当前位置:文档之家› 运动模糊图像复原课程设计

运动模糊图像复原课程设计

运动模糊图像复原课程设计
运动模糊图像复原课程设计

目录

摘要 (2)

1、引言 (3)

2、图像的退化模型 (4)

2.1模糊图像的一般退化模型 (4)

2.2匀速直线运动模糊的退化模型 (6)

2.3离散函数的退化模型 (7)

3、运动模糊图像的复原方法及原理 (9)

3.1有约束最小二乘复原原理 (9)

3.2逆滤波复原原理 (10)

3.3维纳滤波复原原理 (11)

4、图像复原仿真过程与结果分析 (13)

4.1运动模糊图像复原仿真过程 (13)

4.1结果分析 (16)

总结 (17)

参考文献 (18)

摘要

随着计算机技术的发展,计算机的运行速度和运算精度得到进一步提高,其在图像处理领域的应用日见广泛。图像复原是数字图像处理的重要组成部分,而运动模糊图像复原又是图像复原中的重要课题之一。本论文研究目的在于将传统的光学理论与正在发展的数字图像处理方法相结合,利用计算机对运动模糊图像进行复原,进一步提高运动模糊图像的复原精度,降低在拍摄过程中对光学设备精度和拍摄人员的要求。可广泛用于天文、军事、道路交通、医学图像、工业控制及侦破等领域,具有十分重要的现实意义。

第一章引言

在实际的日常生活中,人们要接触很多图像,画面。而在景物成像这个过程里可能会出现模糊、失真或混入噪声,最终导致图像质量下降,这种现象称为图像“退化”。因此我们可以采取一些技术手段来尽量减少甚至消除图像质量的下降,还原图像的本来面目,即在预定义的意义上改善给定的图像,这就是图像复原。尽管图像增强和图像复原之间有重叠部分,但前者主要是主观处理,而图像复原大部分是客观处理。复原通过使用退化现象的先验知识试图重建或恢复一副退化的图像。因此,复原技术趋向于将退化模型化并用相反的处理来恢复原图像,即考虑用模糊函数来消除图像的模糊。引起图像模糊有多种多样的原因,举例来说有运动引起的,高斯噪声引起的,斑点噪声引起的,椒盐噪声引起的等等。

本文主要研究离焦模糊图像的复原,离焦模糊图像是指在拍摄时景物与相机的相对运动引起的离焦 ,或是成像区域内不同深度的对象所引起不同程度的离焦 ,还有由于在成像区域中存在不同深度的对象会使自动调焦系统引起混淆而导致拍摄的相片离焦等。因此本文研究使用MATLAB把退化现象模型化,并利用维纳(Wiener)滤波、约束最小二乘滤波算法、逆滤波等常用的滤波方法用MATLAB进行了仿真实现,为人们在不同的应用场合及不同的图像数据条件下选择不同的复原算法提供了一定的依据.

第二章 图像的退化模型

2.1模糊图像的一般退化模型

图像退化的原因多种多样,除了运动模糊造成图像退化或质量下降外,还有成

像系统的像差、有限带宽等造成图像失真;射线辐射、大气流等造成的照片畸变;模拟图像在数字化的过程中,由于会损失掉部分细节,造成图像质量下降;镜头聚焦不准产生的散焦模糊;成像系统中存在的噪声干扰等。可以用图2-1来描述这一过程。

图2-1模糊图像的一般退化模型

成像系统的物像映射关系可以统一用下式表达:

{}),(),(y x f H y x g = (2-1)

其中:f (x ,y)是输入的图像;g (x ,y)是输出的退化图像;H{}表示成像系统作用的运算符(如图2-1)。为了方便描述成像系统,通常把成像系统看作一个线性系统。实际上,物体成像系统总存在非线性,如果这种非线性失真不至于引起明显误差,或者能局部满足线性性质,即使是完全的非线性系统,用线

性系统近似描述也是通常的可行方法。因此在后面的讨论中假设: (1)运算H{}是线性的,即满足线性性质

H {a*f (x ,y )+bf (x ,y )}=a*H {f (x ,y )}+b*H {f (x ,y)} (2-2) (2)运算H{}是位移不变的,如果输入、输出的关系满足式(2-3),则对于任意的f (x ,y)和α、β有

g (x-α,y-β)=H {f (x -α,y-β)} (2-3)

式(2-3)图像上任何一点的运算结果,只和该点的灰度值大小有关,而与它所处的坐标位置无关。已知一幅连续的图像f (x ,y)可用二维δ(x ,y)抽样函数的二维卷积表

f (x , y )

g (x , y )

示:

??+∞

---=

βαβαδβαd d y x f y x f ),(),(),( (2-4)

将H{}操作施加于f (x ,y)

{}βαβαδβαd d y x H f y x f H y x g )),((),(),(),(??+∞

---=

= (2-5)

令h (x ,α;y,β)=H [δ(x -α,y-β)],则:

??+∞

-=

βαβαβαd d y x h f y x g ),;,(),(),( (2-6)

式中h (x ,α;y,β)叫做点扩展函数(PSF )或系统冲击响应。它表示离散图像的每一个像点受到H{}操作的影响而扩散。f (x ,y)又可看作离散点连续抽样的结果,图像退化就是受h (x ,α;y,β)的影响所致。多数情况下系统是不变的,在图像中反映为位移不变,则h (x ,α;y,β)可以用h (x -α,y-β)表示:

??+∞

-=

βαβαβαd d y x h f y x g ),;,(),(),(

=

??+∞

---β

αβαβαd d y x h f ),(),(

=),(*),(y x h y x f (2-7) 在加性噪声存在的情况下,图像退化模型又可表示为

),(),(*),(),(y x n y x h y x f y x g +=

(2-8)

式中n (x ,y)为噪声。这是一个线性位移不变的系统模型。位移不变在图像邻域中常称为空间不变。许多退化中都可用线性的位移不变模型来近似。

2.2匀速直线运动模糊的退化模型

设物体f (x)以速率v 沿水平方向移动,检测的相机保持静止。在相机的快门开

启期间0 ≤t ≤T ,记录媒质(如负片)上的总曝光量由瞬时曝光累积而成。为了分离出运动的效应,可假设相机快门的闭、启均在瞬间完成,光学成像过程完美无缺,此时

将有:

?

-=T

dt vt x f x g 0)()(~ (2-9) 有的文献采用一维传播波方程[18]描述上述运动模糊过程

?????==??

?

????+??)()0,(0),(x f x w t x w x v t (2-10) 其中,w( x ,t)是运动物体在时刻t 的瞬时曝光,t=0时刻的瞬时曝光为f (x)。上式的解,即所谓的达郎贝尔解取下述形式

)(),(vt x f t x w -= (2-11) (2-11)可见,w( x ,t)在x -t 面上沿着每一特征线x –v*t=const 波形不变。如果w( x ,t)是随着时间改变的一维图像,那么图像w( x ,t)作为刚体沿水平方向平移。因此,当t>0时,在负片上的累积曝光效应(模糊图像)应该为

??-==t

t

d v x f d x w t x g 0

)(),(),(ττττ (2-12)

从而它在时间区间两端的约束条件分别为g (x,0)=0,

?=-=T

x g

dt vt x f T x g 0

)(~)(),( (2-13) 对于静止物体(v=0)

??==?==t

x f T T x g x g

x f t d x f t x g 0

)(),()(~),()(),(τ (2-14) 因为累积曝光的结果是初始曝光的时间数倍,所以图像不会模糊。 对于运动物体(v ≠0),令ζ=x - v τ,则方程变为

],[,)()(1

)(1),(x vt x x x f t d f vt t d f v t x g x

vt x x vt x -∈?=?==??--ξξξξ (2-15)

进而得到

[]x vT x x x f T d f vT

T T x g x

vt

x ,,)()(1

),(-∈?=?

=?-ξξ (2-16)

上式表明,v ≠0时,式(2-8)所成的图像必定为模糊图像,

它与f (x)在某一个邻域上的平均量f (x)的静止曝光结果等价。图像

是由景物在不同时刻的无限多个影像叠加而成的。它相当于对原始图像在邻域[x –v*t ,x]上作了一次平均再乘上曝光时间,对原始图像起了平滑作用。运动的速度越快或者曝光的时间越长,v*t 的值越大,邻域平均的范围越大,图像也就越模糊。因此,运动模糊的程度由移动物体的速度和摄像机快门打开的时间两方面决定。

2.3离散函数的退化模型

由于数字图像都是离散形式的,所以在实际应用中都是下式进行计算的,其表达

式如下:

11

00(,)(,)(,)(,)

M N m n g x y f m n h x m y n n x y --===--+∑∑ (2-17)

式中x=0,1,2,…,M-1;y=0,1,2,…,N-1。函数f(x ,y)和h(x ,y)分别是周期为M 和N 的函数。注意,如果这两个函数的周期不是M 和N ,那么必须对它们进行补零延拓,避免卷积周期的交叠。g(x ,y)是与f(x ,y)和h(x ,y)具有相同周期的函数。

以下将由M 宰N 函数矩阵f(x ,y)、g(x ,y)和办(x ,y)各行堆叠形成的M*N 维列向量分别记为f 、g 和n ,形式如下:

(0,0)(0,1)(0,1)(1,0)(1,1)(1,1)f f f N f f M f M f M N ??????????-??

??=??-????-??????--??

(0,0)(0,1)(0,1)(1,0)(1,1)(1,1)g g g N g g M g M g M N ??

????????-??

??=??-????-??????--??

(0,0)(0,1)(0,1)(1,0)(1,1)(1,1)n n n N n n M n M n M N ??

????????-??

??=??-????-??????--??

则式(2-17)可以写为:

g Hf n =+ (2-18)

式中H 为MN*MN 维矩阵。H 可写成2

M 个子矩阵的形式,每一个子矩阵的大小为N*N ,排列顺序如下:

0M-1M-211

0M-122103M-1M-2

M-30H H H H H H H H H H H H H H H H H ????

????

=??????

?? ( 2-19)

式(2-19)中的每一个子矩阵Hj 都是由h(x ,y)的第j 行构成的:

h(j,0) h(j,N-1) h(j,N-2) h(j,1)h(j,1) h(j,0) h(j,N-1) h(j,2)h(j,2) h(j,1) h(j,0) h(j,3) h(j,N-1) h(j,N-2) h(j,N-3) j H = h(j,0)??

??????

???????? (2-20)

第三章 运动模糊图像的复原方法及原理

为了抑制退化而利用有关退化性质知识的预处理方法为图象复原。多数图象复原方法是基于整幅图象上的全局性卷积法。图象的退化可能有多种原因:光学透镜的残次、光电传感器的非线性、胶片材料的颗粒度、物体与摄像机间的相对运动、不当的焦距、遥感或天文中大气的扰动、照片的扫描等等。图象复原的目标是从退化图象中重构出原始图象。

运动模糊图象的恢复是图象复原的主要分支之一,它的恢复算法有很多种。有些算法虽然有很好的恢复效果,但算法复杂,恢复时间比较长(如最大熵法)。有些算法虽然计算速度较快,但恢复效果不尽人意(如空间域逆向恢复)。

下面介绍逆滤波、维纳滤波和有约束最小二乘滤波三种恢复方法的原理。

3.1 有约束最小二乘复原原理

由于大多数图象恢复问题都不具有唯一解,或者说恢复具有病态特征。为了克服这一问题,通常需要在恢复过程中对运算施加某种约束。 设对图象施加某一线性运算Q ,求在约束条件

n g

H f 2

2?=- (3-1) 下,使g

Q ?2为最小的g ?作为原图g 的最佳估计。 利用拉格朗日乘数法,先构造一辅助函数:

)?(?),?(2

22n g H f g Q g

j ---=λλ (3-2) 令0

?),?(=??g

g j λ可得: 0)?(2)?(2=--g H f H g

Q Q T T λ (3-3) 解之得:

f H Q Q H H g

T T T 1)(?-+=γ (3-4)

式中λγ1=。把式(3-4)代入式(3-1)中可以证明,n 2

是γ的单调递增函数。因此可

以用迭代法求出满足约束条件(3-1)式的待定系数γ,首先任取一个γ,代入(3-4),把求得

的g

?再代入式(3-1),若结果大于n 2时,便减少γ;反之增大γ,再重复上述过程,直到约束条件式(3-5)被满足为止(实际求解时,只要能n g

H f 2?2--之差小于某一给定值就可以了)。把求得的γ代入,便最后求得最佳估计g

?。 我们可以直接从空间域的有约束最小二乘方恢复式(3-4)得到它的频域解

)

,(),(),()

,(),(1),(?2

22

v u F v u C v u H v u H v u H v u G

γ+= (3-5) 应用有约束最小二乘方恢复方法时,只需有关噪声均值和方差的知识就可对每幅给定的图象给出最佳恢复结果。

3.2逆滤波复原原理

在六十年代中期,逆滤波(去卷积)开始被广泛地应用于数字图象复原。Nathan 用二维去卷积方法来处理由漫游者、探索者等外星探索发射得到的图象。由于和噪声相比,信号的频谱随着频率升高下降较快,因此高频部分主要是噪声。Nathan 采用的是限定逆滤波传递函数最大值的方法。

在同一时期,Harris 采用PSF 的解析模型对望远镜图象总由于大气扰动造成的模糊进行了逆滤波处理,Mcglamery 则采用由实验确定的PSF 来对大气扰动图象进行逆滤波。从此以后,逆滤波就成了模糊图象复原的一种标准技术。

恢复退化图象最简单的方法是直接逆滤波。在该方法中,用退化函数除退化图象的

傅里叶变换F(u,v)来计算原始图象的傅里叶变换估计),(?v u G ,由式3-6可以得到逆滤波

退化公式:

),(),(),(),(?v u H v u N v u F v u G

-= (3-6)

这个公式说明逆滤波对于没有被噪声污染的图象很有效,这里不考虑在u ,v 空间的某些位置上当H(u,v)接近0时可能遇到的计算问题,幸运的是忽略这些点在恢复结果

中并不会产生可感觉到的影响。但是,如果出现噪声就会引起几个问题:第一,对于H(u,v)幅值比较小的频率处噪声的影响可能变得显著起来。这种状况通常对于高频u ,v 。在实际中,通常H(u,v)幅值衰减得比N(u,v)快得多,因此噪声的影响可能支配整个复原结果。将复原限定在H(u,v)足够大得u ,v 原点处得一个小邻域中,可以克服这个问题。第二个问题针对噪声本身的频谱,我们通常没有充分的有关噪声的信息来足够好地确定N(u,v)。为了克服H(u,v)接近0所引起的问题,在分母中加入一个小的常数k ,将式(3-6)修改为:

k v u H v u N v u G v u F

+-=),(),(),(),(? (3-7)

3.3维纳滤波复原原理

在大部分图象中,邻近的像素是高度相关的,而距离较远的像素其相关性较弱。由此,我们可以认为典型图象的自相关函数通常随着与原点的距离增加下降。由于图象的功率谱是图象本身自相关函数的傅里叶变换,我们可以认为的功率谱随着频域的升高而下降。

一般地,噪声源往往具有平坦的功率谱,即使不是如此,其随着频率的升而下降的趋势也要比典型图象的功率谱慢得多。因此,可以料想功率谱的低频分以信号为主,然而高频部分则主要被噪声所占据。由于逆滤波滤波器的幅值常随着频率的升高而升高,因此会增强高频部分的噪声。为了克服以上缺点,出了采用最小均方误差的方法(维纳滤波)进行模糊图象恢复。

维纳(wiener)滤波可以归于反卷积(或反转滤波)算法一类,它是由Wiener 首提出的,并应用于一维信号,并取得很好的效果。以后算法又被引入二维信号理,也取得相当满意的效果,尤其在图象复原领域,由于维纳滤波器的复原效良好,计算量较低,并且抗噪性能优良,因而在图象复原领域得到了广泛的应用并不断得到改进发展,许多高效的复原算法都是以此为基础形成的。

如果取

R

R Q n

g 2121

= (3-8)

R g 和R n 分别是图象和噪声的自相关矩阵。即?

???

??=g g E R T g ,?

?????=n n E R T n ,

并且都是正定对称矩阵,则有

f H R R H H

g T n

g T 1)(?1-+=-γ (3-9) g R R g

Q n

g ??2121

=的模方最小,实际上就意味着使噪声和信号的比对复原图象影响最小。因为图象和噪声的相关矩阵都是把图象当作随机过程来研究,从而描述其统计特性的量,在这里最小二乘方的最佳已经演变成均方误差最小准则下的最佳。

同样根据式(3-4)可求得频域维纳滤波公式如下

)

,()

,()

,(),(),(),(1),(?22

v u F v u S v u S v u H v u H v u H v u G

g n γ+= (3-10)

γ=1时,为标准维纳滤波器;γ≠1时,为含参维纳滤波器。若没有噪声时

即),(n v u S =0,维纳滤波器则退化成理想反滤波器。

实际应用中必须调节γ以满足式(3-4)。因为),(n v u S ,),(g v u S 实际很难求得因此,可以用一个比值k 代替两者之比,从而得到简化的维纳滤波公式

)

,(),()

,(),(1),(?22

v u F k

v u H v u H v u H v u G

+= (3-11)

第四章图像复原仿真过程与结果分析4.1 运动模糊图像复原仿真过程

第一步读取图片

I=imread('C:\Users\Administrator\Desktop\dog.jpg');

figure(1);imshow(I,[]);

title('原图像');

原图像

第二步利用MATLAB仿真模糊图像

PSF=fspecial('motion',40,75);

MF=imfilter(I,PSF,'circular');

noise=imnoise(zeros(size(I)),'gaussian',0,0.001);

MFN=imadd(MF,im2uint8(noise));

figure(2);imshow(MFN,[]);

title('运动模糊图像');

运动模糊图像

第三步利用最小二乘滤波复原

NP=0.002*prod(size(I));

[reg1 LAGRA]=deconvreg(MFN,PSF,NP/3.0); figure(3);imshow(reg1);

title('最小二乘滤波复原');

最小二乘滤波复原

第四步利用逆滤波复原

NSR=sum(noise(:).^2)/sum(MFN(:).^2);

figure(4);

imshow(deconvwnr(MFN,PSF,NSR),[]);

title('逆滤波复原');

逆滤波复原

第五步利用维纳滤波复原

figure(5);

imshow(deconvwnr(MFN,PSF,NSR),[]); title('维纳滤波复原');

维纳滤波复原

4.2 结果分析

从恢复的图像来看,效果还是可以的,因为这里采用了真实PSF 函数来恢复,但是实际生活当中大多数情况下PSF 是不知道的,所以要按照具体情况具体分析然后再恢复图像。

综合以上三种方法,通过对多幅图像的处理并比较可以看出逆滤波、维纳滤波、处理效果较好,而最小二乘方法处理效果相对较差。而逆滤波主要处理无噪声的运动模糊图像,它是维纳滤波的特例。最小二乘对无噪声图像或是低噪声图像的复原效果较好,但对高噪声的图片处理的效果就很差。

总结

图像复原需要根据相应的退化模型知识重建或恢复原始的图像。也就是说,图像复原技术就是要将图像退化的过程模型化,并由此采取相反的过程以得到原始图像。运动模糊是由于在拍摄过程中相机与景物之间相对运动而产生,因此对于匀速直线运动造成的运动模糊图像来说,图像退化模型的两个重要参数相对运动的方向和运动模糊尺度的估计就成了图像复原的关键问题。

本文对图像复原技术的研究还不够系统与深入,在理论以及工程应用中,还需要做大量深入、细致的研究工作。因此在这方面的研究还只是个开始,很多地方都需要改进与提高,例如:

1.运动模糊图像的复原大多是对整幅图像进行全局的复原,然而在实际应用中并非完全如此。如何分割运动模糊区域,分割的依据如何等将成为以后研究工作的一部分。

2.本文研究的运动模糊图像参数估计算法仅限于匀速直线运动造成的模糊,而缺乏对非匀速的、轨迹为曲线的运动模糊研究。

参考文献

【1】何东健. 数字图像处理[M]. 西安:西安电子科技大学出版社,2003

【2】刘微,朱明,李向荣.运动模糊图像恢复过程中的几个关键问题.电子器件,2005,28

【3】阮秋琦,阮宇智.数字图像处理(第二版).北京:电子工业出版社,2005 【4】张云霞,运动模糊图像的复原与重构(硕士研究生论文).大连理工大学

图像运动模糊复原算法综述概要

752b=———=;———#==——====—#==;=————=—=——=====——===——=—#一a以科学发展观促进科技创新(下)21EichmannG,StojancicM.Superresolvingsignalandimagerestorationusingory.Appl.Opt.1987。V01.26:1911~1918linearassociativemem—22collectivecomputationalabilities.HopfieldJJ.NeuralnetworksandphysicalsystemwithemergentProcNatAcadSciUSA。1982,(79):2554~2558ininverseandwienerfilterrestorationsofmotion—blurred2324StenderJ.(ed).ParallelGeneticAlgorithms:TheoryandApplication.10SPress.1993errorsLimH。TanKC,TanBTG.Edgeimagesandtheirwindowingtreatmen

t.CVGIP.1991,53:186。195作者简介刘晶晶,现为北京大学遥感所、中国矿业大学(北京)机电学院计算机硕士。研究方向:图像处理与模式识别。电话:(010)51733380;E—mail:ljj010@126.com。晏磊,现为北京大学地球与空间科学学院教授,博士生导师,北京市空间信息集成与3S工程应用重点实验室主任。何凯,现为北京大学遥感所博士后。研究方向:分形、小波理论及其在遥感影像处理方面的应用。宁书年,现为中国矿业大学(北京)博士生导师,地球探测与信息技术博士点学科带头人。LED显示技术及其发展趋势罗妙宣1王华1’2夏华丽21.北京大学空间信息集成与3S工程应用北京市重点实验室,北京,100871;2.中国矿业大学(北京)机电与信息工程学院,北京,100083摘要本文介绍了LED显示技术的工作原理、简要介绍了它的系统组成;并与CRT技术、LCD技术进行了比较,阐明了该技术的发展趋势及其应用前景。关键词LED显示技术半导体一、引言随着时代步伐的前进,信息已经日益成为人们关注的焦点,信息发布的方式就显得尤为重要,基于LED显示技术的显示屏就这样应运而生了。LED显示屏是由发光二极管组成的平面点阵来显示图像信息的器件。它以其自身的高亮度、低能耗、长寿命、响应快和无辐射的优点在短短的几十年发展成为现代信息发布的重要手段,并被广泛地应用于证券交易、金融、交通、体育、广告等领域。最近几年以GaN为基础的2%族半导体材料和器件方面取得了突破性进展,导致了GaN基蓝光LED进入市场,并被用于全色大屏幕显示器,使LED显示器的发展进入了一个全新阶段。LED材料分无机和有机两种,无机材料激发电压低、设备工艺简单、亮度高;近年来基于有机发光二极管(OLED)的平板显示器,由于其新颖的特性正在成为平板显示器领域的一个新增长点。二、LED显示技术的工作原理LED(LightEmittingDiode)是指通过一定的控制方式,用于显示文字、文本图形图像和行情等各种 图像运动模糊复原算法综述作者:作者单位:刘晶晶,晏磊,何凯,宁书年刘晶晶(北京大学遥感与地理信息系统研究所,北京,100871;中国矿业大学(北京机电与信息工程学院,北京,100083,晏磊,何凯(北京大学遥感与地理信息系统研究所,北京,100871,宁书年(中国矿业大学(北京机电与信息工程学院,北京,100083 本文读

运动模糊图像

目录 第1章绪论 ....................................................................... 错误!未定义书签。选题目的及背景 ........................................................................... 错误!未定义书签。国内外发展和现状 ....................................................................... 错误!未定义书签。数字图像恢复技术的应用领域 ................................................... 错误!未定义书签。论文的内容与基本结构 ............................................................... 错误!未定义书签。第2章运动模糊图像退化模型 .......................................... 错误!未定义书签。图像噪声 ....................................................................................... 错误!未定义书签。噪声的特征................................................................................ 错误!未定义书签。噪声的分类................................................................................ 错误!未定义书签。图像退化模型 ............................................................................... 错误!未定义书签。退化模型.................................................................................... 错误!未定义书签。论文的内容与基本结构 ............................................................... 错误!未定义书签。第3章图像复原 .................................................................... 错误!未定义书签。退化模型 ....................................................................................... 错误!未定义书签。噪声的特征................................................................................ 错误!未定义书签。噪声的特征................................................................................ 错误!未定义书签。噪声的分类................................................................................ 错误!未定义书签。退化模型 ....................................................................................... 错误!未定义书签。噪声的特征................................................................................ 错误!未定义书签。噪声的特征................................................................................ 错误!未定义书签。噪声的分类................................................................................ 错误!未定义书签。结论与展望 ............................................................................. 错误!未定义书签。致谢 ...................................................................................... 错误!未定义书签。参考文献................................................................................. 错误!未定义书签。

数字图像处理课程心得

数字图像处理课程心得 本学期,我有幸学习了数字图像处理这门课程,这也是我大学学习中的最后一门课程,因此这门课有着特殊的意义。人类传递信息的主要媒介是语音和图像。据统计,在人类接受的信息中,听觉信息占20%,视觉信息占60%,其它如味觉、触觉、嗅觉信息总的加起来不过占20%。可见图像信息是十分重要的。通过十二周的努力学习,我深刻认识到数字图像处理对于我的专业能力提升有着比较重要的作用,我们可以运用Matlab对图像信息进行加工,从而满足了我们的心理、视觉或者应用的需求,达到所需图像效果。 数字图像处理起源于20世纪20年代,当时通过海底电缆从英国伦敦到美国纽约采用数字压缩技术传输了第一幅数字照片。此后,由于遥感等领域的应用,使得图像处理技术逐步受到关注并得到了相应的发展。第三代计算机问世后,数字图像处理便开始迅速发展并得到普遍应用。由于CT的发明、应用及获得了备受科技界瞩目的诺贝尔奖,使得数字图像处理技术大放异彩。目前数字图像处理科学已成为工程学、计算机科学、信息科学、统计学、物理、化学、生物学、医学甚至社会科学等领域中各学科之间学习和研究的对象。随着信息高速公路、数字地球概念的提出以及Internet的广泛应用,数字图像处理技术的需求与日俱增。其中,图像信息以其信息量大、传输速度快、作用距离远等一系列优点成为人类获取信息的重要来源及利用信息的重要手段,因此图像处理科学与技术逐步向其他学科领域渗透并为其它学科所利用是必然的。 数字图像处理是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。数字图像处理的产生和迅速发展主要受三个因素的影响:一是计算机的发展;二是数学的发展(特别是离散数学理论的创立和完善);三是广泛的农牧业、林业、环境、军事、工业和医学等方面的应用需求的增长。图像处理科学是一门与国计民生紧密相联的应用科学,它给人类带来了巨大的经济和社会效益,不久的将来它不仅在理论上会有更深入的发展,在应用上亦是科学研究、社会生产乃至人类生活中不可缺少的强有力的工具。它的发展及应用与我国的现代化建设联系之密切、影响之深远是不可估量的。在信息社会中,数字图象处理科学无论是在理论上还是在实践中都存在着巨大的潜力。近几十年,数字图像处理技术在数字信号处理技术和计算机技术发展的推动下得到了飞速的发展,正逐渐成为其他科学技术领域中不可缺少的一项重要工具。数字图像处理的应用领域越来越广泛,从空间探索到微观研究,从军事领域到工农业生产,从科学教育到娱乐游戏,越来越多的领域用到了数字图像处理技术。 虽然通过一学期的课程学习我们还没有完全掌握数字图像处理技术,但也收获了不少,对于数字图像处理方面的知识有了比较深入的了解,当然也更加理解了数字图像的本质,即是一些数字矩阵,但灰度图像和彩色图像的矩阵形式是不同的。对于一些耳熟能详的数字图像相关术语有了明确的认识,比如常见的:像素(衡量图像的大小)、分辨率(衡量图像的清晰程度)、位图(放大后会失真)、矢量图(经过放大不会失真)等大家都能叫上口却知识模糊的名词。也了解图像处理技术中一些常用处理技术的实质,比如锐化处理是使模糊的图像变清晰,增强图像的边缘等细节。而平滑处理是的目的是消除噪声,模糊图像,在提取大目标之前去除小的细节或弥合目标间的缝隙。对常提的RGB图像和灰度图像有了明确的理解,这对大家以后应用Photoshop等图像处理软件对图像进行处理打下了

运动模糊图像的质量分析与评价

运动模糊图像的质量分析与评价 摘要:提出了一种新的图像质量评价标准,通过图像的运动模糊参数来估计出图像由于运动而造成的信息损失量,并通过信息损失的多少来评价图像的质量。实验表明,该方法能客观地体现出运动模糊图像的质量与运动模糊参数之间的关系,这种关系对于图像的质量评价特别是有参考条件下的图像质量评价具有良好的效果。同时还根据活动度和图像灰度梯度能客观地表示图像细节部分的特性。将图像分块,并从8个方向对图像进行分析,客观地评价出无参考条件下直线运动模糊图像的质量。关键词:质量评价;运动模糊参数;信息损失;直线运动模糊;活动度 图像的去模糊是图像处理中的一个重要分支,在获取图像过程中,由于物体与相机之间的相对运动会造成得到的图像总会有一定程度的模糊。在现实生活中,运动模糊图像广泛存在,图像会因为摄像者与对象之间的角度和物体与相机之间的相对运动速度等的差异而导致所得到的运动模糊图像有着不同的质量,这种差异即为图像的运动模糊参数的差异。找出图像的质量与其运动模糊参数之间的关系具有重要的意义。因为在去除这些模糊之前往往要通过一定的评价来估计出图像的质量,能否准确地估计出图像质量对图像后期的去模糊处理有着重要的意义。目前大多数情况下,对模糊图像的质量评价一般采用主观的评价方法,但是主观评价不能建立一定的数学模型,而且由于主观差异的存在,不同人的知识背景和主观目的、兴趣等的不同而得出不同的结论,不能适用于很多场合。而客观质量的评价方法大致可以分为无参考图像的质量评价和有参考图像的质量评价。1 传统的图像质量分析算法图像的质量分析一般为有参考条件下的质量分析和无参考条件下的质量分析两种[1-4]。无参考判断图像的质量评价是指在不借助任何参考图像的前提下,对模糊图像的质量进行评价。而有参考图像的质量评价是指将模糊的图像与参考图像(即原图像)进行对比,得出图像的质量。传统的图像质量分析算法:(1)梯度函数。在数字图像中,图像的梯度函数可以用来对图像进行图像的边缘提取及其图像的二值化,一般来说,可以认为图像越是清晰,其图像的灰度就会变化越剧烈,就应该具有相对比较大的图像梯度值。利用梯度函数估计图像的质量一般有灰度梯度能量函数、Robert梯度和拉普拉斯(Laplacian)算子。下面以Laplacian(四邻域微分)算子和梯度幅值介绍图像的梯度函数的评价方法。对于一幅图像,对图像中的每一个像素在2×2的领域内采用Laplacian算子,得到四邻域微分值,然后再将得到的每一个微分值求和。Laplacian算子(四邻域微分)的方法如下:利用相邻像素之间的方差[6]对图像的质量进行分析,图像质量越好,相邻像素点间的灰度差值就越大,从而S值也就越大。(3)基于图像相似度方法这种方法主要是针对在有参考图像条件下的图像质量评价,图像的相似度[7]主要利用均方差误差、平均绝对值误差、修正最大范数、多分辨率误差、均方信噪比及峰值信噪比等对图像的质量进行判断。此方法主要是将模糊图像与参考图像的各种特征进行比较,二者误差越小,它们的相似度就越大,然后通过与原始图像的相似程度来判断图像的质量。以均方误差为例,一幅图像中,其均方差为:式中,b(x,y)是图像抛出点的边缘信息抛出量,I(x,y)是图像在像素点(x,y)的信息量。一般情况下,通过式(8)在有参考图像的条件下,只要估计出图像的运动模糊参数就可估计出图像的质量。(2)统计边缘信息一幅图像的主要信息,主要是通过其边缘信息量的多少来显示,边缘不明显的图像,可以认为其模糊度越大。一幅m×n的图像,对其进行边缘提取之后,图像中所显示的轮廓信息就是其包含的信息量。即边缘信息量: 通过对图3~图6图像的分析可以看出,在同一幅图像下,由于运动而导致的模糊图像中,越是模糊的图像的边缘信息抛出率η越大。而对于不同的图像,可以通过计算η来比较其质量,η越小,图像越清晰,则e越大,与图像的内容没有关系。在这一规律情况下,

运动模糊图像复原课程设计

目录 摘要 (2) 1、引言 (3) 2、图像的退化模型 (4) 2.1模糊图像的一般退化模型 (4) 2.2匀速直线运动模糊的退化模型 (6) 2.3离散函数的退化模型 (8) 3、运动模糊图像的复原方法及原理 (10) 3.1有约束最小二乘复原原理 (10) 3.2逆滤波复原原理 (11) 3.3维纳滤波复原原理 (12) 4、图像复原仿真过程与结果分析 (15) 4.1运动模糊图像复原仿真过程 (15) 4.1结果分析 (18) 总结 (19) 参考文献 (20)

摘要 随着计算机技术的发展,计算机的运行速度和运算精度得到进一步提高,其在图像处理领域的应用日见广泛。图像复原是数字图像处理的重要组成部分,而运动模糊图像复原又是图像复原中的重要课题之一。本论文研究目的在于将传统的光学理论与正在发展的数字图像处理方法相结合,利用计算机对运动模糊图像进行复原,进一步提高运动模糊图像的复原精度,降低在拍摄过程中对光学设备精度和拍摄人员的要求。可广泛用于天文、军事、道路交通、医学图像、工业控制及侦破等领域,具有十分重要的现实意义。

第一章引言 在实际的日常生活中,人们要接触很多图像,画面。而在景物成像这个过程里可能会出现模糊、失真或混入噪声,最终导致图像质量下降,这种现象称为图像“退化”。因此我们可以采取一些技术手段来尽量减少甚至消除图像质量的下降,还原图像的本来面目,即在预定义的意义上改善给定的图像,这就是图像复原。尽管图像增强和图像复原之间有重叠部分,但前者主要是主观处理,而图像复原大部分是客观处理。复原通过使用退化现象的先验知识试图重建或恢复一副退化的图像。因此,复原技术趋向于将退化模型化并用相反的处理来恢复原图像,即考虑用模糊函数来消除图像的模糊。引起图像模糊有多种多样的原因,举例来说有运动引起的,高斯噪声引起的,斑点噪声引起的,椒盐噪声引起的等等。 本文主要研究离焦模糊图像的复原,离焦模糊图像是指在拍摄时景物与相机的相对运动引起的离焦 ,或是成像区域内不同深度的对象所引起不同程度的离焦 ,还有由于在成像区域中存在不同深度的对象会使自动调焦系统引起混淆而导致拍摄的相片离焦等。因此本文研究使用MATLAB把退化现象模型化,并利用维纳(Wiener)滤波、约束最小二乘滤波算法、逆滤波等常用的滤波方法用MATLAB进行了仿真实现,为人们在不同的应用场合及不同的图像数据条件下选择不同的复原算法提供了一定的依据.

运动模糊图像复原算法实现及应用

任务书 1、课程设计目的: 1)提高分析问题、解决问题的能力,进一步巩固数字图像处理系统中的基本原理与方法。 2)熟悉掌握一门计算机语言,可以进行数字图像应用处理的开发设计。 2、课程设计的题目:运动模糊图像复原算法实现及应用 1)创建一个仿真运动模糊PSF来模糊一幅图像(图像选择原理)。 2)针对退化设计出复原滤波器,对退化图像进行复原(复原的方法自定)。 3)对退化图像进行复原,显示复原前后图像,对复原结果进行分析,并评价复原算法。 3、课程设计方案制定: 1)程序运行环境是Windows 平台。 2)开发工具选用matlab、VC++、VB、C#等,建议选用matlab作为编程开发工具,可以达到事半功倍的效果、并降低编程难度。 3)以组件化的思想构建整个软件系统,具体的功能模块根据选定的不同题目做合理的划分。 4、课程设计的一般步骤: 1)选题与搜集资料:选择课题,进行系统调查,搜集资料。 2)分析与设计:根据搜集的资料,进行功能分析,并对系统功能与模块划分等设计。 3)程序设计:掌握的语言,编写程序,实现所设计的功能。 4)调试与测试:自行调试程序,同学之间交叉测试程序,并记录测试情况。 5)验收与评分:指导教师对每个成员开发对的程序进行综合验收,综合设计报告,根据课程设计成绩的判定方法,评出成绩。 5、要求

1)理解各种图像处理方法确切意义。 2)独立进行方案的制定,系统结构设计合理。 3)程序开发时,则必须清楚主要实现函数的目的和作用,需要在程序书写时做适当的注释。 目录 摘要 (2) 一、概述 (3) 1.1选题背景 (3) 1.2课程设计目的 (4) 1.3设计内容 (5) 二、图像退化与复原 (6) 2.1图像退化与复原的定义 (6) 2.2图像退化模型 (7) 2.3运动模糊图像复原的方法 (7) 2.3.1逆滤波复原法 (8) 2.3.2维纳滤波的原理 (9) 三、运动模糊图象复原的matlab实现 (10) 3.1维纳滤波复原 (10) 3.2约束最小二乘滤波复原 (10) 3.3 运动模糊图像复原实例 (11) 四、课程设计总结与体会 (14)

数字图像处理 课程设计报告

数字图像处理 课程设计报告 姓名: 学号: 班级: 设计题目:图像处理 教师:赵哲老师 提交日期: 12月29日

一、设计内容: 主题:《图像处理》 详细说明:对图像进行处理(简单滤镜,模糊,锐化,高斯模糊等),对图像进行处理(上下对称,左右对称,单双色显示,亮暗程度调整等),对图像进行特效处理(反色,实色混合,色彩平衡,浮雕效果,素描效果,雾化效果等), 二、涉及知识内容: 1、二值化 2、各种滤波 3、算法等 三、设计流程图 四、实例分析及截图效果: 运行效果截图: 第一步:读取原图,并显示 close all;clear;clc; % 清楚工作窗口clc 清空变量clear 关闭打开的窗口close all I=imread(''); % 插入图片赋给I imshow(I);% 输出图I I1=rgb2gray(I);%图片变灰度图 figure%新建窗口 subplot(321);% 3行2列第一幅图 imhist(I1);%输出图片

title('原图直方图');%图片名称 一,图像处理模糊 H=fspecial('motion',40); %% 滤波算子模糊程度40 motion运动 q=imfilter(I,H,'replicate');%imfilter实现线性空间滤波函数,I图经过H滤波处理,replicate反复复制q1=rgb2gray(q); imhist(q1); title('模糊图直方图'); 二,图像处理锐化 H=fspecial('unsharp');%锐化滤波算子,unsharp不清晰的 qq=imfilter(I,H,'replicate'); qq1=rgb2gray(qq); imhist(qq1); title('锐化图直方图'); 三,图像处理浮雕(来源网络) %浮雕图 l=imread(''); f0=rgb2gray(l);%变灰度图 f1=imnoise(f0,'speckle',; %高斯噪声加入密度为的高斯乘性噪声 imnoise噪声污染图像函数 speckle斑点 f1=im2double(f1);%把图像数据类型转换为双精度浮点类型 h3=1/9.*[1 1 1;1 1 1;1 1 1]; %采用h3对图像f2进行卷积滤波 f4=conv2(f1,h3,'same'); %进行sobel滤波 h2=fspecial('sobel'); g3=filter2(h2,f1,'same');%卷积和多项式相乘 same相同的 k=mat2gray(g3);% 实现图像矩阵的归一化操作 四,图像处理素描(来源网络) f=imread(''); [VG,A,PPG] = colorgrad(f); ppg = im2uint8(PPG); ppgf = 255 - ppg; [M,N] = size(ppgf);T=200; ppgf1 = zeros(M,N); for ii = 1:M for jj = 1:N if ppgf(ii,jj)

【精选】运动模糊图像复原

数字图象处理实验报告 2011年5月5日 目录 1 绪论 (3) 2、图像退化与复原 (4) 2.1 图像降质的数学模型 (4) 2.2匀速直线运动模糊的退化模型 (5) 2.3点扩散函数的确定 (7)

2.3.1典型的点扩散函数 (7) 2.3.2运动模糊点扩散函数的离散化 (8) 3、运动模糊图象的复原方法及原理 (9) 3.1逆滤波复原原理 (9) 3.2维纳滤波复原原理 (10) 3.3 有约束最小二乘复原原理 (11) 4、运动模糊图像复原的实现 (12) 4.1 运动模糊图像复原的MATLAB实现 (13) 4.2 复原结果比较 (16) 实验小结 (16) 参考文献 (17) 前言 在图象成像的过程中,图象系统中存在着许多退化源。一些退化因素只影响一幅图象中某些个别点的灰度;而另外一些退化因素则可以使一幅图象中的一个空间区域变得模糊起来。前者称为点退化,后者称为空间退化。图象复原的过程无论是理论分析或是数值计算都有特定的困难。但由于图象复原技术在许多领域的广泛应用,因而己经成为迅速兴起的研究热点。 图象复原就是研究如何从所得的变质图象中复原出真实图象,或说是研究如何从获得的信息中反演出有关真实目标的信息。造成图象变质或者说使图象模糊的原因很多,如果是因为在摄像时相机和被摄景物之间有相对运动

而造成的图象模糊则称为运动模糊。所得到图象中的景物往往会模糊不清,我们称之为运动模糊图象。运动模糊图象在日常生活中普遍存在,给人们的实际生活带来了很多不便。作为一个实用的图象复原系统,就得提供多种复原算法,使用户可以根据情况来选择最适当的算法以得到最好的复原效果。 图象复原关键是要知道图象退化的过程,即要知道图象退化模型,并据此采取相反的过程以求得原始(清晰)象。由于图象中往往伴随着噪声,噪声的存在不仅使图象质量下降,而且也会影响了图象的复原效果。从上面论述可以知道,运动造成图象的退化是非常普遍的现象,所以对于退化后的图象进行复原处理非常具有现实意义。图象复原的目的就是根据图象退化的先验知识,找到一种相应的反过程方法来处理图象,从而尽量得到原来图象的质量,以满足人类视觉系统的要求,以便观赏、识别或者其他应用的需要。 1、绪论 数字图象处理研究有很大部分是在图象恢复方面进行的,包括对算法的研究和针对特定问题的图象处理程序的编写。数字图象处理中很多值得注意的成就就是在这个方面取得的。 在图象成像的过程中,图象系统中存在着许多退化源。一些退化因素只影响一幅图象中某些个别点的灰度;而另外一些退化因素则可以使一幅图象中的一个空间区域变得模糊起来。前者称为点退化,后者称为空间退化。此外还有数字化、显示器、时间、彩色,以及化学作用引起的退化。总之,使图象发生退化的原因很多,但这些退化现象都可用卷积来描述,图象的复原过程就可以看成是一个反卷积的问题。反卷积属于数学物理问题中的一类“反问题”,反问题的一个共同的重要属性是其病态,即其方程的解不是连续地依赖于观测数据,换句话说,观测数据的微小变动就可能导致解的很大变动。因此,由于采集图象受噪声的影响,最后对于图象的复原结果可能偏离真实图象非常远。由于以上的这些特性,图象复原的过程无论是理论分析或是数值计算都有特定的困难。但由于图象复原技术在许多领域的广泛应用,因而己经成为迅速兴起的研究热点。 本次实验主要在PSF对图像进行运动模糊退化处理的基础上,采用逆滤波、维纳滤波和最小二乘滤波来实现图像的复原。

上数字图像处理技术的心得

上数字图像处理技术的心得我一直对PS挺感兴趣的,虽然我去图书馆借了许多书,可是有很多地方解释不清楚也没有素材,我都快崩溃了。单我发现这门课立即就报了它。我的最初目的不是要去学数字图像处理技术,而是冲着学photoshop去的。 刚开始上第一节课时,老师您并没有讲PS,而是讲一些关于数字图像处理技术的原理知识。我本以为我可能不会喜欢这种类型的课。但是出于一个理科生的本能反应,我挺喜欢这些内容。我发觉我的几个选修都正好符合我的兴趣爱好。我第一次接触数字图像处理技术,才知道图像的原理竟然一些数字矩阵。不愧叫数字图像处理技术。 但老师开始讲PS的时候,我自然是更加高兴了。因为这是我主要的学习目的。图像处理技术只是碰巧撞上。说实话,我对PS上的一些工具及使用方法还不是很了解。老师能从基本知识讲起正和我心意。虽然有很多我以前都会了。 我现在来讲讲我从在这门选修课中学到最主要的两项知识。 其一就是老师最希望我们了解的数字图像处理技术。我们现在都知道一张像数码相机照出来的照片(数字图像)是由一大堆数字矩阵组成。黑白与彩色图像的矩阵又有一些不同。老师用北京邮电大学的那个软件给我们演示一下PS里面的图像处理原理是怎样形成的。比如模糊,锐化等等。还有很多的图像处理通过PS来说明解释。后面主要就是介绍压缩技术。当然也涉及到一些视频音频的压缩。图像

压缩老师您也介绍了很多不同的方法。可我想不起来了,但是起码我们知道了它的压缩原理。知道原图像与压缩后所占存储量的巨大差异。我在这里也和老师一样用画图做一个。有一点失真,这就是有损压缩。 另外那个无损压缩从视觉上是抗不出来的,就不用做了。 其二,就是在photosop的操作上。老师您举了许许多多的操作例子来提高我们对数字图像处理技术的兴趣,尤其是在图层和滤镜的学习,我都学到很多在书上看不懂的方法技能。下面我也简简单单做一张,就当做是作业来完成吧! 如下三张图:通过第一张图中草地,山与第二张的天空合成第三张图。

基于MATLAB的运动模糊图像处理

基于MATLAB的运动模糊图像处理 提醒: 我参考了文献里的书目和网上的一些代码而完成的,所以误差会比较大,目前对于从网上下载的模糊图片的处理效果很不好,这是我第一次上传自己完成的实验的文档,希望能帮到一些人吧。 研究目的 在交通系统、刑事取证中图像的关键信息至关重要,但是在交通、公安、银行、医学、工业监视、军事侦察和日常生活中常常由于摄像设备的光学系统的失真、调焦不准或相对运动等造成图像的模糊,使得信息的提取变得困难。但是相对于散焦模糊,运动模糊图像的复原在日常生活中更为普遍,比如高速运动的违规车辆的车牌辨识,快速运动的人群中识别出嫌疑人、公安刑事影像资料中提取证明或进行技术鉴定等等,这些日常生活中的重要应用都需要通过运动模糊图像复原技术来尽可能地去除失真,恢复图像的原来面目。因此对于运动模糊图像的复原技术研究更具有重要的现实意义。 图像复原原理 本文探讨了在无噪声的情况下任意方向的匀速直线运动模糊图像的复原问题,并在此基础上讨论了复原过程中对点扩散函数(PSF)的参数估计从而依据自动鉴别出的模糊方向和长度构造出最为近似的点扩散函数,构造相应的复原模型,实现运动模糊图像的复原;在模糊图像自动复原的基础上,根据恢复效果图的纹理特征和自动鉴别出的模糊长度和角度,人工调整模糊方向和长度参数,使得复原效果达到最佳。 实验过程 模糊方向的估计: 对图1(a)所示的原始图像‘车牌’图像做方向θ=30?,长度L=20像素的匀速直线运动模糊,得到退化图像如图1(b)

1(a) 1(b) j=imread('车牌1.jpg'); figure(1),imshow(j); title('原图像'); len=20; theta=30; psf=fspecial('motion',len,theta); j1=imfilter(j,psf,'circular','conv'); figure,imshow(j1); title('PSF 模糊图像'); 图1(c)和1(d)分别为原图像和模糊图像的二次傅里叶变化

(完整word版)运动模糊图像复原开题报告

数字图像处理大作业 - 运动模糊图像复原 开题报告 小组成员:张博文、范桂峰、笪腾飞 一、研究意义 相机对物体成像时 ,由于平台的颤振,在曝光时间内成像器件与物体之间往往存在着相对运动 ,在像面上产生像移 ,因此拍出来的图像是被运动模糊后的图像。这种图像质量较差 ,对比度和分辨率均降低 ,需要进行恢复。 二、研究现状 如果这种相对运动属于平动,则可以把模糊过程看作一个线性位移不变的系统。因此 ,如果知道了系统的冲激响应 ,在这里是点扩展函数 ( PSF) ,就可以用来恢复图像。但是 ,模糊过程的点扩展函数往往是不知道的,因此图像恢复的关键就变成了如何推导点扩展函数。如 Marius Tico 从图像序列入手 ,通过一帧快速曝光未被运动模糊,但却因曝光不足而信噪比很低的图像,以及一帧曝光充足但被运动模糊了的图像来计算点扩展函数,然后恢复。但更多的研究还是集中在如何从单帧被模糊了的图像中找出点扩展函数,主要有2类 ,一类从空域直接入手,利用差分、相关等等各种方法计算,另一种则是通过图像变换后的频谱域中的零值点来计算,这些方法往往只能计算特殊运动形式的点扩展函数 ,主要是匀速直线运动,而且受噪声影响精度比较低。相机的振动通常比较复杂 ,这些方法的适用性受到限制,因此 ,需要找到一种能够不受运动形式和运动方向限制的计算模糊过程点扩展函数的方法。 一种方法是利用了利用经阈值化处理的Radon 变换估计模糊方法,通过微分自相关法估计模糊长度,最后应用带最优窗的维纳滤波进行图像复原,该算法能够较为精确地估算出运动模糊图像的模糊参数并取得了较好的恢复效果,提升了图像恢复的抗噪性能,具有实际参考价值。这是属于第一种空域处理方法。 另一种方法是运动模糊图像经傅立叶变换后在频域有频谱零点进行参数估计,通过霍夫变换初步求得运动模糊图像的点扩展函数,当估计出运动模糊图像的点扩展函数的参数后,用神经网络方法进行恢复。这种恢复模型可以对任意角

武汉大学数字图像处理课程综合实习实习报告

数字图像处理课程综合实习 实习报告 学院 班级 学号 姓名 日期 指导教师

一、实习目的和意义 本实习内容旨在让同学们通过用VC等高级语言编写数字图像处理的一些基本算法程序,来巩固和掌握图像处理技术的基本技能,提高实际动手能力,并通过实际编程了解图像处理软件的实现的基本原理。为学生进一步学习数字摄影测量、遥感和地理信息系统等专业课程以及应用图像处理解决实际问题奠定基础。 二、实习原理和方法 实习一实现RAW->BMP格式的转换 RAW格式:文件按照数字图像组成的二维矩阵,将像素按行列号顺序存储在文件中。这种文件只含有图像像素数据,不含有信息头,因此,在读图像时,需要根据文件大小,计算图像所包含的行列号,或者需要事先知道图像大小(矩阵大小)。但这种文件读取和保存简单。 RAW文件按图像上行到下行、左列到右列顺序存储,而BMP文件数据区按图像上下行到上行、左列列到右列顺序存储到数据区。 实现RAW文件到BMP文件的转换,需要为BMP文件生成文件头、信息头、颜色表、数据区,将RAW文件数据区赋值到BMP文件数据区。 实习二灰度线性变换 点运算是指像素值(即像素点上的灰度值)通过运算改变之后,可以改善图象的显示效果。这是一种像素的逐点运算,是旧图象与新图象之间的映射关系,是一种简单但却十分有效的一种图象处理手段。常用方法有灰度线性变换、直方图均衡、对比度调整、直方图规定化、对数变换、指数变换、密度分割等方法。 灰度的线性变换就是指图像的中所有点的灰度按照线性灰度变换函数进行变换。灰度变换方程如下: D0=f(Di)=a*Di+b 该方程为线性方程。式中参数Di为输入图像的像素的灰度值,参数D0为输出图像的灰度,a和b由给定条件确定。 实习三图像局部处理:高通滤波和低通滤波

数字图像复原技术中运动模糊图像相关问题研究

数字图像复原技术中运动模糊图像相关问题研究【摘要】随数字图像复原处理技术是当前数字图像处理领域的重要研究课题之一,运动模糊图像的复原是数字图像复原处理技术中较常见也是较难解决的一类问题。本论文的研究工作正是围绕运动模糊图像复原技术展开。分析运动模糊图像的成因以及成像过程;建立运动模糊退化模型;用维纳滤波复原方法对模糊图像进行复原;根据维纳滤波运动模糊图像复原方法中的不足之处,引入介绍了一种新的方法,降低了原有算法的复杂度,改进了维纳滤波。本文主要研究了维纳滤波复原方法并对其进行了改进,其他复原方法有待我们进一步研究。 【关键词】数字图像复原处理技术;运动模糊图像复原;维纳滤波复原;改进维纳滤波复原 图像成像的过程中存在很多的退化源,数字图像在获取、传输和存储过程中受各种原因的影响,会造成图像质量的退化,典型的表现有图像模糊、失真、有噪声等。运动模糊图像是由于相机和被拍摄对象之间的相对运动而造成的模糊现象,这一现象在日常生活中经常遇到,因此运动模糊图像复原技术便成为目前图像复原技术的研究热点之一,运动模糊图像复原是数字图像处理中的一个重要课题。它研究的主要目的是改善给定的图像质量并尽可能复原图像。图像复原的目的就是尽可能恢复被退化图像的本来面目。 运动模糊图像的复原方法研究非常具有现实意义。无论在日常生活还是在国防军工领域,运动造成图像模糊现象普遍存在,这给人

们生活和航空侦察等造成很多不便,所以很有必要对运动模糊图像的恢复做深入研究。在交通系统、刑事取证中图像的关键信息至关重要,但是在交通、公安、银行、医学、工业监视、军事侦查和日常生活中常常由于摄像设备的光学系统的失真、调焦不准或相对运动等造成图像的模糊,使得信息的提取变得困难。通过对于运动模糊图像的复原,使图像变的清晰,便于更好地提取相应信息。因此对于运动模糊图像的复原技术研究更具有重要的现实意义。 一、图像复原的基本概念 图像复原技术,也称为图像去卷积技术,它是按着图像模糊的反过程进行,其目的是获取清晰的,未被污染的图像的近似值,从而我们可以使用相关信息来正确解读图像所包含的有效信息。要想复原图像,其中必须要知道的是模糊是空域不变的还是空域变化的:空域不变意味着模糊和位置无关。也就是说,一个模糊的物体无论从图像的那个位置看都是一样的。空域变化意味着模糊和位置有关。也就是说,模糊图像中的物体因位置变化而看起来有所不同。 二、维纳滤波图像复原 从噪声中提取信号波形的各种估计方法中,维纳滤波是一种最基本的方法,适用于需要从噪声中分离出的有用信号是整个信号,而不只是它的几个参量。 设维纳滤波器的输入为含噪声的随机信号。期望输出与实际输出之间的差值为误差,对该误差求均方,即为均方误差。因此均方误差越小,噪声滤除效果就越好。为使均方误差最小,关键在于求冲

数字图像处理心得体会

《数字图像处理》心得体会 图像处理是指对图像信息进行加工,从而满足人类的心理、视觉或者应用的需求的一种行为。图像处理方法一般有数字法和光学法两种,其中数字法的优势很明显,已经被应用到了很多领域中,相信随着科学技术的发展,其应用空间将会更加广泛。数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。数字图像处理是从20世纪60年代以来随着计算机技术和VLSL的发展而产生、发展和不断成熟起来的一个新兴技术领域。数字图像处理技术其实就是利用各种数字硬件与计算机,对图像信息通过转换而得到的电信号进行相应的数学运算,例如图像去噪、图像分割、提取特征、图像增强、图像复原等,以便提高图像的实用性。其特点是处理精度比较高,并且能够对处理软件进行改进来优化处理效果,操作比较方便,但是由于数字图像需要处理的数据量一般很大,因此处理速度有待提高。 由于数字图像处理的方便性和灵活性,因此数字图像处理技术已经成为了图像处理领域中的主流。数字图像处理技术主要涉及到的关键技术有:图像的采集与数字化、图像的编码、图像的增强、图像恢复、图像分割、图像分析等。? 图像的采集与数字化:就是通过量化和取样将一个自然图像转换为计算机能够处理的数字形式。? 图像编码:图像编码的目的主要是来压缩图像的信息量,以便能够满足存储和传输的要求。? 图像的增强:图像的增强其主要目的是使图像变得清晰或者将其变换为机器能够很容易分析的形式,图像增强方法一般有:直方图处理、灰度等级、伪彩色处理、边缘锐化、干扰抵制。?

图像的恢复:图像恢复的目的是减少或除去在获得图像的过程中因为各种原因而产生的退化,可能是由于光学系统的离焦或像差、被摄物与摄像系统两者之间的相对运动、光学或电子系统的噪声与介于被摄像物跟摄像系统之间的大气湍流等等。? 图像的分割:图像分割是将图像划分为一些互相不重叠的区域,其中每一个区域都是像素的一个连续集,通常采用区域法或者寻求区域边界的境界法。? 图像分析:图像分析是指从图像中抽取某些有用的信息、数据或度量,其目的主要是想得到某种数值结果。图像分析的内容跟人工智能、模式识别的研究领域有一定的交叉。? 数字图像处理的特点主要表现在以下几个方面:? 1)?数字图像处理的信息大多是二维信息,处理信息量很大。因此对计算机的计算速度、存储容量等要求较高。? 2)?数字图像处理占用的频带较宽。与语言信息相比,占用的频带要大几个数量级。所以在成像、传输、存储、处理、显示等各个环节的实现上技术难度较大,成本亦高。这就对频带压缩技术提出了更高的要求。? 3)?数字图像中各个像素不是独立的,其相关性大。在图像画面上,经常有很多像素有相同或接近的灰度。所以,图像处理中信息压缩的潜力很大。?图像受人的因素影响较大,因为图像一般是给人观察和评价的。? 数字图像处理的优点主要表现在4个方面。? 1)?再现性好。数字图像处理与模拟图像处理的根本不同在于它不会因图像的存储、传输或复制等一系列变换操作而导致图像质量的退化。只要图像在数字化时准确地表现了原稿,那么数字图像处理过程始终能保持图像的再现。? 2)?处理精度高。将一幅模拟图像数字化为任意大小的二维数组,主要取决于

High-quality Motion Deblurring from a Single Image(运动图像去模糊)中文翻译

高质量单幅图片运动去模糊 celerychen 译 摘要:我们提出了一种从单一图片去除运动模糊的算法。我们的方法在去模糊图像的计算过程中,对于卷积核的估计和清晰图像,采用统一的概率模型。我们分析了当前去模糊方法中通常存在的人工痕迹的产生原因,而后在我们的概率模型中引入了一些新的术语。这些术语包括模糊图像噪声的空域随机模型,还有新的局部平滑先验知识。通过对比度约束,即使是低对比的模糊图像,也能减少人工振铃效应。最后,我们描述了一种有效的优化方案,通过交替估计模糊核和清晰图像的复原过程直到收敛。经过这些步骤,我们能够在一个低的计算复杂度的时间内获得一个高质量的清晰图像。我们的方法生成的图像质量相当于用多张模糊图片生成的清晰图片的效果,而后者的方法需要额外的硬件资源。 关键字运动去模糊人工振铃图像增强滤波 1.介绍 数字摄像机最常见的人工痕迹之一是由于相机的抖动引起的运动模糊。在很多情况下,光线不足,要避免使用快速的长快门;这一不可避免将使我们的快照变得模糊和令人失望。在数字图像处理领域,从单张运动模糊的照片中恢复出清晰的图像,是一个长期和根本性的研究课题。如果我们假定模糊核,或者说是点扩散函数PSF是线性时不变的,这一问题可以被概括为图像的反卷积问题。图像的反卷积问题可以进一步分为盲反卷积和非盲反卷积。在非盲反卷积的问题当中,卷积核被认为是已知的或者在别处已经计算得出了,剩下的问题就是估计不模糊的清晰的自然图像。传统的方法例如维纳滤波和RL反卷积方法在几十年之前就已经被提出了。但是,他们现在仍然被广泛采用,因为他们简单高效。然而,这些方法在在图像的强边缘出易于产生令人生厌的人工振铃的痕迹。盲反卷积问题当中,卷积核和清晰的自然图像均是未知的,而且问题甚至是高度病态的。自然图像结构的复杂性和卷积核形状的任意性,很容易使得先验概率的估计出现过拟合或欠拟合。 在本论文当中,我们通过探究盲反卷积问题产生的可视人工痕迹例如振铃效应产生的原因开始。我们的研究表明,如果模糊图像没有噪声并且卷积核被准备无误的估计而没有误差,现有的反卷积方法能够高效的执行的很好。因此,我们注意到,一个固有的带噪图像的好的模型和一个更明确的处理由于卷积核估计误差造成的可视人工痕迹的方法,对于产生好的结果是有本质上的提高的。基于这样的想法,我们提出了一个统一的概率模型。不管是盲反卷积问题还是非盲反卷积问题,通过一种高级的迭代优化方案,交替地估计卷积核和复原图像直到收敛。这种方法的迭代过程就是求解相应的最大后验概率问题。我们的算法使用一个很粗糙的核估计方法来初始化卷积核【例如一条直线】,我们的方法收敛的结果能够保持复杂图像的结构和边缘细节的清晰,同时避免人工振铃的痕迹,参见图一。 为了实现这些结果,我们的技术主要得益于三方面的因素。首先,一种新的图像噪声空域随机分布模型。这个模型有助于我们分离在图像的噪声估计和卷积核估计过程中产生的误

相关主题
文本预览
相关文档 最新文档