当前位置:文档之家› 车载逆变器电源的设计与制作

车载逆变器电源的设计与制作

车载逆变器电源的设计与制作
车载逆变器电源的设计与制作

车载逆变器电源的设计与制作

现在汽车越来越普及,需要一款经济小巧的车载逆变电源来满足旅游外出时的各种用电需求。本文中的设计将汽车电瓶输出的12V直流电转化为220V/50HZ的交流电,以满足国内大部分低功率用电器的使用要求。文中是以PWM脉宽调制技术为基础,用SG3525A和CD4069芯片产生方波信号,以实现直流到交流的转变

关键词:逆变电源,脉宽调制,SG3525A,CD4069

主电路的设计

1.1 设计要求及系统指标

设计车载逆变器的主要目的是满足车上或户外一些主要用电器的用电需求,要求小型、轻便、廉价,不要求大功率和标准的输出波形,所以设计的主要思想是结构简单,小巧轻便,成本较低。为了不影响汽车的正常工作,应实现输入输出的隔离,还要尽可能提高电源的转化效率。

所以设计要求为将汽车电瓶输出的12V直流电转化为220V/50Hz交流电,电瓶限流15A,所以最大功率180W,用变压器实现电气隔离,输出为准正弦波或方波。

1.2 总体方案的选取

1.1.1 方案比较

方案一,基于工频变压器的逆变电源。文氏振荡器产生50Hz震荡,经推动级调制直流电压,并用工频变压器进行电压放大。

方案二,基于升压式(Boost)电路的电压逆变。用Boost电路将12V升压到510V,再用50Hz信号进行调制成交流输出。

方案三,基于中频逆变的逆变电源。第一级采用DC/DC变换,将直流低压通过脉宽调制和中频变压器升成直流高压,第二级DC/AC变换,将直流变为50Hz交流。

1.1.2 方案选择

方案一的工频变压器笨重,占用体积大,不符合小巧轻便的制作要求。 方案二将12V 升为510V 的Boost 电路制作难度大,对元器件性能要求高,所以舍弃。

方案三基本符合设计要求。前级采用推挽式升压电路,推挽变换开关管电压是电源电压的两倍,适合低电压电源;后级采用全桥逆变电路,输出电压是半桥电路的两倍,减小了开关管电流应力。

1.3 逆变电源原理框图

主电路如图1.1,首先将直流电压经开关调制成中频交流电,经推挽输出变 图 1.1 逆变电源原理框图

成高压,再整流成直流高压,经全桥逆变电路,变换成220V/50Hz 电压,最后可以滤波成准正弦波输出。

1.4 前级推挽升压电路

图 1.2 前级推挽升压电路

前级推挽升压电路如图 1.2所示,采用IRF840场效应晶体管,Ω===85.0,32,500DS DM DSS R A I V V ,符合电路设计要求,电路简单,不用限流电阻,S 端可直接接地。通过推挽升压,将12V 升为540V 左右,可以通过调节调制信号的占空比控制后级电压,使输出可调。

1.5 后级整流及全桥逆变电路

图 1.3 后级整流及全桥逆变电路原理图

后级电路如图3.3所示,首先采用4个二极管组成的全桥整流电路进行整流,电容滤除高次谐波,将交流电变为直流电,然后用四个MOS管组成的全桥逆变电路将支流变为50Hz交流,最后用滤波电路将方波整成准正弦波。

控制电路设计

2.1

图 2.2 5脚输出波形图

如图2.2为5脚锯齿波,与误差放大器电压比较调节脉宽,可实现稳压作用。

2.1.2 基于SG3525A的控制电路

图2.3 基于SG3525A的控制电路原理图

如图2.3为基于3525的控制电路,电源接15脚,串联小电阻接13脚,以限流和保护电路,接220uF电容以滤波。Ct选用0.01uF,Rt用100K滑动变阻器,实现频率在20KHz并可调节。2端输入16脚分压得到的电压基准信号,与1脚输入的反馈信号进行误差放大,与内部三角波比较实现稳压。11,14脚输出反相的PWM波控制信号。

2.1.3 前级控制电路输出

图 2.4 前级控制电路输出

11,14脚输出如图2.4所示,为11.8V ,20KHz 方波,占空比48.6%,上升沿有一点上冲,对后级无影响。

2.2 后级控制电路

2.1.1 CD4069 原理器件参数

CD4069为6反相器集成芯片,管脚图如图2.5所示,电源电压Vdd=5V ,V 05.0V V 95.4V V 1V V 4V OL OH IL IH ====,,,,ns 90t pmax =。

图2.5 CD4069管脚图

2.1.2 基于CD4069的控制电路

图2.6 基于CD4069的控制电路

如图2.6所示,电路的震荡由电容C6充放电完成,震荡频率)

=,

R?

(2.2/1

f C

R7、R8串联共同构成R,是震荡频率在50Hz左右可调。R9为补偿电阻,改善电源电压改变导致的振荡频率不稳。8脚接11脚,实现调制信号的双路反相输出。Q3、Q4对信号进行电压放大,以驱动电源开关电路。

5.1.3 后级控制电路输出

图2.7 后级控制电路输出波形

如图2.7所示,输出为12V/50Hz方波调制信号,可充分驱动开关电源电路。

剩余部分设计与制作

3.1 变压器设计原理

图 3.1 推挽升压变压器原理

如图3.1,推挽变换电路中,当Q1导通,Q2截止时,电流经变压器初级上部流过,当Q1截止,Q2导通时,电流经变压器初级下部流过,当Q1、Q2交替导通时,初级就产生了方向变化的电流,也就产生了变化的磁场,使次级产生变化的电流。

3.2 变压器设计

由于在20KHz 进行变压,选用中频变压磁芯EC42,磁通密度计算时取Bm=0.3T ,测量铁芯直径13mm ,由法拉第定律e m 1f 1A B fN K V =,得e m f A fB K /V N 11=,计算得N1为4匝,由1122/V N V N =,计算得次级线圈为90匝。选用直径1mm 导线绕制。

3.3 变压器绕制

图3.2 实验变压器

如图3.2为实验绕制低压变压器,初级为4匝,次级为4匝。先绕初级4匝后留出抽头,再按原绕制方向绕4匝,引出线头,将初级用绝缘胶带缠牢,再绕次级4匝,留出抽头,用胶带缠牢,最后装入磁芯,用胶带缠牢。

图3.3 变压器输出波形

如图3.3为变压器输出波形,由于开关控制信号占空比较小,输出有一段零电平。由于漏磁,上升沿有上冲。

3.4 最终输出

图3.4 负载为10欧姆时的波形

如图3.4为低压时带10欧姆电阻波形。

在加入滤波电路后,波形明显变好,电压略有降低,最终输出为220V/50Hz准正弦波。

电动车用辅助逆变器的设计方案与实现

电动车用辅助逆变器的设计与实现 摘要: 电动汽车的运行与普通汽车有许多不同, 需要设计安装大量专用辅助设备, 且要求辅助设备结构简单、运行稳定、运行成本低。文章描述了电动车用辅助逆变器的特殊应用环境和工作要求, 提出一种设计思路, 并分别从硬件结构和软件流程两方面介绍系统的构成。关键词: 逆变器SA 4828 芯片脉宽调制CAN 总线 1 引言 目前各种类型的电动汽车发展日新月异, 车辆主动力单元采用的电机和驱动方式各有特色, 但在车用辅助电机的选择上却观点一致, 即充分利用电动车直流母线电压高(通常为300~600 V ) 的特点, 利用辅助逆变器将直流变成三相交流电驱动交流异步电机, 为车上的刹车气泵、液压助力泵、空调压缩机等设备提供动力。在大型电动车上, 驱动这些设备的电机功率在3~10 kW 之间, 采用交流电机可以比同等直流电机成本更低、体积更小、重量更轻, 而且运行噪音小、维护量大大降低。电动车的发展在国外已经进入实际应用阶段, 而国内仍处于开发样车阶段, 多数研发单位只是将通用变频器进行简单改装后作为辅助逆变电源投入使用。这样不仅成本较高, 不能完全适应电动车的实际运行需要, 也不具备CAN 总线通讯能力, 无法参与整车系统的数据通讯。新公布的国家“863 计划”关于电动车发展规划中已经明确规定: 新申报的电动车开发项目必须采用基于CAN 总线的整车通讯控制系统。因此辅助逆变器在提供三相交流电源功能的同时, 系统必须具有CAN 总线通讯接口, 以便参与整车系统的控制。电动车用辅助逆变器的设计必须充分考虑产品的运行环境和负载特点, 简化系统硬件结构, 确保设备运行稳定。从直流输入来看, 电动车动力电池电压有一定的波动范围, 在电量充足时每个电池单体的电压可以达到 1. 45 V 或更高, 随着使用过程中能量的不断输出, 电压会逐渐降低, 达到 1. 2 V 甚至更低。由280 节单体串联成的电池组, 其母线电压通常会在400~330 V 之间浮动, 变化率高达21. 2%。因此逆变器必须能够适应较宽范围内的电压浮动。同时, 作为电源设备, 这种辅助逆变器不仅可以驱动各种三相交流电机, 还可以作为车上的工频电源, 为更多的车载设备服务。因此, 设计开发一种专用的电动车用辅助逆变器, 不仅可适应电动车直流母线电压浮动大的特点, 还可以参与整车控制, 提高系统运行效率、节约能源。 2 系统整体构成设计 完成辅助逆变器的设计必须从其输入?输出要求出发, 做到结构清晰、功能明确。在系统结构上可以将电动车用辅助逆变器按功能分为4 个部分, 如图 1 所示。

低成本车载逆变电源设计

低成本车载逆变电源设计 电源是电子设备的动力部分,是一种通用性很强的电子产品。它在各个行业及日常生活中得到了广泛的应用,其质量的好坏极大地影响着电子设备的可靠性,其转换效率的高低和带负载能力的强弱直接关系着它的应用范围。方波逆变是一种低成本,极为简单的变换方式,它适用于各种整流负载,但是对于变压器的负载的适应不是很好,有较大的噪声。 本文依据逆变电源的基本原理,利用对现有资料的分析推导,提出了一种方波逆变器的制作方法并加以调试。 1 系统基本原理 本逆变电源输入端为蓄电池(+12V,容量90A·h),输出端为工频方波电压(50Hz,310V)。其结构框图如图1所示。 图1 方波逆变器的结构框图 目前,构成DC/AC逆变的新技术很多,但是考虑到具体的使用条件和成本以及可靠性,本电源仍然采用典型的二级变换,即DC/DC变换和DC/AC逆变。首先由DC/DC变换将DC 12V电压逆变为高频方波,经高频升压变压器升压,再整流滤波得到一个稳定的约320V直流电压;然后再由DC/AC变换以方波逆变的方式,将稳定的直流电压逆变成有效值稍大于220V的方波电压;再经LC工频滤波得到有效值为220V 的50Hz交流电压,以驱动负载。 2 DC/DC变换 由于变压器原边电压比较低,为了提高变压器的利用率,降低成本,DC/DC变换如图2所示,采用推挽式电路,原边中心抽头接蓄电池,两端用开关管控制,交替工作,可以提高转换效率。而推挽式电路用的开关器件少,双端工作的变压器的体积比较小,可提高占空比,增大输出功率。

图2 DC/DC变换结构图 双端工作的方波逆变变压器的铁心面积乘积公式为 AeAc=Po(1+η)/(ηDKjfKeKcBm)(1) 式中:Ae(m2)为铁心横截面积; Ac(m2)为铁心的窗口面积; Po为变压器的输出功率; η为转换效率; δ为占空比; K是波形系数; j(A/m2)为导线的平均电流密度; f为逆变频率; Ke为铁心截面的有效系数; Kc为铁心的窗口利用系数; Bm为最大磁通量。 变压器原边的开关管S1和S2各采用IRF32055只并联,之所以并联,主要是因为在逆变电源接入负载时,变压器原边的电流相对较大,并联可以分流,可有效地减少开关管的功耗,不至于造成损坏。 PWM控制电路芯片SG3524,是一种电压型开关电源集成控制器,具有输出限流,开关频率可调,误差放大,脉宽调制比较器和关断电路,其产生PWM方波所需的外围线路很简单。当脚11与脚14并联使用时,输出脉冲的占空比为0~95%,脉冲频率等于振荡器频率的1/2。当脚10(关断端)加高电平时,可实现对输出脉冲的封锁,与外电路适当连接,则可以实现欠压、过流保护功能。利用SG3524内部自带的运算放大器调节其输出的驱动波形的占空比D,使D》50%,然后经过CD4011反向后,得到对管的驱动波形的D《50%,这样可以保证两组开关管驱动时,有共同的死区时间。

车载逆变器设计毕业设计

摘要 车载逆变器就是一种能把汽车上12V直流电转化为220V/50Hz 交流电的电子装置,是常用的车用电子用品。在日常生活中逆变器的应用也很广泛,比如笔记本电脑、录像机和一些电动工具等。 本文重点对车载逆变器进行研究。将逆变器分为逆变电路,控制系统和滤波电路三个主要部分。 逆变桥采用三相全桥逆变电路,为了简化整个逆变主电路的设计,逆变电路采用了将IGBT单元;驱动电路;保护电路等结合在一起的IPM。控制系统由控制调节器,矫正环节和时间比例控制及脉冲形成环节构成。 本设计具有灵活方便、适用范围广的特点,基本能够满足实践需求。而且本设计采用高频逆变方式,具有噪声降低、反应速度提高以及电路调整灵活的优点。设计符合逆变电源小型化、轻量化、高频化以及高可靠性、低噪声的发展趋势。 关键词:车载逆变器脉冲调宽保护电路正弦波SG3525A

Abstract 12V DC car inverter can the car into 220V/50Hz AC electronic devices, commonly used in car electronic equipment. Inverter application in daily life is very broad, such as laptop computers, video recorders, and some electric tools. The design of the inverter can be divided into three main parts: the power stage circuit,control system and filtering circuit. Control system consists of PWM generating circuit,compensative circuit,and control regulator. This design has a flexible, applicable to a wide range of features, and can basically meet the practice needs. And the design of high frequency inverter with noise reduction, response speed and the circuit to adjust the flexible advantages. Designed to meet the development trend of miniaturization of the power inverter, lightweight, high-frequency and high reliability, low noise. Keywords:car inverter pulse, width modulated, protection, circuit sine wave, SG3525A

车载逆变电源设计文献综述

《车载逆变电源设计》文献综述 车载逆变电源是将汽车发动机或汽车电瓶上的直流电转换为交流电,供一般电器产品使用,是一种较方便的车用电源转换设备。它是常用的车用汽车电子用品,通过它可以在汽车上使用平时我们用市电才能工作的电器。比如电视机、笔记本电脑、电钻、医疗急救仪器、军用车载设备等,可应用于各个行业领域。以正弦波输出的车载逆变电源可提供不间断的高质量交流电,可适应任何领域,但其技术要求高,电路结构比较复杂。 一、研究意义 笔者认为,研究车载逆变电源有以下意义: 第一,研究车载逆变电源可以广泛用于日常生活、计算机、邮电通信、电力系统和航空航天等领域,它的开发和应用在我们的生活中起着至关重要的作用。 第二,中国进入WTO之后,国内市场私人交通工具越来越多,所以车载逆变器电源作为在移动中使用的直流变交流的转换器,给人们的生活带来很多的方便,是一种常备的车用汽车电子装备用品。 第三,车载逆变器是一种能够将12V直流电转换为市电相同的220V交流电,供一般电器使用,是一种很方便的车用电源转换器,它在国内外很受欢迎。 第四,正弦波车载逆变电源的发展和应用在节约能源及环境保护方面都具 有深远的意义。 二、资料来源和范围 (一)图书馆馆藏图书 在图书馆馆藏图书M类中搜索到以下相关资料:王兆安,黄俊主编《电力电子技术》;金海明主编《电力电子技术》;邓嘉主编《机电工程》;曹保国主编《电气自动化》等书籍。 (二)期刊数据库检索 主要利用CNKI数据库(china national knowledge infrastructure)。数据库访问地址为:https://www.doczj.com/doc/8214491179.html,。 在使用上述数据库搜索的过程中,笔者选择中国学术期刊数据库,在“摘要” 字段中,以“车载逆变电源”为关键词进行检索,文章结果显示有71篇相关论文,对笔者有直接参考价值的有:袁义生著《一种高效逆变电源及绿色工作模式的研究》、曹保国著《小功率车载逆变电源的设计》、朱保华著《对车载逆

最常见的车载逆变器电路原理图

最常见的车载逆变器电路原理图见图1。车载逆变器的整个电路大体上可分为两大部分,每部分各采用一只TL494或KA7500芯片组成控制电路,其中第一部分电路的作用是将汽车电瓶等提供的12V直流电,通过高频PWM (脉宽调制)开关电源技术转换成30kHz-50kHz、220V左右的交流电;第二部分电路的作用则是利用桥式整流、滤波、脉宽调制及开关功率输出等技术,将30kHz~50kHz、220V左右的交流电转换成50Hz、220V的交流电。 令狐采学

车载逆变器电路工作原理 图1电路中,由芯片IC1及其外围电路、三极管VT1、VT3、MOS功率管VT2、VT4以及变压器T1组成12V直流变换为220V/50kHz交流的逆变电路。由芯片IC2及其外围电路、三极管VT5、VT8、MOS功率管VT6、VT7、VT9、VT10以及220V/50kHz整流、滤波电路 VD5-VD8、C12等共同组成220V/50kHz高频交流电变换为220V/50Hz工频交流电的转换电路,最后通过XAC插座输出220V /50Hz交流电供各种便携

式电器使用。 图1中IC1、IC2采用了TL494CN(或 KA7500C)芯片,构成车载逆变器的核心控制电路。TL494CN是专用的双端式开关电源控制芯片,其尾缀字母CN表示芯片的封装外形为双列直插式塑封结构,工作温度范围为0℃-70℃,极限工作电源电压为7V~40V,最高工作频率为300kHz。 TL494芯片内置有5V基准源,稳压精度为5 V±5%,负载能力为10mA,并通过其14脚进行输出供外部电路使用。TL494芯片还内置2只NPN功率输出管,可提供500mA的驱动能力。 TL494芯片的内部电路

车载电子逆变器的设计

目录 摘要: (1) 第1章绪论 (3) 1.1逆变器的定义及其应用领域 (3) 1.2逆变技术的发展过程及现状 (4) 1.3 逆变器用功率开关器件 (5) 1.4 逆变器主电路的基本形式及分类 (7) 1.5 本课题研究的目的和任务 (8) 第2章变电源的主电路拓扑结构分析 (9) 2.1 典型主电路拓扑 (9) 2.1.1 推挽逆变主电路 (9) 2.1.2 半桥逆变主电路 (9) 2.1.3 全桥逆变主电路 (10) 2.2 设计指标及要求 (11) 2.3 主电路的研究与设计 (12) 2.3.1 系统的基本原理 (12) 2.3.2 前级升压电路 (12) 2.3.3 输出逆变电路 (15) 第3章控制电路的研究 (17) 3.1 脉宽调制(PWM)技术 (17) 3.2 推挽电路的驱动电路 (17) 3.2.1 KA7500B内部结构 (18) 3.2.2 驱动电路及其他外围电路的研究 (18) 3.3 末级控制输出电路 (21) 3.3.1 驱动信号 (22) 3.3.2 输出欠压、过压和过流保护 (23) 3.3.3 MCS-51外围电路图 (23) 第4章高频变压器的设计 (25) 4.1 磁性原件对电源设计的重要意义 (25) 4.2 应用于开关电源的基本磁学理论 (26) 4.3 推挽变换器中变压器的设计 (29) 4.3.1 变压器工作原理 (29) 4.3.2双极性变压器的计算 (30) 附录 (33) 附录1主程序流程图 (33) 附录2 DC/DC变换电路 (34) 附录3 DC/AC变换电路 (35) 参考文献 (36) 致谢 (37)

车载逆变电源

电力电子技术课程设计 单位:自动化学院 学生姓名:陈建 班级: 0830402 学号: 0435021 指导老师:唐贤伦、罗萍 专业:电气工程与自动化 设计时间: 2007年 7月 重庆邮电大学自动化学院制

目录 一、设计的基本要求 (1) 二、总体方案的确定 (1) 1、总体介绍 (1) 2、经济性好 (2) 三、具体电路设计 (2) 1、系统基本原理 (2) 2、DC/DC变换 (3) 3、DC/AC变换 (5) 4、保护电路设计及调试过程中的一些问题 (7) 5、试验结果及输出波形 (9) 6、功率因素校正 (10) 四、附录 (11) 五、参考文献 (11) 车载逆变电源设计

摘要:本系统是根据无源逆变的实用原理,采用单相全桥逆变电路工作方式,实现把直流电源(12v)转换成交流电源(320V,50HZ),并对负载进行供电。达到的性能要求就是转换出稳定的工频电源,供给给汽车上的一些电器如车灯,音像等使用。 关键字:车载电源逆变保护电路 一、设计的基本要求 在一些交通运载、野外测控、可移动武器装备、工程修理车等设备中都配有不同规格的电源。通常这些设备工作空间狭小,环境恶劣,干扰大。因此对电源的设计要求也很高,除了具有良好的电气性能外,还必须具备体积小、重量轻、成本低、可靠性高、抗干扰强等特点。针对某种移动设备的特定要求,研制了一种简单实用的车载正弦波逆变电源,采用SPWM工作模式,以最简单的硬件配置和最通用的器件构成整个电路。实验证明,该电源具有电路简单、成本低、可靠性高等特点,满足了实际要求。车载逆变器(电源转换器、Power Inverter )是一种能够将DC12V 直流电转换为和市电相同的AC220V 交流电,供一般电器使用,是一种方便的车用电源转换器。车载电源逆变器在国外市场受到普遍欢迎。在国外因汽车的普及率较高,外出工作或外出旅游即可用逆变器连接蓄电池带动电器及各种工具工作。中国进入WTO 后,国内市场私人交通工具越来越多,因此,车载逆变器电源作为在移动中使用的直流变交流的转换器,会给你的生活带来很多的方便,是一种常备的车用汽车电子装具用品。通过点烟器输出的车载逆变器可以是20W 、40W 、80W 、120W 直到150W ,功率规格的。再大一些功率逆变电源200W,300W,400W,500W,600W,700W,800W,1000W,1500W 要通过连接线接到电瓶上。 设计汽车逆变电源,提出了一种低成本的方波逆变电源的基本原理及制作方法;介绍了驱动电路芯片SG3524 和IR2110的使用;设计驱动和保护电路;给出输出电压波形的实验结果。 本文阐述了要求非常高的车载电源的设计及实验过程中的一些特殊问题的解决措施,提出了一些新颖的观点。这些观点对以后的电源设计有一定的借鉴作用。

车载逆变器原理图详解

2008年05月05日09:15 一市场上常见款式车载逆变器产品的主要指标 输入电压:DC 10V~14.5V;输出电压:AC 200V~220V±10%;输出频率:50Hz±5%;输出功率:70W ~150W;转换效率:大于85%;逆变工作频率:30kHz~50kHz。 二常见车载逆变器产品的电路图及工作原理 目前市场上销售量最大、最常见的车载逆变器的输出功率为70W-150W,逆变器电路中主要采用TL494或KA7500芯片为主的脉宽调制电路。一款最常见的车载逆变器电路原理图见图1。 车载逆变器的整个电路大体上可分为两大部分,每部分各采用一只TL494或KA7500芯片组成控制电路,其中第一部分电路的作用是将汽车电瓶等提供的12V直流电,通过高频PWM (脉宽调制)开关电源技术转换成30kHz-50kHz、220V左右的交流电;第二部分电路的作用则是利用桥式整流、滤波、脉宽调制及开关功率输出等技术,将30kHz~50kHz、220V左右的交流电转换成50Hz、220V的交流电。 1.车载逆变器电路工作原理 图1电路中,由芯片IC1及其外围电路、三极管VT1、VT3、MOS功率管VT2、VT4以及变压器T1组成12V直流变换为220V/50kHz交流的逆变电路。由芯片IC2及其外围电路、三极管VT5、VT8、MOS功率管VT6、VT7、VT9、VT10以及220V/50kHz整流、滤波电路VD5-VD8、C12等共同组成220V/50kHz高频交流电变换为220V/50Hz工频交流电的转换电路,最后通过XAC插座输出220V/50Hz交流电供各种便携式电器使用。 图1中IC1、IC2采用了TL494CN(或KA7500C)芯片,构成车载逆变器的核心控制电路。TL494CN是专用的双端式开关电源控制芯片,其尾缀字母CN表示芯片的封装外形为双列直插式塑封结构,工作温度范围为0℃-70℃,极限工作电源电压为7V~40V,最高工作频率为300kHz。 TL494芯片内置有5V基准源,稳压精度为5 V±5%,负载能力为10mA,并通过其14脚进行输出供外部电路使用。TL494芯片还内置2只NPN功率输出管,可提供500mA的驱动能力。TL494芯片的内部电路如图2所示。 图1电路中IC1的15脚外围电路的R1、C1组成上电软启动电路。上电时电容C1两端的电压由0V逐步升高,只有当C1两端电压达到5V以上时,才允许IC1内部的脉宽调制电路开始工作。当电源断电后,C1通过电阻R2放电,保证下次上电时的软启动电路正常工作。IC1的15脚外围电路的R1、Rt、R2组成过热保护电路,Rt为正温度系数热敏电阻,常温阻值可在150 Ω~300Ω范围内任选,适当选大些可提高过热保护电路启动的灵敏度。 热敏电阻Rt安装时要紧贴于MOS功率开关管VT2或VT4的金属散热片上,这样才能保证电路的过热保护功能有效。 IC1的15脚的对地电压值U是一个比较重要的参数,图1电路中U≈Vcc×R2÷ (R1+Rt+R2)V,常温下的计算值为U≈6.2V。结合图1、图2可知,正常工作情况下要求IC1的15脚电压应略高于16脚电压(与芯片14脚相连为5V),其常温下6.2V的电压值大小正好满足要求,并略留有一定的余量。 当电路工作异常,MOS功率管VT2或VT4的温升大幅提高,热敏电阻Rt的阻值超过约4kΩ时,IC1内部比较器1的输出将由低电平翻转为高电平,IC1的3脚也随即翻转为高电平状态,致使芯片内部的PWM 比较器、“或”门以及“或非”门的输出均发生翻转,输出级三极管

车载逆变电源设计

1.系统设计 1.1设计要求 制作车载正弦波逆变电源,输入12V直流,输出220V,50Hz的正弦波,满载时输出功率50W,效率不小于80%;输出波形失真度小于5%,当负载从空载到满载变化时,输出电压有效值稳定度高于3%;具有输入过压和欠压,输出过流和负载短路保护等功能。 1.2总体设计方案 1.2.1设计思路 题目要求设计一个车载正弦波逆变电源,输出电压波形为正弦波。设计中主电路采用电器隔离、H桥逆变技术,控制部分采用SPWM (正弦脉冲调制)技术,利用逆变元件电力MOSFET的驱动脉冲调制,使输出获得交流正弦波的稳压电源。 1.2.2方案论证与比较 1. DC-DC实现变换器的方案论证与选择 方案一: 推挽式DC-DC变换器。推挽电路是两个不同极性晶体管输出电路无输出电压器(有OTL, OCL等)。是两个参数相同的功率BJT管或MOSFET管,以推挽方式存在于电路中,各负责正负半周的波形放大任务。电路工作中,两只对称的功率开关管每次只有一个导通,所以导通损耗小,功率高。推挽输出级既可向负载灌电流,也可从负载抽取电流。 方案二: Boast升压式DC-DC变换器。开关的开通和关断受外部PWM信号控制,电感L将交替地存储和释放能量,电感储能后使电压上升,而电容C可将输出电压保持平稳,通过改变PWM控制信号的占空比以相应实现输出电压的变化。该电路采取直接直流升压,电路结构较简单,损耗较小,效率比较高。 方案比较: 方案一和方案一都适用于升压电路,推挽式DC-DC变换器可由高

频变压器将电压升至任何值。Boost升压式DC-DC变换器不使用高电频变压器,由12V升至320V , PWM信号的占空比比较低,会使得Boost 升压式DC-DC变换器的损耗比较大。综上所述,采用方案一。 2.辅助电源的方案论证与选择 方案一: 采用线性稳压器LS7805 方案二: 采用Buck降压式DC-DC变换器。 方案比较: 方案一的优点在于可以使用很少元器件构成辅助电源,但是效率较低。方案二的优点在于效率高达90%,缺点是需要很多元器件,使得成本较高稳定性较差。在满足要求的情况下选择最优方案,最终决定采用方案一。 1.2.3系统组成(系统方框图) 系统方框图如图1.2.1所示,先采用DC-DC变换器把12V蓄电池的电压升至320V,保证输出有效值为220V的正弦波不出现截止失真和饱和失真。输出电压反馈采用调节SPWM信号脉宽方式。该系统采用两组相互隔离的辅助电源供电,一组供给SPWM信号控制器使用,另一组供给输出电压、电流测量电路使用,这样避免了交流输出的浮地和蓄电池的地不能共地的问题。因为SPWM控制器输出的SPWM信号不含死区时间,所以增加了死区时间控制电路和逆变H桥驱动电路。空载检测电路使得当没有负载接入时,让系统进入待机模式,当有负载接入时,才进入逆变工作模式。同时,空载检测电路也作为过流保护的采样点。

DC-AC车载逆变器设计与实现

编号 201103222011024120 南京航空航天大学金城学院 毕业设计 题目DC-AC车载逆变器设计与实现 学生姓名施坜圆 学号2011024120 系部自动化系 专业自动化 班级20110322 指导教师朱海霞副教授 二〇一五年五月

南京航空航天大学金城学院 本科毕业设计(论文)诚信承诺书本人郑重声明:所呈交的毕业设计(论文)(题目:DC-AC车载逆变器设计与实现)是本人在导师的指导下独立进行研究所取得的成果。尽本人所知,除了毕业设计(论文)中特别加以标注引用的内容外,本毕业设计(论文)不包含任何其他个人或集体已经发表或撰写的成果作品。 作者签名:施坜圆2015年5月16日 (学号):2011024120

毕业设计(论文)报告纸DC-AC车载逆变器设计与实现 摘要 车载逆变器是将汽车中的蓄电池转换成日常使用的220V/50Hz的交流电,供人们随身携带的电子产品如笔记本、ipad等使用。目前市场上大多的车载逆变器都为方波或者是修正弦波,少数为正弦波逆变器,但其价格非常昂贵。正弦波逆变弥补了方波逆变的不足,适合各类的负载,并且对电子产品本身的影响也相对较小。 本设计基于开关电源技术和电力电子技术,采用二次逆变的方式设计。前级采用SG3525芯片,将SG3525产生的PWM信号控制场效应管的开关,再经EE55高频变压器将12V的低压直流电升压至360V的高压交流电,通过整流滤波得到高压直流电。后级采用EG8010和IR2110芯片,通过EG8010输出的SPWM信号控制开关管的导通,通过取样电阻电压反馈,经过LC工频滤波及相应的输入输出电压保护,最后得到稳定标准的正弦波。 关键字:车载逆变器,正弦波逆变器,SPWM直流电源式逆变器,EG8010

车载逆变器电源的设计与制作

车载逆变器电源的设计与制作 现在汽车越来越普及,需要一款经济小巧的车载逆变电源来满足旅游外出时的各种用电需求。本文中的设计将汽车电瓶输出的12V直流电转化为220V/50HZ的交流电,以满足国内大部分低功率用电器的使用要求。文中是以PWM脉宽调制技术为基础,用SG3525A和CD4069芯片产生方波信号,以实现直流到交流的转变 关键词:逆变电源,脉宽调制,SG3525A,CD4069 主电路的设计 1.1 设计要求及系统指标 设计车载逆变器的主要目的是满足车上或户外一些主要用电器的用电需求,要求小型、轻便、廉价,不要求大功率和标准的输出波形,所以设计的主要思想是结构简单,小巧轻便,成本较低。为了不影响汽车的正常工作,应实现输入输出的隔离,还要尽可能提高电源的转化效率。 所以设计要求为将汽车电瓶输出的12V直流电转化为220V/50Hz交流电,电瓶限流15A,所以最大功率180W,用变压器实现电气隔离,输出为准正弦波或方波。 1.2 总体方案的选取 1.1.1 方案比较 方案一,基于工频变压器的逆变电源。文氏振荡器产生50Hz震荡,经推动级调制直流电压,并用工频变压器进行电压放大。 方案二,基于升压式(Boost)电路的电压逆变。用Boost电路将12V升压到510V,再用50Hz信号进行调制成交流输出。 方案三,基于中频逆变的逆变电源。第一级采用DC/DC变换,将直流低压通过脉宽调制和中频变压器升成直流高压,第二级DC/AC变换,将直流变为50Hz交流。

1.1.2 方案选择 方案一的工频变压器笨重,占用体积大,不符合小巧轻便的制作要求。 方案二将12V 升为510V 的Boost 电路制作难度大,对元器件性能要求高,所以舍弃。 方案三基本符合设计要求。前级采用推挽式升压电路,推挽变换开关管电压是电源电压的两倍,适合低电压电源;后级采用全桥逆变电路,输出电压是半桥电路的两倍,减小了开关管电流应力。 1.3 逆变电源原理框图 主电路如图1.1,首先将直流电压经开关调制成中频交流电,经推挽输出变 图 1.1 逆变电源原理框图 成高压,再整流成直流高压,经全桥逆变电路,变换成220V/50Hz 电压,最后可以滤波成准正弦波输出。 1.4 前级推挽升压电路

2012届车载逆变电源毕业设计

兰州工业高等专科学校 毕业设计说明书(论文) 设计(论文)题目: 车载逆变电源设计 专业: 电气自动化技术 班级: 电自09-1 学号: 200902101107 姓名: 陈琪 指导教师: 王淑红 二〇一一年十二月二十日

摘要 车载逆变器就是一种能把汽车上12V直流电转化为220V/50Hz交流电的电子装置,是常用的车用电子用品。在日常生活中逆变器的应用也很广泛,比如笔记本电脑、录像机和一些电动工具等。 本设计主要基于开关电源电路技术等基础知识,采用二次逆变实现逆变器的设计。主要思路是:运用TL494以及SG3525A等芯片,先将12V直流电源升压为320V/50Hz的高频交流电,再经过整流滤波将高频交流电整流为高压直流电,然后采用正弦波脉冲调制法,通过输出脉冲控制开关管的导通。最后经过LC工频滤波及相应的输入输出保护电路后,输出稳定的准正弦波,供负载使用。 本设计具有灵活方便、适用范围广的特点,基本能够满足实践需求。而且本设计采用高频逆变方式,具有噪声降低、反应速度提高以及电路调整灵活的优点。设计符合逆变电源小型化、轻量化、高频化以及高可靠性、低噪声的发展趋势。 关键词车载逆变器脉冲调宽保护电路正弦波TL494 SG3525A

目录 摘要 (Ⅱ) 1 绪论......................................................... 错误!未定义书签。 1.1 车载逆变器及其发展................................ 错误!未定义书签。 1.2 逆变电源技术的发展概况 (4) 1.3 逆变电源的发展趋势................................ 错误!未定义书签。 2 设计总体目标 (6) 2.1 设计要求及系统指标 (6) 2.2 总体方案的选取 (6) 2.2.1 方案比较 (6) 2.2.2 方案论证 (6) 2.2.3 方案选择.......................................... 错误!未定义书签。 3 整体电路设计 (8) 3.1 逆变电源整体框图 (8) 3.2 脉宽调制技术及其原理 (11) 3.2.1 PWM控制的基本原理 (11) 3.2.2 PWM逆变电路 (12) 3.3 正弦波脉宽调制技术的实现方法 (14) 3.3.1 软件生成法 (15) 3.3.2 硬件调制法 (15) 4 逆变电源元器件特性及各部分电路设计 (17) 4.1 逆变电源主要分立元件及其应用 (17) 4.1.1 场效应管 (17)

车载逆变电源的设计

车载逆变电源的设计 摘要 本文设计了一款实用的车载逆变器。该车载逆变器充分运用芯片TL494的固定频率脉冲宽度调制电路及场效应管(N沟道增强型MOSFET)的开关速度快、无二次击穿、热稳定性好的优点而组合设计电路。该逆变电源的主要组成部分为:DC/DC电路、输入过压保护电路、输出过压保护电路、过热保护电路、DC/AC变换电路、振荡电路、全桥电路。在工作时的持续输出功率为150W,具有工作正常指示灯、输出过压保护、输入过压保护以及过热保护等功能。该车载逆变器的制造成本较为低廉,实用性强,可作为多种便携式电器通用的电源。 关键词:逆变电源;过热保护;过压保护;集成电路;振荡频率;脉宽调制

车载逆变器(电源转换器、Power Inverter )是一种能够将DC12V 直流电转换为和市电相同的AC220V 交流电、供一般电器使用的车用电源转换器。 车载逆变电源就是将汽车发动机或汽车电瓶上的直流电转换为工频交流电。它是常用的车用汽车电子用品。通过它可以在汽车上使用平时我们用市电才能工作的电器,比如电视机、笔记本电脑、电钻、医疗急救仪器、军用车载设备等,可应用于各个行业领域。按照输出波形来分,车载逆变电源可分为正弦波输出和方波输出两种。前者可提供不间断的高质量交流电,可适应任何负载,但其技术要求及成本高,电路结构比较复杂。后者提供的交流电的质量较差,且带载能力差,不能接“感性负载”,但其技术要求低,体积小,电路简单,价格低。 方波逆变器输出的是质量较差的方波交流电,其正向最大值到负向最大值几乎在同时产生,这样,对负载和逆变器本身造成剧烈的不稳定影响。同时,其带负载能力差,仅为额定负载的40%-60%,不能带感性负载。如所带的负载过大,方波电流中包含的三次谐波成分将使流入负载中的容性电流增大,严重时会损坏负载的电源滤波电容,方波逆变器的制作方法采用简易的多谐振荡器,其技术属于50年代的水平,将逐渐退出市场。 针对上述缺点,近年来出现了准正弦波(或称改良正弦波、修正正弦波、模拟正弦波等)逆变器,其输出波形从正向最大值到负向最大值之间有一个时间间隔,使用效果有所改善,但准正弦波的波形仍然是由折线组成,属于方波范畴,连续性不好。总的来说,正弦波逆变器提供高质量的交流电,能够带动任何种类的负载,但技术要求和成本均高。准正弦波逆变器可以满足我们大部分的用电需求,效率高,噪音小,售价适中,因而成为市场中的主流产品。本文设计的逆变电源即为准正弦波逆变器。

毕业设计(论文)-12V220V车载逆变电源的设计

陕西航空职业技术学院 毕业设计(论文) 论文题目:12V/220V车载逆变电源制作所属系部:电子工程学院 指导老师:崔保记职称:讲师 学生姓名:高宝强班级、学号: 1235129 专业:航空电子设备维修 2015 年 5 月16 日

陕西航空职业技术学院 毕业设计(论文)任务书 题目: 任务与要求: 时间: 2014 年 10 月 20 日至 2015 年 5 月 20 日 所属系部: 学生姓名:学号: 专业: 指导单位或教研室:电子技术教研室 指导教师:职称:高级讲师 2014年 10 月 20 日

针对传统车载逆变电源存在的缺点, 提出基于ATmega16单片机的数字式车载逆变电源的系统设计方案。该方案以单片机作为正弦脉冲宽度调制(SPWM)的控制器,采用了占空比可调的正弦波脉宽调制波(SPWM) 技术控制定电力MOSFET 的导通与关断,并通过输出电压反馈的闭环软件控制结构,来提供稳压、欠压保护等功能,把汽车蓄电池的12V 直流电转变成220V 纯正弦交流电。本系统硬件电路设计主要由推挽拓扑结构的的DC/DC 升压模块,DC/AC 逆变模块,以及主控制电路和外围接口电路模块组成。控制系统软件则重点阐述逆变器数字控制系统主要环节的设计,给出了软件的总体结构、SPWM波形的实现及软闭环软件控制结构,实现了对逆变器的保护、监测等逻辑控制功能。最后对主电路及控制电路进行了仿真调试,结果表明,所设计的电路及控制策略能够较好地改善输出波形质量,电源直流升压环节波动小, 输出波形畸变率低, 具有较好性能。 关键词ATmega16 PI控制推挽逆变器

一、系统设计方案 (2) 1、设计要求 (2) 2、方案论证与选取 (3) 2.1 SPWM波生成原理及方案选取 (2) 2.2 DC-DC升压电路的分析与选取 (4) 3、系统设计方案 (5) 二、系统硬件设计 (5) 1、系统硬件结构 (5) 2、主电路设计 (5) 2.1 前级升压电路 (5) 2.2 后极逆变电路 (7) 3、控制电路设计 (8) 3.1 前级控制电路 (8) 3.2 后极控制电路 (9) 4、驱动电路设计 (10) 5、保护电路设计 (11) 5.1 输入过压保护电路 (11) 5.2 输入欠压保护电路 (11) 5.3 系统过热保护电路 (12) 5.4 输出过压保护电路 (13) 5.5 输出过流保护电路 (13) 三、系统软件设计 (14) 1、主程序设计 (14) 2、SPWM控制信号的产生 (15) 四、结果分析 (16) 1、主电路仿真 (16) 2、仿真结果与分析 (16) 五、结论 (17) 参考文献 (15)

某某车载逆变电源毕业设计

某某车载逆变电源毕业设计 目录 摘要 (Ⅱ) 1 绪论......................................................... 错误!未定义书签。 1.1 车载逆变器及其发展................................ 错误!未定义书签。 1.2 逆变电源技术的发展概况 (4) 1.3 逆变电源的发展趋势................................ 错误!未定义书签。 2 设计总体目标 (6) 2.1 设计要求及系统指标 (6) 2.2 总体方案的选取 (6) 2.2.1 方案比较 (6) 2.2.2 方案论证 (6) 2.2.3 方案选择.......................................... 错误!未定义书签。 3 整体电路设计 (8) 3.1 逆变电源整体框图 (8) 3.2 脉宽调制技术及其原理 (11) 3.2.1 PWM控制的基本原理 (11) 3.2.2 PWM逆变电路 (12) 3.3 正弦波脉宽调制技术的实现方法 (14) 3.3.1 软件生成法 (15) 3.3.2 硬件调制法 (15) 4 逆变电源元器件特性及各部分电路设计 (17) 4.1 逆变电源主要分立元件及其应用 (17)

4.1.1 场效应管 (17) 4.1.2 稳压管 (17) 4.1.3 与门 (18) 4.1.4 变压器 (19) 4.1.5 电流互感器 (20) 4.2 逆变电源主要集成芯片及其功能简介 (21) 4.2.1 TL494及其应用 (21) 4.2.2 SG3525A及其应用 (22) 4.2.3 ICL8038简介及其应用 (26) 4.2.4 IR2110简介及其应用 (27) 4.3 各芯片外围电路及其参数的计算 (29) 4.3.1 ICL8038外围电路 (29) 4.3.2 TL494外围电路 (30) 4.3.3 SG3525A外围电路 (31) 4.3.4 IR2110外围电路 (33) 4.4 各变换电路设计 (34) 4.4.1 DC/DC变换电路 (34) 4.4.2 DC/AC变换电路 (35) 4.5 逆变电源保护电路及其参数的计算 (37) 4.5.1 输入过压保护电路 (37) 4.5.2 输入欠压保护电路 (37) 4.5.3 过热保护电路 (38) 4.5.4 输出过压保护电路 (39) 4.5.5 输出过流保护电路 (40) 5结论 (41) 致谢 (42) 参考文献 (43)

一款简单的纯硬件并网逆变器制作

一款简单的纯硬件并网逆变器制作 车载逆变器电路工作原理分析: 本文电路中,由芯片IC1及其外围电路、三极管VT1、VT3、MOS功率管VT2、VT4以及变压器T1组成12V直流变换为220V/50kHz交流的逆变电路。由芯片IC2及其外围电路、三极管VT5、VT8、MOS功率管VT6、VT7、VT9、VT10以及220V/50kHz整流、滤波电路VD5-VD8、C12等共同组成220V/50kHz高频交流电变换为220V/50Hz工频交流电的转换电路,最后通过XAC插座输出220V/50Hz交流电供各种便携式电器使用。IC1、IC2采用了TL494CN(或KA7500C)芯片,构成车载逆变器的核心控制电路。 TL494CN是专用的双端式开关电源控制芯片,其尾缀字母CN表示芯片的封装外形为双列直插式塑封结构,工作温度范围为0℃-70℃,极限工作电源电压为7V~40V,最高工作频率为300kHz。TL494芯片内置有5V基准源,稳压精度为5 V±5%,负载能力为10mA,并通过其14脚进行输出供外部电路使用。TL494芯片还内置2只NPN功率输出管,可提供500mA的驱动能力。TL494芯片的内部电路。电路中IC1的15脚外围电路的R1、C1组成上电软启动电路。上电时电容C1两端的电压由0V逐步升高,只有当C1两端电

压达到5V以上时,才允许IC1内部的脉宽调制电路开始工作。当电源断电后,C1通过电阻R2放电,保证下次上电时的软启动电路正常工作。IC1的15脚外围电路的R1、Rt、R2组成过热保护电路,Rt为正温度系数热敏电阻,常温阻值可在150 Ω~300Ω范围内任选,适当选大些可提高过热保护电路启动的灵敏度。热敏电阻Rt安装时要紧贴于MOS 功率开关管VT2或VT4的金属散热片上,这样才能保证电路的过热保护功能有效。IC1的15脚的对地电压值U是一个比较重要的参数,图1电路中U≈Vcc×R2÷ (R1+Rt+R2)V,常温下的计算值为U≈6.2V。结合图可知,正常工作情况下要求IC1的15脚电压应略高于16脚电压(与芯片14脚相连为5V),其常温下6.2V的电压值大小正好满足要求,并略留有一定的余量。当电路工作异常,MOS功率管VT2或VT4的温升大幅提高,热敏电阻Rt的阻值超过约4kΩ时,IC1内部比较器1的输出将由低电平翻转为高电平,IC1的3脚也随即翻转为高电平状态,致使芯片内部的PWM 比较器、"或"门以及"或非"门的输出均发生翻转,输出级三极管VT1和三极管VT2均转为截止状态。当IC1内的两只功率输出管截止时,图1电路中的VT1、VT3将因基极为低电平而饱和导通,VT1、VT3导通后,功率管VT2和VT4将因栅极无正偏压而处于截止状态,逆变电源电路停止工作。

车载逆变电源的设计及仿真毕业设计

车载逆变电源的设计及仿真毕业设计 目录 摘要.................................................................................... 错误!未定义书签。Abstract .............................................................................. 错误!未定义书签。第1章绪论 (1) 1.1课题背景 (1) 1.2研究现状和发展方向 (1) 1.3车载逆变电源系统结构 (3) 1.4本章小结 (4) 第2章主电路设计 (5) 2.1DC/DC变流器工作原理 (5) 2.1.1 DC/DC变换器拓扑结构 (5) 2.1.2 PWM控制技术的工作原理 (6) 2.1.3 DC/DC电路参数设计 (7) 2.2DC/AC逆变电路 (9) 2.2.1 DC/AC逆变电路拓扑及调制方式 (9) 2.2.2 DC/AC变换电路参数设计 (11) 2.3小信号状态空间平均法 (12) 2.3.1 电感电流连续情况下的状态空间平均法 (13) 2.4本章小结 (16) 第3章控制电路 (17) 3.1逆变升压控制电路 (17) 3.1.1 SG352A芯片功能简介 (17) 3.1.2 SG3525A外围电路参数计算 (20) 3.2DC/AC逆变控制电路 (22) 3.2.1U3988芯片简介[10] (22) 3.2.2 IR2110驱动电路及死区电路设计 (26)

3.3SG3525\U3988反馈稳压电路的设计 (28) 3.4本章小结 (29) 第4章保护电路设计 (31) 4.1过压检测电路 (31) 4.2欠压报警及欠压自动保护电路 (31) 4.3过流检测电路 (32) 4.4本章小结 (34) 第5章仿真与实验结果 (35) 5.1开环仿真 (36) 5.2闭环设计 (39) 5.3本章小结 (41) 参考文献 (43) 致谢 (45) 附录1 (46) 附录2 (52) 附录3 (57) 附录4 (66) 附录5 (73)

相关主题
文本预览
相关文档 最新文档