当前位置:文档之家› 超滤纳滤反渗透膜实验室膜分离卷式膜小试设备1812D产品说明书用于小型试验

超滤纳滤反渗透膜实验室膜分离卷式膜小试设备1812D产品说明书用于小型试验

超滤纳滤反渗透膜实验室膜分离卷式膜小试设备1812D产品说明书用于小型试验
超滤纳滤反渗透膜实验室膜分离卷式膜小试设备1812D产品说明书用于小型试验

典型超纯水工艺流程设计方案

典型超纯水工艺流程设 计方案 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

1纯化水工艺设计方案:(产水水质标准达到的标准:中国药典2005版纯化水标准) 自来水→预处理→一级反渗透→一级EDI→UV杀菌→超滤除热原设备→用水 自来水→预处理→一级反渗透→二级EDI→UV杀菌→超滤除热原设备→用水 2注射用水工艺设计方案:(产水水质标准达到的标准:中国药典2005版注射用水标准) 自来水→预处理→一级反渗透→一级EDI→微滤→多效蒸馏除热原设备→用水 自来水→预处理→一级反渗透→二级EDI→微滤→超滤除热源设备→用水 3电厂高压锅炉给水工艺设计方案(产水水质标准达到的标准:工业锅炉水质GB1576-2001) 自来水→预处理→一级反渗透→脱气装置→二级EDI→微滤→用水 自来水→预处理→一级反渗透→脱气装置→PH调节→二级反渗透→一级EDI→微滤→用水 4微电子/半导体级超纯水工艺设计方案(产水水质标准达到的标准:中国电子工业部高纯水水质试行标准) 自来水→预处理→一级反渗透→脱气装置→二级EDI→UV杀菌装置→超滤→用水 自来水→预处理→一级反渗透→脱气装置→PH调节→二级反渗透→一级EDI→抛光混床→UV杀菌装置→超滤→用水 5实验室用分析级纯水工艺设计方案(产水水质标准达到的标准:分析级实验室用水标准 GB6682-2000) 自来水→预处理→一级反渗透→二级EDI→UV杀菌装置→超滤→用水 自来水→预处理→二级反渗透→一级EDI→UV杀菌装置→超滤→用水 进水电导率在400~1000μs/cm的含EDI设备的典型超纯水工艺流程设计方案 1纯化水工艺设计方案:(产水水质标准达到的标准:中国药典2005版纯化水标准) 自来水→预处理→一级反渗透→二级EDI→UV杀菌→微滤→用水 自来水→预处理→一级反渗透→脱气装置→PH调节→二级反渗透→一级EDI→UV杀菌→微滤→用水 2注射用水工艺设计方案:(产水水质标准达到的标准:中国药典2005版注射用水标准) 自来水→预处理→二级反渗透→一级EDI→多效蒸馏除热源设备→用水 自来水→预处理→一级反渗透→二级EDI→UV杀菌装置→超滤除热源设备→用水 3电厂高压锅炉给水工艺设计方案(产水水质标准达到的标准:工业锅炉水质GB1576-2001) 自来水→预处理→一级反渗透→脱气装置→PH调节→二级反渗透→一级EDI→混床→微滤→用水自来水→预处理→一级反渗透→脱气装置→二级EDI→微滤→用水 4微电子/半导体级超纯水工艺设计方案(产水水质标准达到的标准:中国电子工业部高纯水水质试行标准) 自来水→预处理→一级反渗透→脱气装置→二级EDI→抛光混床→UV杀菌装置→超滤→用水

RO反渗透方案及操作说明

1.反渗透简介 1-1 膜法分离分类 膜法液体分离技术一般可分四类:微滤(MF)截留微米之间颗粒;超滤(UF) 截留微米之间颗粒;纳滤(NF)能截留1纳米(微米)而得名;和反渗透(RO),反渗透能阻挡所有溶解性盐及分之量大于100的有机物,但允许水分子透过。反渗透广泛用于海水及苦咸水淡化,锅炉给水,工业纯水及电子级超纯水制备,饮用纯净水生产,废水处理及特种分离等过程,在离子交换前使用反渗透可大幅度地降低超作费用和废水排放量。被视为最精密的膜法液体分离法。 1-2反渗透原理 我们知道渗透是指稀溶液中的溶剂(水分子)自发地透过半透膜进入浓溶液(浓水)侧的溶剂(水分子)流动现象。在溶液自然渗透的过程中,浓溶液侧液面不断升高,稀溶液侧液面相应降低。直到两侧形成的水柱压力抵消了溶剂分子的迁移,溶液两侧的液面不再变化,渗透过程达到平衡点,此时的液柱高度差称为该溶液的渗透压。反渗透原理是:若我们在浓溶液侧施加压力克服自然渗透压,当高于自然渗透压的操作压力施加于浓溶液侧时,水分子自然渗透的流动方向就会逆转,进水(浓溶液)中的水分子部分通过膜成为稀溶液侧的凈化水。RO主机就是以反渗透原理为基础进行水质纯化的。(请参照下图) 反渗透在运行过程中,水流以一定速度横向流过膜管的同时,由于压力存在的原因,纯水纵向透过反渗透膜而进入集水层,从中心集水管排出。而浓缩高浓度水横向流过膜管,从排水管路排走。 1-3 影响反渗透膜性能的因素 1-3-1 基本定义 1)回收率:指膜系统中给水转化成为产水时透过液的百分率。膜系统的设计是基于预设的进水水质而定的,设置在浓水阀可以调节并设定回收率。回收率常常希望最大化以便获得最大产水量,但是应该以膜系统内不会因盐类等杂质的过饱和发生沉淀为它的极限置。 2)脱盐率:通过渗透膜从系统进水中除去总可溶性的杂质浓度的百分率,或通过膜脱除特定组份如

反渗透膜分离制高纯水实验

一、实验目的: (1)熟悉反渗透法制备超纯水的工艺流程; (2)掌握反渗透膜分离原理及操作技能; (3)了解测定反渗透膜分离的主要工艺参数; (4)掌握利用电导法确定盐浓度的方法。 二、实验原理 工业化应用的膜分离包括微滤(Microfiltration,MF)、超滤(Ultrafiltration, UF)、纳滤(Nanofiltration, NF)、反渗透(RO)、渗透汽化(Pervaporation, PV)和气体分离(Gas Separation, GS)等。根据分离对象和要求,选用不同的膜过程。 图1 膜截留示意图 反渗透膜通常认为是表面致密的无孔膜,可截留1-10?小分子物质,反渗透膜能截留水体中绝大多数的溶质。反渗透净水就是以压力为推动力,利用反渗透膜只能透过水而不能透过溶质的选择透过性,从含有多种无机物、有机物和微生物的水体中,提取纯净水的物质分离过程。其原理如图1。 图2 反渗透与渗透现象 如图(a)所示,用半透膜将纯水与咸水分开,则水分子将从纯水一侧通过膜向咸

水一侧透过,结果使咸水一侧的液位上升,直到某一高度,此所谓渗透过程。如图(b)所示,当渗透达到动态平衡状态时,半透膜两侧存在一定的水位差或压力差,此为指定温度下溶液的渗透压N。如图(c)所示,当咸水一侧施加的压力P大于该溶液的渗透压N,可迫使渗透反向,实现反渗透过程。此时,在高于渗透压的压力作用下,咸水中水的化学位升高,超过纯水的化学位,水分子从咸水一侧反向地通过膜透过到纯水一侧,使咸水得到淡化,这就是反渗透脱盐的基本原理。 通常,膜的性能是指膜的物化稳定性和膜的分离透过性。膜的物化稳定性的主要指标是:膜材料、膜允许使用的最高压力、温度范围、适用的PH范围,以及对有机溶剂等化学药品的抵抗性等。膜的分离透过性指在特定的溶液系统和操作条件下,脱盐率、产水流量和流量衰减指数。根据膜分离原理,温度、操作压力、给水水质、给水流量等因素将影响膜的分离性能。 三、实验内容 反渗透膜是实现反渗透的过程的关键,要求具有较好的分离透过性和物化稳定性。反渗透膜的分离透过性可用以下几个参数来描述: 1.溶质分离率(脱盐率)R 式中, 2.溶剂透过速率(水通量)J w 式中,

反渗透设备原理,反渗透水处理系统工程工艺流程

奥凯〖反渗透设备〗概述; Okay reverse osmosis water treatment equipment(inverse)with high selectivity for reverse osmosis membrane element desalination rate can be high up to99.7%.So the choice of high salt rejection rate,low osmotic pressure,high flux membrane, can be the most salt ions removal from water. Ro(reverse osmosis)is a kind of pressure driven by a semipermeable membrane, the selection of interception function,the solution of the solute and solvent separation separation method.They are widely used in various liquid separation and concentration.Water treatment process,water,inorganic ion,bacteria,virus, organic matter and colloid and other impurities are removed,to obtain a high quality water. 奥凯反(逆)渗透水处理设备采用选择性较高的反渗透膜元件除盐率可以高达99.7%。所以选择脱盐率高,低渗透压力,高通量的膜,可以将水中的大部分的盐离子去除。 反渗透(逆渗透)是一种在压力驱动下,借助半透膜的选择截留作用,将溶液中的溶质与溶剂分开的分离方法。目前被广泛的应用于各种液体的分离与浓缩。水处理工艺中,将水中无机离子、细菌、病毒、有机物及胶质等杂质去除,以获得高质量的水。 奥凯〖反渗透设备〗原理: Ro(reverse osmosis)technology:reverse osmosis is REVERSE OSMOSIS,it is the United States of America NASA set international scientists,in support of the government,to spend billions of dollars,after many years of research into.Reverse osmosis principle is applied in water on one side than the natural osmotic pressure greater pressure,so that the water molecules from the high concentrations of a reverse osmosis to the low concentration of a party.Due to the reverse osmosis membrane pore size is much smaller than a virus and bacterial hundreds of times or even thousands of times,so a variety of viruses,bacteria,heavy metal,solid solubles,organic pollution,such as calcium and magnesium ions cannot pass reverse osmosis membrane,so as to achieve the purpose of purifying water quality softening. Reverse osmosis membrane of the epidermis is covered with many very fine pores of the membrane,the membrane surface selective adsorption of a layer of water molecules, salt solute is membrane rejection,higher valence ion exclusion of more distant, film hole surrounding water molecules in reverse osmosis pressure role,through the membrane of the capillary effect of water and salt to reach out.RO membrane pore size< 1.0nm,thus can remove at least one bacterium Pseudomonas aeruginosa (specifically10-10m3000influenza virus(800),specifically for10-10m), meningitis,virus(10-10m200specifically for various viruses,can even remove pyrogen

反渗透膜分离设备的技术优势

反渗透膜分离设备的技术优势 2020年8月27日

为保证我国经济的可持续发展,缓解当代水资源短缺,大力发展海水淡化技术产业来解决淡水资源问题已迫在眉睫。传统的方法具有很多劣势。而膜分离具有高效节能、选择性好、无相态和化学变化及可以在常温下操作等优点,是继蒸馏法后的又一项重要技术。主要包括反渗透膜法、电渗析法和纳滤膜法。这里主要介绍目前使用广泛的反渗透膜法。 反渗透膜分离设备法是一种高效节能技术,它是利用选择性半透膜,孔径为0.1—1nm,通常运行切割的分子量<500,能截留盐或小分子量有机物,使水通过。较之传统的蒸馏法,具有起动产水迅速、尺寸紧凑、重量轻、全电力操作能耗少、性能稳定、不用防结垢化学剂,操作过程中,无需相变、无需热液等优点。更加节能,工程造价和运行成本持续降低,其发展速度远远快于蒸馏法。但其缺点是操作压力大,膜组件易受到污染,进料液浓度有限制以及浓缩液的二次污染等问题。 德兰梅勒反渗透膜分离技术,简称RO技术。反渗透技术是近几年来才在我国发展起来的一项现代高新技术。按各种物料的不同渗透压,对某种溶液使用大于渗透压的反渗透方法,达到对溶液进行分离提取、纯化和浓缩的目的。反渗透设备技术是当今节能、效率高的膜分离技术。 德兰梅勒利用膜分离技术为生物制药、食品饮料、发酵行业、农产品深加工、植物提取、石油石化、环保水处理、空气除尘、化工等行业提供分离、纯化、浓缩的综合解决方案,满足不同客户的高度差

异化需求。帮助客户进行生产工艺的上下游技术整合与创新,帮助企业节省投资、降低运行费用、减少单位消耗、提供产品质量、清洁生产环境,助力企业产业升级。

纳滤反渗透膜分离

纳滤反渗透膜分离实验指导书

纳滤反渗透膜分离实验 一、实验目的 1.了解膜的结构和影响膜分离效果的因素,包括膜材质、压力和流量等。 2.了解膜分离的主要工艺参数,掌握膜组件性能的表征方法。 二、基本原理 2.1膜分离简介 膜分离是以对组分具有选择性透过功能的膜为分离介质,通过在膜两侧施加(或存在)一种或多种推动力,使原料中的某组分选择性地优先透过膜,从而达到混合物的分离,并实现产物的提取、浓缩、纯化等目的的一种新型分离过程。其推动力可以为压力差(也称跨膜压差)、浓度差、电位差、温度差等。膜分离过程有多种,不同的过程所采用的膜及施加的推动力不同,通常称进料液流侧为膜上游、透过液流侧为膜下游。 微滤(MF)、超滤(UF)、纳滤(NF)与反渗透(RO)都是以压力差为推动力的膜分离过程,当膜两侧施加一定的压差时,可使一部分溶剂及小于膜孔径的组分透过膜,而微粒、大分子、盐等被膜截留下来,从而达到分离的目的。 四个过程的主要区别在于被分离物粒子或分子的大小和所采用膜的结构与性能。微滤膜的孔径范围为0.05~10μm,所施加的压力差为0.015~0.2MPa;超滤分离的组分是大分子或直径不大于0.1μm 的微粒,其压差范围约为0.1~0.5MPa;反渗透常被用于截留溶液中的盐或其他小分子物质,所施加的压差与溶液中溶质的相对分子质量及浓度有关,通常的压差在2MPa左右,也有高达10MPa的;介于反渗透与超滤之间的为纳滤过程,膜的脱盐率及操作压力通常比反渗透低,一般用于分离溶液中相对分子质量为几百至几千的物质。 2.2纳滤和反渗透机理 对于纳滤,筛分理论被广泛用来分析其分离机理。该理论认为,膜表面具有无数个微孔,这些实际存在的不同孔径的孔眼像筛子一样,截留住分子直径大于孔径的溶质和颗粒,从而达到分离的目的。应当指出的是,在有些情况下,孔径大小是物料分离的决定因数;但对另一些情况,膜材料表面的化学特性却起到了决定性的截留作用。如有些膜的孔径既比溶剂分子大,又比溶质分子大,本不应具有截留功能,但令人意外的是,它却仍具有明显的分离效果。由此可见,膜的孔径大小和膜表面的化学

反渗透设备的工艺流程

反渗透设备是将原水经过精细过滤器、颗粒活性碳过滤器、压缩活性碳过滤器等,使较高浓度的水变为低浓度水,洁净度几乎达到100%,所以人们称这种产水机器为反渗透纯水设备。 目前这种净水设备的应用非常广泛,下面跟大家介绍一下反渗透设备的工艺流程。 1.原水罐 储存原水,用于沉淀水中的大泥沙颗粒及其它可沉淀物质,同时缓冲原水管中水压不稳定对水处理系统造成的冲击,如水压过低或过高引起的压力传感的反应。 2.原水泵 恒定系统供水压力,稳定供水量。 3.多介质过滤器 采用多次过滤层的过滤器,主要目的是去除原水中含有的泥沙、铁锈、胶体物

质、悬浮物等颗粒在20um以上的物质,可选用手动阀门控制或者全自动控制器进行反冲洗、正冲洗等一系列操作。保证设备的产水质量,延长设备的使用寿命。 4.活性炭过滤器 系统采用果壳活性炭过滤器,活性炭不但可吸附电解质离子,还可进行离子交换吸附。经活性炭吸附还可使高锰酸钾耗氧量(COD)由15mg/L(O2)降至2~7mg/L(O2),此外,由于吸附作用使表面被吸附复制的浓度增加,因而还起到催化作用、去除水中的色素、异味、大量生化有机物、降低水的余氯值及农药污染物和除去水中的三卤化物(THM)以及其它的污染物。同时,设备具有自我维护系统,运行费用很低。 5.离子软化系统/加药系统 R/O装置为了溶解固体形物的浓缩排放和淡水的利用,为防止浓水端特别是RO装置最后一根膜组件浓水侧出CaCO3, MgCO3, MgSO4, CaSO4, BaSO4, SrSO4, SiSO4的浓度积大于其平衡溶解度常数而结晶析出,损坏膜原件的应有特性,在进入反渗透膜组件之前,应使用离子软化装置或投放适量的阻垢剂阻止碳酸盐,SiO2,硫酸盐的晶体析出. 6.精密过滤器 采用精密过滤器对进水中残留的悬浮物、非曲直粒物及胶体等物质去除,使RO系统等后续设备运行更安全、更可靠。滤芯为5um熔喷滤芯,目的是把上级过滤单元漏掉的大于5um的杂质除去。防止其进入反渗透装置损坏膜的表面,从而损坏膜的脱盐性能。

纳滤反渗透膜分离实验上课讲义

纳滤反渗透膜分离实 验

化工原理实验报告学院:专业:班级:

三、实验装置 本实验装置均为科研用膜,透过液通量和最大工作压力均低于工业现场实际使用情况,实验中不可将膜组件在超压状态下工作。主要工艺参数如表1-1 膜组件膜材料膜面积/m2最大工作压力/Mpa 纳滤(NF)芳香聚纤胺0.4 0.7 反渗透(RO) 芳香聚纤胺0.4 0.7 表1-1膜分离装置主要工艺参数 反渗透可分离分子量为100级别的离子,学生实验常取0.5%浓度的硫酸钠水溶液为料液,浓度分析采用电导率仪,即分别取各样品测取电导率值,然后比较相对数值即可(也可根据实验前做得的浓度-电导率值标准曲线获取浓度值)。 图1-1膜分离流程示意图 1-料液灌;2-低压泵;3-高压泵;4-预过滤器;5-预过滤液灌;6-配液灌;7-清液灌; 8-浓液灌;9-清液流量计;10-浓液流量计;11-膜组件;12-压力表;13-排水阀

图1 电导率与溶液浓度关系曲线 电导率与溶液浓度模型:C= 0.6253k - 0.0195 式中k为电导率,单位ms/cm;C为溶液浓度,单位×10-3g/cm3。 ① 原料液浓度C0=0.6253*6.07-0.0195=3.776071*10-3(g/cm3)=0.026584561 kmol/m3 透过液浓度C P=0.6253*0.13-0.0195=0.061789*10-3(g/cm3)=0.000435011 kmol/m3 浓缩液浓度C R=0.6253*6.99-0.0195= 4.351347*10-3(g/cm3)= 0.030634659 kmol/m3 ② 原料液浓度C0=0.6253*5.95-0.0195= 3.701035*10-3(g/cm3) =0.026056287 kmol/m3 透过液浓度C P=0.6253*0.07-0.0195=0.024271*10-3(g/cm3) =0.000170874 kmol/m3 浓缩液浓度C R=0.6253*7.26-0.0195= 4.520178*10-3(g/cm3) =0.031823275 kmol/m3 (2)膜组件性能表征: 利用公式:

反渗透膜分离制高纯水实验报告

反渗透膜分离制高纯水实验报告 反渗透(Reverse Osmosis, RO )技术是20世纪60年代发展起来的以压力为驱动力的膜分离技术,它借助外加压力的作用使溶液中的溶剂透过半透膜而阻留某些溶质,是一种分离、浓缩和提纯的有效手段。由于反渗透技术具有无相变、组件化、流程简单、操作方便、耗费低等特点,在诸多水处理技术中,反渗透被认为是最先进的方法之一,发展十分迅速,已广泛应用于海水、苦咸水淡化、工业污水处理、纯水和超纯水制备领域。高纯水主要在电子工业、医药工业以及实验室分析使用,按国标GB/T11446.1-1997规定, 电子级水分为四级,即EW-I 、EW-II 、EW-III 和EW-IV ,其电阻率指标分别为≥18cm M ?Ω、≥15cm M ?Ω、≥12cm M ?Ω、≥0.5cm M ?Ω。

一.实验目的 (1)熟悉反渗透法制备超纯水的工艺流程; (2)掌握反渗透膜分离原理及操作技能; (3)了解测定反渗透膜分离的主要工艺参数; (4)掌握利用电导法确定盐浓度的方法。 二.实验原理 工业化应用的膜分离包括微滤(Microfiltration,MF)、超滤(Ultrafiltration, UF)、纳滤(Nanofiltration, NF)、反渗透(RO)、渗透汽化(Pervaporation, PV)和气体分离(Gas Separation, GS)等。根据分离对象和要求,选用不同的膜过程。 图1 膜截留示意图 反渗透膜通常认为是表面致密的无孔膜,可截留1-10?小分子物质,反渗透膜能截留水体中绝大多数的溶质。反渗透净水就是以压力为推动力,利用反渗透膜只能透过水而不能透过溶质的选择透过性,从含有多种无机物、有机物和微生物的水体中,提取纯净水的物质分离过程。其原理如图1。 图2 反渗透与渗透现象 如图(a)所示,用半透膜将纯水与咸水分开,则水分子将从纯水一侧通过膜向咸水一侧透过,结果使咸水一侧的液位上升,直到某一高度,此所谓渗透过程。如图(b)所示,当渗透达到动态平衡状态时,半透膜两侧存在一定的水位差或压力差,此为指定温度下溶液的渗透压N。如图(c)所示,当咸水一侧施加的压MF UF NF R O 分散 颗粒 高分 子 离解 酸 二价盐、 糖 未离解 酸 一价盐

反渗透水处理技术主要工艺及基本指标

反渗透水处理技术主要工艺及基本指标 一、反渗透设备基本原理 RO反渗透技术是一种高科技水处理技术,它依靠反渗透膜在压力下使溶液中的溶剂和溶质分离的特性工作。“渗透”是一种物理现象,逆渗透就是在含有盐及各种细微杂质的水中(即原水)施加比自然渗透更大的压力,使水从浓度高的一方逆渗透到浓度低的一方,而原水中绝大多数的细微杂质、有机物、重金属、细菌、病毒及其它有害物质等都经污水出口排放掉。 二、反渗透设备标准工艺流程图 三、反渗透纯水设备主要工艺流程说明 1.原水罐(可选) 储存原水,用于沉淀水中的大泥沙颗粒及其它可沉淀物质。同时缓冲原水管中水压不稳定对水处理系统造成的冲击。(如水压过低或过高引起的压力传感的反应)。 2.原水泵 恒定系统供水压力,稳定供水量。 3.多介质过滤器

采用多次过滤层的过滤器,主要目的是去除原水中含有的泥沙、铁锈、胶体物质、悬浮物等颗粒在20um以上的物质,可选 用手动阀门控制或者全自动控制器进行反冲洗、正冲洗等一系列操作。保证设备的产水质量,延长设备的使用寿命。 4.活性炭过滤器 系统采用果壳活性炭过滤器,活性炭不但可吸附电解质离子,还可进行离子交换吸附。经活性炭吸附还可使高锰酸钾耗氧量(COD)由15mg/L(O2)降至2~7mg/L(O2),此外,由于吸附作用使表面被吸附复制的浓度增加,因而还起到催化作用、去除水中的色素、异味、大量生化有机物、降低水的余氯值及农药污染物和除去水中的三卤化物(THM)以及其它的污染物。可选用手动阀门 控制或者全自动控制器进行反冲洗、正冲洗等一系列操作。保证设备的产水质量,延长设备的使用寿命。同时,设备具有自我维护系统,运行费用很低。 5.离子软化系统/加药系统 R/O装置为了溶解固体形物的浓缩排放和淡水的利用,为防止浓水端特别是RO装置最后一根膜组件浓水侧出现 CaCO3,MgCO3,MgSO4,CaSO4,BaSO4, SrSO4, SiSO4的浓度积大于其平衡溶解度常数而结晶析出,损坏膜原件的应有特性,在进入

超滤+反渗透

超滤+反渗透

三期脱盐水操作要点 一.超滤 1.1投运前检查工作 1.1.1 原水箱液位高于1.2米,原水箱出口门打开。 1.1.2 仪表及擦洗用储气罐压力高于0.4MPa。 1.1.3原水泵、超滤反洗水泵就地出入口门开关正常;超滤与原水泵对应关系已选择; 超滤反洗水泵、次氯酸钠加药泵已保证至少一台在主用位置。 1.2 超滤运行 1.2.1 投运时点击所要投运超滤的程控启动按钮,所选超滤自动投运,启动相关泵及阀 门;停运时点击手动停止按钮,所选超滤自动停运,停运相关泵并关闭阀门。1.2.2 超滤运行过程中注意调节原水泵频率,一般在25-35HZ间调节。使超滤进水流量 控制在170-190t/h。 1.2.3 超滤采用错流运行,回收率约90%。回收率通过错流手动门调节。 1.2.4 超滤多套运行,其中一套进入正洗时,该套超滤进水流量会变大,若进水流量超 过200t/h则需通过正洗手动门限制流量,防止超滤过流。 1.2.5 超滤进水压力应小于0.4 MPa,反洗压力小于0.2MPa,跨膜压差(TMP)小于 0.1MPa。跨膜压差计算公式:(进水+浓水)/2—产水 1.2.6 超滤应在反洗后的正洗步序进行停运操作。好处:膜刚进行进气反洗正洗操作, 膜表面干净;该步正洗加杀菌剂,防止停运超滤滋生微生物。 1.2.7 超滤累计运行48次后进行CEB操作,一般原则两次碱一次酸。Ceb及酸碱频率 可根据运行情况适度调整(如压差、进水铁离子等)。 1.2.8 超滤在前三台投运时,超滤与原水泵一一对应,当第四台超滤投运时,三台原水 泵同时升频以满足四台超滤运行,泵选择框中频率1为一一对应时的频率,频率2为三对四时的频率。 1.2.9 若四套超滤均运行,要停运其中一台时,应先停运第四套投运的超滤;若要停 运前三套投运超滤中的一套,则需将要停运超滤所选泵连接至第四套投运超滤,之后再停要停运的超滤。 1.2.10当多套超滤投运,假设超滤A正在进行反洗步序(反洗准备-正洗),而超滤B 也要进反洗步序时,则超滤B继续运行,直到A结束正洗后,B再进入反洗步 序。若出现多套超滤需要反洗时,则由A至B依次进行反洗。某套超滤进行CEB 操作时,其他超滤也会等待其完成后再进入反洗。 1.2.11 原水泵电气故障信号发出后,自动切换至备用泵。备用泵变为主泵,报故障泵 变为备用泵。 1.2.12 超滤投运时,应密切观察给水母管流量是否增加正常,尤其投运第2、3、4套 时,避免出现泵空转。 1.2.13 超滤运行时要注意次氯酸钠的正常投加。次氯酸钠投加不正常会导致超滤膜微 生物滋生,使膜压差增大,污堵超滤膜,超滤产水SDI不合格进而污染反渗透 等一系列问题。次氯酸钠投加可通过产水余氯表检查,若发现产水余氯小 0.3ppm则需检查加氯泵,避免出现泵启动但不上药的情况。 1.3 停运保养 1.3.1 连续停运一周以下时,每天进行一次进气至正洗的步骤。 1.3.2 连续停运一周以上,可联系设备厂家进行相关药剂保养。

膜法水处理实验(二)——纳滤与反渗透截留性能比较

膜法水处理实验(二)——纳滤与反渗透截留性能比较 一、 实验目的 (1) 掌握评价纳滤和反渗透除盐率的标准方法。 (2) 了解纳滤和反渗透除盐性能差异。 二、 实验原理 反渗透(RO ,Reverse Osmosis )又称逆渗透,一种以压力差为推动力,从溶液中分离出溶剂的膜分离操作。对膜一侧的料液施加压力,当压力超过它的渗透压时,溶剂会逆着自然渗透的方向作反向渗透。从而在膜的低压侧得到透过的溶剂,即渗透液;高压侧得到浓缩的溶液,即浓缩液。若用反渗透处理海水,在膜的低压侧得到淡水,在高压侧得到卤水。 反渗透时,溶剂的渗透速率即液流能量N 为: ()h N K p π=?-? (1) 其中,K h 表示水力渗透系数,它随温度升高稍有增大;Δp 表示膜两侧的静压差;Δπ表示膜两侧溶液的渗透压差。稀溶液的渗透压π可表示为: iCRT π= (2) 其中,i 表示溶质分子电离生成的离子数;C 为溶质的摩尔浓度;R 为摩尔气体常数;T 为绝对温度。

反渗透膜 反渗透膜 外压 渗透反渗透 图1 反渗透原理 反渗透通常使用非对称膜和复合膜。反渗透所用的设备,主要是中空纤维式或卷式的膜分离设备。反渗透膜能截留水中的各种无机离子、胶体物质和大分子溶质,从而取得净制的水。也可用于大分子有机物溶液的预浓缩。由于反渗透过程简单,能耗低,近20年来得到迅速发展。现已大规模应用于海水和苦咸水淡化、锅炉用水软化和废水处理,并与离子交换结合制取高纯水,目前其应用范围正在扩大,已开始用于乳品、果汁的浓缩以及生化和生物制剂的分离和浓缩方面。 纳滤(NF ,Nanofiltration )是一种介于反渗透和超滤之间的压力驱动膜分离过程,纳滤膜的孔径范围在几个纳米左右。纳滤分离原理近似机械筛分,但由于纳滤膜本体带有电荷性使其在很低压力下仍具有较高脱盐性能。纳滤具有以下两个特征: 1、对于液体中分子量为数百的有机小分子具有分离性能; 2、对于不同价态的阴离子存在道南效应。物料的荷电性,离子价数和浓度对膜的分离效应有很大影响。 由于纳滤膜大多从反渗透膜衍化而来,如醋酸纤维素膜、芳族聚酰胺复合膜

反渗透系统工艺流程及原理..

反渗透系统工艺流程及说明 原水箱 作用:克服管网供水的不稳定性,保证整个系统的供水稳定连续;同时也给各设备长期性能可靠提供了保障。 选型:PE材质。 控制:水箱配置高水位浮球阀和低水位液位开关。其具备了可靠性高,价格低廉,结构简单,安装方便等优点。当水位处于高位时,浮球阀关闭,停止进水。水位处于低水位时,高水位浮球阀打开,开始向水箱注水。同时,低水位液位开关断开,增压泵停止工作。 增压泵 作用:给预处理各设备提供必需的工作压力。 选型:根据预处理各设备设计压力降(每台过滤设备最大压降0.05Mpa),以及高压泵前压力不能小于0.5Kg/cm2,确定增压泵的工作压力。 控制:泵后用调节阀调节压力及进水量。 机械过滤器 作用:原水首先经过机械过滤器,在过滤器中放置1-16目的精致石英砂,使原水中的絮凝体、铁锈等悬浮杂质在此过程中被截留。由于机械过滤器在工作中截留了大量的悬浮杂质,为保证过滤器的正常工作,必须对过滤器定期进行冲洗、反冲洗。 选型:选用碳钢材质容器. 控制:机械过滤器的反洗操作採用手工控制器,过滤器应每周天进行一次清洗,清洗时间为10-20分钟。 活性碳过滤器 作用:本工艺采用活性碳过滤器,作为反渗透装置的予处理,是非常重要的。反渗透系统要求进水指标SDI≤5,余氯<0.1mg/L。为满足其进水要求,需进一步纯化原水,使之达到反渗透的进水指标。在反渗透装置前设置碳滤器,主要有两

个功能:1、吸附水中部分有机物,吸附率为60%左右;2、吸附水中余氯。吸附粒度在10-20埃左右的无机胶体、有机胶体和溶解性有机高分子杂质以及在砂滤器中是难以去除的余氯。活性碳之所以能用来吸附粒度在几十埃左右的活性物,是由于其结构存在大量平均孔径在20-50埃的微孔和粒缝隙,活性碳的这个结构特点,使它的表面吸附面积能够达到500-2000m2/g,由于一般有机物的分子直径略小于20-50埃,因此活性碳对有机物具有很强的吸附作用。此外活性碳具有很强的脱氯能力,由于余氯具有很强的氧化性,余氯和碳起反应,生成二氧化碳和-1价氯离子,因此只是损失了少量的碳,所以活性碳脱氯可以使用相当长的时间。活性碳不仅仅具有以上功能,还能够去除水中的异味、色素,提高水的澄明度,活性碳使用一段时间后,其吸附能力下降,需要进行再生或更换。所以,原水通过碳滤器后,能大大提高水质,减少对反渗透膜的污染,经过处理后的水质都能达到反渗透装置进水水质要求(余氯<0.1mg/L)。 选型:选用碳钢材质容器。 控制:活性碳过滤器的控制採用手工控制器,由于活性碳过滤器在工作中吸附了大量的悬浮杂质,为保证系统正常工作,每天必须进行冲洗、反冲洗,冲洗过程由清洗时间为10-15分钟。 精密过滤器 作用:精密过滤又称为保安过滤器。它是原水进入反渗透膜装置前的一道处理工艺。PP过滤芯具有过滤流量大,纳污量大,压力损耗小的特点,可阻截不同粒径的杂质颗粒,集表面过滤与深层过滤于一体。精密过滤器使用一定时期后也有堵塞现象,因此,一定时期后PP熔喷滤芯必须更换,更换依据:精密过滤前后的压力差在0.05-0.1Mpa时更换。 选型:选用不锈钢材质容器. 高压泵 作用:高压泵是提供给反渗透系统所需产水流量及水质的工作压力。使过滤水经过泵体后达到10公斤左右的压力,以满足膜体的进水压力,保证纯水的出水量。

超滤、反渗透操作规程

废水回收系统手动操作规程 一、多介质过滤器系统手动操作 1、开机: ①检查多介质过滤器进水阀、上排阀是否已经开启。 ②初排废水池絮凝层:开启提升泵,将废水池底部的絮凝层排去一些,尽可能 的使其不进入到多介质过滤器。初排时水显深黄色,待水较清时,即可结束排放。排放时间约为3~4min。 ③换水:打开多介质过滤器下部排水阀,关闭上排阀,使其正洗换水约5~6min 左右,在设备停运8小时以上,应该要做到这一步,少于8小时,可以只要2min左右。 ④出水:正洗换水完毕后,可开启多介质过滤器出水阀,关闭多介质过滤器下 部排水阀。设备转入正常运行状态。(附注:关于多介质过滤器出水流量的确定,目前暂将进入废水池的流量确定为90m3/h,其絮凝剂与杀菌剂的投加也是按此流量来投加的。由于多介质过滤器是全流量过流,因而其产水量也是 90 m3/h。此后的超滤、RO系统的各项流量数据均是以此为基础而得出的, 在此也一并说明。) 2、停机: ①打开多介质过滤器上部排水阀,关闭出水阀。 ②停提升泵。(注意:在手动操作状态下,多介质过滤器进水阀、上排阀在停机 时,应为常开状态。) 3、多介质过滤器的反冲洗: 其反冲洗的条件一般有两种: ①压差法:当过滤器进出水压差到0.05~0.1MPa时,过滤器就应该要反冲洗了。 ②定期法:可根据现场废水水质情况,定时冲洗过滤器。根据现场的温度、水 质情况,建设每运行12小时反冲洗一次。 ③反冲的步骤: ⑴气冲洗:先将过滤器的下部排水阀、上部排水阀打开,关进水阀、出水阀,将砂滤器中的水排至下视镜中部即可,关闭下排阀,然后打开多介质过滤器进气阀,并注意砂层气洗情况。在此请注意进气阀一定要缓慢开户,否则压缩空气将

微滤超滤纳滤反渗透等膜分离技术介绍

微滤超滤纳滤反渗透等膜分离技术 一、微滤超滤纳滤反渗透等膜分离技术发展史 微滤超滤纳滤反渗透等膜分离是在20世纪初出现,20世纪60 年代后迅速崛起的一门分离新技术。膜分离技术由于兼有分离、浓缩、纯化和精制的功能,又有高效、节能、环保、分子级过滤及过滤过程简单、易于控制等特征,因此,目前已广泛应用于食品、医药、生物、环保、化工、冶金、能源、石油、水处理、电子、仿生等领域,产生了巨大的经济效益和社会效益,已成为当今分离科学中最重要的手段之一。 膜可以是固相、液相、甚至是气相的。用各种天然或人工材料制造出来的膜品种繁多,在物理、化学、生物性质上呈现出各种各样的特性。 大多数人会认为,膜离我们的生活非常遥远。其实不然,膜分离技术非常贴近我们的日常生活。如水、果汁、牛奶、保健品、中药、茶食品、饮料、调味品等我们随时可能接触到的,都会用到膜分离技术。 二、微滤超滤纳滤反渗透等膜分离原理

膜分离过程是以选择性透过膜为分离介质,当膜两侧存在某种推动力(如压力差、浓度差、电位差、温度差等)时,原料侧组分选择性地透过膜,以达到分离、提纯的目的。不同的膜过程使用不同的膜,推动力也不同。目前已经工业化应用的膜分离过程有微滤(MF)、超滤(UF)、反渗透(RO)、渗析(D)、电渗析(ED)、气体分离(GS)、渗透汽 化(PV)、乳化液膜(ELM)等。 三、微滤超滤纳滤反渗透等分离技术 反渗透、超滤、微滤、电渗析这四大过程在技术上已经相当成熟,已有大规模的工业应用,形成了相当规模的产业,有许多商品化的产品可供不同用途使用。这里主要以反渗透膜和超滤膜为代表介绍一下。 3.1 反渗透膜(RO) 反渗透膜使用的材料,最初是醋酸纤维素(CA),1966年开发出 聚酰胺膜,后来又开发出各种各样的合成复合膜。CA 膜耐氯性强, 但抗菌性较差。合成复合膜具有较高的透水性和有机物截留性能,但对次氯酸等酸性物质抗性较弱。这两种材料耐热性较差,最高温度约是60℃左右,这使其在食品加工领域的应用中受到限制。 3.2 超滤膜(UF)

二级反渗透工艺流程图

二级反渗透工艺流程图 反渗透技术介绍 反渗透技术,是当今最先进和最节能有效的膜分离技术。其原理是在高于溶液渗透压的作用下,依据其他物质不能透过半透膜而将这些物质和水分离开来。由于反渗透膜的膜孔径非常小(仅为10A左右),因此能够有效地去除水中的溶解盐类、胶体、微生物、有机物等(去除率高达97%-98%)。反渗透是目前高纯水设备中应用最广泛的一种脱盐技术,它的分离对象是溶液中的离子范围和分子量几百的有机物;反渗透(RO)、超过滤(UF)、微孔膜过滤(MF)和电渗析(EDI) 技术都属于膜分离技术。 反渗透系统设计概述 1. 原水供水单位:原水可能是自来水、地下水、水库水或其它水源,但一般反渗透系统都有一个储水槽。在系统设计时要

考虑避免二次污染,防止沙土、灰尘等机械杂质和发酵、水藻 等生物污染的发生。 2. 预处理系统:针对原水得水质指标和水源特点,设置合理的预处理系统,保证经过预处理的水质能达到反渗透系统对于COD、SDI、余氯和LSI等的要求。对于一定的原水,不同的预处理工艺和污染因子去除效果会影响到反渗透膜元件类型、数量和系统残谁的选择。再目前越来越多的反渗透系统被用于地。表水和回用污水的情况下,为了保证系统性能和效率,推荐优先选用膜法预处理(超滤/微滤) 3. 高压泵系统:高压泵系统的压力(扬程)和流量的选择主要依据运行按照海德能设计软件的模拟计算结果。为了保证系统的安全可靠,再实际选型时,可以再计算结果推荐选型的基础上提高10%扬程和流量规格。在反渗透高压泵要求使用性能高度稳定的耐腐蚀泵。泵系统一般由给水泵和高压泵组成。给水泵加再保安过滤器之前,用于高压泵供水和低压冲洗。再高压泵出口一般要安装手动调压阀和慢开电动阀。手动调压阀用于调节泵的出力,电动阀可以防止高压泵启动时发生水锤现 象。 4. RO膜单元:RO膜单元由压力容器、膜元件、管道和浓水 阀门等组成,是反渗透系统的核心。 5. 仪表和控制系统:为了装置能够安全可靠的运行、便于过程监控,一般要配备温度表,PH计、压力表、流量计、电导

超滤+反渗透技术说明Word版

一、总则 1.1本技术规范书适用于工业园区取供水工程超滤、反渗透及离子交换除盐水系统及其配套设备,它提出了该设备本体及辅助设备的功能设计、结构、性能、安装和试验等方面的技术要求。 1.2 需方在本招标文件中提出了最低限度的技术要求,并未规定所有的技术要求和适用的标准,供方应提供满足本招标文件和所列标准要求的高质量产品及其相应服务。 1.3 如果供方没有以书面对本招标书的条文提出异议,那么需方可以认为供方提出的产品应完全符合本招标书的要求。如有异议,不管是多么微小,都应在差异表中提出。 1.4 从签订合同之后至供方开始制造之日的这段时期内,需方有权提出因规程、规范和标准发生变化而产生的一些补充修改要求,供方应遵守这些要求。 1.5 本技术规范书所引用的标准若与供方所执行的标准发生矛盾时,按较高的标准执行。 1.6 供方对成套系统设备(含辅助系统与设备)负有全责,即包括分包(或采购)的产品。分包(或采购)的产品制造商应事先征得需方的认可。 1.7设备采用的专利涉及到的全部费用均已包含在设备报价中,供方保证需方不承担有关设备专利的一切责任。 1.8 本招标文件为订货合同的附件,与合同正文具有同等效力。 1.9 本工程采用KKS标识系统。供方提供的技术资料(包括图纸)和设备标识有KKS编码。具体标识要求由设计院提出,在设计联络会上讨论确定。

二、工程概况 2.1工业园区取供水工程,主要为园区内焦化锅炉等提供水源。 2.2 厂址条件 本期取供水工程,厂址设在临涣工业园内,所在区域地形系平原,地势平坦。设备通过公路和铁路运抵现场。 2.3气象特征值 2.3.1厂址: 2.3.2年平均大气温度13.0℃ 2.3.3年平均相对湿度64% 2.3.4极端最高气温41.1℃ 2.3.5极端最低气温-26.8℃ 2.3.6多年平均降水量608.2mm 2.3.7多年平均大气压力1008.6hPa 2.3.8最大积雪深度23cm 2.3.9多年平均风速 2.9m/s 2.3.10多年最大瞬时风速22.7m/s 2.3.11 10分钟平均最大风速22.3 m/s 2.3.12 地震基本烈度7度 2.4 厂区工程地质 厂址工程地质条件及稳定性良好,不易发生地质灾害,不压覆矿产,不压文物,适合工程建设。

反渗透膜分离技术在城市污水处理中的应用

反渗透膜分离技术在城市污 水处理中的应用 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

摘要 国内外反渗透膜技术的发展概况,然后详细论述了反渗透膜分离技术。通过介绍反渗透的基本原理、反渗透装置型式、基本流程,以美国和日本采用反渗透处理生活污水为例,探讨了反渗透膜分离技术在城市污水处理中的应用情况,最后就其发展方向作出了初步地归纳和展望。 关键词:城市污水处理,膜分离技术,反渗透膜,实际应用,前景展望

引言 近来,物理化学处理技术、光照射技术及膜过滤技术已形成三大水处理技术。在这些技术中引人注目的是膜分离法污水处理技术[1]。膜分离是通过膜对混合物中各组分的选择渗透作用的差异,以外界能量或化学位差为推动力对双组分或多组分混合物的气体或液体进行分离、分级、提纯和富集的方法。而反渗透膜分离技术作为当今世界水处理先进的技术,具有清洁、高效、无污染等优点,已在海水淡化、城市给水处理、纯水和超纯水制备、城市污水处理及利用、工业废水处理、放射性废水处理等方面得到广泛的应用。 膜分离技术作为新的分离净化和浓缩方法,与传统分离操作(如蒸发、萃取、沉淀、混凝和离子交换树脂等)相比较,过程中大多无相变化,可以在常温下操作,具有能耗低、效率高、工艺简单、投资小等特点。膜分离技术应用到污水处理领域,形成了新的污水处理方法,它包含微滤(MF)、超滤(UF)、渗析(D)、电渗析(ED)、纳滤(NF)、和反渗透(RO)等,本文仅对反渗透(RO)膜法对城市污水处理技术进行探讨。

一、反渗透膜发展概况 膜广泛的存在于自然界中,特别是生物体内。人类对于膜现象的研究源于1748年,但是人类对它的认识和研究则较晚。1748年,Abbe Nollet观察到水可以通过覆盖在装有酒精溶液瓶口的猪膀肌进入瓶中时,发现了渗透现象。然而认识到膜的功能并用于为人类服务,却经历了200多年的漫长过程。人们对膜进行科学研究则是近几十年来的事。其发展的历史大致为;30年代微孔过滤;40年代透析;50年代电渗析;60年代反渗透;70年代超滤和液膜;80年代气体分离;90年代渗透汽化[2]。 在国外,其发展概况为:1953年美国的Reid 提出从海水和苦盐水中获得廉价的淡水的反渗透研究方案,1960年美国的Sourirajan 和Leob 教授研制出新的不对称膜,从此RO作为经济的淡化技术进入了实用和装置的研究阶段。20世纪70年代初期开始用RO法处理电镀污水,首先用于镀镍污水的回收处理,此后又应用于处理镀铬、镀铜、镀锌等漂洗水以及混合电镀污水。1965年英国首先发表了用半透膜处理电泳涂料污水的专利。此后美国P.P.G公司提出用UF和RO的组合技术处理电泳涂料污水,并且实现了工业化。1972-1975年J J .Porter 等人用动态膜进行染色污水处理和再利用实验。1983年L.Tinghuis等人发表了用RO法处理染料溶液的研究结果。30年来,反渗透(RO)技术先后在含油、脱脂废水、纤维工业废水、造纸工业废水、放射性废水等工业水处理、苦咸水淡化、纯水和高纯水制备、医药工业和特殊的化工过程和高层建筑废水等各类污水处理中得到了广泛的应用。尤其是近几年,一些新型的膜法污水处理技术逐一问世,如膜蒸馏、液膜、膜生化反应器、控制释放膜、膜分相、膜萃取等[3]。 在我国,膜技术的发展是从1958年离子交换膜研究开始的。1958年开始进行离子交换膜的研究,并对电渗析法淡化海水展开了试验研究;1965年开始对反渗透膜进行探索,1966年上海化工厂聚乙烯异相离子交换膜正式投产,为电渗析工业应用奠定了基础。1967年海水淡化会战对我国膜科学技术的进步起了积极的推动作用。1970年代相继对电渗析、反渗透、超滤和微滤膜及组件进行研究开发,1980年代进入推广应用阶段。1980年代中期我国气体分离膜的研究取得长足进步,1985年中国科学院

相关主题
文本预览
相关文档 最新文档