当前位置:文档之家› bopp电晕处理原理

bopp电晕处理原理

bopp电晕处理原理
bopp电晕处理原理

聚丙烯薄膜具有耐热、耐化学腐蚀、质轻、绝缘性能优良和机械性能较好的特性,因而得到了广泛的应用,但PP高聚物不含极性基团、化学性质较为稳定,与其它亲水性基团结合困难,一般在投入使用前需预先进行表面处理,以适应工艺要求。用于BOPP薄膜表面处理主要是电晕处理法。这种方法效率高,可适用于生产,它主要使薄膜非极性的表面产生极性基团,使其浸润张力等方面发生变化,有利于蒸镀及印刷。实践证明经过电晕处理的BOPP膜在各项参数上均是较为优秀的。电晕的使用已有百余年的历史,但对其机理和化学变化过程只是近些年才被研究和确定下来,我们仅根据实际生产中电晕处理应用方面的若干问题作一探讨

2 原理

这里所说的电晕处理是一种在高电压下令电子加速离开电极,并撞击聚合物表面的一种过程。由于两极间的传导被阻断,使得处于电场中的气体因受电子碰撞后离子化浓度急剧增加,其主要反应过程如下:

一个氧分子+高能量电子→两个氧原子+低能量电子

2O+2O

2→2O

3

+热(两个氧原子和两个氧分子结合生成两个臭氧分子并放出热

能)

即:3O

2+电能→2O

3

+热(3个氧分子在电场中的电子的作用下生成两个臭氧

分子并产生部分热能)前式也可写成:

3O

2+M→2O

3

+M

式中M为空气中任何其它气体分子,如氮。它们也可受高能电子冲击离解为氮原子,并引发一系列反应,此处略去。在臭氧生成过程中,伴有弥散蓝紫色辉光的电晕现象,从而被称之为电晕。换言之,薄膜的电晕处理就是把薄膜置于电场中成为阻断传导的介质,在电场作用下,获得高能量,并激活其它离子或分子,同时把这种能量分配到薄膜上,在薄膜表面驻极,形成极性的化学自由基团,使薄膜表面产生悬挂键。在这一过程中,高能电子碰撞空气中的氧分子、氮分子、水分子等,伴之发生氧化—还原反应,并产生臭氧和氮氧化物等。由于臭氧具有强烈的氧化性,当它接触到聚丙烯薄膜表面时,会在其表面毫微米发生复杂的有机反应,产生羟基(-OH)、羧基(-COOH)、羰基(> C=O)等。而这些含氧官能团的引入,是增加薄膜表面张力的关键所在。因此,通过氧化,不仅可以改良薄膜表面张力,还可以提高薄膜表面的可蒸镀性和可印刷性。

3 问题

在BOPP膜的生产中,薄膜的处理是一项较为复杂的工艺,它涉及到化工工艺、机械设备和电控等多方面的知识,对它的调整和控制需相当精细,稍有不慎,就可能造成薄膜在后道工序中的脱落、处理不均、运行不平稳、隐性条纹等多方面的质量问题,根据我们在生产中使用的情况来看,下述比较常见的几个问题,是应当引起我们重视和研究的:

(1)电晕处理站的设备和调整状态

(2)膜面温度和空气相对湿度对电晕处理的影响

(3)电晕处理中电晕强度和处理时间

(4)电晕处理辊和电极平行

(5)膜运行的平稳性

(6)薄膜发脆走偏问题

(7)辊面的污染

4 讨论

4.1 电晕处理站的设备配置和调整状态

4.1.1 理想的电晕处理是电机的作业频率正确,输出电压和电流值适中,放电过程有规律,这样才能得到好的处理效果。

4.1.2 电晕处理辊与电极之间的间隙大小必须保持一致,亦即两者之间既要有一定的距离又要相互平行,这样才能使膜表面处的场强相同,产生均匀的电晕处理。一般二者的间隙在1.5~2.5mm。

4.1.3 调整好电晕处理辊与其它牵引辊之间的平行度和电晕处理辊上压辊压力的均匀性,这样才能使膜在运行中平稳,不至于在电晕辊上发生起皱和斜扯,保持得到均匀的、足够的电晕量。

4.2 膜面温度和空气相对温度对电晕处理的影响

在电晕处理的过程中,膜面温度和空气相对湿度是影响它的两个显著的变量。

随着空气相对湿度和膜面温度的增大所需电晕处理的时间就越长,也即薄膜越不容易被电晕处理。这是因为当空气中相对湿度增大时,空气中水分子的含量增大,而电晕过程中产生的臭氧可溶于水,在常温常压下,臭氧在水中的溶解度比氧约高13倍,比空气高25倍。由于臭氧浓度的下降,使含氧官能团在膜面生成及驻极的机会大大减小,从而降低电晕处理的效果。随着膜面温度的增高,使驻极分子的稳定性变差,表面分子迁移的比例增大,不利于膜面的高表面能区域的形成,部分抵消了通过电晕增加薄膜表面张力的作用。但另一方面,根据实际生产中的经验,膜面的温度也并非越低越好。在生产中,电晕处理过程会产生大量的热。为防止膜面温度过高,通常我们采用循环水辊内进行闭式循环,并增加一套加热装置使冷却水保持一定的温度。过低的温度会使膜面的分子在极化和发生化学变化时基本能量不足,也会造成膜面表面张力不足的问题,所以,把电晕处理辊处的膜面温度控制在适当的温度范围内是电晕处理的一个关键问题,这也是我们在长期生产中摸索发现的。

4.3 电晕处理中电晕强度和处理时间的控制

在生产中,为了使薄膜表面张力的处理达到某一等级,通常采用的方法是增加电晕处理的强度,在一定界限内,这种方法是行之有效的,当超过这一界限后,即使再增加电晕,也不会使薄膜表面能等级得到提高,这是因为当膜在瞬时进行电晕处理过程中,电极与电晕辊之间的空气量处于一种相对稳定状态,而这相对稳定空气量中的氧气分子含量是一定的,即使提高电极的电压和电流值,也不能激活更多的氧分子,使更多的含氧官能团驻极到薄膜表面,达到提高薄膜表面能的目的。

一般说来,电晕处理的时间越长,表面能也会越高。但是,一方面在固有设备的条件下,延长电晕处理时间,必然会降低生产效率;另一方面,过长的电晕处理时间,会使薄膜表面张力太大,出现脆化现象乃至降解,不利于膜的一次收

卷和二次复卷。

4.4 电晕处理辊和电极平行

辊面和电极面的不平行会导致电晕处理不均,原因是电晕强度有差异,由下式

电晕强度=P/W.V

式中:P——电晕装置放电功率,W;

W——膜宽,m;

V——膜速,m/min;

从上式看出,电晕强度正比于电晕放电功率,而电晕放电的功率方程式为:

P=4C

d V

s

f[V

-(C d+C g/C d)V s]

式中:C d——介电体电容,F;

C

g

——放电间隙电容,F;

V

——驱动电压(峰值),V;

V

s

——间隙发火电压(峰值),V;

f——驱动电压频率,Hz。

由上式显见,间隙大小不一,直接导致单位面积上的放电功率不均,由于各处电晕的差异,最终影响浸润张力的一致性。

4.5 膜运行的平稳性

如果膜在运行中,辊筒施加于膜上的张力的不一致,这种差异会发生局部皱折,使该部位在电晕处理时电容量发生变化,最终也会导致浸润张力的不均匀。

除上述辊筒同步有差异外,还有电晕处理辊上的夹辊和电晕处理辊到后扩展辊对膜的扩展,以及辊与辊之间平行度、辊面水平度等,均有可能导致薄膜运行姿态的不够平稳。

4.6 薄膜发脆走偏问题

电晕处理中,要有一个度的问题,如果注入功率过大,则会出现水温提得过高,影响到薄膜分子间的次价键力而出现发脆,即影响薄膜的使用,又使卷制电容器时边缘无法卷齐,只得以降低速度来完成卷制任务,从而给电容器的制作工艺造成不利。

4.7 废液污染问题

电晕处理过程中,由于两极间施加高压,产生的电子对两极间空气中的分子进行碰撞和激活,产生臭氧及一氧化氮等物质,在一定的温度下,由于它们的亲水性,会与空气中的水分子相结合,产生含有亚硝酸盐、硝酸盐成份的废液,并且随着空气湿度的增加而增加。如果对产生的废液不能及时进行很好的清理,在排出管道或电极罩壳中存留下来,就可能流滴到辊面,并随着辊的转动而造成膜面污染,造成薄膜局部浸润张力降低、附着不牢等,形成产品质量问题。

5 结论

在BOPP膜的生产过程中,电晕处理是非常重要的一个环节,它直接关系到后面的蒸镀,直接关系到电容器电容量稳定性和使用寿命,所以我们在电晕处理时应做到:

(1)高质量的高频高电压输出设备、精密的机械调整和严格的设备运转;

(2)绝对控制电晕处理所处环境的空气相对湿度,要经常检测记录,对于膜

面温度进行适当的调整,同时还要监测环境温度对它的影响;

(3)根据生产不同规格PP膜和不同的运行速度,给出一定电晕处理电压值,对于处理的薄膜表面张力达不到等级的情况,应从影响电晕处理的因素去查找,而不是一味地增加处理强度。

(4)对于处理时间的把握,应奉行既要发挥生产线的效率,又不能影响膜的卷制性能的原则。

(5)在废液的处理上,应保证电晕处理吸风系统的通畅,使含氮元素的气体能及时排除,另一方面,需根据空气的相对湿度大小,不定期地对辊面进行清洁。

总之,BOPP膜的电晕处理是一项复杂的工艺,本文更多的关注在于应用电晕处理时对其过程进行探讨,而不集中于对关键性的数据进行展开分析,但它却在正确使用和帮助了解这门复杂工艺的过程中提出了可供研究的思考,这也正是作者的目的所在

电晕处理工艺中的注意事项

电晕处理工艺中的注意事项 目前,电晕处理工艺的应用越来越多,高密度聚乙烯外护管通过对内壁进行在线电晕处理,提高了外护管内壁与保温层的粘接力,使直埋式预制保温管中的钢管、聚氨酯保温层和聚乙烯外护管到达三位一体的结构。 下面我们来了解一下在电晕处理的工艺过程中,我们要注意哪些方面: 工艺控制要点 1、处理电压。施加于处理装置上的电压升高,薄膜的粘附性提高,但不成比例,当处理电压升高到一定值后,基本上不再变化。处理电压主要根据制品厚度来确定,制品越厚,处理电压越高。通常用于薄膜的处理电压控制在10000~20000伏。 2、处理程度。薄膜的处理程度将直接影响后加工的质量,必须严格控制。若处理程度不够,薄膜的润湿性没有明显改善,会出现油墨的附着性差,胶粘带的粘着性差,复合薄膜剥离力小等毛病。反之,若处理程度过头,会出现薄膜表层老化,光泽变差;表面分子过多交联,热封性变差;薄膜容易粘连(特别是夏季高温天),出现分切等加工困难,使用时难以揭开等毛病。总之,处理程度控制原则为:在满足后加工要求的前提下,尽可能降低处理程度,避免不必要的过度处理。常用临界表面张力来检测处理程度。 3、处理间隙。它是指两电极中的空间距离,即放电头到地电极边缘的空间距离。它对处理程度影响有两方面,一方面间隙增大,电晕处理范围变宽,薄膜在电晕处相对停留时间变长,有利于改善处理效果;但另一方面,使能量分散到更大的空间,处理强度下降,处理效果变差,两方面作用的结果,只有在适当的处理间隙下,处理程度才会最好。通常处理间隙控制在1~2毫米之间为宜。 另外,将单头电极改为多头电极,在同样的处理条件下,也能提高处理程度。 4、处理功率(电流)。它是决定处理程度的主要因素,为了达到薄膜印刷、复合所需的临界表面张力值,必须施加一定的处理功率。由于处理速度,薄膜种类、经历、宽度等不同,施加的处理功率也不同。印刷、涂布和复合用薄膜的处理功率为处理速度25米/分,薄膜宽度0.4米,热膜处理的最低功率。如果处理速度增加1倍,处理功率也应增加1倍。冷膜处理的功率至少比热膜大1倍。以上也可作为选购电晕处理机大小的依据。 处理装置可以看作是一个带损耗介质的电容器,当输入电源的频率升高时,电流就增加,功率就增大,反之则降低。电晕处理机就是通过调节电源频率来改变功率的大小。 5、其他。温度也会影响处理程度。温度升高,处理程度加深。在实际生产中,如果电晕处理功率小,处理程度不够,可在处理装置前设置经外辐射灯(指冷膜处理),以提高处理程度。因为电晕放电是在空气中进行,因此,空气温度也将影响处理程度。空气温度大(如南方的梅雨季节),处理效果往往不太理想。处理后的时效影响

防静电知识培训

防静电知识培训 培训时间:2009年5月16日 培训地点:项目部办公室 参加人员:项目部全体工程师 中国通信建设第三工程局有限公司 潮州项目部

在生活中经常会碰到静电放电现象,特别在干燥的冬天,衣服,头发都极易带上静电,但在生产与电气操作中,防护静电特别重要,处理不好,会破坏设备,搞乱生产,甚至造成大灾难。所以了解以及掌握静电知识十分重要。 一、静电的产生、放电与引燃 1、静电产生的原因 cΩ.cm,因其本身具有较好的导电性能,静电将很快泄漏。但如汽油、苯、乙醚等,它们的电阻率都在1011-1014Ω.cm,都很容易产生和积累静电。因此,电阻率是静电能否积聚的条件。物质的介电常数是决定静电电容的主要因素,它与物质的电阻率同样密切影响着静电产生的结果,通常采用相对介电常数来表示。 2、产生静电的几种形式 A.接触起电 接触起电可发生在固体-固体、液体-液体或固体-液体的分界面上。气体不能由这种方式带电,但如果气体中悬浮有固体颗粒或液滴,则固体颗粒或液滴均可以由接触方式带电,以致这种气体能够携带静电电荷。B.破断起电 不论材料破断前其内部电荷分布是否均匀,破断后均可能在宏观范围内导致正负电荷分离,产生静电。这种起电称破断起电。固体粉碎、液体分裂过程的起电都属于破断起电。 C.感应起电 导体能由其周围的一个或一些带电体感应而带电。任何带电体周围都有

电场,电场中的导体能改变周围电场的分布,同时在电场作用下,导体上分离出极性相反的两种电荷。如果该导体与周围绝缘则将带有电位,称感应带电。导体带有电位,加上它带有分离开来的电荷。因此,该导体能够发生静电放电。 D.电荷迁移 当一个带电体与一个非带电体相接触时,电荷将按各自导电率所允许的程度在它们之间分配,这就是电荷迁移。当带电雾滴或粉尘撞击在固体上(如静电除尘)时,会产生有力的电荷迁移。当气体离子流射在初始不带电的物体上时,也会出现类似的电荷迁移。 3、影响静电产生的因素 静电产生受物质种类、杂质、表面状态、接触特征、分离速度、带电历程等因素的影响。 A.物质种类 相互接触的两种物体材质不同时,界面双电层和接触电位差亦不同,起电强弱也不同。在静电序列中相隔较远的两种物体相接触产生的接触电位差较大。 B.杂质 一般情况下,混入杂质有增加静电的趋向。但当杂质的加入降低了原有材料的电阻率时,则有利于静电的泄漏。由于静电产生多表现为界面现象,所以,当固体材料表面被水及其污物污染时会增强静电。 C.表面状态 表面粗糙,使静电增加;表面受氧化也使静电增加。

电晕处理容易出现地问题以及注意事项

电晕处理容易出现的问题以及注意事项 1原理 本文所述的电晕处理是一种在高电压下令电子加速离开电极,并撞击聚合物表面的一种过程。由于两极间的传导被阻断,使得处于电场中的气体因受电子碰撞后离子化浓度急剧增加,其主要反应过程如下:O2+高能量电子→2O+低能量电子 2O+2O2→2O3+热 即:3O2+电能→2O3+热 前式也可写成: 3O2+M→2O3+M 式中M为空气中任何其它气体分子,如氮。它们也可受高能电子冲击离解为氮原子,并引发一系列反应,此处略去。在臭氧生成过程中,伴有弥散蓝紫色辉光的电晕现象,从而被称之为电晕。换言之,薄膜的电晕处理就是把薄膜置于电场中成为阻断传导的介质,在电场作用下,获得高能量,并激活其它离子或分子,同时把这种能量分配到薄膜上,在薄膜表面驻极,形成极性的化学自由基团,使薄膜表面产生悬挂键。在这一过程中,高能电子碰撞空气中的氧分子、氮分子、水分子等,伴之发生氧化—还原反应,并产生臭氧和氮氧化物等。由于臭氧具有强烈的氧化性,当它接触到聚丙烯薄膜表面时,会在其表面毫微米发生复杂的有机反应,产生羟基(-OH)、羧基(-COOH)、羰基(> C=O)等。而这些含氧官能团的引入,是增加薄膜表面张力的关键所在。因此,通过氧化,不仅可以改良薄膜表面张力,还可以提高薄膜表面的可蒸镀性和可印刷性。

电晕处理设备一般包括了一个高频高压发生器和一个附带金属电极和支持卷轴的电晕处理站。它们互相平行,并以一个1.5mm的空气间隙作为分隔。当电晕处理站输入20~40kHz或数千伏高电压时,电极间便会产生放电现象,在薄膜表面形成均匀火花。 2讨论 4.1电晕处理站的设备配置和调整状态 4.1.1理想的电晕处理是电机的作业频率正确,输出电压和电流值适中,放电过程有规律,这样才能得到好的处理效果。 4.1.2电晕处理辊与电极之间的间隙大小必须保持一致,亦即两者之间既要有一定的距离又要相互平行,这样才能使膜表面处的场强相同,产生均匀的电晕处理。一般二者的间隙在1.5~2.5mm。 4.1.3调整好电晕处理辊与其它牵引辊之间的平行度和电晕处理辊上压辊压力的均匀性,这样才能使膜在运行中平稳,不至于在电晕辊上发生起皱和斜扯,保持得到均匀的、足够的电晕量。 4.2膜面温度和空气相对湿度对电晕处理的影响 在电晕处理的过程中,膜面温度和空气相对湿度是影响它的两个显著的变量。 随着空气相对湿度和膜面温度的增大所需电晕处理的时间就越长,也即薄膜越不容易被电晕处理。这是因为当空气中相对湿度增大时,空气中水分子的含量增大,而电晕过程中产生的臭氧可溶于水,在常温常压下,臭氧在水中的溶解度比氧约高13倍,比空气高25倍。由于臭氧浓度的下降,使含氧官能团在膜面生成及驻极的机会大大减小,从而降低电晕处理的效果。随着膜面温度的增高,使驻极分子的稳定性变差,表面分子迁移

电晕处理和原理

电晕处理于BOPP薄膜加工上的应用 下面是电晕原理 摘要:本文主要对电晕处理在BOPP加工上的测试、控制以及对薄膜性能的影响等几方面进探讨。重点讨论了影响电晕处理效果的因素,包括有电极类型、薄膜温度、生产线速度、电极排风量、表面材料和表面材料等几方面。另外就薄膜的摩擦系数、收缩率和热封强度等方面的物理性能与电晕处理的关系进行了探讨。 关键词:BOPP薄膜;电晕处理;测试;控制;薄膜性能 BOPP在应用于食品、挂历、画册、胶粘带等时,往往需要进行印刷、涂层、粘合等操作,由于聚丙烯材料本身的表面张力值相对偏低,仅为31达因,而在应用于上述几方面时,一般要求薄膜单面表面张力强度在38达因以上,因此,在生产BOPP时往往需要对薄膜进行表面处理,提高其表面张力,改善聚合物的粘接性和润湿性,以满足使用的要求。 常用的表面处理方式有两种:一为电晕处理;另一为火焰处理。电晕处理的原理是薄膜经过有高压存在的两电极间,高压使电极间的空气发生电离,使电极间产生电子流,在薄膜表面形成氧化极化基,使薄膜表面产生极性,便于印刷油墨吸附;火焰处理是用特指的喷灯,燃烧一定组成和配比的煤气和空气,形成温度高达2100~2800℃的氧化火焰,来达到在瞬间改变薄膜表面性能的目的,在实际处理过程中,火焰的温度、火焰与薄膜之间的距离和处理时间是影响处理效果的重要因素。在实际应用上,由于电晕处理简便易行,处理效果好,因此在BOPP的设备生产厂家基本上都采用这一方式。以下是对电晕处理在BOPP加工上的测试、控制以及对薄膜性能的影响等几方面进探讨。 1.1 BOPP薄膜电晕处理强度的测定 通常用于BOPP薄膜的表面张力的测试办法是涂液法,其原理是利用甲酰胺和乙二醇乙酯两种液体按不同比例进行混合,得到一系列不同达因值的测试液(见表一),操作时,将测试液涂拭在薄膜表面上,于2秒钟液面破裂的测试液所对应的达因值即表示薄膜电晕处理强度。 作为三层共挤的烟膜,其表层主要成份是具有自粘合的聚丙烯共聚物,目前国内外常用的BOPP热封材料主要有聚丙烯无规二元共聚物(乙烯/丙烯共聚物)如SOWAY KS413、Montel PLZ697、CHISSO XF7511等,无规三元共聚物(丙烯/乙烯/丁烯共聚物)如Solvay KS309、Sumitomo SP89 E-1、Montel EP3C39F以及混合物(三元共聚物与丁烯的混合物)如Schulman IS2739 ,这三种热封材料各具特点,它们对烟膜的热封性能具有不同的影响。

测定薄膜受电晕处理后澳达达因笔测试原理

测定薄膜受电晕处理后澳达达因笔测试原理 澳达达因笔,又名表面张力测试笔、电晕处理笔、及塑料薄膜表面张力检测笔。是薄膜表面电晕度(达因)的测试工具,专门用于测定薄膜受电晕处理后的效果。 澳达达因笔使用方法 使表面张力测试笔垂直于薄膜平面,加上适当的压力,在薄膜表面上画一条线.量程稍小的表面张力测试笔较易画上直线,因此不须太大压力;而40、42、44的表面张力测试笔需在画线时多加一点压力。一般情况下,初次测试为保测量的准确度,需备6支不同型号的表面张力测试笔;若确定薄膜表面张力度数字变化极小,则至少需要3支不同型号的表面张力测试笔。 澳达达因笔测试原理 应用表面张力测试笔,能够很容易的分析出不同固体的表面能、亲水性、润湿度等微小变化。分析方法简单且有效,仅在基材表面上划一道痕就能迅速知道准确结果。这是专为生产线的测试而设计的,由工厂经过培训的操作者进行。 测试时,应选择一个中间值来作起点,如38mN/m,测试时,如果在2秒内测试笔湿了基材表面,则基材表面张力比所选值要大或正好,那么须要选一更大值的测试笔进行第二次测试,如此类推,直到测试结果在2秒内改缩成水珠(球状),则这次测试之前一次的值就被视为基材的表面能。并以此作比较分析用。 如果第一次测试就收缩成水珠(球状),则换上数值更小的测试笔进行第二次测试,直到表面湿为止。这种方法能准确测出基材的表面张力、表面湿力并判定工作前基材表面因素是否符合要求以便调整到工作所需。

澳达达因笔分析结果 1、已经适当电晕处理的薄膜若画线很平均地分布,不起任何珠点,则说明该薄膜表面达因,高于或等于表面张力测试笔上所标出的指数。 2、没有适当电晕处理的薄膜若画线慢慢地收缩,则说明该薄膜表面达因,低于表面张力测试笔上所标出的指数。 3、没有电晕处理的薄膜若画线立即收缩,并且形成珠点,则说明该薄膜表面达因,极低于表面张力测试笔所标出的指数。 在工业性实践中,塑料表面能量(表面张力)的测定是通过测试油墨按照DIN ISO 8296,是以已知不同表面能量的墨在拟测的薄膜上刷上约100mm长的墨条,并观察其90%以上的墨条边在2秒钟内是否发生收缩并形成墨滴,如有,则换低一级表面能的墨再刷墨条,进行同样的观察,直至不收缩和出现墨滴,此测试墨的表面能即相对应为该薄膜的表面能。这种方法能准确测出基材的表面张力、表面湿力并判定工作前基材表面因素是否符合要求以便调整油墨、涂层、粘度到工作所需。

CPU工作原理经典

CPU的原始工作模式 在了解CPU工作原理之前,我们先简单谈谈CPU是如何生产出来的。CPU是在特别纯净的硅材料上制造的。一个CPU芯片包含上百万个精巧的晶体管。人们在一块指甲盖大小的硅片上,用化学的方法蚀刻或光刻出晶体管。因此,从这个意义上说,CPU正是由晶体管组合而成的。简单而言,晶体管就是微型电子开关,它们是构建CPU的基石,你可以把一个晶体管当作一个电灯开关,它们有个操作位,分别代表两种状态:ON(开)和OFF(关)。这一开一关就相当于晶体管的连通与断开,而这两种状态正好与二进制中的基础状态“0”和“1”对应!这样,计算机就具备了处理信息的能力。 但你不要以为,只有简单的“0”和“1”两种状态的晶体管的原理很简单,其实它们的发展是经过科学家们多年的辛苦研究得来的。在晶体管之前,计算机依靠速度缓慢、低效率的真空电子管和机械开关来处理信息。后来,科研人员把两个晶体管放置到一个硅晶体中,这样便创作出第一个集成电路,再后来才有了微处理器。 看到这里,你一定想知道,晶体管是如何利用“0”和“1”这两种电子信号来执行指令和处理数据的呢?其实,所有电子设备都有自己的电路和开关,电子在电路中流动或断开,完全由开关来控制,如果你将开关设置为OFF,电子将停止流动,如果你再将其设置为ON,电子又会继续流动。晶体管的这种ON与OFF的切换只由电子信号控制,我们可以将晶体管称之为二进制设备。这样,晶体管的ON状态用“1”来表示,而OFF状态则用“0”来表示,就可以组成最简单的二进制数。众多晶体管产生的多个“1”与“0”的特殊次序和模式能代表不同的情况,将其定义为字母、数字、颜色和图形。举个例子,十进位中的1在二进位模式时也是“1”,2在二进位模式时是“10”,3是“11”,4是“100”,5是“101”,6是“110”等等,依此类推,这就组成了计算机工作采用的二进制语言和数据。成组的晶体管联合起来可以存储数值,也可以进行逻辑运算和数字运算。加上石英时钟的控制,晶体管组就像一部复杂的机器那样同步地执行它们的功能。 CPU的内部结构 现在我们已经大概知道CPU是负责些什么事情,但是具体由哪些部件负责处理数据和执行程序呢? 1.算术逻辑单元ALU(Arithmetic Logic Unit) ALU是运算器的核心。它是以全加器为基础,辅之以移位寄存器及相应控制逻辑组合而成的电路,在控制信号的作用下可完成加、减、乘、除四则运算和各种逻辑运算。就像刚才提到的,这里就相当于工厂中的生产线,负责运算数据。 2.寄存器组 RS(Register Set或Registers) RS实质上是CPU中暂时存放数据的地方,里面保存着那些等待处理的数据,或已经处理过的数据,CPU访问寄存器所用的时间要比访问内存的时间短。采用

[论文]CPU的内部结构与工作原理

[论文]CPU的内部结构与工作原理CPU的内部结构与工作原理 1.CPU的内部结构与工作原理 CPU是Central Processing Unit,,中央处理器的缩写,它由运算器和控制器组成,CPU的内部结构可分为控制单元,逻辑单元和存储单元三大部分。CPU的工作原理就象一个工厂对产品的加工过程:进入工厂的原料(指令),经过物资分配部门(控制单元)的调度分配,被送往生产线(逻辑运算单元),生产出成品(处理后的数据)后,再存储在仓库(存储器)中,最后等着拿到市场上去卖(交由应用程序使用)。 2.CPU的相关技术参数 (1)主频 主频也叫时钟频率,单位是MHz,用来表示CPU的运算速度。CPU的主频,外频×倍频系数。很多人以为认为CPU的主频指的是CPU运行的速度,实际上这个认识是很片面的。CPU的主频表示在CPU内数字脉冲信号震荡的速度,与CPU实际的运算能力是没有直接关系的。当然,主频和实际的运算速度是有关的,但是目前还没有一个确定的公式能够实现两者之间的数值关系,而且CPU的运算速度还要看CPU 的流水线的各方面的性能指标。由于主频并不直接代表运算速度,所以在一定情况下,很可能会出现主频较高的CPU实际运算速度较低的现象。因此主频仅仅是CPU 性能表现的一个方面,而不代表CPU的整体性能。 (2)外频 外频是CPU的基准频率,单位也是MHz。外频是CPU与主板之间同步运行的速度,而且目前的绝大部分电脑系统中外频也是内存与主板之间的同步运行的速度,

在这种方式下,可以理解为CPU的外频直接与内存相连通,实现两者间的同步运行状态。外频与前端总线(FSB) 频率很容易被混为一谈,下面的前端总线介绍我们谈谈两者的区别。 (3)前端总线(FSB)频率 前端总线(FSB)频率(即总线频率)是直接影响CPU与内存直接数据交换速度。由于数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率,即数据带宽,(总线频率×数据带宽)/8。外频与前端总线(FSB)频率的区别:前端总线的速度指的是数据传输的速度,外频是CPU与主板之间同步运行的速度。也就是说, 100MHz外频特指数字脉冲信号在每秒钟震荡一千万次;而100MHz前端总线指的是每秒钟CPU可接受的数据传输量是 100MHz×64bit?8Byte/bit=800MB/s。 (4)倍频系数 倍频系数是指CPU主频与外频之间的相对比例关系。在相同的外频下,倍频越高CPU的频率也越高。但实际上,在相同外频的前提下,高倍频的CPU本身意义并不大。这是因为CPU与系统之间数据传输速度是有限的,一味追求高倍频而得到高主频的CPU就会出现明显的“瓶颈”效应——CPU从系统中得到数据的极限速度不能够满足CPU运算的速度。 (5)缓存 缓存是指可以进行高速数据交换的存储器,它先于内存与CPU交换数据,因此速度很快。L1 Cache(一级缓存)是CPU第一层高速缓存。内置的L1高速缓存的容量和结构对CPU的性能影响较大,不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。一般L1缓存的容量通常在32,256KB.

电晕处理是一种电击处理

电晕处理是一种电击处理,它使承印物的表面具有更高的附着性。其原理是利用高频率高电压在被处理的塑料表面电晕放电(高频交流电压高达5000-15000V/m2),而产生低温等离子体,使塑料表面产生游离基反应而使聚合物发生交联.表面变粗糙并增加其对极性溶剂的润湿性-这些离子体由电击和渗透进入被印体的表面破坏其分子结构,进而将被处理的表面分子氧化和极化,离子电击侵蚀表面,以致增加承印物表面的附着能力。 国家专利产品电晕放电设备适用于硅橡胶、塑胶和其他材料的表面前处理,目前运用在真空电镀、真空镀膜、溅镀、PVD、物理气相沉积、印刷、移印丝印特印、粘和、涂层等动作前处理,产品如:手机外壳、手机按键、P+R按键、笔记本电脑、汽车灯、汽车内饰件、眼镜片、家用电器、化妆品包装容器、洗涤用品包装容器、各类材质板材和薄膜、纸张、织物、人造革、金属,用于喷漆喷涂印刷前处理。我们承诺杜绝剥落。电晕机就是利用高频高压的电源对所处理的塑料、纸张、编织袋等表面进行处理,增加了处理表面的极性基团,从而有利于涂胶、复合、印刷等工艺要求。 电晕机是干什么用的?主要是用于哪些行业的? 数码型系列薄膜表面电晕处理机,在包装行业俗称电晕机、电子冲击机、电火花机。在学术上被称为介质阻挡放电。 适用范围:处理各种均质薄膜材料。如:塑料薄膜、金属板材、金属薄膜、真空镀铝膜等; 主要用途:印刷、吹膜、复合、涂布、金属膜的电晕处理及均质高分子薄膜材料改性、接枝、聚合等。 电晕机处理会产生静电吗 电晕处理时会产生磁力,高压放电都会有的,从而带有很强的静电, 一般来说:以1米幅宽、厚度0.074mm、线速度100米/分钟的LDPE薄膜过双面电晕为例:所需的电晕功率为1.95kw (要求表面张力为45dyn/cm时),一台30KW的电晕机可以做到、一台2.5KW的电晕机(电晕机的效率是81%-85%左右)同样可以做到,并不存在大机比细机好的问题,但却存在浪费资源与电力损耗问题(无论用电量还是机价,细机会比大机节约好几倍),你愿意用一台合适的设备来作为生产所需还是宁愿浪费资源去买一台大机呢?当然,材料越厚、幅宽越大,线速度越快、所需的电晕机的功率就越大,但有一点请记住:电晕处理只是要对材料作表面处理,通过处理,让材料的表面润湿性和附着性改善而已,材料厚度的增加只会影响电子的穿透能力,使处理效果下降、而增大电晕机的功率或电子输出量,并不能使电晕机的输出电压增加,所以如果因为材料太厚而导致电晕处理效果不理想的话,最好是选择有升压功能或通过测试确定输出电压可符合要求的电晕机、问题就可解决 聚合物的电晕放电处理方法1、引言: a.一般物质存在三态,固态、液态和气态。等离子体状态时物质的第四态,等离子体是1928年由Langmuir命名的,它由 几乎相同的电子密度的带正电荷的颗粒和带负电荷的电子组成,整体式电中性的,获得等子体状态的最简单方式是在气体状 态下诱导放电; b.电晕放电处理是一种等离子体处理,等离子体可大致分为两大类:平衡和非平衡的等离子体,这些非平衡等离子体常用于 化学应用,又称为低温等离子体或冷等离子体,它又可以分为两类:常规低压低温等离子体和大气压下电晕放电,其中前者广泛应用于材料表面的化学改性,特别是在半导体工业和聚合物上; c.流动放电时最广泛制备低温等离子体的应用技术,这种方法的典型实例为CASING(用惰性气体的活性种交联)技术,放 电产生的活性气体物质与待处理的聚合物表面反应并诱发交联,如果样品放置在电极之间,样品的表面将受到高温电子的轰 击和活性气体的攻击,采用的电极类型可分为容量型(电容器)和诱导型(电感线圈),与使用的各种电源(直流电、商用 交流电及高频率)对应; 2、试验结果: a.电晕放电处理的主要优点是不需要真空系统,设备投资比常规低温等离子体装置低很多,因而电晕处理在早期用作改善聚 合物表面的润湿和印刷性能; b.电晕放电处理主要用于聚烯烃的表面处理,如改善聚乙烯的自粘性,此外,在氧或含氧气体的电晕处理中发现形态的变化,表面粗糙度和树枝的大小随处理时间增加,粘接前木材表面经过电晕处理后与聚乙烯或聚苯乙烯的热粘接性能得到改善; c. 电晕放电处理时,要掌握最佳处理程度,过犹不及,另外冷却速率也会影响电晕放电处理的效果; 3、电晕处理机理:为解释电晕放电处理效果已经提出了两种理论:驻极体形成理论和化学变化理论: a.电中性的分子在同一分子中具有正电荷和负电荷,所有分子由于外部影响在材料的表面产生取向,表面存在正电荷或负电

电晕处理原理

电晕处理 电晕处理 电晕处理 From KeyinWiki 电晕处理是一种电击处理,它使承印物的表面具有更高的附着性。其原理是利用高频率高电压在被处理的塑料表面电晕放电(高频交流电压高达5000-15000V/m2),而产生低温等离子体,使塑料表面产生游离基反应而使聚合物发牛交联.表面变粗糙并增加其对极性溶剂的润湿忆-这些离子体由电击和渗透进入被印体的表面破坏其分子结构,进而将被处理的表面分子氧化和极化,离子电击侵蚀表面,以致增加承印物表面的附着能力。 电晕处理对塑料表面所产生的物理及化学影响是复杂的,其效果主要通过三方面来控制:①特定的电极系统,②导辊上的物介质,③特定的电极功率。 由于不同的化学结构有不同的原子键,所以对塑料电晕处理的效果也视塑料的化学结构而异。不同的塑料需要进行不同强度的电晕处理。实践证明:BOPP薄膜在生产后还会发生结构状态的变化,在几天内,聚合物由无定形变化成晶体形,从而影响电晕处理的效果。 经过电晕处理后,塑料表面层的交联结构比其内层的交联结构减少,因此其表面层的功能团有较高的移动性。所以,在储存中,不少塑料出现电晕处理效果的衰退,添加剂由内部向表面迁移,也是使表面能下降,影响附着力的因素,这种负面影响无法完全抑制。 实际上相对湿度也会影响电晕处理的效果,湿度是去极化剂,但一般来说由于影响并不严重,往往在测试误差范围之内,被忽略不计。如果采用连机电晕处理,则更可不必考虑。 电晕处理的日的是为了改变许多承印物的表面能量,使之易于同印刷油墨、涂布材料及胶粘剂相粘结。所有承印物在制造过程中进行一些处理之后便具有较好的粘着特性。电晕处理属于后期处理,需要指出的是电晕处理并不是在生产承印物时所能运用的改变承印物表面能的唯一处理法。其它处理方法包括火焰处理及涂布处理法。具体采用哪种处理法主要取决于承印物的结构。 许多人认为,电晕处理使承印物表面变得粗糙,从而易于吸附印刷油墨及胶粘剂,但是这种看法却被利用扫描电子显微镜得出的观察结果所否定。目前流行的理论认

电晕处理工艺

电晕处理工艺 一、工艺路线形式电晕处理的工艺路线大体上有3种形式。第一种形式是在薄膜的生产线上进行,即通常所说的热膜处理。这是最常见的一种形式。这种形式的特点,处理质量好,但一般只适用于当即进行再加工(如印刷、涂布或复合)的薄膜的处理。处理装置设置在薄膜冷却定型段后面、卷取装置之前。 第二种形式是在薄膜的再加工线上进行,即通常所说的冷膜处理。这种形式的处理质量还与薄膜的经历有关。若薄膜生产后存放时间长,析出的添加剂附在薄膜表面增多,处理质量就会变差。选用这种形式还应注意电火花是否会对所使用的溶剂产生着火的可能。处理装置设置在印刷(涂布或复合)装置之前。 第三种形式是上述两种形式的组合,即先在薄膜的生产线上进行处理,然后在薄膜的再加工线上进行第二次处理。它适用第一次处理质量差,或第一次处理后存放时间已长,处理效果已消退许多的薄膜。 二、生产操作电晕处理的操作非常简单,操作过程大体如下:(1)根据薄膜规格调整好处理装置的宽度(有的设备不用调)。(2)按规定走向,穿好薄膜。单面处理只需穿过一对电极;双面处理需要穿过两对电极。需要指出的是,印刷面或涂布面、复合面必须是电晕处理面(即朝放电头那面),若是两次电晕处理,第二次的处理面应是第一次的处理面。(3)待薄膜运行

后,开启电晕处理机电源。(4)调节电位器,对处理装置施加适宜的功率,使处理程度达到规定的要求。(5)卷取后,作好记录。若是单面处理,还应将处理面作好标记。(6)停止生产时,应先关电晕处理机电源。 最后需要特别强调两点:(1)必须在电晕处理机电源关掉的情况下,才能穿薄膜,否则,处理装置上的高压电会灼死人!(2)必须在薄膜运行状态下,才能启用电晕处理机电源,否则,电火花老打在一处,会损坏绝缘层或使薄膜有着火的危险。 三、工艺控制要点 1、处理程度。薄膜的处理程度将直接影响后加工的质量,必须严格控制。若处理程度不够,薄膜的润湿性没有明显改善,会出现油墨的附着性差,胶粘带的粘着性差,复合薄膜剥离力小等毛病。反之,若处理程度过头,会出现薄膜表层老化,光泽变差;表面分子过多交联,热封性变差;薄膜容易粘连(特别是夏季高温天),出现分切等加工困难,使用时难以揭开等毛病。总之,处理程度控制原则为:在满足后加工要求的前提下,尽可能降低处理程度,避免不必要的过度处理。常用临界表面张力来检测处理程度。 2、处理间隙。它是指两电极中的空间距离,即放电头到地电极边缘的空间距离。它对处理程度影响有两方面,一方面间隙增大,电晕处理范围变宽,薄膜在电晕处相对停留时间变长,有利于改善处理效果;但另一方面,使能量分散到更大的空间,处

单片机控制电晕处理机

单片机控制电晕处理机 发表时间:2008-12-17T16:11:00.653Z 来源:《中小企业管理与科技》供稿作者:王恩亮 [导读] 摘要:采用软件的硬件的抗干扰技术实现对电晕处理的控制,实现电晕处理机的启动,功率调节,断膜保护,放电架位置的检测保护控制,功率输出的自动控制调节。关键词:电晕处理机放电架高压变压器 摘要:采用软件的硬件的抗干扰技术实现对电晕处理的控制,实现电晕处理机的启动,功率调节,断膜保护,放电架位置的检测保护控制,功率输出的自动控制调节。 关键词:电晕处理机放电架高压变压器 0 引言 常用作包装材料的塑料种类主要是聚乙烯、聚丙烯、聚氯乙烯、聚对苯二甲酸乙二酯等,这些塑料表面张力都不大,特别是前两种塑料的表面张力更小,这导致了对其进行印刷、粘接效果不好。为了改善塑料包装材料的印刷性与粘接性,对其表面进行处理是一种有效办法。塑料包装材料表面改性的方法很多,常用的方法主要是电晕放电处理法、化学溶液处理法和火焰处理法。塑料薄膜表面电晕处理机是处理塑料薄膜表面的机器。电晕机一般使用在塑料生产线上,为了提高生产效率,生产线日夜连续工作,所以对电晕处理机的可靠性要求很高。在我国,电晕机生产厂家逐渐增多,产品功率也逐渐增大,部分大功率的塑料薄膜电晕处理机已经能够代替国外进口设备。 1 电晕处理的原理 电晕处理原理是通过在电极上施加高频高压电源(对于塑料薄膜表面处理来说,电压一般在10kV-13kV之间,频率在5kHz-30kHz左右),使电极放电,气体电离后产生的各种能量粒子(如正负离子、电子、光子等)在强电场的作用下,加速冲击处在电极之间的高聚物表面,使表层分子连接的化学键断裂而降解,增加表面的粗糙度。在电晕放电时,还会产生大量的臭氧,臭氧是一种强氧化剂,它能使高聚物表层分子链部分氧化,生成碳基化合物、氢基化合物和过氢化合物等。另外,电晕处理还有除去油污、水汽和尘垢的作用。 2 电晕处理机的结构 电晕处理机由三个基本部分组成,电源处理的主机部分,实现高频的大功率电流输出;高压高频变压器部分实现升压作用,输出高压高频的脉冲电流;放电架部分实现电极与辊筒的放电,对穿过放电极与辊筒之间的塑料薄膜进行电晕处理。主机部分将输入的单相交流220V或380V的交流三相电经过整流、逆变为高频500V左右(单相为300V左右)的输出脉冲。主机部分具体可分为整流电路、逆变电路和控制电路。整流部分通常为大功率整流桥将交流电整流为直流,采用大电容对波形进行处理以达到较好的直流波形。通过IGBT模块对直流输出进行逆变,通常可采用两种方法来调节输出功率,一种方法是采用调节输出脉冲的占空比,脉冲的频率固定;另一种方法是输出脉冲的有效宽度固定,通过调节脉冲的频率来实现调节功率的目的。本设计采用的是调节输出脉冲频率的方法调节输出功率,调节电路结构简单,易于操作,由于输出的脉冲频率在5KHZ-30KHZ之间变化,虽然对其它电气设备可能会有一定的干扰作用,但由于输出的频率范围较小且频率较低,对一般的电气设备不会造成较大干扰。 3 单片机控制电路的设计 控制电路部分采用单片机作为控制核心,结构简单且容易实现较为复杂的控制要求,能够实现断膜、辊筒停转、放电架未合到位的检测与保护。断膜信号、放电架未合信号通过单片机I/O端口电位的变化进行循环检测,而辊筒停转的信号通过检测电路以脉冲信号输入到单片机的引脚,检测单片机引脚的脉冲输入频率来检测滚筒的转动情况,通过单片机检测断膜、辊筒停转、放电架未合信号,实现电路的保护。同时通过温度检测元件DS18B20检测IGBT散热片的温度,实现对温度的监控,防止因IGBT模块发热导致温度升高而损坏。通过功率检测元件采样输出电流,并转换为电压信号,经滤波放大后通过A/D转换,单片机通过读取A/D转换结果检测实际功率的输出,实现功率的输出,同时通过检测结果与设定值的比较通过相应的计算,调整脉冲的输出频率实现控制输出功率的自动控制,输出的脉冲通过脉冲变压器与主电路进行隔离以实现对IGBT模块构成的全桥的开关控制,单片机内部保留CAN总线通信协议,如果整个生产过程采用上位计算机控制,则电晕处理机可以实现和上位机的通信,可以通过上位机实现对电晕处理机的控制及数据检测。 4 单片机实现控制的关键设计 由于单片机本身的抗干扰能力相对较差,因此实现单片机控制的稳定运行非常重要。由于在电晕处理过程中电压和频率较高,对于周围的电路容易造成一定的干扰作用,因此采取相应的软硬件措施提高单片机控制板的抗干扰作用是非常必要的。在电路的结构设计、印制电路板的设计、程序设计方面提高抗干扰能力十分重要。在控制电路板的电源设计上,采用线性电源分组供电,模拟信号、数字信号的输入/输出全部经过隔离处理,在元件的选择上采用抗干扰能力强,稳定性好的元件设计电路。在印制电路板的布局布线设计上,将模拟部分、数字部分分区域布局,高频、低频部分分开布局。在电源的使用上采用线性电源串联多级降压供电,市电经过变压器降压整流滤波后经过7812,7809,7805三级稳压元件串联稳压滤波后为单片机电路板独立供电,在电路板中各个集成电路电源引脚并联0.1μF瓷片电容,电源的稳定性很好。在实际电晕处理的过程中,及电晕处理开关的瞬间,对单片机控制电路板的电源不造成影响。由于电晕处理的电压和频率较高,在电晕处理过程中及电晕的开关瞬间对周围的空间产生的干扰较大,容易造成单片机进入死循环,导致单片机控制电路无法实现控制功能,因此在设计中必须避免单片机进入死循环而不能退出的情况出现。为单片机控制电路板增加屏蔽金属网,金属网接地。采用5045存储芯片的内部看门狗功能,当单片机一旦进入死循环,X5045检测不到单片机发出的连续低电平脉冲信号,则发出高电平脉冲复位信号而使单片机复位,单片机复位后读取X5045存储器某字节的内容与单片机中的数据储存器中某字节的内容进行比较以确认是开机上电复位还是异常造成的复位,如果是由于异常造成的复位,则立刻恢复单片机的各控制功能,在调试阶段以指示灯输出方式指示当前属于哪种方式的复位后运行;如果是单片机上电复制则进入正常的启动过程,而用户看来单片机控制电路一直正常稳定的运行。单片机输出的控制脉冲通过脉冲变压器隔离实现控制主电路中的IGBT导通与截止,主电路中的控制IBGT导通与截止电路布局对称以减小干扰。在编程部分,设置多个软件陷阱,当单片机的CPU取指令发生异常,进入软件陷阱区域则被软件陷阱捕获,设置异常复位标志,然后使单片机通过指令复位,复位后同样检测是否是开机上电复位,如果不是开机上电复位则恢复单片机的控制功能。而不使用的中断仍然编辑其相应的中断响应程序,使用中断返回指令“RETI”,当单片机因干扰错误的响应非正常中断响应时,执行“RETI”指令即可退出非正常中断响应。在对模拟量的采样过程中,进行多次采样,进行数字滤波处理后作为检测值,同时根据现场调节采用周期大小。 5 结论 通过采用单片机控制电路代替原来的数字电路实现电晕处理机的控制功能,通过使用各种抗干扰措施,电晕处理机能够长期稳定的运

提高油墨附着力的电晕处理基础知识

提高油墨附着力的电晕处理基础知识 电晕处理是广泛用于对塑料、纸张及金属箔作表面处理以改进油墨、油漆;连接剂及涂料的附着力。它被广泛采用的原因是效果好、能控制及便于掌握。尤其是因为电晕处理设备的效率及作用不断改进,与高产的加工设备保持着同步并进。 一、可湿性与附着力 电晕处理是改变不少非吸收性基材表面特性的一种有效手段,能使油墨有更好的湿润及附着性能,即所谓可湿性,这就是诸如油墨、底胶、涂料等对塑料、纸张或金属箔附着的基础。可湿性决定一种液体在一种固体表面上的展延性。水滴在亲水性表面就展延成一薄水层,而在亲油性表面却形成小水滴。水滴外表层的切线与固体表面间所形成的接触角(夹角),即表示该表面润湿性能的强弱,接触角越大,润湿性能越差。润湿性视化学组成及表面结构而异。对塑料进行印刷或烫箔时,塑料表面的可湿性必须比油墨或箔的可湿性高,否则其展延、转移及附着均会发生困难。几种聚合物的表面性能大致如下: 聚乙烯(PE)31-33mN/m 聚丙烯(PP)29-30mN/m 涤纶聚酯(PET) 4142mN/m 通常用作油墨溶剂的表面能为;乙醇22mN/m、醋酸乙酯24mN/m,而水为72mN/m,就难以湿润塑料,所以水基油墨一般不用来印塑料。 塑料是一种复合物质,含一种或多种聚合物及多种添加剂,如填充料、抗氧化剂、润滑剂、抗静电剂、颜料等。虽然塑料的主体聚合物的化学结构(基团)决定油墨或底胶的可湿性和附着力,但其添加剂会从塑料内部向表面迁移,而影响塑料的表面能。所以,塑料存放的时间越长,或某些添加剂的含量(如润滑剂)越高时,其表面能的变化也越大。故塑料在印刷前还需对其表面能进行测试,并作电晕处理,以免发生转移或附着力不足的问题。一般来说,20-40千赫的中频处理大多就可以了。特殊处理(如复杂的产品)则可采用特定的电极进行处理。 UV油墨比溶剂性油墨要求塑料薄膜有更高的表面能,水基油墨系统含醇量高的也要求较高的表面能力,而且要求在狭的范围内,才能有好的附着力。 以不同类型油墨印聚乙烯时;要求聚乙烯的表面能不低于如下: 溶剂型油墨38-42mN/m UV油墨42-46mN/m 水溶性墨42-48mN/m 水基墨38-42mN/m 对聚乙烯上涂料肘,要求聚乙烯的表面能不低于如下: 溶剂型胶38-42mN/m uV,涂料42-46mN/m 乳剂42-48mN/m 无溶剂胶粘剂4448mN/m 二、可湿性和附着力的测试 在工业性实践中,聚合物表面能的测定是通过测试油墨按照DINIS08296或ASTMD2578-99a来进行的。

薄膜电晕处理电气原理(ME.RO)(中文)

指令如何设置启动了发生器 给基板端子的端子LL-L2-L3,在发生器的内部,以在发生器的背面的标签上指示的电压。 为最大输入使用合适的供电电缆。 替换上高压变压器油盖,检查水平。拆卸在变压器的高压输出的保护和连接供给到绝缘子的高压电缆。 高电压连接的另一端的一个电极,在放电站或,如果它存在,在高电压开关根据附在技术文件图纸 N.B.开展一次接地连接从发生器排放站到排辊。 调节电极与绝缘辊2-3mm之间的放电间隙的站。 检查电极是完全在轴与绝缘 特德卷。? 连接到控制(BMS)根据附带的图表排出站的发生器和的终端。已经开展了,你可以继续在发生器开关的连接。 这是不可取把发生器开在最大功率期间的机器的开关接通相位,因为有可能是在放电站上工作的残基,它们可以是潮湿的,因而可能会导致电气接地放电。 开关“ON”,在做这件事,本身就应该点亮的开关和表冠的效果可以看出放电站上。检查治疗的水平,根据所需的治疗调节功率。运作的原理 来自发生器的框图,它可以看出,它基本上由3个部分: 整流器级其将交替线电压转换成 持续可变电压。? 逆变器(逆变器),其转换成连续的电压来自。,整流阶段成正弦电压具有自动可变频率从16到20KHz的根据的电极的长度,排出辊的绝缘和各种能力的分布在自然界卸货站。 戒严电压变压器,其增加了逆变器电压交流科丁获得的气隙上电极,因此冠效应电离。

对于以下的描述指的是发生器的框图。 交流线电压被施加到端子RST和由IN1开关的手段,向自耦变压器TR1从而降低了线路电压250伏。 该电压,通过熔断器FL-F2-F3和CN1被施加到三相半由电源模块SL-S2-S3的整流器控制桥构成的接触: 这个桥把交流线电压转换成的一种方式,脉冲电压:一个扼流IM4和一个电容器组成的滤波器C11级别它续流二极管回收扼流圈目前1M4在SL-S2-S3模块的关断阶段。 命令电路MC.R4确保来自整流器相的输出电流,根据在“功率控制”的设定值被调节和稳定化,(5,TO14,5-安培。最小的最大输出功率)保护的桥从任何过载,由整流器,飞轮的输入电流的高电压变压器的最大为300-350,放大器的装置限制了稳压器的输出电压到最高290-300伏,极限。 逆变器是由/晶闸管TH1-TH2,快速二极管D5,D6中,扼流圈 1M5-1M6和电容器C15-C16。 二极管ES TH1-TH2交替带入扼流圈传导,从电路MC-13的冲动。 次级高压变压器与电极和各种能力的分布在卸货站的容量绕组一起形成一个谐振电路,它围绕振荡为20KHz的频率和表示所述逆变器的负载的共振(频率主要取决于放电电极的表面上:,因而改变所述电极的长度将改变运作频率和发生器的负载)。 晶闸管与扼流圈的主要形式的谐振电路具有C15或C16的扼流的1M5或1M6和半一起烧成。 在D5-D6二极管功能恢复diodes.The负荷,因此兴奋与晶闸管TH1电流脉冲,并交替从恢复二极管D6,可控硅TH2和二极管05。 电阻R10-R11一起与电容器C17-C18的来自两个滤波器的RC来限制对DV\DT上的二极管TH1和TH2。 变阻器VR1和VR2吸收电压的任何短暂尖峰可能损坏二极管。

CPU组成

CPU组成 中央处理单元(Central Processing Unit;CPU),亦称微处理器(Micro Processor Unit),由运算器与控制器组成,其内部结构分为控制单元(Control Unit;CU)、逻辑单元(Arithmetic Logic Unit;ALU)、存储单元(Memory Unit;MU)三部分,各部件相互协调,进行分析、判断、运算并控制计算机各组件工作。 一、内核 ●运算器 运算器是计算机的处理中心,主要由算术逻辑单元(Arithmetic and Logic Unit;ALU)、浮点运算单元(Floating Point Unit;FPU)、通用寄存器和状态寄存器组成。 算术逻辑单元主要完成二进制数据的定点算术运算(加减乘除)、逻辑运算(与或非异或)及各种移位操作。 浮点运算单元主要负责浮点运算和高精度整数运算。 通用寄存器用来保存参加运算的操作数和运算的中间结果。 状态寄存器在不同机器中有不同规定,程序中,状态位通常作为转移指令的判断条件。 ●控制器 控制器是计算机的控制中心,决定了计算机运行过程的自动化。它不仅要保证程序的正确执行,而且要能够处理异常事件。控制器一般包括指令控制器、时序控制器、总线控制器、中断控制器等几个部分。 1)指令控制器完成取指令、分析指令和执行指令的操作。 2)时序控制器要为每条指令按时间顺序提供应有的控制信号。 时序控制器包括时钟发生器和倍频定义单元,其中时钟发生器由石英晶体振荡器发出稳定的脉冲信号,即CPU的主频;而倍频定义单元则定义CPU主频是存储器频率(总线频率)的几倍。 一般时钟脉冲就是最基本时序信号,是整个机器的时间基准,称为主频。执行一条指令所需时间叫做一个指令周期,不同指令的周期有可能不同。一般为便于控制,根据指令的操作性质和控制性质不同,会把指令周期划分为几个不同的阶段,每个阶段就是一个CPU周期。早期,CPU同内存速度差异不大,所以CPU周期通常和存储器存取周期相同。后来,随着CPU的发展,速度远高于存储器,于是常将CPU周期定义为存储器存取周期的几分之一。 3)总线控制器是为多个功能部件服务的信息通路的控制电路。 就CPU而言一般分为内部总线和CPU对外联系的外部总线,外部总线又叫系统总线、前端总线(FSB)等,包括地址总线、数据总线、控制总线等。 4)中断控制器指计算机由于异常事件,或随机发生需立即外理事件,引起CPU暂时停止当前程序执 行,转向另一服务程序以处理当前事件,处理完成后返回原始程序的过程。 由机器内部产生的中断,称做陷阱(内部中断),由外部设备引起的中断叫外部中断。 二、外核 1.解码器(Decode Unit) x86CPU特有设备,作用是把长度不定的x86指令转换为长度固定的指令,交由内核处理。解码分为硬件解码和微解码,对于简单的x86指令只要硬件解码即可,速度较快,而遇到复杂的x86指令则需要进行微解码,并把它分成若干条简单指令,速度较慢且很复杂。 2.一级缓存和二级缓存(Cache) 一级缓存和二级缓存是为了缓解较快的CPU与较慢的存储器之间的矛盾而产生,一级缓存通常集成在CPU内核,而二级缓存则是以OnDie或OnBoard的方式以较快于存储器的速度运行。对于一些大数据交换量的工作,CPU的Cache显得尤为重要。 三、指令系统 指令系统指的是一个CPU所能够处理的全部指令的集合,是一个CPU的根本属性,因为指令系统决定了一个CPU能够运行什么样的程序。我们常说的CPU都是X86系列及兼容CPU ,所谓X86指令集是美国Intel 公司为其第一块16位CPU(i8086)专门开发的,虽然随着CPU技术的不断发展,Intel陆续研制出更新型的i80386、i80486直到今天的Pentium4系列,但为了保证电脑能继续运行以往开发的各类应用程序以保护和继承丰富的软件资源(如Windows系列),Intel公司所生产的所有CPU仍然继续使用X86指令集。另外除Intel 公司之外,

相关主题
文本预览
相关文档 最新文档