当前位置:文档之家› 分布列及其数学期望的解答题

分布列及其数学期望的解答题

分布列及其数学期望的解答题
分布列及其数学期望的解答题

分布列及其数学期望的解答题

1.某品牌汽车的4S店,对最近100位采用分期付款的购车者进行了统计,统计结果如下表所示:已知分3期付款的频率为0.2,且4S店经销一辆该品牌的汽车,顾客分1期付款,其利润为1万元;分2期或3期付款其利润为1.5万元;分4期或5期付款,其利润为2万元.用η表示经销一辆汽车的利润.

付款方式分1期分2期分3期分4期分5期

频数4020 a 10b

(1)若以频率作为概率,求事件A:“购买该品牌汽车的3位顾客中,至多有1位采用分3期付款”的概率P(A);

(2)求η的分布列及其数学期望E(η).

2.如图,A地到火车站共有两条路径L1和L2,据统计,通过两条路径所用的时间互不影响,所用时间落在各时间段内的频率如下表:

时间(分钟)10~2020~3030~4040~5050~60

L

的频率0.10.20.30.20.2

1

L

的频率00.10.40.40.1

2

现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站.

(1)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?

(2)用X表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(1)的选择方案,求X的分布列和数学期望.

3.某省示范高中为了推进新课程改革,满足不同层次学生的需求,决定从高一年级开始,在每周的周一、周三、周五的课外活动期间同时开设数学、物理、化学、生物和信息技术辅导讲座,每位有兴趣的同学可以在期间的任何一天参加任何一门科目的辅导讲座,也可以放弃任何一门科目的辅导讲座.(规定:各科达到预先设定的人数时称为满座,否则称为不满座)统计数据表明,各学科讲座各天的满座的概率如下表:

信息技术生物化学物理数学

周一1

4

1

4

1

4

1

4

1

2

周三1

2

1

2

1

2

1

2

2

3

周五1

3

1

3

1

3

1

3

2

3

(1)求数学辅导讲座在周一、周三、周五都不满座的概率;

(2)设周三各辅导讲座满座的科目数为ξ,求随机变量ξ的分布列和数学期望.

4.某城市有甲、乙、丙3个旅游景点,一位游客游览这3个景点的概率分别是0.4、0.5、0.6,且游客是否游览哪个景点互不影响,用X表示该游客离开该城市时游览的景点数与没有游览的景点数之差的绝对值.

(1)求X的分布列及期望;

(2)记“f(x)=2Xx+4在[-3,-1]上存在x0,使f(x0)=0”为事件A,求事件A的概率.

答案:

1、解析 (1)由题意可知“购买该品牌汽车的3位顾客中有1位采用分3期付款”的概率为0.2,所以

P(A)=0.83+C1

3

×0.2×(1-0.2)2=0.896.

(2)由

a

100

=0.2得a=20,

∵40+20+a+10+b=100,∴b=10. 记分期付款的期数为ξ,依题意得:

P(ξ=1)=

40

100

=0.4,P(ξ=2)=

20

100

=0.2,P(ξ=3)=

20

100

=0.2,P(ξ=4)

=10

100

=0.1,

P(ξ=5)=

10

100

=0.1.

由题意知η的可能取值为:1,1.5,2(单位:万元).

P(η=1)=P(ξ=1)=0.4,

P(η=1.5)=P(ξ=2)+P(ξ=3)=0.4;

P(η=2)=P(ξ=4)+P(ξ=5)=0.1+0.1=0.2.

∴η的分布列为:

η1 1.5 2

P 0.40.40.2

∴η的数学期望E(η)=1×0.4+1.5×0.4+2×0.2=1.4(万元).

2、解析(1)A i表示事件“甲选择路径L i时,40分钟内赶到火车站”,B i表示事件“乙选择路径L i时,50分钟内赶到火车站”,i=1,2.

用频率估计相应的概率可得

P (A 1)=0.1+0.2+0.3=0.6,P (A 2)=0.1+0.4=0.5, ∵P (A 1)>P (A 2),∴甲应选择L 1;

P (B 1)=0.1+0.2+0.3+0.2=0.8,P (B 2)=0.1+0.4+0.4=0.9, ∵P (B 2)>P (B 1),∴乙应选择L 2.

(2)A ,B 分别表示针对(1)的选择方案,甲、乙在各自允许的时间内赶到火车站, 由(1)知P (A )=0.6,P (B )=0.9,又由题意知,A ,B 独立, ∴P (X =0)=P (AB )=P (A )P (B )=0.4×0.1=0.04,

P (X =1)=P (A B +A B )=P (A )P (B )+P (A )P (B ) =0.4×0.9+0.6×0.1=0.42,

P (X =2)=P (AB )=P (A )P (B )=0.6×0.9=0.54. ∴X 的分布列为

X 0 1 2

P 0.04 0.42 0.54

∴E (X )=0×0.04+1×0.42+2×0.54=1.5.

3、解析 (1)设数学辅导讲座在周一、周三、周五都不满座为事件A , 则P (A )=? ?

???1-12? ????1-23? ????1-23=118.

(2)ξ的可能取值为0,1,2,3,4,5.

P (ξ=0)=? ?

???1-124×? ??

??1-23=148

P (ξ=1)=C 14×12

×? ????1-123×? ????1-23+? ??

??1-124

×23=18

P (ξ=2)=C 2

4

×? ????122×?

????1-122×? ????1-23+C 14×12×? ????1-123×23=724; P (ξ=3)=C 3

4

×? ????123×? ????1-12×? ????1-23+C 2

4×? ????122×?

????1-122×23=13;

P (ξ=4)=? ????

124×? ????1-23+C 34×? ????123

×? ??

??1-12×23=

316

; P (ξ=5)=? ????124×23=1

24

.

所以,随机变量ξ的分布列如下:

ξ

0 1 2 3 4 5 P

148

18

724

13

316

124

故E (ξ)=0×148+1×18+2×724+3×13+4×316+5×124=8

3.

4、解析 (1)设游客游览甲、乙、丙景点分别记为事件A 1、A 2、A 3,已知A 1、A 2、

A 3相互独立,且P (A 1)=0.4,P (A 2)=0.5,P (A 3)=0.6.游客游览的景点数可能取值为0、1、2、3,相应的游客没有游览的景点数可能取值为3、2、1、0, 所以X 的可能取值为1、3.则P (X =3)=P (A 1A 2A 3)+P (A 1 A 2 A 3) =P (A 1)·P (A 2)·P (A 3)+P (A 1)·P (A 2)·P (A 3) =2×0.4×0.5×0.6=0.24.

P (X =1)=1-0.24=0.76. 所以分布列为:

X 1 3

P 0.76 0.24

∴E (X )=1×0.76+3×0.24=1.48.

(2)∵f (x )=2Xx +4在[-3,-1]上存在x 0,使得f (x 0)=0, ∴f (-3)·f (-1)≤0,即(-6X +4)(-2X +4)≤0, 解得:2

3

≤X ≤2.

∴P (A )=P ? ????

23≤X ≤2=P (X =1)=0.76.

高中数学随机变量分布列知识点

第二章随机变量及其分布 内容提要: 一、随机变量的定义 设是一个随机试验,其样本空间为,若对每一个样本点,都有唯一确定的实数 与之对应,则称上的实值函数是一个随机变量(简记为)。 二、分布函数的概念和性质 1.分布函数的定义 设是随机变量,称定义在上的实值函数 为随机变量的分布函数。 2.分布函数的性质 (1) , (2)单调不减性:, (3) (4)右连续性:。 注:上述4个性质是函数是某一随机变量的分布函数的充要条件。在不同的教科书上,分布函数的定义可能有所不同,例如,其性质也会有所不同。 (5) 注:该性质是分布函数对随机变量的统计规律的描述。 三、离散型随机变量 1.离散型随机变量的定义 若随机变量的全部可能的取值至多有可列个,则称随机变量是离散型随机变量。 2.离散型随机变量的分布律 (1)定义:离散型随机变量的全部可能的取值以及取每个值时的概率值,称为离散型随机变量的分布律,表示为 或用表格表示:

或记为 ~ (2)性质:, 注:该性质是是某一离散型随机变量的分布律的充要条件。 其中。 注:常用分布律描述离散型随机变量的统计规律。 3.离散型随机变量的分布函数 =,它是右连续的阶梯状函数。 4.常见的离散型分布 (1)两点分布(0—1分布):其分布律为 即 (2)二项分布 (ⅰ)二项分布的来源—重伯努利试验:设是一个随机试验,只有两个可能的结果 及,,将独立重复地进行次,则称这一串重复的独立试验为重伯努利试验。 (ⅱ)二项分布的定义 设表示在重伯努利试验中事件发生的次数,则随机变量的分布律为 ,, 称随机变量服从参数为的二项分布,记作。 注:即为两点分布。

61随机变量的概率分布、期望与方差1

如皋市薛窑中学2011届高三理科数学一轮复习 61随机变量的概率分布、期望与方差 【考点解读】 离散型随机变量及其分布列:A;超几何分布:A;条件概率及相互独立事件:A; n次独立重复试验的模型及二项分布:B;离散型随机变量的均值与方差:B 【复习目标】 1?了解取有限值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;会求某些简单的离散型随机变量的分布列。 2?了解超几何分布及其导出过程,并能进行简单的应用。 3?了解条件概率和两个事件相互独立的概念( 对条件概率的应用题不作要求 )。 4 ?理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题。 5?了解取有限值的离散型随机变量的均值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。 活动一:基础知识 1. 随机变量: 1) 定义: _________________________________________________________ 。 2) ____________________________________ 表示方法:。 2. 随机变量分布列的定义: 假定随机变量X有n个不同的取值,它们分别是X1,X2丄X n且P(X=x i)=p i ,i=1,2, -n,① 称①为随机变量X 的概率分布列,简称X的分布列 3. 概率分布表 将①用表的形式表示如下: 4. 分布列的性质: 概率分布列中P(i 1,2L n)满足以下两个条件: (1) ______________________________ (2) ______________________________ 5. 两点分布 如果随机变量X只取两个可能值_0 和__________ 1 ___ ,则称该随机变量X服从0-1分布或两点分布并记为X?0-1或X?两点分布. 其概率分布表为: 其中丨min{ M , n},且n N,M N,n,M,N N .称分布列

正态分布的数学期望与方差

正态分布的数学期望与方差 正态分布: 密度函数为:分布函数为 的分布称为正态分布,记为N(a, σ2). 密度函数为: 或者 称为n元正态分布。其中B是n阶正定对称矩阵,a是任意实值行向量。 称N(0,1)的正态分布为标准正态分布。 (1)验证是概率函数(正值且积分为1) (2)基本性质: (3)二元正态分布: 其中, 二元正态分布的边际分布仍是正态分布: 二元正态分布的条件分布仍是正态分布:

即(其均值是x的线性函数) 其中r可证明是二元正态分布的相关系数。 (4)矩,对标准正态随机变量,有 (5)正态分布的特征函数 多元正态分布 (1)验证其符合概率函数要求(应用B为正定矩阵,L为非奇异阵,然后进行向量线性变换) (2)n元正态分布结论 a) 其特征函数为: b) 的任一子向量,m≤n 也服从正态分布,分布为其中,为保留B 的第,…行及列所得的m阶矩阵。 表明:多元正态分布的边际分布还是正态分布 c) a,B分别是随机向量的数学期望及协方差矩阵,即 表明:n元正态分布由它的前面二阶矩完全确定 d) 相互独立的充要条件是它们两两不相关 e) 若,为的子向量,其中是,的协方差矩阵,则是,相应分量的协方差构成的相互协方差矩阵。则相互独立的充要条件为=0 f) 服从n元正态分布N(a,b)的充要条件是它的任何一个线性组合服

从一元正态分布 表明:可以通过一元分布来研究多元正态分布 g) 服从n元正态分布N(a,b),C为任意的m×n阶矩阵,则服从m元正态分布 表明:正态变量在线性变换下还是正态变量,这个性质简称正态变量的线性变换不变性 推论:服从n元正态分布N(a,b),则存在一个正交变化U,使得是一个具有独立正态分布分量的随机向量,他的数学期望为Ua,而他的方差分量是B的特征值。 条件分布 若服从n元正态分布N(a,b),,则在给定下,的分布还是正态分布,其条件数学期望: (称为关于的回归) 其条件方差为: (与无关)

高三数学分布列和期望

课时考点19 统计-----随机变量的分布列和期望 高考考纲透析: 等可能性的事件的概率,互斥事件有一个发生的概率,相互独立事件同时发生的概率,独立重复试验、离散型随机变量的分布列、期望和方差 高考风向标: 离散型随机变量的分布列、期望和方差 热点题型1 n 次独立重复试验的分布列和期望 [样题1] (2005年高考·全国卷II ·理19) 甲、乙两队进行一场排球比赛.根据以往经验,单局比赛甲队胜乙队的概率为0.6.本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛互间没有影响.令ξ为本场比赛的局数,求ξ的概率分布和数学期望.(精确到0.0001) 本题考查离散型随机变量分布和数学期望等概念,考查运用概率知识解决实际问题的能力。解:单局比赛甲队胜乙队的概率为0.6,乙队胜甲队的概率为1-0.6=0.4 比赛3局结束有两种情况:甲队胜3局或乙队胜3局,因而P (ξ=3)=33 0.60.40.28+= 比赛4局结束有两种情况:前3局中甲队胜2局,第4局甲队胜;或前3局中乙队胜2局,第4局乙队胜。因而 P (ξ=4)=2230.60.40.6C ???+22 30.40.60.40.3744C ???= 比赛5局结束有两种情况:前4局中甲队胜2局、乙队胜2局,第5局甲胜或乙胜。因而 P (ξ=5)=222 40.60.40.6C ???+22240.40.60.40.3456C ???= 所以ξ的概率分布为 ξ的期望E ξ=3×P (ξ=3)+4×P (ξ=4)+5×P (ξ=5)=4.0656 变式新题型1.(2005年高考·卷·理19)袋子A 中装有若干个均匀的红球和白球,从A 中 摸出一个红球的概率是3 1 . (Ⅰ) 从A 中有放回地摸球,每次摸出一个,共摸5次,求恰好有3次摸到红球的概率. (Ⅱ) 从A 中有放回地摸球,每次摸出一个,有3次摸到红球即停止. (i) 求恰好摸5次停止的概率; (ii )记5次之(含5次)摸到红球的次数为ξ,求随机变量ξ的分布列及数学期望E ξ. 解:(Ⅰ) 33 35 12140333243 C ???????= ? ?????

概率分布与数学期望

概率分布与数学期望

例谈离数型随机变量概率分布与数学期望 数学期望=每个个数X每个它的概率,再相加从2008年全国各省市高考数学试题中,概率统计考题,可谓“军书十二卷,卷卷有爷名”,显然它是高考的必考内容,特别是离散型随机变量概率分布与数学期望内容的考题分布极为广泛,确实是一个重要考点,但纵观其解法,可以归纳为定义法、公式法、分析法与变量推理法四种,2009年考生务必对上述四种解题方法引起高度重视,本文就其命题特点,解题规律作专题阐述,以飨读者。 一、定义法求解概率分布与数学期望 定义法即根据随机事件的概率、随机变量、概率分布、数学期望的定义求解概率分布与数学期望的方法。 可使用本法解题的考题,一般以古典离散型概率为特征,它可直接利用排列组合的加法原理与乘法原理写出离散型随机变量概率的计算式,进而求得随机变量各值条件下的概率分布与数学期望。此类题型解题思路明确,利用定义法求解,其方法容易掌握。

例1,(08浙江理)一个袋中装有若干个大小相同的黑球,白球和红球.已知从袋中任意摸出1 ;从袋中任意摸出2个球,得到黑球的概率是2 5 . 个球,至少得到1个白球的概率是7 9 (1)若袋中共有10个球,(1)若袋中共有10个球,(ⅰ)求白球的个数;(ⅱ)从袋中任意摸出3个球,记得到白球的个数为ξ,求随机变量ξ的数学期望Eξ. (2)求证:从袋中任意摸出2个球,至少得到1 .并指出袋中哪种颜色的个黑球的概率不大于7 10 球个数最少. 分析:本题是以古典概率为题材的高考题,由于从袋中摸球是有回放地摸球,且每次摸球都是互相独立的,系互不影响事件,所发生的概率是等可能的。故可根据概率定义,利用排列组合计算方法求解随机变量各值的概率。 解:袋中共有10个球,且至少得到1个白球7,设其中有X个白球,我们将至少得到的概率为 9 7,又∵P(A)一个白球的事件为A,则P(A)= 9

分布列和数学期望教师版

分布列和数学期望教师版 随机变量的分布列和期望 高考考纲透析: 等可能性的事件的概率,互斥事件有一个发生的概率,相互独立事件同时发生的概率,独立重复试验、离散型随机变量的分布列、期望和方差 高考风向标: 离散型随机变量的分布列、期望和方差 热点题型1 n 次独立重复试验的分布列和期望 [样题1] (2005年高考·全国卷II ·理19) 甲、乙两队进行一场排球比赛.根据以往经验,单局比赛甲队胜乙队的概率为0.6.本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛互间没有影响.令ξ为本场比赛的局数,求ξ的概率分布和数学期望.(精确到0.0001) 本题考查离散型随机变量分布和数学期望等概念,考查运用概率知识解决实际问题的能力。解:单局比赛甲队胜乙队的概率为0.6,乙队胜甲队的概率为1-0.6=0.4 比赛3局结束有两种情况:甲队胜3局或乙队胜3局,因而P (ξ=3)=33 0.60.40.28+= 比赛4局结束有两种情况:前3局中甲队胜2局,第4局甲队胜;或前3局中乙队胜2局,第4局乙队胜。因而 P (ξ=4)=2230.60.40.6C ???+2230.40.60.40.3744C ???= 比赛5局结束有两种情况:前4局中甲队胜2局、乙队胜2局,第5局甲胜或乙胜。因而 P (ξ=5)=22240.60.40.6C ???+22240.40.60.40.3456C ???= 所以ξ的概率分布为 ξ的期望E ξ=3×P (ξ=3)+4×P (ξ=4)+5×P (ξ=5)=4.0656 变式新题型1.(2005年高考·浙江卷·理19)袋子A 中装有若干个均匀的红球和白球,从A 中摸出一个红球的概率是3 1. (Ⅰ) 从A 中有放回地摸球,每次摸出一个,共摸5次,求恰好有3次摸到红球的概率. (Ⅱ) 从A 中有放回地摸球,每次摸出一个,有3次摸到红球即停止. (i) 求恰好摸5次停止的概率; (ii )记5次之内(含5次)摸到红球的次数为ξ,求随机变量ξ的分布列及数学期望E ξ. 解:(Ⅰ) 33 3512140333243C ???????= ? ????? (Ⅱ)(i )222 4121833381C ???????= ? ????? (ii)随机变量ξ的取值为0,1,2,3,; 由n 次独立重复试验概率公式()()1n k k k n n P k C p p -=-,得

高考数学分布列专题及复习资料

分布列 1.(本小题满分14分) 为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表: 已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为3 5. (1)请将上面的列联表补充完整(不用写计算过程); (2)能否在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关?说明你的理由; (3)现从女生中抽取2人进一步调查,设其中喜爱打篮球的女生人数为ξ,求ξ的分布列与期望. (参考公式: 2 2 () ()()()() n ad bc K a b c d a c b d - = ++++ ,其中n a b c d =+++)

2.(本小题满分14分)某同学在研究性学习中,收集到某制药厂今年前5个月甲胶囊生产 (Ⅰ)该同学为了求出y 关于x 的线性回归方程???y bx a =+,根据表中数据已经正确计算出?0.6b =,试求出?a 的值,并估计该厂6月份生产的甲胶囊产量数; (Ⅱ)若某药店现有该制药厂今年二月份生产的甲胶囊4盒和三月份生产的甲胶囊5盒,小红同学从中随机购买了3盒甲胶囊,后经了解发现该制药厂今年二月份生产的所有甲胶囊均存在质量问题.记小红同学所购买的3盒甲胶囊中存在质量问题的盒数为ξ,求ξ的分布列和数学期望.

某商场准备在节日期间举行促销活动,根据市场调查,该商场决定从3种服装商品、2种家电商品、4种日用商品中,选出3种商品进行促销活动。 (1)试求选出的3种商品中至少有一种日用商品的概率; (2)商场对选出的商品采用有奖促销,即在该商品现价的基础上价格提高180元,同时允许顾客每购买1件促销商品有3次抽奖的机会,若中奖,则每次中奖都可获得奖金100元,假设顾客每次抽奖时中奖与否是等可能的,试分析此种有奖促销方案对商场是否有利。

概率分布以及期望和方差

概率分布以及期望和方差 上课时间: 上课教师: 上课重点:掌握两点分布、超几何分布、二项分布、正态分布的概率分布及其期望和方差 上课规划:解题技巧和方法 一 两点分布 ⑴两点分布 如果随机变量X 的分布列为 X 1 0 P p q 其中01p <<,1q p =-,则称离散型随机变量X 服从参数为p 的二点分布. 二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X 为任意抽取一件产品得到的结果,则X 的分布列满足二点分布. X 1 0 P 0.8 0.2 两点分布又称01-分布,由于只有两个可能结果的随机试验叫做伯努利试验,所以这种分布又称为伯努利分布. (2)典型分布的期望与方差: 二点分布:在一次二点分布试验中,离散型随机变量X 的期望取值为p ,在n 次二点分布试验中,离散型随机变量X 的期望取值为np . 1、在抛掷一枚图钉的随机试验中,令10X ?=? ? ,针尖向上; ,针尖向下.,如果针尖向上的 概率为p ,试写出随机变量X 的概率分布. 2、从装有6只白球和4只红球的口袋中任取一只球,用X 表示“取到的 知识内容 典例分析

白球个数”,即???=,当取到红球时, ,当取到白球时, 01X ,求随机变量X 的概率分布. 3、若随机变量X 的概率分布如下: X 1 P 29C C - 38C - 试求出C ,并写出X 的分布列. 3、抛掷一颗骰子两次,定义随机变量 ?? ?=)(,1)(,0的点数数等于第二次向上一面当第一次向上一面的点 面的点数数不等于第二次向上一当第一次向上一面的点 ξ 试写出随机变量ξ的分布列. 4、篮球运动员比赛投篮,命中得1分,不中得0分,已知运动员甲投篮命中率的概率为P . ⑴ 记投篮1次得分X ,求方差()D X 的最大值; ⑵ 当⑴中()D X 取最大值时,甲投3次篮,求所得总分Y 的分布列及Y 的期望与方差. 二 超几何分布

分布函数

分布函数 分布函数(Cumulative Distribution Function, CDF)是概率统计中重要的函数,正是通过它,可用数学分析的方法来研究随机变量。 1.伯努利分布 伯努利分布(Bernoulli distribution)又叫做两点分布或者0-1分布,是一个离散型概率分布,若伯努利实验成功,则伯努利随机变量取值为1,如果失败,则伯努利随机变量取值为0。并记成功的概率为p,那么失败的概率就是1p -,则数学期望为p,方差为(1) p p -,概率密度函数为 2.二项分布 二项分布即重复n次独立的伯努利试验。在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布服从0-1分布。假设每次试验的成功概率为p,则二项分布的密度函数为: 二项分布函数的数学期望为np,方差为(1) np p -,记为~(,) X B n p。概率密度分布图如下所示。 3.正态分布 正态分布(Normal distribution)又名高斯分布(Gaussian distribution),若随机变量X服从一个数学期望为μ、标准方差为σ2的高斯分布,记为:X~N(μ,σ2),则其概率密度函数为 正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。通常所说的标准正态分布是μ = 0,σ = 1的正态分布。 分布曲线特征: 图形特征 集中性:正态曲线的高峰位于正中央,即均数所在的位置。 对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。 均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。 曲线与横轴间的面积总等于1,相当于概率密度函数的函数从正无穷到负无穷积分的概率为1。即频率的总和为100%。

数学期望与分布列专题

离散型随机变量的数学期望 称E(X)= 切七+…曲+…7竹为随机变帚K 的均 侑或数学期犁,它反映了离散型随机变最取值的士均 水平. A.丄 B. 1 C. — D.— 18 9 9 20 鱸析由分布列的件质, 可得2x+3x+7x+2x+3r^x=l f 几芹=/. A E(X)=0X2xHX 3E 2 X 7x+3 X 2工+4 X 3JT +5JC 20 =40x= — 9 2.已知某一随机变量占的槪率分布列如F, M 日门= 电3, !(|陆的值为 (C ) J B.6 C. 7 D.B 解析 由分布列性虞知,0?&+O.1+U 0. 4. :? E? 4X0.5+aX0. 1+9X0, 4-6,3, :,a-l. 某中学组建了 A 、B 、C 、D 、E 五个不同 的社团组织,为培养学生的兴趣爱好 必须参加,且只能参加一个社团 ?假定某班级的甲、乙、丙三名学生对这五个社团的选择是 ,要求每个学生

等可能的. (1) 求甲、乙、丙三名学生参加五个社团 的所有选法种数; (2) 求甲、乙、丙三人中至少有两人参加同一社团的 概率; (3) 设随机变量E为甲、乙、丙这三名学生参加A社 团的人数,求E的分布列与数学期望. 有一批产品,其中有12件正品和4件次品,从中任取3件,若E表示取到次品的个 数 E(E )=_ 某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量E 选出的志 表示愿者中女生的人数,则数学期望E(E)=_ 袋中有相同的5个球,其中3个红球,2个黄球,现从中随机且不放回地摸球,每次摸1个,当 两种颜色的球都被摸到时,即停止摸球,记随机变量E为此时已摸球的次数,求: (1)随机变量E的概率分布列; (2)随机变量E的数学期望与方差

正态分布的概率密度、分布函数、数学期望与方差

13 正态分布的概率密度、分布函数、数学期望与方差 一、设随机变量X 服从正态分布)2,1(2N ,求(1))8.56.1(<≤-X P ;(2))56.4(≥X P . 解:(1) )4.22 1 3.1()8.416.2()8.56.1(<-≤ -=<-≤-=<≤-X P X P X P 8950 .09032.019918.0)]3.1(1[)4.2()3.1()4.2(1,01,01,01,0=+-=--=--=ΦΦΦΦ (2) )78.12 1 78.2(1)56.4(1)56.4(<-< --=<-=≥X P X P X P )]78.2(1)78.1(1)]78.2()78.1([11,01,01,01,0ΦΦΦΦ-+-=---= .0402.09973.09625.02=-- 二、已知某种机械零件的直径X (mm )服从正态分布)6.0,100(2N .规定直径在2.1100±(mm ) 之间为合格品,求这种机械零件的不合格品率. 解:设p 表示这种机械零件的不合格品率,则)2.1100(1)2.1100(≤--=>-=X P X P p . 而)26 .0100 2()6.02.16.01006.02.1( )2.1100(≤-≤-=≤-≤-=≤-X P X P X P 1)2(2)]2(1[)2()2()2(-Φ=Φ--Φ=-Φ-Φ= 9544.019772.02=-?= 故0456.09544.01=-=p . 三、测量到某一目标的距离时发生的误差X (m)具有概率密度 3200 )20(22401)(-- = x e x f π 求在三次测量中至少有一次误差的绝对值不超过30m 的概率. 解:三次测量中每次误差绝对值都超过30米可表为 }30{}30{}30{>?>?>=ξξξD 第三次第二次第一次 因为)40,20(~2 N ξ,所以由事件的相互独立性,有 31,01,033)]25 .0(1)25.1([})3030{(})30{()(ΦΦ-+-=>+-<=>=ξξP ξP D P 13025.05069.0)8944.05987.02(3 3 ≈=--= 于是有 86975.013025.01)(1}30{=-=-=