当前位置:文档之家› 基因多态性分析

基因多态性分析

基因多态性分析
基因多态性分析

人基因多态性分析

一、实验目的

1. 了解基因多态性在阐明人体对疾病、毒物的易感性与耐受性、疾病临床表现的多样性以及对药物治疗的反应性中的重要作用。

2. 了解分析基因多态性的基本原理和研究方法。

二、实验原理

基因多态性(gene polymorphism)是指在一个生物群体中,同时存在两种及以上的变异型或基因型或等位基因,也称为遗传多态性(genetic polymorphism)。人类基因多态性对于阐明人体对疾病的易感性、毒物的耐受性、药物代谢差异及遗传性疾病的分子机制有重大意义;与致病基因连锁的多态性位点可作为遗传病的诊断标记,并为分离克隆致病基因提供依据;病因未知的疾病与候选基因多态性的相关性分析,可用于辅助筛选致病易感基因。

聚合酶链反应-限制性片段长度多态性(polymerase chain reaction—Restriction Fragment Length Polymorphism,PCR-RFLP)分析是一种常用的DNA分子标记。原理是通过PCR扩增获得目的基因。若目的基因存在等位变异(多态性),且变异正好发生在某种限制性内切酶识别位点上,使酶切位点增加或者消失,则酶切结果就会产生大小不同的片段,即片段长度多态性,再利用琼脂糖凝胶电泳分离,可呈现出多态性电泳图谱。若将患者与正常的多态性图谱比较,可确定是否变异。应用PCR-RFLP,可检测某一致病基因已知的点突变,进行直接基因诊断,也可以此为遗传标记进行连锁分析进行间接基因诊断。

三、器材与试剂

1. 器材

⑴离心机。

⑵DNA扩增仪。

⑶电泳仪。

⑷水平电泳槽。

⑸紫外检测仪。

⑹移液器。

2. 试剂

⑴口腔拭子DNA抽提试剂盒。

⑵琼脂糖。

⑶1×TAE电泳缓冲液:980ml蒸馏水中加入50×TAE母液20ml。

⑷50×TAE母液:Tris 121g,0.5M EDTA(pH8.0)50ml,冰醋酸28.55ml,定容至500ml。

⑸上样缓冲液(6×):30mM EDTA,40%(V/V)甘油,0.05%(W/V)二甲苯青FF,0.05%(W/V)溴酚蓝。

⑹10 mg/ml溴化乙锭(EB)。

⑺DNA Marker。

四、实验方法

1.基因组DNA抽提

⑴细胞采集:

口腔拭子(消毒后的棉签)擦拭两侧脸颊各10次,采集口腔粘膜脱落细胞,将拭子转置于2mL离心管中,用剪刀将棉签部分剪下,加入DNA抽提试剂盒中的400μL缓冲液GA。

注意:为了保证样本不被食物或者饮料污染,取样前30分钟内请勿进食和饮水。

⑵DNA提取:

参照试剂盒说明书操作。

⑶样品保存:

DNA产物应保存在-20℃,以防DNA降解。下次实验再用。

2. DNA浓度及纯度检测

可用琼脂糖凝胶电泳和紫外分光光度计检测DNA样品的浓度与纯度。

⑴琼脂糖凝胶电泳法定性检测DNA

参照《实验16 DNA琼脂糖电泳》。

⑵紫外分光光度法定量检测DNA浓度及纯度

参照《实验20 动物肝脏DNA的提取和检测》。测定浓度后,稀释至0.25ug/uL 备用。

3. 聚合酶链反应-限制性片段长度多态性(PCR-RFLP)分析

⑴查找基因序列

选择你感兴趣的目的基因,首先查阅文献,如果已有报道并提供了该基因在Genbank中的ID号,可直接在美国国立生物技术信息中心(National Center for Biotechnology Information)中搜索。登陆https://www.doczj.com/doc/826804438.html,,①先选择核酸数据库,点击下拉框选择Nucleotide,②再把Genbank ID号输入搜索框,点击Search,如(图25-1):

图25-1 查找目的基因步骤1

如果只是知道基因的名字,则搜索框中输入基因名称,点击search。通常会产生大量的搜索结果,例如搜索人乙醛脱氢酶基因,search后进入如下界面(图25-2),共有700余条结果:

图25-2 查找目的基因步骤2

真核生物基因通常是断裂基因,含有大量间隔区,序列庞大,若查看全基因序列,可点击Genomic,如果只想获取转录区,点击Transcript查看转录本,点击后进入如下界面(图25-3):

图25-3查找目的基因步骤3

一些基因通过转录后加工,通常不止一个转录本,例如此处的ALDH2就有2个,根据你所查阅的文献和这些序列中的解释综合考虑选择你所需要的序列。点击后进入(图25-4):

图25-4 查找目的基因步骤4

此页面中有关于该基因信息的详尽描述,可直接到页面底部查看基因序列(图25-5)。

图25-5 查找目的基因步骤5

⑵设计引物

设计引物的常用软件有Primer Premier 5.0,Oligo 6.22等,以及在线设计程序如https://www.doczj.com/doc/826804438.html,/cgi-bin/web-primer及NCBI上的Primer Blast等。这些软件能根据引物设计基本原则以及你的需求,设计并推荐最优引物。引物设计后交由商业公司合成。

⑶配制反应体系

在冰浴中,将以下成分依次加入无菌PCR管中

10×PCR buffer 2.5 μL

dNTP mix (2mM) 2 μl

引物1(10pmol) 1 μl

引物2(10pmol) 1 μl

Taq聚合酶(2U/μl) 0.2μl

DNA模板(0.25u g/μl)2μL

加ddH2O至25 μl,混匀后稍加离心。

⑷PCR

在核酸扩增仪上预设以下程序,放入PCR管,启动反应。

预变性:94℃,5min

变性:94℃,30sec

退火:X℃,30sec(退火温度通常比引物Tm低5℃)

延伸:72℃,30sec

39 cycle

末次循环后延伸:72℃,10min

⑸限制性酶切

利用软件Primer Premier 5.0寻找酶切位点,选择相应的限制性核酸内切酶,酶切体系及反应条件参照酶试剂说明书。

⑹电泳检测

配制3%琼脂糖凝胶,取扩增产物5 -10 ul,进行电泳,同时加DNA分子量标准(DNA Marker)作对照,紫外检测仪下观察并拍照,并分析结果。

5.统计与分析

根据限制性内切酶位点的有无得到一个1(位点存在)、0(位点不存在)数据矩阵,统计所有样品的基因型,根据你的需要可用于遗传进化、疾病相关性、群体遗传学等多方面的分析。

【思考题】

1.分析基因多态性还有什么方法,各自的优缺点是什么?

2.试举一例说明通过检测病人的基因多态性研究如何指导个性化用药。

早泄基因多态性研究进展

早泄(Premature ejaculation , PE )是最常见的男性性功能障碍疾病,对患者及其伴侣的生活质量有着严重影响。近年流行病学研究显示,PE 的患病率约为20%~30%[1]。Revicki 等[2]就PE 对患者及其伴侣的生活影响进行了一项多国参与的、大样本定量分析研究,显示PE 对各国患者及其伴侣的心理、性满意度及其他多方面的生活都有着严重的负面影响。目前研究认为早泄的发生发展与患者的心理性、行为性和生物性等多方面因素有关,并提出了PE 的心理学、神经内分泌学和神经生物学发病机制,但这些机制并不能揭示所有PE 患者的病因,因此进一步阐明PE 病因进而为更好治疗PE 提供思路具有重要意义。鉴于部分研究发现PE 还受到遗传因素的影响,最近一些研究开始关注PE 发病与基因多态性之间的相关性。本文旨在综述PE 基因多态性方面的发病机制的研究进展。 1943年Schapiro 首次提出PE 发病具有一定的遗传性,他发现PE 患者家庭的其他男性成员更易出现PE 。Waldinger 等[3]研究支持了上述观点,他发现PE 患者的一级男性亲属中PE 发病率可高达91%。最近研究表明在早泄发病的多种因素中,遗传因素占其中30%左右[4]。在PE 的最新分类中,PE 被分为4大类:原发性PE 、继发性PE 、自然变异性PE 和早泄样射精功能障碍。4种类型PE 的病因不尽相同,其中与遗传学关联最大的是原发性PE 。当前,对PE 发病的基因多态性研究主要集中在5-羟色胺(5-hydroxytryptamine ,5-HT )相关基因和多巴胺相关基因上,在其他基因如催产素和后叶加压素相关基因方面也有一定报道。 一、PE 与5-HT 相关基因多态性 大量动物研究和人类研究表明5-HT 是射精活动中重要的神经递质,在射精过程中发挥着重要作用,其调控异常会导致射精加快或延迟。5-HT 相关基因也是PE 基因学发病机制研究中被研究得最多的基因。迄今发现至少有3个亚型的5-HT 受体即5-HT1A 受体、5-HT1B 受体和5-HT2C 受体参与射精活动的调控。5-HT1A 受体的激活可以加速射精,而5-HT2C 受体的激活则会延迟射精[3]。研究表明PE 与5 -HT 神早泄基因多态性研究进展 王俊龙 综述 李 铮 审校 上海交通大学医学院附属仁济医院泌尿外科 (上海 200127) 经传递降低有关,即5-HT1A 受体功能亢进和(或)5-HT2C 受体功能低下可导致PE 的发生[5]。 5-HTT (5-HT transporter )是位于突触间隙的跨膜转运蛋白,为了防止突触后膜5-HT 受体的过度刺激,其能迅速地将5-HT 从突触间隙再摄取到突触前神经元,5-HT 在此进行代谢、失活,从而调控5-HT 作用的时间与强度。人类5-HTT 基因是由位于染色体17q12上的单基因SLC6A4所编码,其转录区域的多态性是由一44bp 长度的插入(‘ long allele ’ [L])和缺失(‘ short allele ’ [S])所致,表现出基因型为S/S 、L/S 、L/L 的多态性。5-HTT 不同的基因型转录活性亦不同,L 等位基因的转录活性明显高于S 等位基因,两者通过影响5-HTT 蛋白的合成与作用进一步调控5-HT 作用的时间及强度,相对于S 等位基因,L 等位基因可增加5-HTT 的表达和5-HT 的再摄取。 罗顺文等[6]对119例原发性PE 、60例继发性PE 和90例健康成年男性的5-羟色胺转运体基因连锁多态性区域(5-HT transporter gene-linked polymorphism, 5-HTTLPR )基因进行分析、比较发现,原发性PE 组中S/S 基因型的频率明显高于健康对照组,L/S 基因型的频率明显低于健康对照组,S 等位基因出现的频率比健康对照组显著提高。进一步研究将PE 组按阴道内射精潜伏期(intravaginal ejaculation latency times ,IELT )长短分成3组,发现各组间基因型和等位基因频率的差异并无统计学意义,提示5-HTTLPR 基因多态性可能并不影响PE 的严重程度。Ozbek 等[7]对70例PE 患者和70例正常成年男性的5-HTTLPR 基因型进行分析,得出了同样的结论。5-HTT 基因的L 、S 等位基因可以改变5-HTT 蛋白的表达从而导致其功能上的差异,L 等位基因的表达水平比S 等位基因高3倍,即5-HTT 基因启动子区的多态性可以影响5-HTT 的表达。由于S 纯合子与S 杂合子在功能上表现出的差异并不明显,从而推测出S 等位基因可能在转录中占主导作用[8]。Janssen 等[9]研究了89例原发性PE 患者和92例正常男性的5-HTTLPR 基因型,结果发现两组的L 、S 等位基因和基因型均无统计学差异,但在PE 患者组中L/L基因型者的IELT 明显短于S/S 、L/S 基因型者,因此认为5-HTTLPR 多态性与原发性PE 患者的

ALDH2基因多态性检测

ALDH2基因多态性检测 项目简介:ALDH ( aldehyde dehydrogenase gene ) 人类乙醛脱氢酶,是一种四 联体蛋白,催化乙醛和其他脂肪族醛氧化。目前已发现ALDH 有19 种同工酶,主要有ALDH1~4 四种,其中ALDH2最为重要。在肝和胃中具有很高的表达量,是乙醇代谢途径中最重要的酶之一。ALDH2基因位于人类第12号染色体,由于ALDH2 基因存在G1510A 多态性,导致氨基酸序列第487位上的谷氨酸被赖氨酸所替换( Glu487 Lys),其中具有催化活性的野生型称为G等位基因(ALDH2*1),催化能力失活的变异型称为 A 等位基因(ALDH2*2)。在亚洲的黄种人群中, ALDH2*2是频率最高且最重要的突变型。 临床用药医生应考虑的因素: ALDH2基因突变致乙醛脱氢酶活性下降引起的临床表现: 1、ALDH2与硝酸甘油治疗:硝酸甘油是治疗心绞痛的经典药物,研究发现硝酸甘油的舒血管作用是通过释放一氧化氮(NO)所介导。但临床上部分病人舌下含服硝酸甘油不能迅速有效地缓解心绞痛,使心肌严重缺血加重。近来发现, ALDH2与硝酸甘油转化为NO密

切相关。有研究表明,ALDH2*1基因型的患者硝酸甘油治疗心绞痛的疗效明显优于ALDH2*2患者,且前者迅速起效率也明显高于后者。 2、ALDH2与酒精性疾病:乙醛脱氢酶( aldehyde dehydrogenase, ALDH)和乙醇脱氢酶( alcohol dehydrogenase, ADH) 在人体内共同组成了人乙醇脱氢酶系, 负责催化人体的乙醇分解代谢。ALDH2在肝和胃中具有很高的表达量,是乙醇代谢途径中最重要的酶之一。研究发现,突变型基因ALDH2*2的存在能导致ALDH2活力的严重缺失,并与过度饮酒导致的酒精依赖、酒精性中毒、酒精性肝病、消化道癌症等疾病之间存在深刻的联系。过度的饮酒行为,不仅使ALDH2*2 携带者对酒精产生依赖,还可能引起肝癌等的酒精性肝病(alcoholic liver disease,ALD)。ALD是长期、大量饮酒所引起的肝脏病变,已成为现代社会的主要健康隐忧之一。研究显示,携带ALDH2 变异基因型者大量饮酒将显著增加患肝癌的危险性。虽然摄入人体的乙醇有90 %以上是在肝脏内完成代谢过程的,但其在摄入过程中与消化道上皮细胞的直接接触也不容忽视。在饮酒人群中,尤其是重度饮酒者,由于其上消化道长期地与大量酒精直接接触,该区域出现癌变(食道癌、口咽癌等)的几率较高。研究发现,ALDH2*2突变与饮酒人群患消化道癌的风险之间具有明显的联系。此外,ALDH2*2显性突变与胃癌的易感性也存在一定的联系。由此可见,ALDH2*2突变是增加区域性癌化几率的重要因素之一。 ALDH2基因多态性检测标本采集及出报告时间:病人抽静脉血2ml(用 EDTA-K2抗凝)送检验科分子生物诊断室,4个工作日出报告。 电话:8801063 手机:余宗涛65327 高波 64444 ALDH2基因多态性检测临床意义: 1、指导临床硝酸甘油的个体化差异用药剂量:虽然硝酸甘油是心绞痛急性发作的常规首选药物,但该药的临床疗效常因人而异。中国汉族人群中,硝酸甘油含服无效的比例高达25%以上。复旦大学、瑞金医院、华山医院等的一项研究显示:部分国人服用硝酸甘油治疗心绞痛无效的原因为线粒体乙醛脱氢酶2(ALDH2)基因发生突变。ALDH2*2携带者服用硝酸甘油无效风险大幅增加;ALDH2*2携带者在中国约占30-50%,比重大;建议患者在使用硝酸甘油前进行ALDH2基因检测,ALDH2*2携带者建议慎用或不用硝酸甘油,改用其它药物。 2、ALDH2与酒精代谢:①ALDH2异常的饮酒者与正常人群相比,其发生肝癌的风险是正常人的3倍以上;②乙肝病毒携带者,如果又正好是ALDH2异常,其饮酒发生肝癌的危险性将升高52.17倍;③持续的过量饮酒导致肾的代谢压力过大,残留的酒精附着在肾细胞上,致使大量肾细胞处于休眠状态,会导致肾功能下降。 3、ALDH2与消化系统疾病:ALDH2异常的饮酒者与正常人群相比,其发生食道癌的风险是正常人的12.95倍,出现口腔癌的风险则为11.72倍。 4、ALDH2与心血管系统疾病:ALDH2异常的冠心病患者,发生心肌梗死的相对风险也为ALDH2正常的3.42倍。 5、ALDH2与内分泌系统疾病:ALDH2异常的人发生II型糖尿病的风险是正常人的6.08倍。

基因多态性分析

. 人基因多态性分析 一、实验目的 1. 了解基因多态性在阐明人体对疾病、毒物的易感性与耐受性、疾病临床表现的多样性以及对药物治疗的反应性中的重要作用。 2. 了解分析基因多态性的基本原理和研究方法。 二、实验原理 基因多态性(gene polymorphism)是指在一个生物群体中,同时存在两种及以上的变异型或基因型或等位基因,也称为遗传多态性(genetic polymorphism)。人类基因多态性对于阐明人体对疾病的易感性、毒物的耐受性、药物代谢差异及遗传性疾病的分子机制有重大意义;与致病基因连锁的多态性位点可作为遗传病的诊断标记,并为分离克隆致病基因提供依据;病因未知的疾病与候选基因多态性的相关性分析,可用于辅助筛选致病易感基因。 聚合酶链反应-限制性片段长度多态性(polymerase chain reaction—Restriction Fragment Length Polymorphism,PCR-RFLP)分析是一种常用的DNA分子标记。原理是通过PCR扩增获得目的基因。若目的基因存在等位变异(多态性),且变异正好发生在某种限制性内切酶识别位点上,使酶切位点增加或者消失,则酶切结果就会产生大小不同的片段,即片段长度多态性,再利用琼脂糖凝胶电泳分离,可呈现出多态性电泳图谱。若将患者与正常的多态性图谱比较,可确定是否变异。应用PCR-RFLP,可检测某一致病基因已知的点突变,进行直接基因诊断,也可以此为遗传标记进行连锁分析进行间接基因诊断。 三、器材与试剂 1. 器材 ⑴离心机。 ⑵DNA扩增仪。 ⑶电泳仪。 ⑷水平电泳槽。 ⑸紫外检测仪。 ⑹移液器。 2. 试剂 . . ⑴口腔拭子DNA抽提试剂盒。 ⑵琼脂糖。 ⑶1×TAE电泳缓冲液:980ml蒸馏水中加入50×TAE母液20ml。 ⑷50×TAE母液:Tris 121g,0.5M EDTA(pH8.0)50ml,冰醋酸28.55ml,定容至500ml。

基因多态性

基因多态性 多态性(polymorphism)是指在一个生物群体中,同时和经常存在两种或多种不连续的变异型或基因型(genotype)或等位基因(allele),亦称遗传多态性(genetic polymorphism)或基因多态性。从本质上来讲,多态性的产生在于基因水平上的变异,一般发生在基因序列中不编码蛋白的区域和没有重要调节功能的区域。对于一个体而言,基因多态性碱基顺序终生不变,并按孟德尔规律世代相传。 基因多态性分类生物群体基因多态性现象十分普遍,其中,人类基因的结构、表达和功能,研究比较深入。人类基因多态性既来源于基因组中重复序列拷贝数的不同,也来源于单拷贝序列的变异,以及双等位基因的转换或替换。按引起关注和研究的先后,通常分为3大类:DNA片段长度多态性、DNA重复序列多态性、单核苷酸多态性。 DNA片段长度多态性DNA片段长度多态性(FLP),即由于单个碱基的缺失、重复和插入所引起限制性内切酶位点的变化,而导致DNA片段长度的变化。又称限制性片段长度多态性,这是一类比较普遍的多态性。 DNA重复序列多态性DNA重复序列的多态性(RSP),特别是短串联重复序列,如小卫星DNA和微卫星DNA,主要表现于重复序列拷贝数的变异。小卫星(minisatellite)DNA由15~65bp的基本单位串联而成,总长通常不超过20kb,重复次数在人群中是高度变异的。这种可变数目串联重复序列(VNTR)决定了小卫星DNA长度的多态性。微卫星(microsatellite)DNA 的基本序列只有1~8bp,而且通常只重复10~60次。 单核苷酸多态性单核苷酸多态性(SNP),即散在的单个碱基的不同,包括单个碱基的缺失和插入,但更多的是单个碱基的置换,在CG序列上频繁出现。这是目前倍受关注的一类多态性。 SNP通常是一种双等位基因的(biallelic),或二态的变异。SNP大多数为转换,作为一种碱基的替换,在基因组中数量巨大,分布频密,而且其检测易于自动化和批量化,因而被认为是新一代的遗传标记。 遗传背景知识遗传和变异各种生物都能通过生殖产生子代,子代和亲代之间,不论在形态构造或生理功能的特点上都很相似,这种现象称为遗传(heredity)。但是,亲代和子代之间,子代的各个体之间不会完全相同,总会有所差异,这种现象叫变异(variation)。遗传和变异是生命的特征。遗传和变异的现象是多样而复杂的,正因为如此,才导致生物界的多种多样性。

基因多态性及其生物学作用和医学意义

基因多态性及其生物学作用和医学意义一、基因多态性: 多态性(polymorphism)是指处于随机婚配的群体中,同一基因位点可存在2种以上的基因型。在人群中,个体间基因的核苷酸序列存在着差异性称为基因(DNA)的多态性(gene polymorphism)。这种多态性可以分为两类,即DNA位点多态性(site polymorphism)和长度多态性 (longth polymorphism)。 1.位点多态性:是由于等位基因之间在特定的位点上DNA序列存在差异,也就是基因组中散在的碱基的不同,包括点突变(转换和颠换),单个碱基的置换、缺失和插入。突变是基因多态性的一种特殊形式,单个碱基的置换又称为单核苷酸多态性(single nucleotide polymorphism, SNP), SNP通常是一种二等位基因(biallelic)或二态的变异。据估计,单碱基变异的频率在1/1000-2/1000。SNP在基因组中数量巨大,分布频密,检测易于自动化和批量化,被认为是新一代的遗传标记。 2. 长度多态性:一类为可变数目***重复序列(variable number of tandem repeats, VNTRS),它是由于相同的重复顺序重复次数不同所致,它决定了小卫星DNA (minisatellite)长度的多态性。小卫星是由15-65 bp的基本单位***而成,总长通常不超过20bp,重复次数在人群中是高度变异的。另一类长度多态性是由于基因的某一片段的缺失或插入所致,如微卫星DNA(microsatellite),它们是由重复序列***构成,基本序列只有1-8bp,如(TA)n及(CGG)n等,通常重复10-60次。长度多态性是按照孟德尔方式遗传的,它们在基因定位、DNA指纹分析,遗传病的分析和诊断中广泛地应用。 造成基因多态性的原因:1复等位基因(multiple allele)位于一对同源染色体上对应位置的一对基因称为等位基因(allele)。由于群体中的突变,同一座位的基因

如何用PCR法检测基因的多态性

如何用PCR法检测基因的多态性 多态性(polymorphism)是指处于随机婚配的群体中,同一基因位点可存在2种以上的基因型。在人群中,个体间基因的核苷酸序列存在着差异性称为基因(DNA)的多态性(gene polymorphism)。这种多态性可以分为两类,即DNA 位点多态性(site polymorphism)和长度多态性(longth polymorphism)。 基因多态性的主要检测方法简述如下: 1.限制性片段长度多态性(Restriction Fragment Length Polymorphism,RFLP):由DNA 的多态性,致使DNA 分子的限制酶切位点及数目发生改变, 用限制酶切割基因组时, 钠 问 亢兔扛銎 蔚某ざ染筒煌 此 降南拗菩云 纬ざ榷嗵 裕 贾孪拗破 纬ざ确⑸ 谋涞拿盖形坏悖 殖莆 嗵 晕坏恪W钤缡怯肧outhern Blot/RFLP方法检测,后来采用聚合酶链反应(PCR)与限制酶酶切相结合的方法。现在多采用PCR-RFLP法进行研究基因的限制性片段长度多态性。 2.单链构象多态性(SSCP):是一种基于单链DNA构象差别的点突变检测方法。相同长度的单链DNA如果顺序不同,甚至单个碱基不同,就会形成不同的构象。在电泳时泳动的速度不同。将PCR产物经变性后,进行单链DNA凝胶电泳时,靶DNA中若发生单个碱基替换等改变时,就会出现泳动变位(mobility shift),多用于鉴定是否存在突变及诊断未知突变。 3.PCR-ASO探针法(PCR-allele specific oligonucleotide, ASO):即等位基因特异性寡核苷酸探针法。在PCR扩增DNA片段后,直接与相应的寡核苷酸探杂交,即可明确诊断是否有突变及突变是纯合子还是杂合子。其原理是:用PCR扩增后,产物进行斑点杂交或狭缝杂交,针对每种突变分别合成一对寡核苷酸片段作为探针,其中一个具有正常序列,另一个则具有突变碱基。突变碱基及对应的正常碱基匀位于寡核苷酸片段的中央,严格控制杂交及洗脱条件,使只有与探针序列完全互补的等位基因片段才显示杂交信号,而与探针中央碱基不同的等位基因片段不显示杂交信号,如果正常和突变探针都可杂交,说明突变基因是杂合子,如只有突变探针可以杂交,说明突变基因为纯合子,若不能与含有突变序列的寡核苷探针杂交,但能与相应的正常的寡核苷探针杂交,则表示受检者不存在这种突变基因。若与已知的突变基因的寡核苷探针匀不能杂交,提示可能为一种新的突变类型。 4. PCR-SSO法:SSO技术即是顺序特异寡核苷酸法(Sequence Specific Oligonucleotide, SSO)。原理是PCR基因片段扩增后利用序列特异性寡核苷酸探针,通过杂交的方法进行扩增片段的分析鉴定。探针与PCR产物在一定条件下杂交具有高度的特异性,严格遵循碱基互补的原则。探针可用放射性同位素

基因多态性分析

人基因多态性分析 一、实验目的 1. 了解基因多态性在阐明人体对疾病、毒物的易感性与耐受性、疾病临床表现的多样性以及对药物治疗的反应性中的重要作用。 2. 了解分析基因多态性的基本原理和研究方法。 二、实验原理 基因多态性(gene polymorphism)是指在一个生物群体中,同时存在两种及以上的变异型或基因型或等位基因,也称为遗传多态性(genetic polymorphism)。人类基因多态性对于阐明人体对疾病的易感性、毒物的耐受性、药物代谢差异及遗传性疾病的分子机制有重大意义;与致病基因连锁的多态性位点可作为遗传病的诊断标记,并为分离克隆致病基因提供依据;病因未知的疾病与候选基因多态性的相关性分析,可用于辅助筛选致病易感基因。 聚合酶链反应-限制性片段长度多态性(polymerase chain reaction—Restriction Fragment Length Polymorphism,PCR-RFLP)分析是一种常用的DNA分子标记。原理是通过PCR扩增获得目的基因。若目的基因存在等位变异(多态性),且变异正好发生在某种限制性内切酶识别位点上,使酶切位点增加或者消失,则酶切结果就会产生大小不同的片段,即片段长度多态性,再利用琼脂糖凝胶电泳分离,可呈现出多态性电泳图谱。若将患者与正常的多态性图谱比较,可确定是否变异。应用PCR-RFLP,可检测某一致病基因已知的点突变,进行直接基因诊断,也可以此为遗传标记进行连锁分析进行间接基因诊断。 三、器材与试剂 1. 器材 ⑴离心机。 ⑵DNA扩增仪。 ⑶电泳仪。 ⑷水平电泳槽。 ⑸紫外检测仪。 ⑹移液器。 2. 试剂

基因多态性的检测方法

基因多态性的检测方法 多态性(polymorphism)是指处于随机婚配的群体中,同一基因位点可存在2种以上的基因型。在人群中,个体间基因的核苷酸序列存在着差异性称为基因(DNA)的多态性(gene polymorphism)。这种多态性可以分为两类,即DNA位点多态性(site polymorphism)和长度多态性(longth polymorphism)。 基因多态性的主要检测方法简述如下: 1.限制性片段长度多态性(Restriction Fragment Length Polymorphism,RFLP):由DNA 的多态性,致使DNA 分子的限制酶切位点及数目发生改变,用限制酶切割基因组时,所产生的片段数目和每个片段的长度就不同,即所谓的限制性片段长度多态性,导致限制片段长度发生改变的酶切位点,又称为多态性位点。最早是用Southern Blot/RFLP方法检测,后来采用聚合酶链反应(PCR)与限制酶酶切相结合的方法。现在多采用PCR-RFLP法进行研究基因的限制性片段长度多态性。 2.单链构象多态性(SSCP):是一种基于单链DNA构象差别的点突变检测方法。相同长度的单链DNA如果顺序不同,甚至单个碱基不同,就会形成不同的构象。在电泳时泳动的速度不同。将PCR产物经变性后,进行单链DNA凝胶电泳时,靶DNA中若发生单个碱基替换等改变时,就会出现泳动变位(mobility shift),多用于鉴定是否存在突变及诊断未知突变。 3.PCR-ASO探针法(PCR-allele specific oligonucleotide, ASO):即等位基因特异性寡核苷酸探针法。在PCR扩增DNA片段后,直接与相应的寡核苷酸探杂交,即可明确诊断是否有突变及突变是纯合子还是杂合子。其原理是:用PCR扩增后,产物进行斑点杂交或狭缝杂交,针对每种突变分别合成一对寡核苷酸片段作为探针,其中一个具有正常序列,另一个则具有突变碱基。突变碱基及对应的正常碱基匀位于寡核苷酸片段的中央,严格控制杂交及洗脱条件,使只有与探针序列完全互补的等位基因片段才显示杂交信号,而与探针中央碱基不同的等位基因片段不显示杂交信号,如果正常和突变探针都可杂交,说明突变基因是杂合子,如只有突变探针可以杂交,说明突变基因为纯合子,若不能与含有突变序列的寡核苷探针杂交,但能与相应的正常的寡核苷探针杂交,则表示受检者不存在这种突变基因。若与已知的突变基因的寡核苷探针匀不能杂交,提示可能为一种新的突变类型。 4. PCR-SSO法:SSO技术即是顺序特异寡核苷酸法(Sequence Specific Oligonucleotide, SSO)。原理是PCR基因片段扩增后利用序列特异性寡核苷酸探针,通过杂交的方法进行

CYP2C19基因多态性检测

CYP2C19基因多态性检测 项目简介:CYP2C19是CYP450酶第二亚家族中的重要成员,是人体重要的药物代谢 酶,在肝脏中有很多表达。CYP2C19基因座位于染色体区10q24.2上,由9个外显子构成。CYP2C19具有很多SNP位点,最常见的是CYP2C19*2和CYP2C19*3。CYP2C19*2会导致转录蛋白的剪切突变失活,而CYP2C19*3能构成一个终止子,破坏转录蛋白的活性。据统计,CYP2C19*2和CYP2C19*3两个突变位点能解释几乎100%的东亚人和85%的高加索人种的相关弱代谢遗传缺陷,而其他两种等位基因CYP2C19*4和CYP2C19*5主要在高加索人种中分布。大量证据证实,不同人种在CYP2C19的底物的代谢能力有很大差异;2–5%高加索人是弱代谢者,而13–23%的亚洲人是弱代谢者。这是由于在亚洲人口中CYP2C19*2和CYP2C19*3等位基因的高频率造成的。通过CYP2C19基因检测,判断患者对相关药物的代谢能力,可以指导临床用方案的制定,实现个体化用药治疗。 临床上常用的经由CYP2C19酶代谢的药物: 1、治疗胃酸相关性疾病:如质子泵抑制剂:奥美拉唑(omeprazole)、兰索拉唑(lansoprazole)、泮托拉唑(pantoprazole)、 雷贝拉唑(rabeprazole)、埃索美拉唑 (Esomeprazole)。 2、治疗心血管疾病:Clopidogrel、氯吡格雷、抗凝血药物。 3、抗真菌药物:Voriconazole、伏立康唑、广谱抗真菌药物。 4、神经类药物:①S-美芬妥英mephenytoin为乙内酰脲类抗癫痫药,在体内的羟化代谢主要由单基因CYP2C19编码表达的CYP2C19酶蛋白介导,由羟化酶CYP2C19氧化生成4’-羟基美芬妥英;②地西泮diazepam,一种长效的镇静、安眠药;③丙米嗪imipramine ,抗抑郁药,N-去甲基化和2-羟化;④苯巴比妥phenobarbital,传统的抗癫痫药;⑤抗心律失常药,抗抑郁药,抗精神病药,β受体阻断剂,抗高血压药和止痛剂。 5、抗肿瘤药:环磷酰胺。 6、抗结核药:利福平。 7、孕激素:黄体酮。 8、抗疟疾药:氯胍。 9、HIV蛋白酶抑制剂。 10、抗移植排斥药物:他克莫司、兰索拉唑。 CYP2C19基因多态性检测标本采集及出报告时间:病人抽静脉血2ml(用 EDTA-K2抗凝)送检验科分子生物诊断室,4个工作日出报告。 电话:8801063 手机:余宗涛65327 高波 64444 CYP2C19基因多态性检测临床意义: 1、基因剂量效应。 2、CYP2C19基因多态性,导致了个体间酶活性的多样性。等位基因的突变使酶活性降低,对药物代谢的能力随着等位基因的不同组合而呈现出一定的规律性,表现出正常基因纯合子>正常基因与突变基因杂合子> 突变基因纯合子或杂合子的变化趋势。 3、对于不同代谢能力的个体,运用不同的药物剂量等策略是非常必要的,可达到更好的治疗效果。 4、根据CYP2C19基因型给予个性化的药物和剂量可以降低副作用发生率-安全性;提高治

基因多态性及其生物学作用和医学意义doc资料

基因多态性及其生物学作用和医学意义

基因多态性及其生物学作用和医学意义 一、基因多态性: 多态性(polymorphism)是指处于随机婚配的群体中,同一基因位点可存在2 种以上的基因型。在人群中,个体间基因的核苷酸序列存在着差异性称为基因(DNA)的多态性(gene polymorphism)。这种多态性可以分为两类,即DNA位点多态性(site polymorphism)和长度多态性 (longth polymorphism)。 1.位点多态性:是由于等位基因之间在特定的位点上DNA序列存在差异,也就是基因组中散在的碱基的不同,包括点突变(转换和颠换),单个碱基的置换、缺失和插入。突变是基因多态性的一种特殊形式,单个碱基的置换又称为单核苷酸多态性(single nucleotide polymorphism, SNP), SNP通常是一种二等位基因(biallelic)或二态的变异。据估计,单碱基变异的频率在1/1000-2/1000。SNP在基因组中数量巨大,分布频密,检测易于自动化和批量化,被认为是新一代的遗传标记。 2. 长度多态性:一类为可变数目***重复序列(variable number of tandem repeats, VNTRS),它是由于相同的重复顺序重复次数不同所致,它决定了小卫星 DNA(minisatellite)长度的多态性。小卫星是由15-65 bp的基本单位***而 成,总长通常不超过20bp,重复次数在人群中是高度变异的。另一类长度多态性是由于基因的某一片段的缺失或插入所致,如微卫星DNA (microsatellite),它们是由重复序列***构成,基本序列只有1-8bp,如(TA)n及

基因多态性及其生物学作用和医学意义

基因多态性及其生物学作用和医学意义 一、基因多态性: 多态性(polymorphism)是指处于随机婚配的群体中,同一基因位点可存在2种以上的基因型。在人群中,个体间基因的核苷酸序列存在着差异性称为基因(DNA)的多态性(genepolymorphism)。这种多态性可以分为两类,即DNA位点多态性(sitepolymorphism)和长度多态性(longthpolymorphism)。 1.位点多态性:是由于等位基因之间在特定的位点上DNA序列存在差异,也就是基因组中散在的碱基的不同,包括点突变(转换和颠换),单个碱基的置换、缺失和插入。突变是基因多态性的一种特殊形式,单个碱基的置换又称为单核苷酸多态性(singlenucleotidepolymorphism,SNP),SNP通常是一种二等位基因(biallelic)或二态的变异。据估计,单碱基变异的频率在1/1000-2/1000。SNP在基因组中数量巨大,分布频密,检测易于自动化和批量化,被认为是新一代的遗传标记。 2. 的基本单位*** 如(TA)n 及(CGG)n 基因( )一对等1 指由于碱 义突变 2.对 达产物,数个碱基的缺失、片段缺失等匀有可能造成剪接位点的缺失。 3.蛋白质肽链中的片段缺失:无义突变和DNA片段的缺失都可以导致肽链中的片段缺失,致使基因编码的蛋白质失去原有的功能。移码突变不仅翻译后的肽链中氨基酸序列发生改变,而且也导致肽链中的大片段缺失。4.启动子的突变及非转录区的突变:可以使基因的转录水平或活性的增强或降低。 5.基因多态性的基因型频率分布:在人群中符合Hardy-Wenberg平衡。 三、基因多态性的医学意义: 人类基因多态性在阐明人体对疾病、毒物的易感性与耐受性,疾病临床表现的多样性(clinicalphenotypediversity),以及对药物治疗的反应性上都起着重要的作用。临床上早期有关基因多态性的研究是从HLA基因开始的,分析基因型在疾病发生易感性方面的作用,如HLA-B27等位基因与强直性脊椎炎发生率的密切关联,可作为诊断的依据。通过基因多态性的研究,可从基因水平揭示人类不同个体间生物活性物质的功能及效应存在着差异的本质。通过对基因多态性与疾病的易感性的联系研究,如P53抑癌基因多态性与肿瘤发生及转移的关系研究,可阐明人体对疾病、毒物和应激的易感性,不仅为临床医学也为预防医学的发展带来新

检测基因多态性的方法

检测基因多态性的方法 一种用于快速检测基因多态性的方法,具有如下特征:(a)根据所测样本靶序列设计两对引物,其中一对为锚定引物;(b)将上述两对引物及一个与锚定引物的锚定部分序列相同的引物加入到含有底物及其它PCR扩增反应试剂的溶液中,进行PCR扩增反应;(c)以适当的方法检测扩增产物中链长不同的DNA片断;(d)根据反应产物中DNA片断的多少及其长短判断基因多态性的类型。本发明涉及一种基因多态性检测方法,可用于单碱基多态性、基因突变、单碱基插入或缺失、微卫星分析等。本方法是首先设计两对引物,其中一对为通常PCR引物,用于扩增含有基因多态性位点的DNA片段;另一对为锚定引物,用于判断基因多态性的类型。再将上述两对引物及一个与锚定引物的锚定部分序列相同的引物加入到含有底物及其它PCR扩增反应试剂的溶液中,在单管中进行PCR扩增反应,并使扩增反应产生与基因多态性相对应的DNA扩增产物,然后以凝胶电泳法、或毛细管电泳法、或微流控芯片法,或高效液相色谱法等分离技术检测,根据扩增产物中DNA片段的多少及链长判断基因多态性的类型。为提高延伸反应的特异性,在锚定引物的3’端区域人为地引入一个与模板不互补的碱基。 用于检测遗传多态性的方法,包括:生成寡核苷酸探针和/或寡核苷酸引物,使得该寡核苷酸探针和/或引物包含在编码受体的基因或与其互补的序列中存在的多态位点,或者,当编码受体的所述基因和与其互补的所述序列至少其中之一得到扩增时,使得多态位点包含在扩增片段中;并使用由此生成的寡核苷酸探针和/或寡核苷酸引物检测编码靶受体的基因中的至少一种遗传多态性。 多态性是指处于随机婚配的群体中,同一基因位点可存在2种以上的基因型。在人群中,个体间基因的核苷酸序列存在着差异性称为基因的多态性。这种多态性可以分为两类,即DNA 位点多态性和长度多态性。 基因多态性的主要检测方法: 1,限制性片段长度多态性(Restriction Fragment Length Polymorphism):由DNA的多态性,致使DNA分子的限制酶切位点及数目发生改变,现在多采用PCR-RFLP法进行研究基因的限制性片段长度多态性。 2,单链构象多态性:是一种基于单链DNA构象差别的点突变检测方法。 3,PCR-ASO探针法:即等位基因特异性寡核苷酸探针法。 4,PCR-SSO法:原理是PCR基因片段扩增后利用序列特异性寡核苷酸探针,通过杂交的方法进行扩增片段的分析鉴定。 5,PCR-SSP法:SSP(序列特异性引物)只能与某一等位基因特异性片段的碱基序列互补性结合,通过PCR特异性地扩增该基因片段,从而达到分析基因多态性的目的。 6,PCR-荧光法: 7,PCR-DNA测序:是诊断未知突变基因最直接的方法。 8,PCR指纹图法:实用于快速的同种异性DR/DW配型。 9,基因芯片法:又称为DNA微探针阵列。它是集成了大量的密集排列的大量已知的序列探针,通过与被标记的若干靶核苷酸序列互不匹配,与芯片特定位点上的探针杂交,利用基因芯片杂交图像,确定杂交探针的位置,便可根据碱基互补匹配的,与芯片特定位点上的探针杂交,利用基因芯片杂交图像,确定杂交探针的位置,便可根据碱基互补匹

DNA多态性分析结果

Input Data File: C:\...\COX5F7R(CCZZ742bp).txt Number of sequences: 12 Number of sequences used: 12 Selected region: 1-742 Number of sites: 742 Total number of sites (excluding sites with gaps / missing data): 742 Sites with alignment gaps or missing data: 0 Invariable (monomorphic) sites: 598 Variable (polymorphic) sites: 144 (Total number of mutations: 145) Singleton variable sites: 0 Parsimony informative sites: 144 Singleton variable sites (two variants): 0 Parsimony informative sites (two variants): 143 Site positions: 6 9 10 27 42 43 45 46 51 54 66 69 78 81 93 99 117 123 126 138 141 144 147 150 177 186 193 195 207 210 211 216 219 222 238 249 252 255 258 264 268 270 276 279 288 303 312 315 318 324 333 342 345 348 351 354 360 369 376 384 391 405 406 407 408 409 412 424 432 433 434 435 445 446 447 456 468 483 495 496 507 510 528 531 537 539 540 543 544 545 546 552 556 561 564 565 567 570 583 591 594 595 600 601 609 612 613 615 621 623 625 627 628 630 633 645 654 655 657 666 669 672 675 682 689 690 691 693 696 702 709 710 711 714 720 726 729 730 732 735 738 740 741 Singleton variable sites (three variants): 0 Parsimony informative sites (three variants): 1 Site positions: 204 Variable sites (four variants): 0

DNA分析

DNA分析技术在法医学中的应用 [关键词]脱氧核糖核酸;分析技术;法医 脱氧核糖核酸(deoxyribonucleic acid,DNA)分析应用于法医学鉴定是近十几年来的事,是将分子生物学方法应用于法医学领域,对案件所涉及的生物检材的DNA进行分型,达到个人识别或亲子鉴定的目的。世界上有120多个国家和地区已应用DNA分析技术办案,解决刑事案件、民事纠纷问题,以及追查尸体身源,包括战争及大型灾难中罹难者的个人识别等,个人同一认定接近100%。 1法医DNA分析技术的理论基础 DNA主要是由四种碱基腺嘌呤A、胸腺嘧啶T、鸟嘌呤G和胞嘧啶c组成,是存在于细胞中的遗传物质。遗传物质一DNA包含了任一机体发育和功能所必需的全部信息。人类DNA含有3.2×109个碱基对,其中约99.9%的DNA序列是相同的,另外的0.1%在个体之间有差异(除同卵双生外)。个体之间的DNA差异有的在个人特征如眼睛、发色和肤色中表现出来,更多的是不表现在个人的生理外观特征上,必须用实验室的特殊技术才能被测定出来。最早用于法医检验的DNA技术一限制片段长度多态性检验(RFLP)被人们通俗形象地称为DNA指纹技术。DNA 指纹技术引入到法医物证鉴定后,由于DNA指纹的高度个体特异性,同一个体不同组织之间的一致性和遗传稳定性,使个体同一认定成为现实。之后,建立的STR.PCR技术、线粒体DNA 分析等技术,能够进一步提高个体识别概率,并且节约检时、节省生物检材。每个人细胞核的DNA都分别来自父母双方,因此可以通过父·母一子的三联体DNA检验进行亲子鉴定。细胞中线粒体DNA由于存在于细胞质中,是母系遗传,故可以利用线粒体DNA分析做母系单亲子鉴定、家系分析等。 2法医DNA分析的主要方法 2.1 DNA指纹技术 1980年从人类DNA文库中发现的一种可变串联重复序列(variable number oflandem repeat,VNTR),又名小卫星DNA。之后,人们相继发现了一些与之类似的可变区。基因组上存在着多位点的VNTR。VNTR主要分布于基因组的非编码区,尤以染色体端粒部位居多。VNTR内的“核心序列”(重复单元)长10-70bp。不同个体基因组上同一VNTR位点的核心序列相同,但重复次数相差悬殊。故不同个体间同一位点VNTR区的DNA片断长度变化较大,在群体中呈多态性,即VNTR长度片断多态性。因此,这些多位点的VNTR长度片断多态性就为法医学中的个体识别提供了有利证据。 1985年,英国科学家Jeffreys等利用制备的VNTR“核心序列”探针DNA与限制酶酶切的人类DNA进行Soutllem印迹杂交,获得个体特异的DNA指纹图谱(DNA fingerprint),又叫DNA指纹技术。Jeffreys等首次用该技术与一起移民的侵权鉴定案,肯定了血缘关系,给法医学带来了一场技术革命。 DNA指纹技术的基本原理是:利用VNTR序列中无切点的限制性内切酶如HinfI,酶切基因组DNA 后,形成长短不等的许多DNA片段。电泳分开不同大小的DNA片段,用,VNTR核心序列作为标记探针进行SoutlIem印迹杂交,不同个体出现一系列不同的杂交带型,从而做出个体识别或指正确认罪犯。Jeffreys等研究了20名有关自人的DNA指纹,如果用一种核心序列作为标记探针进行Southern印迹杂交,两个人出现完全相同带型的可能性是3×1041;如果用两种核

相关主题
文本预览
相关文档 最新文档