试中,由于通道数的限制,数字示波器的二至四个通道难以胜任,传统的逻辑分析仪受限于只能进行单端信号测量且采样速率较慢,也无法满足新的测试需求。基于AXIe模块化架构的U4154A逻辑分析系统不但可进行定时/状态分析,还可进行模拟分析,观察总线信号的眼图。

逻辑分析仪的探头同样会构成被测电路的一部份,设计不当,会引起信号严重失真,成为逻辑分析测量系统的瓶颈。安捷伦公司通过进行深入的信号完整性分析,建立了合理的探头模型,研制出多种高带宽的逻辑分析探头,从而保证了测试系统的最大带宽,忽略了探头

对测量的确影响。安捷伦公司研制出了新一代无插座型高带宽的逻辑分析探头SoftTouch 以及SoftTouch Pro, 具有高密度,高可靠性,易于使用,易于布线,高带宽(容抗<0.7pf,支持数据速率>2.5Gb/s)等特点,建立了此种连接技术的工业标准。

用于高速信号测试和分析的逻辑分析探头的主要型号包括:

飞线型通用探头:

E5381A:17通道,1.5Gb/s 差分探头

E5382A:17通道,1.5Gb/s单端探头

新一代无插座型(SoftTouch Pro)探头:

E5405A:17通道,4Gb/s 差分SoftTouch Pro探头

E5406A:34通道,4Gb/s 单端SoftTouch Pro探头

图17 基于AXIe的U4154A模块化逻辑分析系统

图18 逻辑分析仪的眼图扫描功能可快速扫描多通道眼图来分析信号完整性

图19 无插座型高带宽逻辑分析仪探头SoftTouch和SoftTouch Pro

U4154A模块化逻辑分析仪主要功能应用如下:

1.通用并行总线的信号完整性测试:时序测试,眼图扫描

2.通用并行总线的数据捕获,协议分析;

3.数字I和Q,数字中频的时序测试,数据捕获,矢量分析(时域、频域、解调域、

码域,时频、相参等分析);

4.ADC/DAC性能验证;

5.FPGA调试:利用逻辑分析仪的深存储和强大的触发功能,帮助观察FPGA内部节点

信号和数据。

6.DDR3/4和CPU/DSP协议和软件测试。

U4154A模块化逻辑分析仪主要性能指标如下:

1. 数字IQ分析带宽:8GHz

2. 单通道数:136通道

3. 状态分析能力:状态时钟:2.5GHz;状态速率:4Gbps

4. 定时分析能力:2.5/5GHz(全通道/半通道,全内存深度),高速定时:12.5GHz(256K

内存深度)

5. 存储深度:200M点

6. 支持眼图扫描和采样时钟调整功能,分辨率:5ps

7. 最大触发序列器速度:2.5GHz

8. 最大触发序列器级数:8;触发序列器分支:任意4路if/then/else;触发资源条件:

任意布尔逻辑组合

9. Xilinx FPGA:一个调试Pin可接入内部128个节点信号;Altera FPGA: 一个调试Pin

可接入内部256个节点信号

七电源完整性测试分析工具

高速数字电路电源完整性精确测量一直是个难题,以前大部分研发单位和公司并不进行这些电源完整性参数的测量。但是,随着数字信号速率的不断提升,特别是提升到10Gbps 以上数量级后,电源完整性的测量成为关键测试项目之一。

电源完整性测试详细配置(数量多,容易漏选,所以列举出来):

●DSO90254A

●E5061B(Opt: 005,3L5)

●N2873A(x2)

●1250-1250(x2),15442A

●85033E

●11667L

●8120-1840(x4)

●16201A(Opt:001),16195B,16092A, ,16047E

电源完整性测试仪器的关键性能指标:

●纹波测试能力:3mv(P-P)

●阻抗测试能力:1m欧姆---50K欧姆

●频率范围:5Hz--3GHz

●基本测试精度:+-2%

●SMD器件测试能力:频率DC--3GHz

●引脚器件测试能力:频率DC-110MHz

●直流偏置范围:0--+-40VDC

电源完整性测试仪器实现的测试功能:

●电源纹波测量

●直流-直流转换器环路增益(幅度和相位)测量

●PDN(电源分配网络)毫欧姆级阻抗测量

●滤波电容/旁路电容/磁珠等用于电源分配网络的器件的阻抗和参数测量

图20 电源完整性测试工具E5061B

八其他测试工具

1 50fs时钟抖动测量

超过10Gbps的SerDes对参考时钟的要求异常苛刻,要求参考时钟的抖动低于100fs,甚至达到50fs的数量级。传统使用示波器的测试方法已经不能满足要求,因为示波器自身的抖动测量本底已经超过100fs数量级。所以测量低于100fs抖动需要采用更高精度的仪器,信号源分析仪或相噪分析仪是一个非常好的选择。

E5052B信号源分析仪是测量晶振、PLL、时钟电路、相位噪声的常用仪器,内部采用独特的设计方法使得测量精度达到50fs数量级。信号源分析仪采用相参接收机的方法降低仪

器的本底噪声。信号进入仪器内部,分为两路,每路先用超低相噪本振进行混频,然后通过低通滤波器和放大器后用高精度ADC进行数据采集,采集后由FPGA进行FFT和相关运算处理,以去除仪器混频器/放大器/ADC等所带来的噪声。因为噪声是随机分布的,而信号是固定的,所以相关运算处理可以去除噪声,而且相关运算次数越多,测试精度越高,不过测试速度也会相应的变慢。

2 功率谱/功率电平/串扰等测量

对于象10Gbase-T这样的高速接口总线,功率谱/功率电平测试是非常重要的测试项目,而因为示波器自身接收灵敏度和动态范围的限制,必须用更高精度的仪器来进行这些频域参数的测量。另外,对一些串扰和辐射的测量和定位也需要高接收灵敏度和大动态范围的仪器,所以频谱分析仪在高速数字领域的应用变得越来越广泛。频谱分析仪的频域指标比示波器高出几个数量级,可满足越来越多的高速数字系统,特别是20GHz以上数字系统的测量需要。

3 PCB阻抗测试工具

现在测试PCB阻抗的仪器主要有两种:基于采样示波器的时域反射计TDR和基于网络分析仪的ENA-TDR。

图21是典型的时域反射计TDR,由采样示波器86100D和TDR模块54754A组成,其典型的TDR指标是:硬件上升时间40ps,归一化的上升时间<25ps(最低16ps)。

图21 86100D采样示波器和54754A TDR测试模块

图22是现在比较流行的基于网络分析仪E5071C的ENA-TDR,由2端口或4端口E5071C 矢量网络分析仪和TDR选件构成,其典型的TDR指标是:上升时间22ps。

图22 基于网络分析仪的ENA-TDR

测量PCB单端阻抗或差分阻抗,探头是必不可少的一部分。如果已经在被测PCB上设计了SMA接头或测试夹具,可以用同轴电缆直接连接被测件测量。大多数情况都是裸PCB 或裸的测试条,这时需要用探头测量。常用的如图23所示的N1021B差分TDR探头可以用于传统的基于采样示波器86100D的TDR仪器,也可以用于基于网络分析仪E5071C的ENA-TDR。N1021B的典型指标是:带宽>18GHz,可变探针间距范围0.5mm~2.54mm。

图23 N1021B差分TDR探头

九总结

建立一个信号完整性实验室的投资是比较大的,但是为了成功设计高速数字系统又是必须的,把上面描述的工具综合整理如下。

五款信号完整性仿真工具介绍

现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,Ansoft公司的仿真工具能够从三维场求解的角度出发,对PCB设计的信号完整性问题进行动态仿真。 (一)Ansoft公司的仿真工具 现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,Ansoft公司的仿真工具能够从三维场求解的角度出发,对PCB设计的信号完整性问题进行动态仿真。 Ansoft的信号完整性工具采用一个仿真可解决全部设计问题: SIwave是一种创新的工具,它尤其适于解决现在高速PCB和复杂IC封装中普遍存在的电源输送和信号完整性问题。 该工具采用基于混合、全波及有限元技术的新颖方法,它允许工程师们特性化同步开关噪声、电源散射和地散射、谐振、反射以及引线条和电源/地平面之间的耦合。该工具采用一个仿真方案解决整个设计问题,缩短了设计时间。 它可分析复杂的线路设计,该设计由多重、任意形状的电源和接地层,以及任何数量的过孔和信号引线条构成。仿真结果采用先进的3D图形方式显示,它还可产生等效电路模型,使商业用户能够长期采用全波技术,而不必一定使用专有仿真器。 (二)SPECCTRAQuest Cadence的工具采用Sun的电源层分析模块: Cadence Design Systems的SpecctraQuest PCB信号完整性套件中的电源完整性模块据称能让工程师在高速PCB设计中更好地控制电源层分析和共模EMI。 该产品是由一份与Sun Microsystems公司签署的开发协议而来的,Sun最初研制该项技术是为了解决母板上的电源问题。 有了这种新模块,用户就可根据系统要求来算出电源层的目标阻抗;然后基于板上的器件考虑去耦合要求,Shah表示,向导程序能帮助用户确定其设计所要求的去耦合电容的数目和类型;选择一组去耦合电容并放置在板上之后,用户就可运行一个仿真程序,通过分析结果来发现问题所在。 SPECCTRAQuest是CADENCE公司提供的高速系统板级设计工具,通过它可以控制与PCB layout相应的限制条件。在SPECCTRAQuest菜单下集成了一下工具: (1)SigXplorer可以进行走线拓扑结构的编辑。可在工具中定义和控制延时、特性阻抗、驱动和负载的类型和数量、拓扑结构以及终端负载的类型等等。可在PCB详细设计前使用此工具,对互连线的不同情况进行仿真,把仿真结果存为拓扑结构模板,在后期详细设计中应用这些模板进行设计。 (2)DF/Signoise工具是信号仿真分析工具,可提供复杂的信号延时和信号畸变分析、IBIS 模型库的设置开发功能。SigNoise是SPECCTRAQUEST SI Expert和SQ Signal Explorer Expert进行分析仿真的仿真引擎,利用SigNoise可以进行反射、串扰、SSN、EMI、源同步及系统级的仿真。 (3)DF/EMC工具——EMC分析控制工具。 (4)DF/Thermax——热分析控制工具。 SPECCTRAQuest中的理想高速PCB设计流程: 由上所示,通过模型的验证、预布局布线的space分析、通过floorplan制定拓朴规则、由规

信号完整性研发测试攻略2.0

信号完整性测试指导书 ——Ver 2.0 编写:黄如俭(sam Huang) 钱媛(Tracy Qian) 宋明全(Ivan Song) 康钦山(Scott Kang)

目录 1. CLK Test (3) 1.1 Differential Signal Test (3) 1.2 Single Signal Test (5) 2. LPC Test (7) 2.1 EC Side Test (7) 2.2 Control Sidse Test (8) 3. USB Test (11) 3.1 High Speed Test (11) 3.2 Low Speed Test (12) 3.3 Full Speed Test (12) 3.4 Drop/Droop Test (12) 4. VGA Test (14) 4.1 R、G、B Signal Test (14) 4.2 RGB Channel to Channel Skew Test (14) 4.3 VSYNC and HSYNC Test (15) 4.4 DDC_DA TA and DDC_CKL Test (15) 5. LVDS Test (17) 5.1 Differential data signals swing Test (17) 5.2 Checking Skew at receiver Test (18) 5.3 Checking the offset voltage Test (19) 5.4 Differential Input Voltage Test (20) 5.5 Common Mode Voltage Test (20) 5.6 Slew Rate Test (21) 5.7 Data to Clock Timing Test (23) 6. FSB Test (26) 7. Serial Data(SA TA/ESA TA, PCIE, DMI,FDI)Test (29) 8. HD Audio Test (30) 8.1 Measurement at The Controller (30) 8.2Measurement at The Codec (31) 9. DDR2 Test (34) 9.1 Clock (34) 9.2 Write (35) 9.3 Read (37) 10.Ethernet Test (39) 11.SMbus Signal Test (40) 12. HDMI Test (42) 13. DisplayPort Test (43)

随机信号分析实验报告

一、实验名称 微弱信号的检测提取及分析方法 二、实验目的 1.了解随机信号分析理论如何在实践中应用 2.了解随机信号自身的特性,包括均值、方差、相关函数、频谱及功率谱密度等 3.掌握随机信号的检测及分析方法 三、实验原理 1.随机信号的分析方法 在信号与系统中,我们把信号分为确知信号和随机信号。其中随机信号无确定的变化规律,需要用统计特新进行分析。这里我们引入随机过程的概念,所谓随机过程就是随机变量的集合,每个随机变量都是随机过程的一个取样序列。 随机过程的统计特性一般采用随机过程的分布函数和概率密度来描述,他们能够对随机过程作完整的描述。但由于在实践中难以求得,在工程技术中,一般采用描述随机过程的主要平均统计特性的几个函数,包括均值、方差、相关函数、频谱及功率谱密度等来描述它们。本实验中算法都是一种估算法,条件是N要足够大。 2.微弱随机信号的检测及提取方法 因为噪声总会影响信号检测的结果,所以信号检测是信号处理的重要内容之一,低信噪比下的信号检测是目前检测领域的热点,而强噪声背景下的微弱信号提取又是信号检测的难点。 噪声主要来自于检测系统本身的电子电路和系统外空间高频电磁场干扰等,通常从以下两种不同途径来解决 ①降低系统的噪声,使被测信号功率大于噪声功率。 ②采用相关接受技术,可以保证在信号功率小于噪声功率的情况下,人能检测出信号。 对微弱信号的检测与提取有很多方法,常用的方法有:自相关检测法、多重自相法、双谱估计理论及算法、时域方法、小波算法等。 对微弱信号检测与提取有很多方法,本实验采用多重自相关法。 多重自相关法是在传统自相关检测法的基础上,对信号的自相关函数再多次做自相关。即令: 式中,是和的叠加;是和的叠加。对比两式,尽管两者信号的幅度和相位不同,但频率却没有变化。信号经过相关运算后增加了信噪比,但其改变程度是有限的,因而限制了检测微弱信号的能力。多重相关法将 当作x(t),重复自相关函数检测方法步骤,自相关的次数越多,信噪比提高的越多,因此可检测出强噪声中的微弱信号。

高速数字信号的信号完整性分析

科研训练 设计题目:高速数字信号的信号完整性分析专业班级:科技0701 姓名:张忠凯 班内序号:18 指导教师:梁猛 地点:三号实验楼236 时间:2010.9.14~2010.11. 16 电子科学与技术教研室

摘要: 在高速数字系统设计中,信号完整性(SI)问题非常重要的问题,如高时钟频率和快速边沿设计。本文提出了影响信号完整性的因素,并提出了解决电路板中信号完整性问题的方法。 关键词:高速数字电路;信号完整性;信号反射;串扰 引言: 随着电子行业的发展,高速设计在整个电子设计领域所占的比例越来越大,100 MHz 以上的系统已随处可见,采用CS(线焊芯片级BGA)、FG(线焊脚距密集化BGA)、FF(倒装芯片小间距BGA)、BF(倒装芯片BGA)、BG(标准BGA)等各种BGA封装的器件大量涌现,这些体积小、引脚数已达数百甚至上千的封装形式已越来越多地应用到各类高速、超高速电子系统中。 从IC芯片的封装来看,芯片体积越来越小、引脚数越来越多;这就带来了一个问题,即电子设计的体积减小导致电路的布局布线密度变大,同时信号的上升沿触发速度还在提高,从而使得如何处理高速信号问题成为限制设计水平的关键因素。随着电子系统中逻辑复杂度和时钟频率的迅速提高,信号边沿不断变陡,印刷电路板的线迹互连和板层特性对系统电气性能的影响也越发重要。对于低频设计,线迹互连和板层的影响可以不考虑,但当频率超过50 MHz时,互连关系必须考虑,而在评定系统性能时还必须考虑印刷电路板板材的电参数。因此,高速系统的设计必须面对互连延迟引起的时序问题以及串扰、传输线效应等信号完整性问题。 1.信号完整性的概念: 信号完整性是指信号未受到损伤的一种状态,良好的信号完整性是指在需要时信号仍然能以正确的时序和电压电平值做出响应。差的信号完整性不是由某一单一因素导致的,而是板级设计中多种因素共同引起的。 2.信号完整性问题的分析: 高速不是就频率的高低来说的,而是由信号的边沿速度决定的,一般认为上升时间小于4倍信号传输延迟时可视为高速信号。信号完整性问题的起因是由于不断缩小的上升和下降时间。假如信号的上升沿和下降沿变化比较缓慢,则电路结构和元器件所造成的影响不大,可以忽略。 当信号的上升沿和下降沿变化加快时,整个电路则会转化为传输线问题,即电路的延迟、反射等问题;当电路中有大的电流涌动时会引起地弹,如大量芯片的输出同时开启时,将有一个较大的瞬态电流在芯片与板的电源平面流过,芯片封装与电源平面的电感和电阻会引发电源噪声,这样会在真正的地平面( 0 V)上产生电压的波动和变化,犹如从地面弹回电路的信号一样;通常表现为在一根信号线上有信号通过时,在上与之

数字信号处理实验一

一、实验目的 1. 通过本次实验回忆并熟悉MATLAB这个软件。 2. 通过本次实验学会如何利用MATLAB进行序列的简单运算。 3. 通过本次实验深刻理解理论课上的数字信号处理的一个常见方法——对时刻n的样本附近的一些样本求平均,产生所需的输出信号。 3. 通过振幅调制信号的产生来理解载波信号与调制信号之间的关系。 二、实验内容 1. 编写程序在MATLAB中实现从被加性噪声污染的信号中移除噪声的算法,本次试验采用三点滑动平均算法,可直接输入程序P1.5。 2. 通过运行程序得出的结果回答习题Q1.31-Q1.33的问题,加深对算法思想的理解。 3. 编写程序在MATLAB中实现振幅调制信号产生的算法,可直接输入程序P1.6。 4. 通过运行程序得出的结果回答习题Q1.34-Q1.35的问题,加深对算法思想的理解。 三、主要算法与程序 1. 三点滑动平均算法的核心程序: %程序P1.5 %通过平均的信号平滑 clf; R=51; d=0.8*(rand(R,1)-0.5);%产生随噪声 m=0:R-1; s=2*m.*(0.9.^m);%产生为污染的信号 x=s+d';%产生被噪音污染的信号 subplot(2,1,1); plot(m,d','r-',m,s,'g--',m,x,'b-.');

xlabel('时间序号n');ylabel('振幅'); legend('d[n]','s[n]','x[n]'); x1=[0 0 x];x2=[0 x 0];x3=[x 0 0]; y=(x1+x2+x3)/3; subplot(2,1,2); plot(m,y(2:R+1),'r-',m,s,'g--'); legend('y[n]','s[n]'); xlabel('时间序号n');ylabel('振幅'); 2. 振幅调制信号的产生核心程序:(由于要几个结果,因此利用subplot函数画图) %程序P1.6 %振幅调制信号的产生 n=0:100; m=0.1;fH=0.1;fL=0.01; m1=0.3;fH1=0.3;fL1=0.03; xH=sin(2*pi*fH*n); xL=sin(2*pi*fL*n); y=(1+m*xL).*xH; xH1=sin(2*pi*fH1*n); xL1=sin(2*pi*fL1*n); y1=(1+m1*xL).*xH; y2=(1+m*xL).*xH1; y3=(1+m*xL1).*xH; subplot(2,2,1); stem(n,y); grid; xlabel('时间序号n');ylabel('振幅');title('m=0.1;fH=0.1;fL=0.01;'); subplot(2,2,2); stem(n,y1); grid; xlabel('时间序号n');ylabel('振幅');title('m=0.3;fH=0.1;fL=0.01;'); subplot(2,2,3); stem(n,y2); grid; xlabel('时间序号n');ylabel('振幅');title('m=0.3;fH=0.3;fL=0.01;'); subplot(2,2,4); stem(n,y3); grid;

Altium Designer中进行信号完整性分析

在高速数字系统中,由于脉冲上升/下降时间通常在10到几百p秒,当受到诸如内连、传输时延和电源噪声等因素的影响,从而造成脉冲信号失真的现象; 在自然界中,存在着各种各样频率的微波和电磁干扰源,可能由于很小的差异导致高速系统设计的失败;在电子产品向高密和高速电路设计方向发展的今天,解决一系列信号完整性的问题,成为当前每一个电子设计者所必须面对的问题。业界通常会采用在PCB制板前期,通过信号完整性分析工具尽可能将设计风险降到最低,从而也大大促进了EDA设计工具的发展…… 信号完整性(Signal Integrity,简称SI)问题是指高速数字电路中,脉冲形状畸变而引发的信号失真问题,通常由传输线不阻抗匹配产生的问题。而影响阻抗匹配的因素包括信号源的架构、输出阻抗(output impedance)、走线的特性阻抗、负载端的特性、走线的拓朴(topology)架构等。解决的方式可以采用端接(termination)与调整走线拓朴的策略。 信号完整性问题通常不是由某个单一因素导致的,而是板级设计中多种因素共同作用的结果。信号完整性问题主要表现形式包括信号反射、信号振铃、地弹、串扰等; 1,Altium Designer信号完整性分析(机理、模型、功能) 在Altium Designer设计环境下,您既可以在原理图又可以在PCB编辑器内实现信号完整性分析,并且能以波形的方式在图形界面下给出反射和串扰的分析结果。 Altium Designer的信号完整性分析采用IC器件的IBIS模型,通过对版图内信号线路的阻抗计算,得到信号响应和失真等仿真数据来检查设计信号的可靠性。Altium Designer的信号完整性分析工具可以支持包括差分对信号在内的高速电路信号完整性分析功能。 Altium Designer仿真参数通过一个简单直观的对话框进行配置,通过使用集成的波形观察仪,实现图形显示仿真结果,而且波形观察仪可以同时显示多个仿真数据图像。并且可以直接在标绘的波形上进行测量,输出结果数据还可供进一步分析之用。 Altium Designer提供的集成器件库包含了大量的的器件IBIS模型,用户可以对器件添加器件的IBIS模型,也可以从外部导入与器件相关联的IBIS模型,选择从器件厂商那里得到的IBIS 模型。 Altium Designer的SI功能包含了布线前(即原理图设计阶段)及布线后(PCB版图设计阶段)两部分SI分析功能;采用成熟的传输线计算方法,以及I/O缓冲宏模型进行仿真。 基于快速反射和串扰模型,信号完整性分析器使用完全可靠的算法,从而能够产生出准确的仿真结果。布线前的阻抗特征计算和信号反射的信号完整性分析,用户可以在原理图环境下运行SI仿真功能,对电路潜在的信号完整性问题进行分析,如阻抗不匹配等因素。 更全面的信号完整性分析是在布线后PCB版图上完成的,它不仅能对传输线阻抗、信号反射和信号间串扰等多种设计中存在的信号完整性问题以图形的方式进行分析,而且还能利用规则检查发现信号完整性问题,同时,Altium Designer还提供一些有效的终端选项,来帮助您选择最好的解决方案。 2,分析设置需求 在PCB编辑环境下进行信号完整性分析。 为了得到精确的结果,在运行信号完整性分析之前需要完成以下步骤:

北理工随机信号分析实验报告

本科实验报告实验名称:随机信号分析实验

实验一 随机序列的产生及数字特征估计 一、实验目的 1、学习和掌握随机数的产生方法。 2、实现随机序列的数字特征估计。 二、实验原理 1、随机数的产生 随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。进行随机信号仿真分析时,需要模拟产生各种分布的随机数。 在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。 (0,1)均匀分布随机数是最最基本、最简单的随机数。(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即 U(0,1)。实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下: )(m od ,110N ky y y n n -= N y x n n /= 序列{}n x 为产生的(0,1)均匀分布随机数。 下面给出了上式的3组常用参数: 1、10 N 10,k 7==,周期7 510≈?; 2、(IBM 随机数发生器)31 16 N 2,k 23,==+周期8 510≈?; 3、(ran0)31 5 N 21,k 7,=-=周期9 210≈?; 由均匀分布随机数,可以利用反函数构造出任意分布的随机数。 定理 1.1 若随机变量 X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有 )(1R F X x -= 由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变

信号完整性分析基础系列之一——眼图测量

信号完整性分析基础系列之一 ——关于眼图测量(上) 汪进进美国力科公司深圳代表处 内容提要:本文将从作者习惯的无厘头漫话风格起篇,从四个方面介绍了眼图测量的相关知识:一、串行数据的背景知识; 二、眼图的基本概念; 三、眼图测量方法; 四、力科示波器在眼图测量方面的特点和优势。全分为上、下两篇。上篇包括一、二部分。下篇包括三、四部分。 您知道吗?眼图的历史可以追溯到大约47年前。在力科于2002年发明基 于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基 于采样示波器的传统方法。 您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。这种对于Sigtest的迷恋甚至使有些工程师忘记了眼图是 可以作为一项重要的调试工具的。 在我2004年来力科面试前,我也从来没有听说过眼图。那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。之后我Google“眼图”, 看到网络上有限的几篇文章,但仍不知所云。刚刚我再次Google“眼图”,仍然 没有找到哪怕一篇文章讲透了眼图测量。 网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。 “在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰 对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元 定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。 二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两 只“眼睛”。眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码

数字信号处理(北航)实验二报告

数字信号处理实验二 信号的分析与处理综合实验 38152111 张艾一、实验目的 综合运用数字信号处理的理论知识进行信号的采样,重构,频谱分析和滤波器的设计,通过理论推导得出相应结论,再利用Matlab作为编程工具进行计算机实现,从而加深对所学知识的理解,建立概念。 二、基本要求 1.掌握数字信号处理的基本概念、基本理论和基本方法; 2.学会MATLAB的使用,掌握MATLAB的程序设计方法; 3.掌握用MATLAB设计简单实验验证采样定理的方法; 4.掌握在Windows环境下语音信号采集的方法; 5.学会用MATLAB对信号进行频谱分析; 6.掌握MATLAB设计FIR和IIR数字滤波器的方法; 三、实验内容 1.利用简单正弦信号设计实验验证采样定理: (1)Matlab产生离散信号的方法,作图的方法,以及基本运算操作 (2)对连续正弦信号以不同的采样频率作采样 (3)对采样前后信号进行傅立叶变换,并画频谱图 (4)分析采样前后频谱的有变化,验证采样定理。

掌握画频谱图的方法,深刻理解采样频率,信号频率,采样点数,频率分辨率等概念2.真实语音信号的采样重构:录制一段自己的语音信号,并对录制的信号进行采样;画出采样前后语音信号的时域波形和频谱图;对降采样后的信号进行插值重构,滤波,恢复原信号。 (1)语音信号的采集 (2)降采样的实现(改变了信号的采样率) (3)以不同采样率采样后,语音信号的频谱分析 (4)采样前后声音的变化 (5)对降采样后的信号进行插值重构,滤波,恢复原信号 3.带噪声语音信号的频谱分析 (1)设计一频率已知的噪声信号,与实验2中原始语音信号相加,构造带噪声信号(2)画出原始语音信号和加噪声后信号,以及它们的频谱图 (3)利用频谱图分析噪声信号和原语音信号的不同特性 4.对带噪声语音信号滤波去噪:给定滤波器性能指标,采样窗函数法或双线性变换设计滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采样的语音信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比,分析信号的变化; 回放语音信号; (1)分析带噪声信号频谱,找出噪声所在的频率段 (2)利用matlab中已有的滤波器滤波 (3)根据语音信号特点,自己设计滤波器滤波 (4)比较各种滤波器性能(至少四种),选择一种合适的滤波器将噪声信号滤除 (5)回放语音信号,比较滤波前后声音的变化

于博士信号完整性分析入门(修改)

于博士信号完整性分析入门 于争 博士 https://www.doczj.com/doc/828001120.html, for more information,please refer to https://www.doczj.com/doc/828001120.html, 电设计网欢迎您

什么是信号完整性? 如果你发现,以前低速时代积累的设计经验现在似乎都不灵了,同样的设计,以前没问题,可是现在却无法工作,那么恭喜你,你碰到了硬件设计中最核心的问题:信号完整性。早一天遇到,对你来说是好事。 在过去的低速时代,电平跳变时信号上升时间较长,通常几个ns。器件间的互连线不至于影响电路的功能,没必要关心信号完整性问题。但在今天的高速时代,随着IC输出开关速度的提高,很多都在皮秒级,不管信号周期如何,几乎所有设计都遇到了信号完整性问题。另外,对低功耗追求使得内核电压越来越低,1.2v内核电压已经很常见了。因此系统能容忍的噪声余量越来越小,这也使得信号完整性问题更加突出。 广义上讲,信号完整性是指在电路设计中互连线引起的所有问题,它主要研究互连线的电气特性参数与数字信号的电压电流波形相互作用后,如何影响到产品性能的问题。主要表现在对时序的影响、信号振铃、信号反射、近端串扰、远端串扰、开关噪声、非单调性、地弹、电源反弹、衰减、容性负载、电磁辐射、电磁干扰等。 信号完整性问题的根源在于信号上升时间的减小。即使布线拓扑结构没有变化,如果采用了信号上升时间很小的IC芯片,现有设计也将处于临界状态或者停止工作。 下面谈谈几种常见的信号完整性问题。 反射: 图1显示了信号反射引起的波形畸变。看起来就像振铃,拿出你制作的电路板,测一测各种信号,比如时钟输出或是高速数据线输出,看看是不是存在这种波形。如果有,那么你该对信号完整性问题有个感性的认识了,对,这就是一种信号完整性问题。 很多硬件工程师都会在时钟输出信号上串接一个小电阻,至于为什么,他们中很多人都说不清楚,他们会说,很多成熟设计上都有,照着做的。或许你知道,可是确实很多人说不清这个小小电阻的作用,包括很多有了三四年经验的硬件工程师,很惊讶么?可这确实是事实,我碰到过很多。其实这个小电阻的作用就是为了解决信号反射问题。而且随着电阻的加大,振铃会消失,但你会发现信号上升沿不再那么陡峭了。这个解决方法叫阻抗匹配,奥,对了,一定要注意阻抗匹配,阻抗在信号完整性问题中占据着极其重要的

数字信号处理实验二

实验报告(本科) 学号 2015141443002 姓名柏冲 专业通信工程 日期 2017/12/4 实验题目时域采样和频域采样 一、实验目的

时域采样理论与频域采样理论是数字信号处理中重要的理论。要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使得采样后的信号不丢失信息;要求掌握频率采样会引起时域周期化的概念,以及频域采样定理及其对频域采样点数选择的指导作用。 二、实验过程 附:源程序 (1)时域采样 Tp=64/1000; %观察时间Tp=64毫秒 %产生M长采样序列x(n) Fs=1000; T=1/Fs; M=Tp*Fs; n=0:M-1; A=444.128; a=pi*50*2^0.5; omega=pi*50*2^0.5; xnt=A*exp(-a*n*T).*sin(omega*n*T); Xk=T*fft(xnt,M); %M点FFT[(xnt)] subplot(3,2,1); stem(xnt,'.'); %调用编绘图函数stem绘制序列图 box on;title('(a) Fs=1000Hz'); k=0:M-1;fk=k/Tp; subplot(3,2,2);stem(fk,abs(Xk),'.');title('(a) T*FT[xa(nT)],Fs=1000Hz'); xlabel('f(Hz)');ylabel('幅度');axis([0,Fs,0,1.2*max(abs(Xk))]); % Fs=300Hz和 Fs=200Hz的程序与上面Fs=1000Hz完全相同。 Tp=64/1000; %观察时间Tp=64毫秒 %产生M长采样序列x(n) Fs=300; T=1/Fs; M=Tp*Fs; n=0:M-1; A=444.128; a=pi*50*2^0.5; omega=pi*50*2^0.5; xnt=A*exp(-a*n*T).*sin(omega*n*T); M1=fix(M); Xk=T*fft(xnt,M1); %M点FFT[(xnt)] subplot(3,2,3); stem(xnt,'.'); %调用自编绘图函数stem绘制序列图 box on;title('(b) Fs=300Hz'); k=0:M-1;fk=k/Tp; subplot(3,2,4);stem(fk,abs(Xk),'.');title('(b) T*FT[xa(nT)],Fs=300Hz'); xlabel('f(Hz)');ylabel('幅度');axis([0,Fs,0,1.2*max(abs(Xk))]); Tp=64/1000; %观察时间Tp=64毫秒 %产生M长采样序列x(n) Fs=200; T=1/Fs; M=Tp*Fs; n=0:M-1; A=444.128; a=pi*50*2^0.5; omega=pi*50*2^0.5; xnt=A*exp(-a*n*T).*sin(omega*n*T); M2=fix(M);

信号完整性测试规范和工作流程V091

信号完整性测试规范和工作流程(Ver0.9x) 历史记录: 1.2003-4-22:初稿、起草。 2.2003-5-23: 一.主要目的: 信号完整性测试的思想是信号源输出,经过传输线到达信号末端(负载),信号本身的相对变化情况。主要目的是验证PCB设计是否保证了信号在传输过程中能否保证其完整性,以信号的相对测试为主旨,信号本身8的绝对测试为辅。信号比较的内容主要是信号的本征特性参数。同时也部分验证电路原理设计的合理性。也检验产品的性能符合国家有关标准的要求,比如3C、EMC、ESD等。从定性参数的角度保证PCB设计达到了电路设计的要求,同时也保证产品的可靠性、一致性。 信号完整性测试一般是在线测试,因此很多测试参数在不同的工作模式下会有较大的差别。一般情况下需要测试静态工作模式,但一些参数需要测试满负荷工作模式。另外测试点的选择,特别是接地点的位置会对测试结果有很大的影响。 二.基本要求: 要求测试准确、可靠、完善。并要求有完整的测试报告。这里的要求是一般通用性的要求,针对具体的产品、产品的不同阶段,可以提出不同的参数要求和具体的测试内容。由于测试是在PCB板上(或称“在线”)的测试,因此一些测试条件和测试参数的定义条件可能会出现不一致的情况,因此规定:测试的基本状态在没有任何说明的情况下,认为是静态工作模式或额定正常工作模式。如果在测试方法中有规定或说明的,以测试说明的条件为准。在类型和参数中列出了比较详细全面的参数,但在测试中可能没有要求,因此,具体产品如果需要测试请加以特别说明。一般规定:主要参数是必须测试的项目参数。 + 三.类型和参数: 3.1电源部分: 3.1.1电源类型分为LDO电源、DC/DC电源。 3.1.2主要参数有:幅度、纹波、噪声。 3.1.3状态分为:额定负载、空载、轻载、重载、超载。 3.1.4保护能力:输出电流保护、输出电压保护、输入电压保护、热保护。 3.1.5其它参数:输入电压适应性、静态电流、关机电流(漏电流)。 3.2时钟信号: 3.2.1时钟源分类:晶体时钟(正弦波时钟)、晶振时钟(方波时钟、钟振时钟)。 3.2.2时钟类型:系统时钟(源时钟)、(数据)同步时钟。 3.2.3主要参数:频率、占空比、过冲、上升沿、下降沿。 3.2.4其它参数:相位抖动、频率漂移、波形畸变。 3.3总线类信号: 3.3.1分类:数据类总线、地址类总线、混合类总线。 3.3.2主要参数:幅度、过冲。 3.3.3其它参数:抖动、上升沿、下降沿。 3.4端口信号: 3.4.1分类:数据信号、基带(调制)信号、二次调制信号、 3.4.2主要参数:幅度、过冲、上升沿、下降沿。 3.4.3其它参数:抖动、频谱、功率(谱)密度。 3.4.4使用到的几种埠:串口、网口、USB口、IF、RF。 3.5其它信号、器件、电路: 3.5.1主要的几个:复位信号、JTAG、无线、功耗、温度、音频振荡器。 3.5.2参数:

随机信号分析实验报告二 2

《随机信号分析》实验报告二 班级: 学号: 姓名:

实验二高斯噪声的产生和性能测试 1.实验目的 (1)掌握加入高斯噪声的随机混合信号的分析方法。 (2)研究随机过程的均值、相关函数、协方差函数和方差。 ⒉实验原理 (1)利用随机过程的积分统计特性,给出随机过程的均值、相关函数、协方差函数和方差。 (2)随机信号均值、方差、相关函数的计算公式,以及相应的图形。 ⒊实验报告要求 (1)简述实验目的及实验原理。 (2)采用幅度为1,频率为25HZ的正弦信号错误!未找到引用源。为原信号,在其中加入均值为2,方差为0.04的高斯噪声得到混合随机信号X(t)。 试求随机过程 的均值、相关函数、协方差函数和方差。用MATLAB进行仿真,给出测试的随机过程的均值、相关函数、协方差函数和方差图形,与计算的结果作比较,并加以解释。 (3)分别给出原信号与混合信号的概率密度和概率分布曲线,并以图形形式分别给出原信号与混合信号均值、方差、相关函数的对比。 (4)读入任意一幅彩色图像,在该图像中加入均值为0,方差为0.01的高斯噪声,请给出加噪声前、后的图像。 (5)读入一副wav格式的音频文件,在该音频中加入均值为2,方差为0.04的高斯噪声,得到混合随机信号X(t),请给出混合信号X(t)的均值、相关函数、协方差函数和方差,频谱及功率谱密度图形。 4、源程序及功能注释 (2)源程序: clear all; clc; t=0:320; %t=0:320 x=sin(2*pi*t/25); %x=sin(2*p1*t/25) x1=wgn(1,321,0); %产生一个一行32列的高斯白噪声矩阵,输出的噪声强度为0dbw

随机信号实验报告

随机信号分析 实验报告 目录 随机信号分析 (1) 实验报告 (1) 理想白噪声和带限白噪声的产生与测试 (2) 一、摘要 (2) 二、实验的背景与目的 (2) 背景: (2) 实验目的: (2) 三、实验原理 (3) 四、实验的设计与结果 (4) 实验设计: (4) 实验结果: (5) 五、实验结论 (12) 六、参考文献 (13) 七、附件 (13) 1

理想白噪声和带限白噪声的产生与测试一、摘要 本文通过利用MATLAB软件仿真来对理想白噪声和带限白噪声进行研究。理想白噪声通过低通滤波器和带通滤波器分别得到低通带限白噪声和帯通带限白噪声。在仿真的过程中我们利用MATLAB工具箱中自带的一些函数来对理想白噪声和带限白噪声的均值、均方值、方差、功率谱密度、自相关函数、频谱以及概率密度进行研究,对对它们进行比较分析并讨论其物理意义。 关键词:理想白噪声带限白噪声均值均方值方差功率谱密度自相关函数、频谱以及概率密度 二、实验的背景与目的 背景: 在词典中噪声有两种定义:定义1:干扰人们休息、学习和工作的声音,引起人的心理和生理变化。定义2:不同频率、不同强度无规则地组合在一起的声音。如电噪声、机械噪声,可引伸为任何不希望有的干扰。第一种定义是人们在日常生活中可以感知的,从感性上很容易理解。而第二种定义则相对抽象一些,大部分应用于机械工程当中。在这一学期的好几门课程中我们都从不同的方面接触到噪声,如何的利用噪声,把噪声的危害减到最小是一个很热门的话题。为了加深对噪声的认识与了解,为后面的学习与工作做准备,我们对噪声进行了一些研究与测试。 实验目的: 了解理想白噪声和带限白噪声的基本概念并能够区分它们,掌握用MATLAB 或c/c++软件仿真和分析理想白噪声和带限白噪声的方法,掌握理想白噪声和带限白噪声的性质。

数字信号处理实验2

常见离散信号的 M ATLAB 产生和图形显示 姓名: 刘雷明 学号:222015327012037 一、实验目的 (1)熟悉MATLAB 应用环境,常用窗口的功能和使用方法。 (2)加深对常用离散时间信号的理解。 (3)掌握简单的绘图命令。 (4)掌握线性卷积的计算机编程方法。 二、实验原理与方法 1)单位抽样序列 ?1 n = 0 δ (n ) = ? n ≠ 0 ?0 如果δ (n ) 在时间轴上延迟了 k 个单位,得到δ (n - k ) 即: 1 n = k δ (n - k ) = ? n ≠ 0 ?0 (2)单位阶跃序列 ?1 n ≥ 0 u (n ) = ? n < 0 ?0 ?1 0 ≤ n ≤ N -1 (3)矩形序列 R N (n ) = ? ?0 其他 (4)正弦序列 x (n ) = A sin(wn +?) (5)复正弦序列 x (n ) = e jwn

(6)指数序列 x(n)= a n (7)线性时不变系统的响应为如下的卷积计算式: ∞ y(n)= x (n)* h(n)=∑x(m)h(n - m) m=-∞ 三、实验内容及步骤 (1)复习常用离散时间信号的有关内容。 (2)编制程序产生上述 6 种序列(长度可输入确定,对(4) (5) (6)中的参数可自行选择),并绘出其图形。 (3)已知系统的单位脉冲响应h(n)=0.9n u(n),输入信号x(n)= R10 (n),试用卷积法求解系统的输出y(n),并绘出x(n) ~ n 、h(n) ~ n 及y(n) ~ n 图 形。 四、实验结果 一:

二:

信号完整性分析

信号完整性背景 信号完整性问题引起人们的注意,最早起源于一次奇怪的设计失败现象。当时,美国硅谷一家著名的影像探测系统制造商早在7 年前就已经成功设计、制造并上市的产品,却在最近从生产线下线的产品中出现了问题,新产品无法正常运行,这是个20MHz 的系统设计,似乎无须考虑高速设计方面的问题,更为让产品设计工程师们困惑的是新产品没有任何设计上的修改,甚至采用的元器件型号也与原始设计的要求一致,唯一的区别是 IC 制造技术的进步,新采购的电子元器件实现了小型化、快速化。新的器件工艺技术使得新生产的每一个芯片都成为高速器件,也正是这些高速器件应用中的信号完整性问题导致了系统的失败。随着集成电路(IC)开关速度的提高,信号的上升和下降时间迅速缩减,不管信号频率如何,系统都将成为高速系统并且会出现各种各样的信号完整性问题。在高速PCB 系统设计方面信号完整性问题主要体现为:工作频率的提高和信号上升/下降时间的缩短,会使系统的时序余量减小甚至出现时序方面的问题;传输线效应导致信号在传输过程中的噪声容限、单调性甚至逻辑错误;信号间的串扰随着信号沿的时间减少而加剧;以及当信号沿的时间接近0.5ns 及以下时,电源系统的稳定性下降和出现电磁干扰问题。

信号完整性含义 信号完整性(Signal Integrity)简称SI,指信号从驱动端沿传输线到达接收端后波形的完整程度。即信号在电路中以正确的时序和电压作出响应的能力。如果电路中信号能够以要求的时序、持续时间和电压幅度到达IC,则该电路具有较好的信号完整性。反之,当信号不能正常响应时,就出现了信号完整性问题。从广义上讲,信号完整性问题指的是在高速产品中由互连线引起的所有问题,主要表现为五个方面:

随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告 ——基于MATLAB语言 姓名: _ 班级: _ 学号: 专业:

目录 实验一随机序列的产生及数字特征估计 (2) 实验目的 (2) 实验原理 (2) 实验内容及实验结果 (3) 实验小结 (6) 实验二随机过程的模拟与数字特征 (7) 实验目的 (7) 实验原理 (7) 实验内容及实验结果 (8) 实验小结 (11) 实验三随机过程通过线性系统的分析 (12) 实验目的 (12) 实验原理 (12) 实验内容及实验结果 (13) 实验小结 (17) 实验四窄带随机过程的产生及其性能测试 (18) 实验目的 (18) 实验原理 (18) 实验内容及实验结果 (18) 实验小结 (23) 实验总结 (23)

实验一随机序列的产生及数字特征估计 实验目的 1.学习和掌握随机数的产生方法。 2.实现随机序列的数字特征估计。 实验原理 1.随机数的产生 随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。进行随机信号仿真分析时,需要模拟产生各种分布的随机数。 在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。 (0,1)均匀分布随机数是最最基本、最简单的随机数。(0,1)均匀分布指的是在[0,1]区间上的均匀分布, U(0,1)。即实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下: y0=1,y n=ky n(mod N) ? x n=y n N 序列{x n}为产生的(0,1)均匀分布随机数。 定理1.1若随机变量X 具有连续分布函数F x(x),而R 为(0,1)均匀分布随机变量,则有 X=F x?1(R) 2.MATLAB中产生随机序列的函数 (1)(0,1)均匀分布的随机序列函数:rand 用法:x = rand(m,n) 功能:产生m×n 的均匀分布随机数矩阵。 (2)正态分布的随机序列 函数:randn 用法:x = randn(m,n) 功能:产生m×n 的标准正态分布随机数矩阵。 如果要产生服从N(μ,σ2)分布的随机序列,则可以由标准正态随机序列产生。 (3)其他分布的随机序列 分布函数分布函数 二项分布binornd 指数分布exprnd 泊松分布poissrnd 正态分布normrnd 离散均匀分布unidrnd 瑞利分布raylrnd 均匀分布unifrnd X2分布chi2rnd 3.随机序列的数字特征估计 对于遍历过程,可以通过随机序列的一条样本函数来获得该过程的统计特征。这里我们假定随机序列X(n)为遍历过程,样本函数为x(n),其中n=0,1,2,……N-1。那么,

信号完整性分析基础系列之一__关于眼图测量(全)

信号完整性分析基础系列之一_——关于眼图测量(全) 您知道吗?眼图的历史可以追溯到大约47年前。在力科于2002年发明基于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基于采样示波器的传统方法。 您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。这种对于Sigtest 的迷恋甚至使有些工程师忘记了眼图是可以作为一项重要的调试工具的。 在我2004年来力科面试前,我也从来没有听说过眼图。那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。之后我Google“眼图”,看到网络上有限的几篇文章,但仍不知所云。刚刚我再次Google“眼图”,仍然没有找到哪怕一篇文章讲透了眼图测量。 网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。 “在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。 二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两只“眼睛”。眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。通常眼图可以用下图所示的图形来描述,由此图可以看出:(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。显然,最佳抽样时刻应选在眼睛张开最大的时刻。 (2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。

相关主题
文本预览
相关文档 最新文档