当前位置:文档之家› 电流互感器的误差

电流互感器的误差

电流互感器的误差
电流互感器的误差

电流互感器的误差

在理想的电流互感器中,励磁损耗电流为零,由于一次绕组和二次绕组被同一交变磁通所交链,则在数值上一次绕组和二次

绕组的安匝数相等,并且一次电流和二次电流的相同。但是在实

际的电流互感器中,哟与有励磁电流存在,一次绕组与二次绕组

的安匝数不相等,并且一次电流与二次电流的相位也不相同。因此,实际的电流互感器通常有变比误差(一下简称比差)和相位

角误差(以下简称为角差)。

角差,是指二次电流向量旋转180以后,与一次电流向量间

的夹角。并且规定二次电流向量超前于一次电流向量,角差为

正,反之为负。的单位为分""O影响电流互感器的误差的因素有:(1)电流互感器的角差主要由电流互感器铁芯的材料和结构来决定,若铁芯损耗小,导磁率高,则角差的绝对值就小;采用带形硅钢片卷成圆环铁芯互感器的角差小。因此高精度的电流互感器多采用优质硅钢片卷成的圆环形铁芯。(2)二次回路阻抗Z (即负载)增大会使误差增大,这是因为在二次电流不变的情况下,z 增大,将是感应电势E2增大,从而使磁通?增加,铁芯损耗则会增加,致使误差增大。负载功率因数的降低,则会使比差增大角差减小。(3)—次电流的影响当系统发生短路故障时,一次电流急剧增加,致使电流互感器工作在磁化曲线的非线性部分(即饱和部分),这样比差和角差都将增加。电流互感器主要由三部分

组成:铁心、一次线圈和二次线圈。由于铁心磁阻的存在,电流互感器在传变电流的过程中,必须消耗一小部分电流用于激磁,使铁心磁化,从而在二次线圈产生感应电势和二次电流,电流互感器的误差就是由于铁心所消耗的励磁电流引起的。

由于激磁电流和铁损的存在,电流互感器一次电流和二次电流的差值是一个向量,误差包括比值差和相角差。影响误差的因素:

1、电流互感器的内部参数是影响电流互感器误差的主要因素。

(1)二次线圈内阻R2和漏抗X2对误差的影响:当R2增大时比差和角差都增大;X2增大时比差增大,但角差减校因此要改善误差应尽量减小R2和适当的X2值。由于二次线圈内阻R2和漏抗X2与二次负载Rfh和Xfh比较而言值很小,所以改变R2和X2对误差的影响不大,只有对小容量的电流互感器影响才较显著。

(2)铁芯截面对误差的影响:铁芯截面增大使铁芯的磁通密度减少,励磁电流减小,从而改善比差和角差。没有补偿的电流互感器在额定条件下铁芯的磁通密度已经很小,所以减少磁通密度也相对减小了导磁系数,使励磁电流减小不多,而且磁通密度越小效果越差。

(3)线圈匝数对误差的影响:增加线圈匝数就是增加安匝,增加匝数可以使磁通密度减小,其改善误差的效果比增加铁芯截面显著得多。但是线圈匝数的增加会引起铜用量的增加,同时引起动稳定倍数的减少和饱和倍数的增加。此外,对于单匝式的电

流互感器(如穿心型或套管型电流互感器一次线圈只允许一匝)不能用增加匝数的办法改善误差。

(4)减少铁芯损耗和提高导磁率。在铁芯磁通密度不变的条件下,减少铁芯励磁安匝和损耗安匝也将改善比差和角差,因此采用优质的磁性材料和采取适宜的退火工艺都能达到提高导磁率和减少损耗的目的。铁芯磁性的优劣还影响饱和倍数,铁芯磁性差时饱和倍数较校。

2、运行中的电流互感器的误差

当电流互感器已经定型,其内部参数就确定了,那么它的误差大小将受二次电流(或一次电流)、二次负载、功率因数以及频率的影响。这些因素称为外部因素,在运行中的电流互感器的误差主要受这四个因素影响。

(1)电流频率的变动对误差的影响比较复杂,一般系统频率变化甚小,其影响可忽略不计。假使频率变化过大,例如额定频率为50Hz的电流互感器用于60IIz的系统中,就应当考虑频率的影响,因为频率变动不但影响铁芯损耗、磁通密度和线圈漏抗的大小,也同时影响了二次侧负载电抗值的大校

(2)当一次电流减小时,磁通密度按比例相应减少,但在低磁通密度时,励磁安匝的减少比磁通密度减少要慢,因此比差和角差的绝对值就相对增大。

(3)电流互感器误差具有以下特征:当一次电流在规定的范围内变化时,二次电流按比例变化,当二次负载阻抗在规定范围

内变化时,不影响二次电流的大校所以当二次负载在额定范围内减少时,磁通密度也减少,由于二次电流不变,励磁电流减小,误差也将减校电流互感器的出厂说明书一般会标明额定二次负载阻抗值,在运行中其误差应按给定接线方式下的最大二次负载阻抗值来校核。

(4)二次负载的功率因数增大,也就是Rfh增大,Xfh减小,角差将增大而比差将减少。对于饱和倍数而言,互感器厂家说明

书注明的饱和倍数是指功率因数为0、8时的饱和倍数,此值相当于的饱和倍数的“极小值”,因此功率因数无论增大或减小,饱

和倍数都增大。减小误差的措施:

励磁电流是造成电流互感器误差的主要原因,因此减小励磁

电流就可以减小误差:

(1)采用高导磁率的材料做铁芯,因为铁心磁性能不但影响比差和角差,也影响饱和倍数。

⑵增大铁心截面,缩短磁路长度;增加线圈匝数。增减铁心

截面或线圈安匝会相应增大和减小饱和倍数,在采取增加铁心截

面或线圈安匝以改善比差和角差时,必须考虑到对饱和倍数的影响。

(3)限制二次负载的影响。在现场一般用增加连接导线的有效截面的方法,如采用较大截面的电缆,或多芯并联使用,以减少

二次负载的阻抗值。还可以把两个同型号、变比相同的电流互感

器串联使用,使每个电流互感器的负载成为整个负载的一半。

⑷ 适当增大电流互感器变比。在现场运行中选用较大变比的互感器。

另外,还有二次绕组的分数补偿、二次侧电容分路补偿等等。

浅谈电流互感器误差及影响

浅谈电流互感器误差及影响 摘要:电流互感器是一次系统和二次系统电流间的联络元件,将一次回路的大电流转换为小 电流,供给测量仪表和保护装置使用。电流反应系统故障的重要电气量,而保护装置是通过电流互感器来间接反应一次电流的,因此电流互感器的性能直接决定保护装置的运行。然而从互感器本身和运行使用条件方面来看,电流互感器存在不可避免的误差,本文分别从这两个方面分析了误差,并结合实际工作阐述了误差带来的影响,以便在工作中加强重视,并做出正确的分析。 关键词:电流互感器 励磁电流 误差 一、电流互感器的误差 在理想条件下,电流互感器二次电流I 2=I 1/Kn ,Kn=N 2/ N 1 ,N 1 、N 2 为一、二次绕组的 匝数,不存在误差。但实际上不论在幅值上(考虑变比折算)和角度上,一二次电流都存在差异。这一点我们可以从图中看到。 从图一看,实际流入互感器二次负载的电流I’2 =I 1-Ie ,其中I’2 = I 2 * Kn,Ie 为励 磁电流,即建立磁场所需的工作电流。正是因为励磁损耗的存在,使得I 1 和I’2 在数值上和 相位上产生了差异。正常运行时励磁阻抗很大,励磁电流很小,因此误差不是很大,经常可以被忽略。但在互感器饱和时,励磁阻抗会变小,励磁电流增大,使误差变大。 图二相量图,以I’2 为基准,E 2 较-I’2超前φ角(二次总阻抗角,即Z 2 和Z 阻抗角), 如果不考虑铁磁损耗,励磁阻抗一般被作为电抗性质处理,Ie 超前E 2 为90度, I’2与Ie 合成I 1。图中I’2与I 1不同相位,两者夹角δ即为角度误差。 对互感器误差的要求一般为,幅值误差小于10%,角度误差小于7度。 二、电流互感器的饱和 电流互感器的误差主要是由励磁电流Ie 引起的。正常运行时由于励磁阻抗较大,因此Ie 很小,以至于这种误差是可以忽略的。但当CT 饱和时,饱和程度越严重,励磁阻抗越小, Z 图一 等值电路 E 图二 相量图

电流互感器检查变比电流电压方法

电流互感器变比检查电流法电压法 文摘根据电流互感器的等值电路图,讨论了2种电流互感器变比检查试验方法(电流法和电压法)的原理和特点,推荐一种简便可靠的电流互感器变比检查现场试验方法——电压法。 不管是老标准还是新规程,都把电流互感器交接时和更换绕组后的现场变比检查试验列为重要试验项目。虽然电流互感器变比的准确度应由制造部门保证,但由于种种原因,现场试验时偶而也能检查出错误(大多是抽头引错)。因此现场变比检查试验成为多年不变的项目。 电流互感器工作原理大致与变压器相同,不同的是变压器铁心内的交变主磁通是由一次线圈两端交流电压所产生,而电流互感器铁心内的交变主磁通是由一次线圈内电流所产生,一次主磁通在二次线圈中感应出二次电势而产生二次电流。 从电流互感器工作原理可知:决定电流互感器变比的是一次线圈匝数与二次线圈匝数之比,影响电流互感器变比误差的主要原因有:(1)电流的大小,比差和角差随二次电流减小而增大;(2) 二次负荷的大小,比差和角差随二次负荷减小而减小;(3)二次负荷功率因数,随着二次负荷功率因数的增大,比差减小而角差增大;(4) 电源频率的影响;(5)其它因素。电流互感器内部参数也可能引起变比误差,如二次线圈内阻抗、铁心截面、铁心材料、二次线圈匝数等,但这是由设计和制造决定的。 电流互感器变化的误差试验应由制造厂在出厂试验时完成或在试验室进行。而电流互感器变比现场试验属于检查性质,即不考虑上述影响电流互感器变比误差的原因而重点检查匝数比。根据电工原理,匝数比等于电压比或电流比之倒数。因此测量电压比和测量电流比都可以计算出匝数比。 1试验方法分析 现根据试验接线图和等值电路图分别讨论电压法和电流法检查电流互感器变化试验的原理和特点。 1.1电流法 1.1.1 试验原理 电流法检查电流互感器变比试验接线图如图1所示。

电流互感器变比

一.按一次侧计算电流占电流互感器一次侧额定电流的比例 根据<<电气装置的电测量仪表装置设计规范>>(GBJ63-90)的规定,在额定值的运行条件下,仪表的指示在量程的70%~100%处,此时电流互感器最大变比应为: N=I1RT /(0.7*5); I1RT ----变压器一次侧额定电流, A; N----电流互感器的变比;显然按此原则选择电流互感器变比时,变比将很小,下面列出400~1600kVA变压器按此原则选择时,电流互感器的最大变比: 向左转|向右转 从上表可以看出, 对于630kVA变压器,电流互感器的最大变比为15,当取50/5=10时,额定电流仅占电流量程3.64/5=72.8%。这可能是一些设计人员把630kVA变压器的供电出线断路器处电流互感器变比取50/5的一个原因,另外在许多时候,设计时供电部门往往不能提供引至用户处的电源短路容量或系统阻抗,从而使其他几个条件的校验较难进行,这可能是变比选择不当得另一个原因。从下面的分析中,我们将发现按此原则选择时,变比明显偏小,不能采用。 二.按继电保护的要求 为简化计算及方便讨论,假设: (1)断路器出线处的短路容量,在最大及最小运行方式下保持不变; (2)电流互感器为两相不完全星型接线; (3)过负荷及速断保护采用GL-11型过电流继电器; (4)操作电源为直流220V,断路器分闸形式为分励脱扣。 1. 过负荷保护 过负荷保护应满足以下要求: IDZJ=Kk*Kjx*Kgh*I1RT/(Kh*N) IDZJ----过负荷保护装置的 动作电流;. Kk ----可*系数,取1.3; Kjx ----接线系数,取1; Kgh ----过负荷系数; Kh----继电器返回系数,取0.85;

电流互感器误差引起事故分析(正式版)

文件编号:TP-AR-L8432 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 电流互感器误差引起事故分析(正式版)

电流互感器误差引起事故分析(正式 版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 1 事故简述 20xx年6月18日,某110kV变电所35kV线路 遭到雷击,该线路定时速断跳闸,重合成功;同时该 110kV变电所分段370断路器定时速断跳闸(重合闸 停用),造成35kVⅡ段母线失电。 2 原因分析及采取措施 2.1原因分析

该35kV线路与分段370断路器的保护定值配置如图1,从定值的配置分析,保护的定值是满足选择性的,即当35kV线路近端故障时,由该线路速断保护切除故障;当35kV线路远处故障时,由该线定时速断保护及过流切除故障。分段370断路器保护作为35kV线路的后备保护,只有在35kV线路保护拒动时才动作跳闸。显然,分段370断路器保护越级跳闸属于不正确动作。故障发生后,分别从该线路及分段370断路器保护装置本身、开关机构、接线等方面逐一进行了检查。检查结果发现保护装置的采样精度、定值、跳闸逻辑均正确,由于分段370断路器定时速断、该35kV线路速断电流定值比较大,一次升流设备无法达到该电流值,因此,采用适当降低定值后,

电流互感器10差校验的计算方法.

电流互感器10%误差校验的计算方法 简介:本文对<<工业与民用配电手册>>中关于电流互感器10%误差校验的方法提出疑问,并结合<<手册>>中的例题,给出了作者认为的计算方法. 关键字:电流互感器 10%误差校验计算方法 由中国航空工业规划设计研究院组编,中国电力出版社出版的《工业与民用配电设计手册》(以下简称手册)自1983年11月第一版到2005年10月的第三版,发行量近16万册,该手册的权威性、指导性,对工业与民用配电设计行业的影响是勿庸置疑的。正因为广大设计者对该手册的重视和尊重,更要求它是完美的。本文就手册中关于“电流互感器10%误差校验的计算方法”提出不同的意见,供大家参考。尽管如此,本人仍然认为,暇不掩玉,该手册仍然是广大设计者必备的案头参考书。 手册给出的电流互感器允许误差计算步骤如下: 道频 2,根据电流互感器的型号、变比和一次电流倍数,在10%误差曲线上确定控m自电流互感器的允许二次负荷。 oc网.s师i3,按照对电流互感器二次负荷最严重的短路类型计算电流互感器的实际二次负j计eh荷。设s.国k中w.z 4,比较实际二次负荷与允许二次负荷,如实际二次负荷小于允许二次负荷, 表示电流互感器的误差不超过ww10%。 1,按照保护装置类型计算流过电流互感器的一次电流倍数 对于步骤1、2、4,本文并无异议,对步骤3,有值得商榷的地方。现引用《工业与民用配电设计手册》例题【7-9】,6KV线路过流与速断保护为例来说明问题。已知条件如下(对原例题中与本讨论无关的给予了简化):某6KV单侧放射式单回路线路,工作电流Ig.xl为100A,电动机起动时的过负荷电流Igh为181A。经校验实际线路长度能满足瞬时电流速断选择性动作,且短路时母线上有规定的残压。采用DL-11型电流继电器、DL-13型继电器、DSL-12型时间继电器和ZJ6型中间继电器作为线路的电流速断保护和过电流保护(交流操作),电流互感器选用LFZB6-10型,变比150/5,三相星型接线方式。另采用ZD-4型小电流接地信号装置作为线路单相接地保护。已知最大运行方式下,线路末端三相短路时的超瞬态电流I”2k3.MAX=1752A。最小运行方式下,线路末端三相短路时的超瞬态电流I”2k3.Min=1674A。 计算过程为: 1)瞬时电流速断保护的整定: IopK=KrelKjxI”2k3.MAX/nTA=1.2x1x1752/30=70.1A (式1) 式中Krel:可靠系数,取1.2;Kjx:接线系数,接于相电流时取1;IopK:继电器动作值,计算值为70.1A,取70A,装设DL-11/200型继电器。 2)过电流保护整定:

电流互感器变比检验的简便方法通用范本

内部编号:AN-QP-HT560 版本/ 修改状态:01 / 00 The Procedures Or Steps Formulated T o Ensure The Safe And Effective Operation Of Daily Production, Which Must Be Followed By Relevant Personnel When Operating Equipment Or Handling Business, Are Usually Systematic Documents, Which Are The Operation Specifications Of Operators. 编辑:__________________ 审核:__________________ 单位:__________________ 电流互感器变比检验的简便方法通用 范本

电流互感器变比检验的简便方法通用范 本 使用指引:本操作规程文件可用于保证本部门的日常生产、工作能够安全、稳定、有效运转而制定的,相关人员在操作设备或办理业务时必须遵循的程序或步骤,通常为系统性的文件,是操作人员的操作规范。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 电流互感器是一种专门用作变换电流的特种变压器,在正常工作条件下,其二次电流实质上与一次电流成正比,而且在连接方向正确时,二次电流对一次电流的相位差接近于零。 电流互感器作为电力系统中的重要设备,对其进行电气性能试验是很重要的,对于电流互感器而言,变比试验是绝不可少的试验项目,电流互感器变比关系到计量的准确性与保护的可靠性。电流互感器现场变比检验一般采用电流法,用电流法测量电流互感器变比,实际上是模拟在额定电流情况下的实际运行条

电流互感器变比检验的简便方法通用版

操作规程编号:YTO-FS-PD192 电流互感器变比检验的简便方法通用 版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

电流互感器变比检验的简便方法通 用版 使用提示:本操作规程文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 电流互感器是一种专门用作变换电流的特种变压器,在正常工作条件下,其二次电流实质上与一次电流成正比,而且在连接方向正确时,二次电流对一次电流的相位差接近于零。 电流互感器作为电力系统中的重要设备,对其进行电气性能试验是很重要的,对于电流互感器而言,变比试验是绝不可少的试验项目,电流互感器变比关系到计量的准确性与保护的可靠性。电流互感器现场变比检验一般采用电流法,用电流法测量电流互感器变比,实际上是模拟在额定电流情况下的实际运行条件,是一种很理想的试验方法,测量的精度高,但随着电力系统的不断发展,单台发电机的容量越来越大,其出口电流已经达到数万安培。例如800MW的发电机组,额定电压为20kV,额定电流为:800/(20×31/2)=23.094kA,相应使用的电流互感器一次电流很大,若用电流法测量一次电流为几万安培的电流互感器变比,在现场很难做到:其一,额定大电流很难达到

电流互感器准确级大全

精心整理 电流互感器的准确级 一:电流互感器的准确级:电流互感器根据测量误差的大小可划分为不同的准确级。准确级是指在规定的二次负荷变化范围内,一次电流为额定值时的最大电流误差。 带S(special特殊)特殊电流互感器,要求再1%——120%负荷范围内精度足够高,一般取5个负荷点测量其误差小于规定的范围,不带S的是取4个负荷点测量其误差小于规定的范围之内。 0.2级和0.2S级圴是针对测量用电流互感器,其最大的区别是在小负荷时,0.2S级比0.2级有更高的测量精度;主要是用于负荷变动范围比较大,而有些时候几乎空载的场合。在实际负荷电流小于额定电流的30%时,0.2S级的综合误差明显小于0.2级电流互感器。 准确级一次电流为额定 的百分数(%) 误差限值二次负荷变化 范围 电流误差(%)相位差(’) 0.2 10 20 100—120 ±0.5 ±0.35 ±0.2 ±20 ±15 ±10 (0.25-1)S2n 0.5 10 20 100—120 ±1 ±0.75 ±0.5 ±60 ±45 ±30 1 10 20 100—120 ±2 ±1.5 ±1 ±120 ±90 ±60 3 50—120 ±3 不规定(0.5-1)S2n 二:保护型准确级:保护用电流互感器按用途分为稳态保护用(P代表保护)和暂态保护用的两类。 1、护用电流互感器的准确级常用的有5P和10P。由于短路过程中I1和I2的关系复杂,故保护级的准确级是以额定准确限值一次电流下的误差标称的。所谓额定准确限值一次电流即一次电流为额定一次电流的倍数。? 5P20的含义为:该保护CT一次流过的电流在其额定电流的20倍以下时,此CT的误差应小于±5%。 准确级电流误差(%)相位差(’)复合误差(%) 在额定准确限值一次电流下 在额定一次电流下

电流互感器10%误差曲线计算及应用

继电保护用电流互感器10%误差曲线的计算方法及其应用 1 电流互感器的误差 电流互感器,用来将一次大电流变换为二次小电流,并将低压设备与高压线路隔离,是一种常见的电气设备。其等值电路如图1所示,向量图如图2所示。 图中I ’1为折算到二次侧的一次电流,R ’1、X ’ 1为折算到二次侧的一次电阻和漏抗;R 2、X 2为二次电阻和漏抗;I 0为电流互感器的励磁电流。在理想的电流互感器中I 0的值为零,I ’ 1=I 2。但实际 上Z 2 为Z 0 相比不能忽略,所以,0I .=1I .-0I . 2≠; 由电流互感器的向量图中可看出,电流互感器的误差主要是由于励磁电流I 0的存在,它使二次电流与换算到二次侧后的一次电流I ’ 1不但在数值上不相等,而且相位也不相同,这就造成了电流互感器的误差。电流互感器的比误差f= 100I I I ' 1 2 ' 1 ?-;角误差为I ’ 1与I 2间的夹角。 做为标准和测量用的电流互感器,要考虑到在正常运行状态下的比误差和角误差;做为保护用的电流互感器,为保证继电保护及自动装置的可靠运行,要考虑当系统出现最大短路电流的情况下,继电保护装置能正常工作,不致因为饱和及误差带来拒动,因而规程的规定,应用于继电保护的电流互感器,在其二次侧负载和一次电流为已知的情况下,电流误差不得超过10%。

2 电流互感器的10%误差及10%误差曲线 设Ki为电流互感器的变比,其一次侧电流与二次电流有I2=I1/Ki的关系,在Ki为常数(电源互感器I2不饱和)时,就是一条直线,如图3所示。当电流互感器铁芯开始饱和后,与I1/Ki 就不再保持线性关系,而是如图中的曲线2所示,呈铁芯的磁化曲线状。继电保护要求电流互感器的一次电流I1等于最大短路电流时,其变比误差小于或等于10%。因此,我们可以在图中找到一个 电流值I1.b,自I1.b作垂线与曲线1、2分别相交于B、A两点,且BA=0.1I ’ 1(为折算到二次的I1 值)。如果电流互感器的一次电流小于I1,其变比误差就不会大于10%;如果电流互感器的一次电流大于I1,其变比误差就大于10%。 图3 图4 另外,电流互感器的变比误差还与其二次负载阻抗有关。为了便于计算,制造厂对每种电流互感器提供了在m10下允许的二次负载阻抗值Zen,曲线m10=f(Zen)就称为电流互感器的10%误差曲线,如图4所示,已知m10的值后,从该曲线上就可很方便地得出允许的负载阻抗。如果它大于或等于实际的负载阻抗,误差就满足要求,否则,应设法降低实际负载阻抗,直至满足要求为止。当然,也可在已知实际负载阻抗后,从该曲线上求出允许的m10,用以与流经电流互感器一次线绕组的最大短路电流作比较。 通常电流互感器的10%误差曲线是由制造厂实验作出,并且在产品说明书中给出。若在产品说明书中未提供,或经多年运行,需重新核对电流互感器的特性时,就要通过试验的方法绘制电流互

电流互感器的参数选择计算方法

附件3: 电流互感器的核算方法参数选择计算 本文所列计算方法为典型方法,为方便表述,本文数据均按下表所列参数为例进行计算。项目名称 代号 参数 备注 额定电流比 Kn 600/5 额定二次电流 Isn 5A 额定二次负载视在功率 Sbn 30VA(变比:600/5) 50VA(变比:1200/5) 不同二次绕组抽头对应的视在功率不同。 额定二次负载电阻 Rbn

1.2Ω 二次负载电阻 Rb 0.38Ω 二次绕组电阻 Rct 0.45Ω 准确级 10 准确限值系数 Kalf 15 实测拐点电动势 Ek 130V(变比:600/5) 260V(变比:1200/5) 不同二次绕组抽头对应的拐点电动势不同。

最大短路电流 Iscmax 10000A 一、电流互感器(以下简称CT)额定二次极限电动势校核(用于核算CT是否满足铭牌保证值) 1、计算二次极限电动势: Es1=KalfIsn(Rct+Rbn)=15×5×(0.45+1.2)=123.75V 参数说明: (1)Es1:CT额定二次极限电动势(稳态); (2)Kalf:准确限制值系数; (3)Isn:额定二次电流; (4)Rct:二次绕组电阻,当有实测值时取实测值,无实测值时按下述方法取典型内阻值:5A产品:1~1500A/5 A产品0.5Ω 1500~4000A/5 A产品 1.0Ω 1A产品:1~1500A/1A产品6Ω 1500~4000A/1 A产品15Ω 当通过改变CT二次绕组接线方式调大CT变比时,需要重新测量CT额定二次绕组电阻。(5)Rbn :CT额定二次负载,计算公式如下: Rbn=Sbn/ Isn 2=30/25=1.2Ω; ——Rbn :CT额定二次负载; ——Sbn :额定二次负荷视在功率; ——Isn :额定二次电流。 当通过改变CT二次绕组接线方式调大CT变比时,需要按新的二次绕组参数,重新计算CT 额定二次负载 2、校核额定二次极限电动势 有实测拐点电动势时,要求额定二次极限电动势应小于实测拐点电动势。 Es1=127.5V

电流互感器误差现场校验及其影响因素分析 周业文

电流互感器误差现场校验及其影响因素分析周业文 发表时间:2018-05-10T10:37:44.290Z 来源:《电力设备》2017年第36期作者:周业文 [导读] 摘要:作为电力系统中非常重要的一次设备,电流互感器具有重要的作用,特别是110kV电流互感器,掌握其误差现场校验的方法,以及产生误差的原因、分析影响误差的因素,对实现电流互感器现场校验具有针对性的意义。 (广西电网有限责任公司钦州供电局广西钦州 535000) 摘要:作为电力系统中非常重要的一次设备,电流互感器具有重要的作用,特别是110kV电流互感器,掌握其误差现场校验的方法,以及产生误差的原因、分析影响误差的因素,对实现电流互感器现场校验具有针对性的意义。本文首先介绍了电流互感器现场误差检测的条件,然后研究了电流互感器误差导线连接方法和检测线路,并重点分析电流互感器误差现场校验的主要影响因素。希望本文所陈述的内容对于电流互感器现场校验具有一定的建议性意义,能够有针对性地解决相关的问题,具备一定的参考价值。 关键词:110kV电流互感器;误差校验;影响因素分析 电能计量的准确性在很大程度上取决于互感器的误差,在电力系统中,通常电流互感器的准确度为0.5级和0.2级,目前大量的电流互感器被应用于电气测量和电能计量。国家规定必须定期检查电力互感器的二次侧负荷、极性及变比等电气参数,误差校验作为其中的代表,是电能计量工作中发展变化较快的一项试验工作。 一般地,对于110kV高压电能计量设备中的电流互感器,需要在现场完成误差检验。测试方法一般分为标准电流互感器检测线路、低压外推法(二次低压法),实际上,对于电磁干扰较大,以及额定电流较小的电流互感器,一般采用标准的校验方法,这种方法的准确度很高,同时数据稳定,但检测设备体积大、数量较多;对于额定一次电流很大,电磁干扰较小的电流互感器,难以使用传统的方法进行现场检验,特别是安装在封闭母线和变压器套管上的电流互感器,因此一般采用低压外推法。这种方法是近年来新兴的一种测试方法,具有其他方法不可比拟的优势,由于在实际应用中便携的特性,受到了广泛的欢迎。本文对比了不同测试方法下的110 kV内置式电流互感器现场校验,分析了电流互感器现场检测误差主要影响因素。 1.检测条件 1.1环境条件 需要在相对湿度不大于 95%,气温-25~55℃的环境下。校验检测接线造成被检电流互感器误差的变化要小于被检电流互感器基本误差标准的 1/10,同时电磁场干扰造成电流互感器的误差变化要小于被检电流互感器基本误差限值的 1/20。 1.2电流负荷箱条件 在额定电压、电流和额定频率的80%~120%范围内,其残余无功分量要小于额定负荷的±6%,无功和有功分量相对误差均小于 ±6%。 1.3标准电流互感器条件 准确度等级至少要比被检电流互感器高出两个等级,额定变比应与电流互感器相同,变差和误差均要小于被检电流互感器基本误差限值的1/5。 1.4误差测量装置条件 相位差和比值差示值分辨率应高于0.01′和0.001%。造成的测量误差,应小于被检电流互感器基本误差限值的1/10。 2.电流互感器误差现场校验 2.1 电流互感器现场校验线路 如图1所示,为应用标准电流互感器检测线路。这种检测方法准确度高,是较为传统的检测方式,但设备接线的工作量大,同时检测设备体积大、数量多。在检测时,除计量绕组外,其他二次绕组端子接地并用导线短路,并禁止电流互感器二次侧开路。

电压、电流互感器准确等级

电压、电流互感器准确等级 根据电流互感器在额定工作条件下所产生的变比误差规定了准确等级。准确级是指在规定的二次负荷变化范围内,一次电流为额定值时的最大电流误差的百分值。国产电流互感器的准确等级有:0.01;0.02;0.05;0.1;0.2;0.5;1;3;10级。按照国家标准《电流互感器》GB1208-75规定,电力系统用电流互感器的误差限值。 带S的是特殊电流互感器,要求在1%-120%负荷范围内精度足够高,一般取5个负荷点测量其误差小于规定的范围;0.1级以上电流互感器,主要用于实验室进行精密测量,或者作为标准,用来校验低等级的互感器,也可以与标准仪表配合,用来校验仪表,所以叫做标准电流互感器;在工业上,0.2级和0.5级互感器用来连接电器测量仪表,要求误差20%-120%负荷范围内精度足够高,一般取4个负荷点测量其误差小于规定的范围(误差包括比差和角差,因为电流是矢量,故要求大小和相角差),而3.0级及以下等级互感器主要用于连接某些继电保护装置和控制设备,如5P,10P的电流互感器一般用于接继电器保护用,即要求在短路电流下复合误差小于一定的值,5P即小于5%,10P即小于10%;标有B(或D)级的电流互感器,用来接差动保护和距离保护装置。所以电流互感器根据用途规定了不同的准确度,也就是不同电流范围内的误差精度。 保护用电流互感器按其功能特性分级如下: 保护用电流互感器按用途分为稳态保护用(P)和暂态保护用(TP) P级:准确限值规定为稳态对称一次电流下的复合误差,无剩磁限值。5P20表示在加20倍额定电流的情况下,误差小等于5% 暂态保护用电流互感器准确级分为TPX、TPY、TPZ三个级别。 TPS 级:低漏磁电流互感器,其性能由二次励磁特性和匝数比误差限值规定。无剩磁限值。TPX级:准确限值规定为在指定的暂态工作循环中的峰值瞬时误差。无剩磁限值。TPX级电流互感器环形铁芯中不带气隙,在额定电流和负载下,其电流误差不大于±0.5% TPY级:准确限值规定为在指定的暂态工作循环中的峰值瞬时误差。剩磁不超过饱和磁通的10%。级电流互感器铁芯带有小气隙,气隙长度约为磁路平均长度的0.05%,由于气隙使铁芯不易饱和,有利于直流分量的快速衰减,在额定负荷下允许最大电流误差为±1%。TPZ级:准确限值规定了为在指定的二次回路时间常数下,具有最大直流偏移的单次通电时的峰值瞬时交流分量误差。无直流分量误差限值要求,剩磁通实际上可以忽略。TPZ级电流互感器铁芯心有较大气隙,气隙长度约为磁路平均长度的0.1%,由于铁芯气隙较大,一般不易饱和,特别适合于有快速重合闸(无电流时间间隙不大于0.3s)线路上使用。 测量用单相电磁式电压互感器的标准准确级为:0.1,0.2,0.5,1.0,3.0,5.0; 保护用电压互感器的标准准确级为:3P和6P,电压误差分别是3%和6%。

电流互感器饱和度计算

电流互感器饱和计算: 估算,当一次侧电流达到电流互感器额定电流的10倍时,保护用电流互感器就认为饱和了。 电流互感器的暂态饱和及应用计算 1前言 保护用电流互感器要求在规定的一次电流范围内,二次电流的综合误差不超出规定值。对于有铁心的电流互感器,形成误差的最主要因素是铁心的非线性励磁特性及饱和。电流互感器的饱和可分为两类:一类是大容量短路稳态对称电流引起的饱和(以下称为稳态饱和);另一类是短路电流中含有非周期分量和铁心存在剩磁而引起的暂态饱和(以下称为暂态饱和)。这两类饱和的特性有很大不同,引起的误差也差别很大。在同样的允许误差条件下,考虑暂态饱和要求的互感器铁心截面可能是仅考虑稳态饱和的数倍至数十倍。因而对互感器造价及安装条件提出了严峻的要求。以往在中低压系统和发电机容量较小的情况下,互感器暂态饱和的影响较轻,一般未采取专门对策。而对当前的超高压系统和大容量机组,为保证继电保护的正确动作,暂态饱和已成为必须考虑的因素。由于互感器暂态饱和的机理和计算较复杂,要求互感器暂态不饱和所需代价很高,因而在实际工程中应用情况较混乱。本文根据国内外的标准和应用经验,提出较规范的考虑暂态饱和的互感器选择和计算方法,供工程应用参考。作为示例,本文给出大型发电机变压器组差动保护用电流互感器的选择计算及参数选择的建议。 2电流互感器的稳态饱和特性及对策 当电流互感器通过的稳态对称短路电流产生的二次电动势超过一定值时,互感器铁心将开始出现饱和。这种饱和情况下的二次电流如图1所示,其特点是:畸变的二次电流呈脉冲形,正负半波大体对称,畸变开始时间小于5ms(1/4周波),二次电流有效值将低于未饱和情况。对于反应电流值的保护,如过电流保护和阻抗保护等,饱和将使保护灵敏度降低。对于差动保护,差电流取决于两侧互感器饱和特性的差异。 例如某一1200/5的电流互感器,制造部门提供的规范为[1]:5P20,30VA。其中5P为准确等级,30VA为二次负荷额定值,20为准确限值系数(ALF)。电流互 感器在额定负荷下的二次极限电动势E s =(ALF)· I sn ·(R ct +R bn ),此时综合误 差应不超过5%。综合误差也可选用10%。选择保护用电流互感器时,一般要求ALF 与额定一次电流乘积大于保护校验用短路电流,二次负荷小于互感器额定负荷,实际二次电动势不超过极限二次电动势。当前工程中经常遇到的问题是短路电流过大,ALF不满足要求,但实际负荷比额定负荷小得多。对于低漏磁电流互感器[2],可以在实际负荷下的二次电动势不超过极限值的条件下,适当提高ALF的可用值。但应指出,对于某些不符合低漏磁要求的互感器,如U型电流互感器、一次多匝的互感器等,在一次短路电流倍数超过ALF时,由于铁心局部饱和可能引起二次极限电动势降低,不能在降低二次负荷时,按反比提高ALF。有些制造厂提供的

电流互感器的额定变比和误差

互感器的额定变比KN指电压互感器的额定电压比和电流互感器的额定电流比。前者定义为原边绕组额定电压U1N与副边绕组额定电压U2N之比;后者则为额定电流I1N与I2N之比。即KN=U1N/U2N (对电压互感器) KN=I1N/I2N (对电流互感器)电压(或电流)互感器原边电压(或电流) 在一定范围内变动时,一般规定为0.85~1.15U1N(或10~120%I1N),副边电压(或电流)应按比例变化,而且原、副边电压(或电流)应该同相位。但由于互感器存在内阻抗、励磁电流和损耗等因素而使比值及相位出现误差,分别称为比差和角差。比差为经折算后的二次电压(或二次电流)与一次电压(或一次电流)量值大小之差对后者之比,即fU 为电压互感器的比差,fI 为电流互感器的比差。 当KNU2》U1(或KNI2》I1)时,比差为正,反之为负。角差为二次电压(或二次电流)相量旋转180°后与一次电压(或一次电流)相量之间的夹角,以分为单位。并规定副边的-妧2(或-夒2)超前于妧1(或夒1)时,角差为正,反之为负。对没有采取补偿措施的电压互感器,比差为负,角差一般为正值,比差的绝对值和角差均随电压的增大而减小;铁心饱和时,比差与角差均随电压的增大而增大。 对于没有采取补偿措施的电流互感器,比差为负值,角差为正值,比差的绝对值和角差均随电流增大而减小。采用补偿的办法可以减小互感器的误差。一般通过在互感器上加绕附加绕组或增添附加铁心,以及接入相应的电阻、电感、电容元件来补偿。常用的补偿法有匝数补偿、分数匝补偿、小铁心补偿、并联电容补偿等。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关电流互感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.doczj.com/doc/81972898.html,。

影响电流互感器误差的因素(精)

影响电流互感器误差的因素 影响电流互感器误差的因素 1.电流互感器的内部参数是影响电流互感器误差的主要因素。 ⑴二次线圈内阻R2和漏抗X2对误差的影响: 当R2增大时比差和角差都增大; X2增大时比差增大,但角差减小。因此要改善误差应尽量减小R2和适当的X2值。由于二次线圈内阻R2和漏抗X2与二次负载Rfh和Xfh比较而言值很小,所以改变R2和X2对误差的影响不大,只有对小容量的电流互感器影响才较显著。 ⑵铁芯截面对误差的影响:铁芯截面增大使铁芯的磁通密度减少,励磁电流减小,从而改善比差和角差。没有补偿的电流互感器在额定条件下铁芯的磁通密度已经很小,所以减少磁通密度也相对减小了导磁系数,使励磁电流减小不多,而且磁通密度越小效果越差。 ⑶线圈匝数对误差的影响: 增加线圈匝数就是增加安匝,增加匝数可以使磁通密度减小,其改善误差的效果比增加铁芯截面显著得多。但是线圈匝数的增加会引起铜用量的增加,同时引起动稳定倍数的减少和饱和倍数的增加。此外,对于单匝式的电流互感器(如穿心型或套管型电流互感器一次线圈只允许一匝)不能用增加匝数的办法改善误差。 ⑷减少铁芯损耗和提高导磁率。在铁芯磁通密度不变的条件下,减少铁芯励磁安匝和损耗安匝也将改善比差和角差,因此采用优质的磁性材料和采取适宜的退火工艺都能达到提高导磁率和减少损耗的目的。铁芯磁性的优劣还影响饱和倍数,铁芯磁性差时饱和倍数较小。 2.运行中的电流互感器的误差 当电流互感器已经定型,其内部参数就确定了,那么它的误差大小将受二次电流(或一次电流)、二次负载、功率因数以及频率的影响。这些因素称为外部因素,在运行中的电流互感器的误差主要受这四个因素影响。 ⑴电流频率的变动对误差的影响比较复杂,一般系统频率变化甚小,其影响可忽略不计。假使频率变化过大,例如额定频率为50Hz的电流互感器用于60Hz的系统中,就应当考虑频率的影响,因为频率变动不但影响铁芯损耗、磁通密度和线圈漏抗的大小,也同时影响了二次侧负载电抗值的大小。 ⑵当一次电流减小时,磁通密度按比例相应减少,但在低磁通密度时,励磁安匝的减少比磁通密度减少要慢,因此比差和角差的绝对值就相对增大。 ⑶电流互感器误差具有以下特征:当一次电流在规定的范围内变化时,二次电流按比例变化,当二次负载阻抗在规定范围内变化时,不影响二次电流的大小。所以当二次负载在额定范围内减少时,磁通密度也减少,由于二次电流不变,励磁电流减小,误差也将减小。电流互感器的出厂说明书一般会标明额定二次负载阻抗值,在运行中其误差应按给定接线方式下的最大二次负载阻抗值来校核。 ⑷二次负载的功率因数增大,也就是Rfh增大,Xfh减小,角差将增大而比差将减少。对于饱和倍数而言,互感器厂家说明书注明的饱和倍数是指功率因数为0.8时的饱和倍数,此值相当于的饱和倍数的“极小值”,因此功率因数无论增大或减小,饱和倍数都增大。 3.减小误差的措施

电流互感器的参数选择计算方法

电流互感器的参数选择计算 本文所列计算方法为典型方法,为方便表述,本文数据均按下表所列参数为例进行计算。 一、电流互感器(以下简称CT)额定二次极限电动势校核(用于核算CT是否满足铭牌保证值) 1、计算二次极限电动势: E s1=K alf I sn(R ct+R bn)=15×5×(0.45+1.2)=123.75V 参数说明: (1)E s1:CT额定二次极限电动势(稳态); (2)K alf:准确限制值系数;

(3)I sn:额定二次电流; (4)R ct:二次绕组电阻,当有实测值时取实测值,无实测值时按下述方法取典型内阻值: 5A产品:1~1500A/5 A产品0.5Ω 1500~4000A/5 A产品 1.0Ω 1A产品:1~1500A/1A产品6Ω 1500~4000A/1 A产品15Ω 当通过改变CT二次绕组接线方式调大CT变比时,需要重新测量CT额定二次绕组电阻。 (5)R bn:CT额定二次负载,计算公式如下: R bn=S bn/ I sn 2=30/25=1.2Ω; ——R bn:CT额定二次负载; ——S bn:额定二次负荷视在功率; ——I sn:额定二次电流。 当通过改变CT二次绕组接线方式调大CT变比时,需要按新的二次绕组参数,重新计算CT额定二次负载 2、校核额定二次极限电动势 有实测拐点电动势时,要求额定二次极限电动势应小于实测拐点电动势。 E s1=127.5V

路电流下CT裕度是否满足要求) 1、计算最大短路电流时的二次感应电动势: E s=I scmax/K n(R ct+R b)=10000/600×5×(0.45+0.38)=69.16V 参数说明: (1)K n:采用的变流比,当进行变比调整后,需用新变比进行重新校核; (2)I scmax:最大短路电流; (3)R ct:二次绕组电阻;(同上) 当通过改变CT二次绕组接线方式调大CT变比时,应重新测量CT额定二次绕组电阻 (4)R b:CT实际二次负荷电阻(此处取实测值0.38Ω),当有实测值时取实测值,无实测值时可用估算值计算,估算值的计 算方法如下: 公式:R b = R dl+ R zz ——R dl:二次电缆阻抗; ——R zz:二次装置阻抗。 二次电缆算例: R dl=(ρl)/s =(1.75×10-8×200)/2.5×10-6 =1.4Ω ——ρ铜=1.75×10-8Ωm; ——l:电缆长度,以200m为例; ——s:电缆芯截面积,以2.5mm2为例; 二次装置算例:

电流互感器选配过大或者过小对计量精度有影响吗

电流互感器选配过大或者过小对计量精度有影响吗 Prepared on 22 November 2020

电流互感器选配过大或者过小对计量精度有影响吗是否有影响主要看以下两种情况: 1、电流互感器的一次额定电流选择过大,流过电度表的实际电流就偏小,只要实际电路不低于电度表的“起始” 电流值,计量精度就不受影响的。 2、电流互感器的一次额定电流选择过小,则大电流时容易造成电流互感器的铁芯磁饱和,而使计量误差增大,也容易产生较大的热量。 1、例如:实际的额定电流约 45 A 选择常用的 150 / 5 电流互感器,倍率是 30 倍。当满载时(45 A),二次电流为 45 A ÷ 30 倍= 1.5 A ,计量还是准确的。 2、例如:实际的额定电流约 200 A 选择常用的 150 / 5 电流互感器,就属于过载运行了,满载时容易造成电流互感器的铁芯磁饱和,计量误差增大,也容易产生较大的热量。 追问 第一个二次电流不超过5A计量就是准确的吗谢谢 追答 你好:计量电度表的额定电流为 5 A ,在 5 A 以内是准确的。 追问 谢谢,发布问题的时候忘写采纳奖励分数,我给你补上 追答 不用谢。 追问

那如果把互感器换成500/5又会怎么样 追答 你可以算一下倍率:500 / 5 是100 倍,如果还是 45 A 的实际电流,那么二次输出电流就只有 0.45 A 了,如果高于电度表的起始电流,计量就是正常的,低于电度表的起始电流值,电度表就有可能不转了。 电流互感器如果选型太大或太小造成的误差大吗 保护用电流互感器可数十倍过载,但是,精度很低。 测量用电流互感器一般可过载20%,过载20%以内能保证测量精度。过载量超过20%以后,精度下降,并且可能损坏电流互感器。 电流互感器选型过大的话,对精度会有一定的影响。普通互感器一般要求被测电流在额定电流的30%以上。S级电流互感器在5%以上都能获得较高的精度。 电流互感器的误差产生的原因是什么,如何减少误差 测量误差就是电流互感器的二次输出量I2与其归算到一次输入量I’1的大小不相等、幅角不相同所造成的差值。因此测量误差分为数值(变比)误差和相位(角度)误差两种。 产生测量误差的原因一是电流互感器本身造成的,二是运行和使用条件造成的。 电流互感器本身造成的测量误差是由于电流互感器又励磁电流Ie存在,而Ie是输入电流的一部分,它不传变到二次侧,故形成了变比误差。

电流互感器工作原理

电流互感器 1、原理 一次电流I 1流过一次绕组,建立一次磁动势 (N 1I 1),亦被称为一次安匝,其中N 1为一次绕组的匝数;一次磁动势分为两部分,其中小一部分用于励磁,在铁心中产生磁通,另一部分用来平衡二次磁动势(N 2I 2),亦被称为二次安匝,其中N 2为二次绕组的匝数。励磁电流设为I 0,励磁磁动势(N 1I 0),亦被称为励磁安匝。平衡二次磁动势的这部分一次磁动势,其大小与二次磁动势相等,但方向相反。磁势平衡方程式如下: 120121I N I N I N ? ? ? += 在理想情况下,励磁电流为零,即互感器不消耗能量,则有 12120I N I N ? ? += 若用额定值表示,则 1212 N N I N I N ? ? =- 其中1N I ? ,2N I ? 为一次、二次绕组额定电流。

额定一次、二次电流之比为电流互感器额定电流比,12N N N I K I = P 1 1I ? P 2 2 I ? Z B 电流互感器工作原理 E 2 11I N ? 22I N ? 22I N ? - 01I N ?

电流互感器的等值电路如下图所示: Z 1 Z 2 1 I ? 2I ? ? Z M 2U ? Z B ' 1 E ? 2E ? 根据电工原理,励磁电流在铁心中建立主磁通,它穿过一次、二次绕组的全部线匝。由于互感器铁心有磁滞和涡流损耗,励磁电流的一部分供给这些损耗,称为有功部分,另一部分用于励磁,称为无功部分。所以励磁电流与主磁通相差角,这个角称为铁损角。主磁通在二次绕组中感应出电动势2E ? ,相位相差90(滞后);则: 222()B E I Z Z ? ? =+ 式中 Z 2---二次绕组的内阻抗, Z 2= R 2 +jX2

相关主题
文本预览
相关文档 最新文档