当前位置:文档之家› 纳滤反渗透膜分离实验

纳滤反渗透膜分离实验

纳滤反渗透膜分离实验
纳滤反渗透膜分离实验

污水处理基础知识试题..

污水处理基础知识试题 部门:外贸部姓名:王俊宝成绩:一、填空题 1.根据来源不同,废水可分为生活污水和工业废水两大类。 2.生活污水是人们在日常生活中所产生的废水,主要包括厨房洗涤污水、衣物洗涤污水、家庭清洁产污 等。 3.固体污染物常用悬浮物和浊度两个指标来表示。 4.废水中的毒物可分为无机化学毒物、有机化学毒物和放射性物质三大类。 5.当水中含油0.01~0.1mg/L ,对鱼类和水生生物就会产生影响。当水中含油 0.3~0.5mg/L 就会产生石油气味,不适合饮用。 6.异色、浑浊的废水主要来源于印染厂、纺织厂、造纸厂、焦化厂、煤气J —等。 7.恶臭废水来源于炼油厂、石化厂、橡胶厂、制药厂、屠宰厂、皮革厂等。 8.当废水中含有表面活性物质时,在流动和曝气过程中将产生泡沫,如造纸废水、纺织废水等。 9.造成水体污染水质物理因素指标:总固体含量、温度、色度。 10.现代污水处理程度划分一级处理、二级处理、三级处理。一级处理BOD 一般可去除30%左右,达不到排放标准。二级处理有机污染物质(BOD、COD)去除率可达90%以上,使有机污染物达到排放标准。三级处理主要方法有生物脱氮除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗析法等。 11.离心分离设备有离心机、水力旋流器。 12.工业废水的物理处理分为调节池、离心分离、除油、过滤、吹脱技术。13.工业废水的化学处理分为中和、化学沉淀、药剂氧化还原。 14.工业废水的物理化学处理分为混凝、气浮、吸附。。 15.常见污泥处理工艺有

16.污泥中水分的存在形式分为空隙水、毛细水、表面吸附水。 其中间隙水约占污泥水分的70%,毛细结合水约占污泥水分的20%,表面吸附水和内部结合水约占污泥水分的10% 。 17聚丙烯酰胺在污泥脱水中的作用有作为絮凝剂,起絮凝沉降作用。 18.污泥脱水效果常用指标有滤清液含固率、泥饼含固率、污泥回收率等。 19.聚丙烯酰胺污水处理时常用配置浓度0.1-0.5% ,熟化时间:3小时。20.污泥处置根据国家规定分为卫生填埋、土地利用、焚烧三种方式。21.我国酒精生产的原料比例为淀粉质原料(玉米、薯干、木薯)占75%,废糖蜜原料占20%,合成酒精占5%。 22.酒精废水的深度处理有混凝沉降、过滤、活性炭吸附等常规水净化技术。 23.含油废水主要来源有石油、石油化工、钢铁、焦化、煤气发生站、机械加工等工业部门等。 二、名词解释 1.悬浮物:悬浮物是一项重要水质指标,它的存在不但使水质浑浊,而且使管 道及设备阻塞、磨损,干扰废水处理及回收设备的工作。 2.浊度:浊度是对水的光传导性能的一种测量,其值可表征废水中胶体相悬浮 物的含量。 3.水质标准:水质标准是用水对象(包括饮用和工业用水对象等)所要求的各项 水质参数应达到的限值。可分为国际标准、国家标准、地区标准、行业标准和企业标准等不同等级。 4.生活饮用水水质标准:生活饮用水水质标准的制定主要是根据人们终生用水 的安全来考虑的,水中不得含有病原微生物,水中所含化学物质及放射性物质不得危害人体健康,水的感官性状良好。 5.离心分离原理:利用快速旋转所产生的离心力使含有悬浮固体(或乳状油)

直饮水纳滤与反渗透膜技术比较分析

反渗透膜、纳滤膜、超滤膜系统 三种净化水设备在直饮水处理(分质供水)应用比较分析超滤膜(UF)纳滤膜(NF)反渗透膜(RO) 工艺流程原水箱→原水增压泵→多介质过滤器→活性 碳过滤器→软化器→精密过滤器→超滤 (UF)系统→臭氧消毒系统 原水箱→原水增压泵→多介质过滤 器→活性碳过滤器→软化器→精密 过滤器→纳滤(NF)系统→臭氧消毒 原水箱→原水增压泵→多介质过滤器 →活性碳过滤器→软化器→精密过滤 器→RO反渗透纯水系统→臭氧消毒系 过滤精度(UF)0.01-0.1μm过滤精度超 滤级别物质 (NF)0.001-0.01μm过滤精度介 于超滤和反渗透之间,能截留纳 米级物质 (RO)0.0001-0.001μm微米物质, 过滤精度最高 产水率95%85% 75%能耗适中较高最高产水工作压力低压膜中压膜高压膜

去除物质可滤除水中的铁锈、泥沙、悬浮物、胶体、 细菌、大分子有机物等有害物质,并能保 留对人体有益的一些矿物质元素。是矿泉 水、山泉水生产工艺中的核心部件。 可滤除水中的铁锈、泥沙、悬浮 物、胶体、细菌、C a、M g等 离子、大分子有机物等有害物 质,一些矿物质元素及重金属物 质。是生产直饮水工艺中的核心 部件。 可滤除水中的铁锈、泥沙、悬浮 物、胶体、细菌、C a、M g等离 子、大分子有机物等有害物质, 矿物质元素及重金属物质。是生 产直饮水工艺中的核心部件。 出水级别直饮水直饮水纯净水价格比较适中较高最高 达到标准建设部《饮用净水水质标准(CJ94-2005)》。国家《生活饮用水管道分质直 饮水卫生规范(2006)》 建设部《饮用净水水质标准 (CJ94-2005)》 。国家《生活饮用水管道分质直 饮水卫生规范(2006)》 建设部《饮用净水水质标准 (CJ94-2005)》 应用范围适用于天然矿泉水为水源时,中空纤维超 滤膜(UF):“是矿泉水、山泉水生产工艺 中的核心部件”既能将有机物等有害物 质过滤,并能保留对人体有益的一些矿物 质元素,处理的水可以生饮。 适用为自来水为原水水源时,是 直饮水生产工艺中的核心部 件” 能将细菌、病毒、部分无 机及有机物等有害物质过滤,出 水标准接近纯净水,处理的水可 以生饮 适用为自来水为原水水源时,是 直饮水生产工艺中的核心部件” 能将细菌、病毒、所有无机及有 机物等有害物质过滤,出水标准 为纯净水,处理的水可以生饮

反渗透膜分离设备的技术优势

反渗透膜分离设备的技术优势 2020年8月27日

为保证我国经济的可持续发展,缓解当代水资源短缺,大力发展海水淡化技术产业来解决淡水资源问题已迫在眉睫。传统的方法具有很多劣势。而膜分离具有高效节能、选择性好、无相态和化学变化及可以在常温下操作等优点,是继蒸馏法后的又一项重要技术。主要包括反渗透膜法、电渗析法和纳滤膜法。这里主要介绍目前使用广泛的反渗透膜法。 反渗透膜分离设备法是一种高效节能技术,它是利用选择性半透膜,孔径为0.1—1nm,通常运行切割的分子量<500,能截留盐或小分子量有机物,使水通过。较之传统的蒸馏法,具有起动产水迅速、尺寸紧凑、重量轻、全电力操作能耗少、性能稳定、不用防结垢化学剂,操作过程中,无需相变、无需热液等优点。更加节能,工程造价和运行成本持续降低,其发展速度远远快于蒸馏法。但其缺点是操作压力大,膜组件易受到污染,进料液浓度有限制以及浓缩液的二次污染等问题。 德兰梅勒反渗透膜分离技术,简称RO技术。反渗透技术是近几年来才在我国发展起来的一项现代高新技术。按各种物料的不同渗透压,对某种溶液使用大于渗透压的反渗透方法,达到对溶液进行分离提取、纯化和浓缩的目的。反渗透设备技术是当今节能、效率高的膜分离技术。 德兰梅勒利用膜分离技术为生物制药、食品饮料、发酵行业、农产品深加工、植物提取、石油石化、环保水处理、空气除尘、化工等行业提供分离、纯化、浓缩的综合解决方案,满足不同客户的高度差

异化需求。帮助客户进行生产工艺的上下游技术整合与创新,帮助企业节省投资、降低运行费用、减少单位消耗、提供产品质量、清洁生产环境,助力企业产业升级。

反渗透膜分离制高纯水实验

一、实验目的: (1)熟悉反渗透法制备超纯水的工艺流程; (2)掌握反渗透膜分离原理及操作技能; (3)了解测定反渗透膜分离的主要工艺参数; (4)掌握利用电导法确定盐浓度的方法。 二、实验原理 工业化应用的膜分离包括微滤(Microfiltration,MF)、超滤(Ultrafiltration, UF)、纳滤(Nanofiltration, NF)、反渗透(RO)、渗透汽化(Pervaporation, PV)和气体分离(Gas Separation, GS)等。根据分离对象和要求,选用不同的膜过程。 图1 膜截留示意图 反渗透膜通常认为是表面致密的无孔膜,可截留1-10?小分子物质,反渗透膜能截留水体中绝大多数的溶质。反渗透净水就是以压力为推动力,利用反渗透膜只能透过水而不能透过溶质的选择透过性,从含有多种无机物、有机物和微生物的水体中,提取纯净水的物质分离过程。其原理如图1。 图2 反渗透与渗透现象 如图(a)所示,用半透膜将纯水与咸水分开,则水分子将从纯水一侧通过膜向咸

水一侧透过,结果使咸水一侧的液位上升,直到某一高度,此所谓渗透过程。如图(b)所示,当渗透达到动态平衡状态时,半透膜两侧存在一定的水位差或压力差,此为指定温度下溶液的渗透压N。如图(c)所示,当咸水一侧施加的压力P大于该溶液的渗透压N,可迫使渗透反向,实现反渗透过程。此时,在高于渗透压的压力作用下,咸水中水的化学位升高,超过纯水的化学位,水分子从咸水一侧反向地通过膜透过到纯水一侧,使咸水得到淡化,这就是反渗透脱盐的基本原理。 通常,膜的性能是指膜的物化稳定性和膜的分离透过性。膜的物化稳定性的主要指标是:膜材料、膜允许使用的最高压力、温度范围、适用的PH范围,以及对有机溶剂等化学药品的抵抗性等。膜的分离透过性指在特定的溶液系统和操作条件下,脱盐率、产水流量和流量衰减指数。根据膜分离原理,温度、操作压力、给水水质、给水流量等因素将影响膜的分离性能。 三、实验内容 反渗透膜是实现反渗透的过程的关键,要求具有较好的分离透过性和物化稳定性。反渗透膜的分离透过性可用以下几个参数来描述: 1.溶质分离率(脱盐率)R 式中, 2.溶剂透过速率(水通量)J w 式中,

纳滤反渗透膜分离

纳滤反渗透膜分离实验指导书

纳滤反渗透膜分离实验 一、实验目的 1.了解膜的结构和影响膜分离效果的因素,包括膜材质、压力和流量等。 2.了解膜分离的主要工艺参数,掌握膜组件性能的表征方法。 二、基本原理 2.1膜分离简介 膜分离是以对组分具有选择性透过功能的膜为分离介质,通过在膜两侧施加(或存在)一种或多种推动力,使原料中的某组分选择性地优先透过膜,从而达到混合物的分离,并实现产物的提取、浓缩、纯化等目的的一种新型分离过程。其推动力可以为压力差(也称跨膜压差)、浓度差、电位差、温度差等。膜分离过程有多种,不同的过程所采用的膜及施加的推动力不同,通常称进料液流侧为膜上游、透过液流侧为膜下游。 微滤(MF)、超滤(UF)、纳滤(NF)与反渗透(RO)都是以压力差为推动力的膜分离过程,当膜两侧施加一定的压差时,可使一部分溶剂及小于膜孔径的组分透过膜,而微粒、大分子、盐等被膜截留下来,从而达到分离的目的。 四个过程的主要区别在于被分离物粒子或分子的大小和所采用膜的结构与性能。微滤膜的孔径范围为0.05~10μm,所施加的压力差为0.015~0.2MPa;超滤分离的组分是大分子或直径不大于0.1μm 的微粒,其压差范围约为0.1~0.5MPa;反渗透常被用于截留溶液中的盐或其他小分子物质,所施加的压差与溶液中溶质的相对分子质量及浓度有关,通常的压差在2MPa左右,也有高达10MPa的;介于反渗透与超滤之间的为纳滤过程,膜的脱盐率及操作压力通常比反渗透低,一般用于分离溶液中相对分子质量为几百至几千的物质。 2.2纳滤和反渗透机理 对于纳滤,筛分理论被广泛用来分析其分离机理。该理论认为,膜表面具有无数个微孔,这些实际存在的不同孔径的孔眼像筛子一样,截留住分子直径大于孔径的溶质和颗粒,从而达到分离的目的。应当指出的是,在有些情况下,孔径大小是物料分离的决定因数;但对另一些情况,膜材料表面的化学特性却起到了决定性的截留作用。如有些膜的孔径既比溶剂分子大,又比溶质分子大,本不应具有截留功能,但令人意外的是,它却仍具有明显的分离效果。由此可见,膜的孔径大小和膜表面的化学

纳滤反渗透膜分离实验上课讲义

纳滤反渗透膜分离实 验

化工原理实验报告学院:专业:班级:

三、实验装置 本实验装置均为科研用膜,透过液通量和最大工作压力均低于工业现场实际使用情况,实验中不可将膜组件在超压状态下工作。主要工艺参数如表1-1 膜组件膜材料膜面积/m2最大工作压力/Mpa 纳滤(NF)芳香聚纤胺0.4 0.7 反渗透(RO) 芳香聚纤胺0.4 0.7 表1-1膜分离装置主要工艺参数 反渗透可分离分子量为100级别的离子,学生实验常取0.5%浓度的硫酸钠水溶液为料液,浓度分析采用电导率仪,即分别取各样品测取电导率值,然后比较相对数值即可(也可根据实验前做得的浓度-电导率值标准曲线获取浓度值)。 图1-1膜分离流程示意图 1-料液灌;2-低压泵;3-高压泵;4-预过滤器;5-预过滤液灌;6-配液灌;7-清液灌; 8-浓液灌;9-清液流量计;10-浓液流量计;11-膜组件;12-压力表;13-排水阀

图1 电导率与溶液浓度关系曲线 电导率与溶液浓度模型:C= 0.6253k - 0.0195 式中k为电导率,单位ms/cm;C为溶液浓度,单位×10-3g/cm3。 ① 原料液浓度C0=0.6253*6.07-0.0195=3.776071*10-3(g/cm3)=0.026584561 kmol/m3 透过液浓度C P=0.6253*0.13-0.0195=0.061789*10-3(g/cm3)=0.000435011 kmol/m3 浓缩液浓度C R=0.6253*6.99-0.0195= 4.351347*10-3(g/cm3)= 0.030634659 kmol/m3 ② 原料液浓度C0=0.6253*5.95-0.0195= 3.701035*10-3(g/cm3) =0.026056287 kmol/m3 透过液浓度C P=0.6253*0.07-0.0195=0.024271*10-3(g/cm3) =0.000170874 kmol/m3 浓缩液浓度C R=0.6253*7.26-0.0195= 4.520178*10-3(g/cm3) =0.031823275 kmol/m3 (2)膜组件性能表征: 利用公式:

纳滤与反渗透区别

饮用矿物质水出水要求 一、超滤 超滤是一种加压膜分离技术,即在一定的压力下,使小分子溶质和溶剂穿过一定孔径的特制的薄膜,而使大分子溶质不能透过,留在膜的一边,从而使大分子物质得到了部分的纯化。 超滤技术的优点是操作简便,成本低廉,不需增加任何化学试剂,尤其是超滤技术的实验条件温和,与蒸发、冷冻干燥相比没有相的变化,而且不引起温度、pH的变化,因而可以防止生物大分子的变性、失活和自溶。在生物大分子的制备技术中,超滤主要用于生物大分子的脱盐、脱水和浓缩等。超滤法也有一定的局限性,它不能直接得到干粉制剂。对于蛋白质溶液,一般只能得到10~50%的浓度。家用工业用都可以。 超滤技术的关键是膜。膜有各种不同的类型和规格,可根据工作的需要来选用。在矿物质 二、纳滤 纳滤,介于超滤与反渗透之间。现在主要用作水厂或工业脱盐。脱盐率达百分之90以上。反渗透脱盐率达99%以上但,若对水质要求不是特别高,利用纳滤可以节约很大的成本。 三、反渗透 反渗透,是利用压力表差为动力的膜分离过滤技术,源于美国二十世纪六十年代宇航科技的研究,后逐渐转化为民用,目前已广泛运用于科研、医药、食品、饮料、海水淡化等领域。 用作太空水、纯净水、蒸馏水等制备;酒类制造及降度用水;医药、电子等行业用水的前期制备;化工工艺的浓缩、分离、提纯及配水制备;锅炉补给水除盐软水;海水、苦咸水淡化;造纸、电镀、印染等行业用水及废水处理。 四、水处理六种膜处理方法的区别

纳滤水的优点 1最佳直饮水方案介绍 随着人们饮水观念的加强(随着工业化的发展,我们赖以生存的自然环境遭到污染与破坏,水资源受到很大污染,而现有的自来水还采用传统的水处理工艺,水当中的低分子有机物与重金属都无法祛除,导致自来水都不能直接饮用,必须经过特殊处理才能饮用),对水的需求及要求也越来越高,相应出现了蒸馏水、太空水、纯净水、矿泉水...... 一、什么样的水才是理想的饮用水? 自来水:由于近年来工业发展迅速,各地的水源受到不同程度的污染,加上城市供水管道的年久失修,增加了自来水的二次污染;此外,自来水在消毒时,使用了氯气和氯气漂白粉,使得在杀菌的同时带来了游离氯对种种有机物的氯化作用,这些有毒含氯物质在高温下也不易分解。许多事实表明,长期饮用这种水,是导致人体部分癌变或突变的重要原因。 纯净水:几乎没有什么杂质,缺少天然饮用水的矿物质营养成分,有些敏感的人觉得纯净水越喝越不解渴,长久下来感觉无力,对正在成长的少年和老人还

反渗透膜分离制高纯水实验报告

反渗透膜分离制高纯水实验报告 反渗透(Reverse Osmosis, RO )技术是20世纪60年代发展起来的以压力为驱动力的膜分离技术,它借助外加压力的作用使溶液中的溶剂透过半透膜而阻留某些溶质,是一种分离、浓缩和提纯的有效手段。由于反渗透技术具有无相变、组件化、流程简单、操作方便、耗费低等特点,在诸多水处理技术中,反渗透被认为是最先进的方法之一,发展十分迅速,已广泛应用于海水、苦咸水淡化、工业污水处理、纯水和超纯水制备领域。高纯水主要在电子工业、医药工业以及实验室分析使用,按国标GB/T11446.1-1997规定, 电子级水分为四级,即EW-I 、EW-II 、EW-III 和EW-IV ,其电阻率指标分别为≥18cm M ?Ω、≥15cm M ?Ω、≥12cm M ?Ω、≥0.5cm M ?Ω。

一.实验目的 (1)熟悉反渗透法制备超纯水的工艺流程; (2)掌握反渗透膜分离原理及操作技能; (3)了解测定反渗透膜分离的主要工艺参数; (4)掌握利用电导法确定盐浓度的方法。 二.实验原理 工业化应用的膜分离包括微滤(Microfiltration,MF)、超滤(Ultrafiltration, UF)、纳滤(Nanofiltration, NF)、反渗透(RO)、渗透汽化(Pervaporation, PV)和气体分离(Gas Separation, GS)等。根据分离对象和要求,选用不同的膜过程。 图1 膜截留示意图 反渗透膜通常认为是表面致密的无孔膜,可截留1-10?小分子物质,反渗透膜能截留水体中绝大多数的溶质。反渗透净水就是以压力为推动力,利用反渗透膜只能透过水而不能透过溶质的选择透过性,从含有多种无机物、有机物和微生物的水体中,提取纯净水的物质分离过程。其原理如图1。 图2 反渗透与渗透现象 如图(a)所示,用半透膜将纯水与咸水分开,则水分子将从纯水一侧通过膜向咸水一侧透过,结果使咸水一侧的液位上升,直到某一高度,此所谓渗透过程。如图(b)所示,当渗透达到动态平衡状态时,半透膜两侧存在一定的水位差或压力差,此为指定温度下溶液的渗透压N。如图(c)所示,当咸水一侧施加的压MF UF NF R O 分散 颗粒 高分 子 离解 酸 二价盐、 糖 未离解 酸 一价盐

反渗透膜分离技术在城市污水处理中的应用

反渗透膜分离技术在城市污 水处理中的应用 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

摘要 国内外反渗透膜技术的发展概况,然后详细论述了反渗透膜分离技术。通过介绍反渗透的基本原理、反渗透装置型式、基本流程,以美国和日本采用反渗透处理生活污水为例,探讨了反渗透膜分离技术在城市污水处理中的应用情况,最后就其发展方向作出了初步地归纳和展望。 关键词:城市污水处理,膜分离技术,反渗透膜,实际应用,前景展望

引言 近来,物理化学处理技术、光照射技术及膜过滤技术已形成三大水处理技术。在这些技术中引人注目的是膜分离法污水处理技术[1]。膜分离是通过膜对混合物中各组分的选择渗透作用的差异,以外界能量或化学位差为推动力对双组分或多组分混合物的气体或液体进行分离、分级、提纯和富集的方法。而反渗透膜分离技术作为当今世界水处理先进的技术,具有清洁、高效、无污染等优点,已在海水淡化、城市给水处理、纯水和超纯水制备、城市污水处理及利用、工业废水处理、放射性废水处理等方面得到广泛的应用。 膜分离技术作为新的分离净化和浓缩方法,与传统分离操作(如蒸发、萃取、沉淀、混凝和离子交换树脂等)相比较,过程中大多无相变化,可以在常温下操作,具有能耗低、效率高、工艺简单、投资小等特点。膜分离技术应用到污水处理领域,形成了新的污水处理方法,它包含微滤(MF)、超滤(UF)、渗析(D)、电渗析(ED)、纳滤(NF)、和反渗透(RO)等,本文仅对反渗透(RO)膜法对城市污水处理技术进行探讨。

一、反渗透膜发展概况 膜广泛的存在于自然界中,特别是生物体内。人类对于膜现象的研究源于1748年,但是人类对它的认识和研究则较晚。1748年,Abbe Nollet观察到水可以通过覆盖在装有酒精溶液瓶口的猪膀肌进入瓶中时,发现了渗透现象。然而认识到膜的功能并用于为人类服务,却经历了200多年的漫长过程。人们对膜进行科学研究则是近几十年来的事。其发展的历史大致为;30年代微孔过滤;40年代透析;50年代电渗析;60年代反渗透;70年代超滤和液膜;80年代气体分离;90年代渗透汽化[2]。 在国外,其发展概况为:1953年美国的Reid 提出从海水和苦盐水中获得廉价的淡水的反渗透研究方案,1960年美国的Sourirajan 和Leob 教授研制出新的不对称膜,从此RO作为经济的淡化技术进入了实用和装置的研究阶段。20世纪70年代初期开始用RO法处理电镀污水,首先用于镀镍污水的回收处理,此后又应用于处理镀铬、镀铜、镀锌等漂洗水以及混合电镀污水。1965年英国首先发表了用半透膜处理电泳涂料污水的专利。此后美国P.P.G公司提出用UF和RO的组合技术处理电泳涂料污水,并且实现了工业化。1972-1975年J J .Porter 等人用动态膜进行染色污水处理和再利用实验。1983年L.Tinghuis等人发表了用RO法处理染料溶液的研究结果。30年来,反渗透(RO)技术先后在含油、脱脂废水、纤维工业废水、造纸工业废水、放射性废水等工业水处理、苦咸水淡化、纯水和高纯水制备、医药工业和特殊的化工过程和高层建筑废水等各类污水处理中得到了广泛的应用。尤其是近几年,一些新型的膜法污水处理技术逐一问世,如膜蒸馏、液膜、膜生化反应器、控制释放膜、膜分相、膜萃取等[3]。 在我国,膜技术的发展是从1958年离子交换膜研究开始的。1958年开始进行离子交换膜的研究,并对电渗析法淡化海水展开了试验研究;1965年开始对反渗透膜进行探索,1966年上海化工厂聚乙烯异相离子交换膜正式投产,为电渗析工业应用奠定了基础。1967年海水淡化会战对我国膜科学技术的进步起了积极的推动作用。1970年代相继对电渗析、反渗透、超滤和微滤膜及组件进行研究开发,1980年代进入推广应用阶段。1980年代中期我国气体分离膜的研究取得长足进步,1985年中国科学院

(完整版)水处理基础知识(DOC)

水处理基础知识 1、原水:是指未经任何处理的天然水或城市的自来水等也叫生水 2、澄清水:去除了原水中的悬浮杂质的水。 3、除盐水:是指水中的阳、阴离子基本上除去或降低到一定程度的水称为除盐水。除盐的方法有蒸馏法、电渗 析法、反渗透法、离子交换法等。 4、浊度:就是指水的浑浊程度,它是因水中含有一定的悬浮物(包括胶体物质)所产生的光学效应。单位用NTU 表示。浊度是在外观上判断水是否遭受污染的主要特征之一。浊度的标准单位规定为1mgSi02所构成的浑浊度为1度。 5、絮凝剂:能引起胶粒产生凝结架桥而发生絮凝作用的药剂。 6、总碱度:是指水中能与强酸发生中和作用的物质总量。 7、酸度:是指水中能与强碱发生中和作用的物质总量。 8、硬度:是指水中某些易于形成沉淀物的金属离子,通常指钙、镁离子含量。 9、电导率:是在一定温度下,截面积为1平方厘米,相距为1厘米的两平行电极之间溶液的电导。可以间接表 示水中溶解盐的含量。 10、什么是水的含盐量:水的含盐量也称矿化度,是表示水中所含盐类的数量。由于水中各种盐类一般均以 离子的形式存在,所以含盐量也可以表示为水中各种阳离子的量和阴离子的量的和。 11、沉淀:废水处理的技术方法之一。可分为物理沉淀和化学沉淀两种作用。通常所指的沉淀是物理沉淀, 即重力分离的方法。它是利用废水中悬浮物与水的比重不同,借重力沉降或上浮的作用,从水中分离出来。 化学沉淀是在废水中投加某种化学药剂,使之与废水中的溶解物质发生化学反应,生成难溶于水的化合物而析出沉淀。 12、“中水”的定义有多种解释,在污水工程方面称为“再生水”,工厂方面称为“回用水”,一般以水质 作为区分的标志。其主要是指城市污水或生活污水经处理后达到一定的水质标准,可在一定范围内重复使用的非饮用水。再生水水质介于上水(饮用水)和下水(生活污水之间),这也是中水得名的由来,人们又将供应中水的系统称为中水系统。 13、什么是有机物污染:是指以碳水化合物、蛋白质、氨基酸以及脂肪等形式存在的天然有机物质等某些其 它可生物降解的人工合成有机物质。主要来源于生活污水和工业废水。 14、什么是浓差极化:反渗透在运行状况下,膜表面盐类被浓缩,同进水中的盐类之间存在浓度差,若浓水 流量小,流速低时,高含量盐类的水不能被及时带走,在膜表面会形成很高的浓度差,阻碍了盐分的扩散,这种现象叫浓差极化。 15、悬浮物(SS):指悬浮在水中的固体物质,包括不溶于水中的无机物、有机物及泥砂、粘土、微 生物等。水中悬浮物含量是衡量水污染程度的指标之一。它是水样过滤后在103-105度温度下把滤纸上

反渗透膜分离设备特点和适用范围

反渗透膜分离设备特点和适用范围

反渗透膜分离设备是将原水经过精细过滤器、颗粒活性碳过滤器、压缩活性碳过滤器等,再通过泵加压,利用孔径为 1/10000μm(相当于大肠杆菌大小的1/6000,病毒的1/300)的反渗透膜(RO膜),使较高浓度的水变为低浓度水,反渗透简介同时将工业污染物、重金属、细菌、病毒等大量混入水中的杂质全部隔离,从而达到饮用规定的理化指标及卫生标准,产出至清至纯的水。 反渗透膜分离设备是一种现代新型的纯净水处理技术。通过反渗透元件来提高水质的纯净度,清除水中含有的杂质和盐。我们日常所饮用的纯净水都是经过反渗透设备处理的,水质清澈。 反渗透膜分离设备特点: 1、经CAD设计,技术先进,性能可靠、水力性能优良; 2、脱盐率高,使用寿命长,运行成本低廉; 3、采用全自动预处理系统,实现无人化操作; 4、全自动电控程序,还可选配触摸屏操作,使用方便; 5、前置预处理保护装置,确保高压泵及反渗透膜不受硬物损坏; 6、产品水,浓缩水各设有流量计,以监视并调节运行出水量及系统回收率;

7、灵敏的高压、低压开关;防止在异常状况下对设备的损坏,确保系统的正常运转; 8、先进的膜保护系统定时冲洗膜表面,降低污染速度,延长膜使用寿命; 9、完全根据用户要求,进行合理的设计。 反渗透膜分离设备适用范围: 1、纯净水生产厂纯净水制备 2、食品行业原料配制用水 如添加剂的勾兑、配料、汤料或汁液的配比等,可改善口感、抑制有机物滋生,提高产品保存期限 3、乳品、饮料、制酒行业用水制备 建议采用双级反渗透装置,防止因水中异物导致口感不佳,大限度的提高产品品质,抑制有机物繁殖,提高产品保存期限 4、化工行业用水 用于化工原料液的配比,化工产品制造,化工循环水等,有效防止因水中离子超标而造成的附加化学反应和品质偏差。

水处理基础知识试题及答案

一、选择题(80) 1、为使得好氧反应器正常运行,污水中所含的营养物质应比例适当,其所需要的主要营养物质比例为C:N:P=【C】。 A.10:5:1; ?B.1:5:10;?C.100:5:1;?? D.1:5:100。 2、一般情况下,污水的可生化性取决于【A】 /COD的值 B、BOD5/TP的值A、BOD 5 C、DO/BOD5的值 D、DO/COD的值?3、污泥回流的目的主要是保持曝气池中一定【B】?A、溶解 氧B、MLSS C、温度 D、pH?4、在生物滤池中,为保证微生物群生长发育正常,溶解氧应保持在一定的水平,一般以【B】为宜?A、1-2mg/L B、2-4mg/L C 4-6mg/L D 6-8mg/L 5、好氧微生物生长的适宜pH范围是【B】 A、4.5-6.5 B、6.5-8.5 C、8.5-10.5 D、10.5-12.5 6、城市污水厂,初次沉淀池中COD的去除率一般在【 B】之间 A、10%-20% B、20%-40% C、4 0%-60% D、60%-80% 7、某工业废水的BOD5/COD为0.5,初步判断它的可生化性为【B 】?A较好 B 可以 C较难 D 不易 8、下列四种污水中的含氮化合物,【A 】很不稳定,很容易在微生物的作用下,分解为其他三种。 A.有机氮;?? B.氨氮; ? C.亚硝酸盐氮; D.硝酸盐氮 9、城市污水处理厂污泥的主要成分是【C 】。 A.无机物; B.简单有机物; C.有机物; D.砂砾 10、传统活性污泥法的曝气时间为【B】。 A.4~6h;??B.6~8h;? C.16~24h;D.8~10h; 11、厌氧消化池中的微生物种类主要属于【D】 A.好氧菌;? B.厌氧菌; C.兼性菌;??D.厌氧菌和兼性菌

反渗透和纳滤的基础知识

第三章反渗透和纳滤的原理 3.1 反渗透和纳滤基础 3.1.1 膜与膜过程 膜在自然界中是广泛存在的,尤其在生物体内。但是人类首次注意到由生物膜引起的渗透现象是在1748 年,法国学者Abbe Nollet(1700 – 1770)很偶然的发现包裹在猪膀胱里的水可以自己扩散到膀胱外侧的酒精溶液中。法国植物学家Henri Dutrochet(1776 – 1847)在1827 年提出了Osmosis(渗透)一词来定义Abbe Nollet 发现的现象。但是,这一现象并未能引起足够的重视,直到1854 年英国科学家Thomas Graham(1805 – 1869)在实验中发现,放置在半透膜一侧的晶体会比胶体更快的扩散到另一侧,并提出了Dialysis(透析)的概念。这时人们才对半透膜产生了兴趣,并由德国生物化学家Moritz Traube(1826 – 1894)在1864 年制造出了人类历史上第一张人造膜——亚铁氰化铜膜。完整的渗透压理论直到20 世纪才由荷兰物理化学家Van't Hoff(1852 – 1911)提出。后来,随着各个学科的不断发展,膜分离现象也不断为人们发现并研究。1960 年,人类终于实现了从苦咸水中制取淡水的梦想,工作于美国加利福尼亚大学洛杉矶分校(UCLA)的科学家Sidney Loeb (1917 –)和Srinivasa Sourirajan(1923 –)共同研制出世界第一张非对称醋酸纤维素反渗透膜。从那时起的近半个世纪以来,膜分离技术,包括反渗透和纳滤,在世界范围得到了广泛的发展和应用。表3.1 列出了膜分离技术发展简史。 表3.1 膜分离技术发展史

反渗透计算公式

反渗透计算公式 1 反渗透的工艺原理 反渗透膜分离技术的原理通过对如下几个专业名词的解释来描述: 1)半透膜:只能允许溶剂分子通过,而不允许溶质的分子通过的膜称为理想半渗透。 2)渗透:在相同的外压下,当溶液与纯溶剂为半透膜隔开时,纯溶剂会通过半透膜是溶液变稀的现象称为渗透。 3)渗透平衡:渗透过程中,单位时间内溶剂分子从两个相反方向穿过半透膜的数目彼此相等,即达到渗透平衡。 4)渗透压:当半透膜隔开溶液与纯溶剂时,加在原溶液上使其恰好能阻止纯溶剂进入溶液的额外压力称为渗透压。通常溶液越浓,溶液的渗透压越大。 5)反渗透:如果加在溶液上的压力超过了渗透压,则反而使溶液中的溶剂向纯溶剂方向流动,这个过程叫做反渗透。

反渗透是利用反渗透膜选择性地只能透过溶剂(通常是水)而截留离子物质的性质,以膜两侧静压差为推动力,克服溶剂的渗透压,使溶剂通过反渗透膜而实现对液体混合物进行分离的膜过程。它的操作压差一般为 1.5~10.5MPa,截留组分的大小为1~10?的小分子溶质。除此之外,还可以从液体混合物中去除其他全部的悬浮物、溶解物和胶体。 2 反渗透工艺的技术特点 1)在常温不发生相变化的条件下,可以对溶质和水进行分离,适用于对热敏感物质的分离、浓缩、并且与有相变化的分离方法相比,能耗较低。 2)杂质去除范围广,不仅可以去除溶解的无机盐类、还可以去除各类有机杓杂质。 3)较高的除盐率和水的回用率、可截留粒径几纳米以上的溶质。 4)由于只是利用压力作为膜分离的推动力、因此分离装置简单,容易操作、自控和维修。 5)反渗透装置要求进水达到一定的指标才能正常运行,医此原水在进入反渗透装置之前要采用一定的预处理措施。为了延长膜的使用寿命,还要定期对膜进行清洗,以清除污垢。 3 反渗透工艺设计、计算 典型工艺流程:反渗透系统一般包括三大主要部分:预处理、反渗透装置、后处理。 与微滤和超滤过程类似,良好的预处理对反渗透装置长期稳定运行十分必要。 其目的主要为: a.国去除悬浮固体和胶体,降低浊度;

进口反渗透、纳滤的基础知识

反渗透、纳滤基础知识 1 分离膜与膜过程 膜分离 物质世界是由原子、分子和细胞等微观单元构成的,然而这些微小的物质单元总是杂居共生,热力学第二定律揭示了微观粒子都会倾向于无序的混合状态。人们发明了过滤、蒸馏、萃取、电泳、层析和膜分离等分离技术来获取纯净的物质。 膜分离技术的基础是分离膜。分离膜是具有选择性透过性能的薄膜,某些分子(或微粒)可以透过薄膜,而其它的则被阻隔。这种分离总是要依赖于不同的分子(或微粒)之间的某种区别,最简单的区别是尺寸,三维空间之中,什么都有大小巨细,而膜有孔径。当然分子(或微粒)还有其它的特性差别可以利用,比如荷电性(正、负电),亲合性(亲油、亲水),深解性,等等。按照阻留微粒的尺寸大小,液体分离膜技术有反渗透(亚纳米级)、纳滤(纳米级)、超滤(10纳米级)和微滤(微米和亚微米级),另外还有气体分离、渗透蒸发、电渗析、液膜技术、膜萃取、膜催化、膜蒸馏等膜分离过程。 表-1 主要的膜分离过程

气体分离气体、气体与蒸 汽分离 浓度差易透过气体不易透过气体 薄膜复合膜 薄膜复合膜由超薄皮层(活性分离层)和多孔基膜构成。基膜一般是在多孔织物支撑体上浇筑的微孔聚砜膜(即0.2mm厚),超薄皮层是由聚酰胺和聚脲通过界面缩合反应技术形成的。 薄膜复合膜的优点与它们的化学性质有关,其最主要的特点是化学稳定性,在中等压力下操作就具有高水通量和盐截留率及抗生物侵蚀。它们能在温度0-40℃及pH2-l2间连续操作。像芳香聚酰胺一样,这些材料的抗氯及其他氧化性物质的性能差。 过滤图谱 平膜结构

图-1 非对称膜与复合膜结构比较 美国海德能公司的RO/NF膜(CPA, ESPA, SWC, ESNA, LFC)均是复合膜。CPA3的断面结构如图-2所示。可以看出在支撑层上形成褶皱状的表面致密层。原水以与皮层平行方向进入,通过加压使其透过密致分离层,产水从支撑层流出。 图-2 CPA3的断面结构 表面致密层构造 根据膜种类不同,制作平膜的表面致密层材质也有差异。大多数都是采用交链全芳香族聚酰胺。其构造如图-3所示。

反渗透和纳滤系统的清洗修订稿

反渗透和纳滤系统的清 洗 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

反渗透和纳滤系统的清洗 1 膜污染简介 反渗透系统运行时,进水中含有的悬浮物质,溶解物质以及微生物繁殖等原因都会造成膜元件污染。反渗透系统的预处理应尽可能的除去这些污染物质,尽量降低膜元件污染的可能性。污染物的种类、发生原因及处理方法请参见表1。通常,造成膜污染的原因主要有以下几种: 1)新装置管道中含有油类物质和焊接管道时的残留物,以及灰尘且在装膜前未清洗干净; 2)预处理装置设计不合理; 3)添加化学药品的量发生错误或设备发生故障; 4)人为操作失误; 5)停止运行时未作低压冲洗或冲洗条件控制得不正确; 6)给水水源或水质发生变化。 表1反渗透膜污染的种类、原因及处理方法 污染物种 类 原因对应方法 堆积物胶体和悬浮粒子等膜面上的堆积提高预处理的精度或采用 UF/MF 结垢由于回收率过高导致无机盐析出调整回收率,加阻垢剂生物污染微生物吸附以及繁殖定期杀菌处理 有机物的吸附荷电荷性/疏水性有机物和膜之间 的相互作用 膜种类的选择需正确 污染物的累积情况可以通过日常数据记录中的操作压力、压差上升、脱盐率变化等参数得知。膜元件受到污染时,往往通过清洗来恢复膜元件的性能。清洗的方式一般有两种,物理清洗(冲洗)和化学清洗(药品清洗)。物理清洗(冲洗)是不改变污染物的性质,用力量使污染物排除膜元件,恢复膜元件的性能。化学清洗是使用相应的化学药剂,改变污染物的组成或属性,恢复膜元

件的性能。吸附性低的粒子状污染物,可以通过冲洗(物理清洗)的方式达到一定的效果,像生物污染这种对膜的吸附性强的污染物使用冲洗的方法很难达到预期效果。用冲洗的方法很难除去的污染应采用化学清洗。为了提高化学清洗的效果,清洗前,有必要通过对污染状况进行分析,确定污染的种类。在了解了污染物种类时,选择合适的清洗药剂就可以适当的恢复膜元件的性能。? 2 物理清洗(冲洗) 冲洗的作用 冲洗是采用低压大流量的进水冲洗膜元件,冲洗掉附着在膜表面的污染物或堆积物。 ? 图1冲洗时膜面的状态示意图 冲洗的要点 冲洗的流速 装置运行时,颗粒污染物逐渐堆积在膜的表面。如果冲洗时的流速和制水时的流速相等或略低,则很难把污染物从膜元件中冲出来。因此,冲洗时要使用比正常运行时更高的流速。通常,单支压力容器内的冲洗流速为: 1)8英寸膜元件:– 12 m3/h; 2)4英寸膜元件:– m3/h。 冲洗的压力

反渗透膜常识

反渗透膜知识整理 多引用网络资料、难免多纰漏欢迎专家指点、补充。 “反渗透英文名为reverse osmosis,缩写为RO,中文又有叫做逆渗透,不过我还是习惯反渗透的叫法。反渗透膜主要分为这么几类:一是海水淡化SWRO膜,二是苦咸水淡化BWRO膜,包括常规压力的RO 膜和低压LP或者低能量LERO膜两类,三是家庭用RO膜,超低压比较多。当然也还会有诸如低污染RO膜,抗氧化RO膜等,这些还是包括在前面三类当中,只不过由于膜材料改性衍生出来的具有某种特定功能和用途的RO膜种类。 国际上生产RO膜供应商主要有陶氏化学DOW FilmTec、日东电工美国海德能Hydraunautics、美国通用电气GE Osmonics、日本东丽Toray、韩国世韩等等,这些公司占有的市场份额较大,膜的质量属FilmTec 和Toray的最好,但是Toray的市场份额并不高。据报道Toray已经联手蓝星公司在北京建立生产车间,准备大手进攻反渗透膜市场。另外还有很多小的公司,比如美国这边的SepRO,Pall(本身不小,但RO份额小)等等。中国现在RO膜的老大是北京沃顿(汇通源泉)公司,另外还有长沙的威灵顿,杭州的北斗星,深圳的惠灵顿(好像是CA类?其他都是聚酰胺类)等等。反渗透膜生产的入门门槛较高主要是因为生产线投资较大,而且往往国内引进的生产线又是美国这边淘汰的落后生产线,国内引进后若不进行消化并改进,是很难占领市场份额的。 上面谈到的主要都是聚酰胺polyamide类的反渗透膜,属于第二代。第一代则是醋酸纤维素CA类的。今年的ACS将化学成就奖颁发给陶氏Filmtec的两名研发人员,主要是奖励他们在聚酰胺膜化学方面的卓越成就。我个人感觉第三代RO膜应该属与纳米复合膜(Polyamide nanocomposite membrane)TFN,还是基于聚酰胺,但是在成膜过程中加入了亲水性纳米沸石,使得膜的渗透性能大幅提高。据悉TFN膜即将商品化,他们的中试结果表明通透性能为现有SWRO的两倍,脱盐率保持不变。但是个人认为他们的TFN膜的推广和占有市场份额将是一个很长的过程。现有水处理工艺流程如果要采用他们的膜,则由于通量的改变需要重新设计工艺流程,市场推广并不是那么容易,如果是新客户,还是多少会质疑膜的稳定性和可靠性的。可能新技术的推出都会是这样的吧。不过就水处理和海水淡化来讲,RO的应用会原来越广的。”——未知大神。 某网站膜市场排名及部分较知名品牌Logo 国外品牌:(性能霸主、价格高)

计算流体力学在反渗透膜分离中的应用(1)

2008年第27卷第9期CHEMICAL INDUSTRY AND ENGINEERING PROGRESS ·1357· 化工进展 计算流体力学在反渗透膜分离中的应用 员文权,杨庆峰 (上海交通大学环境科学与工程学院,上海200240) 摘要:综述了计算流体力学(CFD)在反渗透膜分离中的应用情况及研究成果。阐述了CFD技术由于精确、效率高、成本低、不受实验条件限制等优势而得到的广泛应用,为研究流体流动提供了新的手段。指出浓差极化和膜污染限制了反渗透技术的进一步广泛应用,而CFD技术则为研究该问题提供了一种强有力的工具。 关键词:计算流体力学;反渗透;膜分离 中图分类号:TQ 021.8 文献标识码:A 文章编号:1000–6613(2008)09–1357–07 Application of computational fluid dynamics in reverse osmosis membrane separation process YUAN Wenquan,YANG Qingfeng (School of Environmental Science and Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)Abstract:Computational fluid dynamics (CFD) has been widely used with its unique advantage,and it offers a new method to study the fluid dynamics mechanism. Membrane fouling and concentration polarization have restricted further application of reverse osmosis. CFD is an effective tool to study membrane fouling and concentration polarization on membrane surface. The paper introduces the application of CFD in reverse osmosis membrane separation process and its research progress. Key words:computational fluid dynamics;reverse osmosis;membrane separation 计算流体力学(computational fluid dynamics,简称CFD)是通过数值方法求解流体力学控制方程,对包含有流体流动和热传导等相关物理现象的系统进行分析得到对流场的离散的定量描述,并以此预测流体运动规律的学科[1]。CFD是在流体三大方程(质量守恒方程、动量守恒方程、能量守恒方程)控制下,把原来在时间域、空间域上连续的物理量的场用一系列有限个离散点上的变量值集合来代替,通过一定的原则和方式建立起来关于这些点上场变量之间关系的代数方程组,然后通过有限差分法、有限元法等求解这些代数方程组从而得到变量的近似值。由于现代CFD技术具有成本低、速度快、资料完备、可以模拟真实及理想条件等优点,已广泛应用于水利、航运、海洋、环境、食品、流体机械与流体工程等与流体相关的领域[2],基本上可以做到“如果是流体,我们就可以对其进行分析”。 CFD不仅可以帮助理解流体流动问题,而且在此基础上可以预测流体流动新的机理,从而在工程上支持设计过程并做出决断。因此CFD成为研究各种流体流动现象,设计、操作和研究各种流动系统和流动过程的强有力工具,并已经取得了与实验流体力学及理论流体力学同等重要的地位,形成“三足鼎立”之势[3-4]。 CFD与计算机技术、应用数学等学科有着密切的联系,并在很大程度上依赖于实验和理论流体力学的发展。由于很多问题其机理尚未完全清楚,并且目前的CFD商业软件,如应用最广泛的FLUENT、CFX4等[3-5]并没有包括所有的物理模型,同时数值模拟也受到计算机本身条件的限制,因此CFD技术也有其局限性。尽管如此,CFD强大的模拟计算能力仍是其它手段所不能比拟的,随着计算机技术以及实验和理论流体力学的发展,CFD技术将在多个领域获得更加广泛的应用。 收稿日期:2008–03–18;修改稿日期:2008–05–06。 基金项目:国家自然科学基金资助项目(20306015,20676077)。 第一作者简介:员文权(1982—),男,硕士研究生。联系人:杨庆峰。电话 021–54748942;E–mail yangqf@https://www.doczj.com/doc/7b14529009.html,。

相关主题
文本预览
相关文档 最新文档