当前位置:文档之家› 35KV变电站毕业设计

35KV变电站毕业设计

35KV变电站毕业设计
35KV变电站毕业设计

摘要

变电所是电力系统的一个重要组成部分,由电器设备及配电网络按一定的接线方式所构成,他从电力系统取得电能,通过其变换、分配、输送与保护等功能,然后将电能安全、可靠、经济的输送到每一个用电设备的转设场所。

本变电所的设计首先是要进行负荷的分析与计算,负荷分析的方法有许多,需用系数法,二项式法等等。经过分析,采用需用系数法更加的适合。接着就是无功补偿,通过公式和查阅无功补偿率的表可以求出所需的无功补偿容量。在变压器台数及容量的选择时,为了提高大连老虎滩变电所供电的可靠性,采用的是两台型号相同的变压器,而主接线的设计,在高低压侧都采用了单母线分段接线。短路计算中最终采用了更为普遍的标么值法。对于设备的选择可分为高压侧(10kV 侧)和低压侧(380V侧)两种。并根据不同的要求看是否需要进行动稳定或热稳定的校验。从而选择更适合的设备以及电缆,母线等。接下来是变压器的继电保护,对于容量小于800kVA的油浸式变压器可采用了电流速断,过电流,以及过负荷三种保护。最后就是防雷与接地的设计,常用的防雷设备有避雷针,避雷带和避雷线。最终经过分析,采用了四支避雷针作为大连老虎滩变电所电气部分的防雷保护。

[关键词] 变电站、负荷、输电系统、配电系统、补偿装置

Abstract

Substation power system is an important component of the electrical equipment and distribution by the network connection mode according to a certain pose, he obtained power from the power system, through its transformation, distribution, transmission and protection functions, and then power safe, reliable and economical electricity supply to each device to set up places.

First of all, the design of the substation is necessary to carry out the analysis and calculation of load, the load method of analysis there are many, need to factor method, binomial method and so on. The analysis required a more suitable method. Reactive power compensation and then, through the formula and check the rate of reactive power compensation can be obtained form the necessary reactive power compensation capacity. In the number and capacity of the transformer of choice, Dalian Tiger Beach in order to improve the reliability of power substations, the two models using the same transformer, the design of the main terminal, in the high and low pressure side bus using a single sub - wiring. Short circuit calculation of the final adoption of a more general method S Mody. For the choice of equipment can be divided into high-pressure side (10kV side) and low-voltage side (380V side) of two. And in accordance with the requirements of different activities to see if the need for stability or thermal stability of the calibration. In order to select more suitable equipment and cables, bus, etc.. Followed by the transformer relay protection, the capacity of less than 800kVA transformer oil-immersed current speed can be broken, over-current, as well as three types of overload protection. Finally, is the design of lightning protection and grounding, lightning protection equipment used a lightning rod, lightning protection and lightning protection zone line. After the final analysis, the use of a lightning rod 4 Dalian Tiger Beach as part of the electrical substation lightning protection.

[key words] substation ,load ,transmission system ,correction equipment.

目录

第1章绪论 (1)

1.1 大连老虎滩变电所的设计意义 (1)

1.2 大连老虎滩变电所的设计要求 (2)

1.3 大连老虎变电所电气部分的设计应达到的目的 (2)

1.4 大连老虎滩变电所电气部分的设计方案 (3)

第2章负荷的分析与计算及无功补偿 (4)

2.1 负荷分析的意义 (4)

2.2 负荷的分类及各自的供电要求 (4)

2.3 负荷计算方法的比较及选用 (5)

2.4 无功补偿的意义及方法 (6)

2.5 无功补偿的计算 (7)

第3章变压器台数及容量的选择 (9)

3.1 变压器的分类与联结组别 (9)

3.2 变压器的容量及过负荷能力 (9)

3.3 变电所主变压器容量及台数,型号的确定 (10)

第4章主接线的设计 (12)

4.1 主接线的概述 (12)

4.2 主接线的分类及其各的特点 (13)

4.3 大连老虎滩变电所主接线的设计 (16)

第5章短路计算 (18)

5.1 短路的原因,形成及危害 (18)

5.2 短路计算的方法及其采用 (19)

第6章电气设备的选择及其校验 (23)

6.1 高压设备的选择及校验 (23)

6.2 低压设备的选择及校验 (24)

6.3 母线及电缆的选择校验 (27)

第7章继电保护的设计 (30)

7.1 继电保护的基本知识 (30)

7.2 供配电线路的继电保护 (30)

7.3 中性点不接地系统的单相接地保护 (31)

7.4 变压器的继电保护及计算 (31)

7.5 备用电源自动投入装置 (34)

第8章防雷与接地的设计 (36)

8.1 防雷的基本概念 (36)

8.2 老虎滩变电所防雷的设计 (37)

8.3 老虎滩变电所设备接地的设计 (39)

结论 (40)

参考文献 (41)

致谢 (42)

附录Ⅰ (43)

附录Ⅱ (44)

附录Ⅲ (45)

第1章绪论

1.1大连老虎滩变电所的设计意义

电力工业是国民经济的一项基础工业和国民经济发展的先行工业,它是一种将煤、石油、天然气、水能、核能、风能等一次能源转换成电能这个二次能源的工业,它为国民经济的其他各部门快速、稳定发展提供足够的动力,其发展水平是反映国家经济发展水平的重要标志。由于电能在工业及国民经济的重要性,电能的输送和分配是电能应用于这些领域不可缺少的组成部分。所以输送和分配电能是十分重要的一环。变电所是使电厂或上级电站经过调整后的电能书送给下级负荷,是电能输送的重要部分。其功能运行情况、容量大小直接影响下级负荷的供电,进而影响工业生产及生活用电。若变电所系统中某一环节发生故障,系统保护环节将动作。可能造成停电等事故,给生产生活带来很大不利。因此,变电所在整个电力系统中对于保护供电的可靠性、灵敏性等指标十分重要。

变电所是联系发电厂和用户的中间环节,起着变换和分配电能的作用。根据变电所任务的不同,可将变电所分为升压变电所和降压变电所两大类。升压变电所一般建在发电厂,降压变电所一般建立在靠近负荷中心的低点。根据电压等级还可分为中压变电所(60千伏及以下)、高压变电所(110~220

千伏)、超高压变电所(330~765千伏)和特高压变电所(1000千伏及以上)。按其在电力系统中的地位可分为枢纽变电所、中间变电所和终端变电所。这就要求变电所的一次部分经济合理,二次部分安全可靠,只有这样变电所才能正常的运行工作,为国民经济服务。变电所有升压变电所和降压变电所两大类。升压变电所通常是发电厂升压站部分,紧靠发电厂。降压变电所通常远离发电厂而靠近负荷中心。下面的所设计得就是10KV降压变电所。变电所的主要设备有电力变压器,母线和开关设备等。变电所内都装设有各种保护装置,这些保护装置是根据下级负荷地短路、最大负荷等情况来整定配置的,因此,在发生类似故障是可根据具体情况由系统自动做出判断应跳闸保护,并且,现在的跳闸保护整定时间已经很短,在故障解除后,系统内的自动重合闸装置会迅速和闸恢复供电。这对于保护下级各负荷是十分有利的。这样不仅保护了各负荷设备的安全利于延长是使用寿命,降低设备投资,而且提高了供电的可靠性,这对于提高工农业生产效率是十分有效的。工业产品的效率提高也就意味着产品成本的降低,市场竞争力增大,进而可以使企业效益提高,为国民经济的发展做出更大的贡献。

生活用电等领域的供电可靠性,可以提高人民生活质量,改善生活条件等。

可见,大连老虎滩变电所的设计是大连地区工业效率提高及国民经济发展的必然条件。

1.2大连老虎滩变电所的设计要求

由于本地区经济发展的需要电力供不应求的情况下,为了适应本地区经济的发展要在本地区建设10kV变电站。具体要求如下。该变电所所用电压为0.4kV,厂区配电电压为10kV,:

表 1.1负荷如下表

本电力系统应包括变电,配电以及相应的安全自动、继电保护等设施。在国家发展计划的统筹规划下,合理的开发资源,用最少的资金为国民经济各部门及人民生活提供充足、可靠、合格的电能。

本次设计的变电站为10kV变电站,其下级负荷为0.4kV级企业和0.4kV级工业及其它负荷。这些负荷不仅包括水泥厂、开关厂等工业部门,也有政府、市区等非工业部门。他们对供电的要求不同。依照先行的原则,依据远期负荷发展本设计该变电所,本变电站主要任务是把10kV变成0.4kV电压供周边城乡使用。尤其对本地区大用户进行供电,改善提高供电水平,提高了本地供电质量和可靠性。并且伴随电力系统中所用电气元件产品诸如断路器、继电器、隔离开关等性能指标的提高,大连老虎滩变电所的功能也会越来越完善,可靠性也会得到很大的提高。

1.3大连老虎变电所电气部分的设计应达到的目的

本毕业设计课题主要是综合训练运用发电厂电气部分,电力系统继电保护,工厂供电,高低压电气,电力系统分析等电气工程及其自动化专业知识完成“大

连老虎滩变电所电气部分的设计”通过设计,培养综合运用所学基础理论,专业知识与技能,巩固过去所学的电气知识,把所学理论应用到实际工程上去,解决实际问题,进一步了解工程设计规范,要求,掌握设计基本内容和方法,为学生参加工作打好基础!

1.4大连老虎滩变电所电气部分的设计方案

1 ) 应先进行负荷分析计算:求出计算负荷,目的是为了合理地选择变电所内的各级电压供电网络,变压器容量和电器设备型号等。

2 ) 变压器台数及容量的选择:其中包括数量以及容量的选择。

3 ) 主接线的设计:每种接线都有各自的特点,需要在其中选择最合适的。而且还要满足可靠性和电能质量的要求。接线简单、清晰,操作简便。必要的运行灵活性和检修方便。投资少,运行费用低。具有扩建的可能性。

4 ) 根据主接线进行短路计算:确定中性点接线方式,采用标幺值的方法进行计算。另外它也可以选择适当的接触器的参数,继电保护的灵敏度也是用它来效验的。5) 电气设备的选择及其校验:其中包括断路器,隔离开关,负荷开关等开关电器,电压互感器,电流互感器,熔断器,电力电缆和导线等主要设备。在选择后还要进行热稳定和动稳定校验。6 ) 继电保护的设计:其中包括供电线路的继电保护和变压器的保护。为了保证供电的可靠性还应设置备用电源自动投入装置(BZT)。7 ) 防雷与接地的设计:对于变电所防雷有两个重要方面,即直击雷的防护和对由线路侵入的过电压的防护。8 ) 无功补偿的计算:在系统中所承担的作用是提高电网的功率因数,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。合理的选择补偿装置,可以做到最大限度的减少网络的损耗,使电网质量提高。9 ) 编写说明书:对课程设计进行总体的说明和概括,以及说明在那方面还需要改进。

第2章负荷的分析与计算及无功补偿

2.1负荷分析的意义

进行电力设计的基本原始资料是用电部门提供的用电设备安装容量。这些用电设备品种多,数量大,工作情况复杂。如何根据这些资料正确估计所需的电力和电量是一个非常重要的问题。估计的准确程度,影响电力设计的质量,如估算过高,将增加供电设备的容量,使供配电系统复杂,浪费有色金属,增加初期投资和运行管理工作量。而估算过低,又会使供配电系统投入运行后,供电系统的线路和电气设备由于承担不了实际的负荷电流而过热,加速绝缘老化的速度,降低使用寿命,增大电能损耗,影响供电系统的正常可靠运行。由此可见,正确确定计算负荷意义重大。但是负荷情况复杂,影响计算负荷的因素有很多,虽然各类负荷的变化有一定的规律可行,但仍难准确确定计算负荷的大小。实际上,负荷也不是一成不变的,他与设备的性能,生产的组织,生产者的技能及能源供应的状况等多种因素有关。因此负荷计算只能力求接近实际。

求计算负荷的工作称为负荷计算。计算负荷是根据已知的用电设备安装容量确定的,预期不变的最大假想负荷。这个负荷是设计时作为选择供配电系统供电线路的导线截面,变压器容量,开关电器及互感器等的额定参数的依据,所以非常重要。

2.2负荷的分类及各自的供电要求

一级负荷:中断供电将造成人身伤亡,造成重大的政治影响,经济损失,如重大的设备损坏,重大产品报废。或者公共场所秩序的严重混乱。对于某些特等建筑,如重要的交通枢纽,通信枢纽,国家级承担重大活动的会堂,国家级的体育中心,以及经常用于重要国际活动的大量人员集中的公共场所等一级负荷,为特别重要的负荷。在一级负荷中,当中断供电将发生中毒,爆炸和火灾等情况的负荷,一级特别重要的场所不允许中断供电的负荷,应视为特别重要的负荷。

二级负荷:中断供电将造成较大的政治影响,造成设备局部的破坏或生产流程紊乱且需要较长时间才能恢复,或者大量的产品报废,重要产品大量减产,造成较大经济损失。中断供电也将影响重要用电单位的正常工作,以及中断供电将造成大型影剧院,大型商场等较多人员集中的重要公共场所秩序的混乱。

三级负荷:三级负荷为一般的电力负荷,不属于一二级负荷的,都为三级负荷。

各自的供电要求如下:

一级负荷:应由两个独立电源供电,当一个电源故障时,另一个电源不至于同时损坏。特别重要的一级负荷,除了两个独立电源外,还应设置应急电源,为了保证对特别重要负荷的供电,严禁将其他级别的负荷接入应急供电系统。关于应急电源方式的选用,可参照下列原则:(1)蓄电池包括静态交流不间断电源装置,适用于允许中断供电时间为毫秒级别的负荷供电。(2)供电网络中有效地独立于

(3)正常电源的专用配电线路,适用于允许中断供电时间为1.5S以上的负荷供电。

独立于正常电源的快速自启动发电机组,适用于允许中断供电时间为15S以上的负荷供电。常用的应急电源可使用下列几种电源:(1)独立于正常电源的发电机组 (2)供电网络中独立于正常电源的专门馈电线路。(3)蓄电池(4)干电池。

二级负荷:二级负荷也属于重要负荷,二级负荷也要求有两路独立电源供电,或用两回路送到适宜的配电点。当工作电源失去时,由运行人员手动操作投入备用电源。供电变压器也应有两台(这两台变压器不一定要在同一变电所)。只有当负荷较小或者当地供电条件困难时,二级负荷可由一回路6KV及以上的专用架空线路供电。这是考虑架空线路发生故障时,较之电缆线路发生故障时易于发现且易于检查和维修。当采用电缆线路时,必须采用两根电缆并列供电,每根电缆应能承受全部的二级负荷。

三级负荷:由于三级负荷为不重要的一般负荷,因此它对供电电源无特殊的要求。

2.3负荷计算方法的比较及选用

我国目前普遍采用的确定用电设备计算负荷的基本方法,有需要系数法和二项式法。(1)需要系数法:他是国际上普遍采用的计算负荷的基本方法,最为简便。(2)二项式法:他的应用局限性较大,不仅考虑了用电设备组最大负荷时的平均负荷,而且考虑了少数容量最大的设备投入运行时对总计算负荷的额外影响,所以二项式法比较适于确定设备台数较少而容量差别较大的低压干线和分支线的计算负荷。但是二项式计算系数b,c和x的值,缺乏充分的理论依据,且只有机械工业方面的部分数据,从而使其应用受到一定局限。(3)按逐级计算法确定用户的计算负荷: 他是根据用户的供配电系统图,从用电设备开始,朝电流的方向逐级计算,最后求出用户总的计算负荷的方法称为逐级计算法。

我采用的就是需用系数法:

已知该变电所为10/0.4 kV降压变电所。厂区的配电电压为10kV,用电电压

为0.4kV。查表可知:变配电所需用系数Kd=0.5—0.7 取Kd=0.6

已知:出线#1 有功功率 Ps=94 kW cosΦ=0.65 tanΦ=1.17

有功计算负荷 Pjs1 = Kd * Ps = 0.6 * 94= 56.4 kW

无功计算负荷 Qjs1 = Pjs * tanΦ = 56.4 * 1.17 = 65.98 kvar

视在计算负荷 Sjs1 = Pjs / cosΦ = 56.4 / 0.65 = 86.77 kVA

计算电流

同理可求出:

出线#2 Pjs2=66 kW Qjs2=67.32 kvar Sjs2=94.29 kVA Ijs2=143.26 A 出线#3 Pjs3=54 kW Qjs3=55 kvar Sjs3=77.14 kVA Ijs3=117.2 A 出线#4 Pjs4=21 kW Qjs4=24.57 kvar Sjs4=32.31 kVA Ijs4=49.1A 出线#5 Pjs5=78 kW Qjs5=91.26 kvar Sjs5=120 kVA Ijs5=182.3 A 出线#6 Pjs6=18 kW Qjs6=13.5 kvar Sjs6=22.5 kVA Ijs6=34.2 A 出线#7 Pjs7=18 kW Qjs7=15.84 kvar Sjs7=24 kVA Ijs7=36.47 A 出线#8 Pjs8=56.4 kW Qjs8=65.9 kvar Sjs8=86.7 kVA Ijs8=131.84 A 出线#9 Pjs9=66 kW Qjs9=67.3 kvar Sjs9=94.3 kVA Ijs9=143.3 A 出线#10 Pjs10=54 kW Qjs10=55.1 kvar Sjs10=77.1 kVA Ijs10=117.2 A 取 K∑p = 0.8 K∑q = 0.85

总的计算负荷:Pis = K∑p * ∑Pjsi = 0.8 * 487 kW = 389 kW

Qjs = K∑q * ∑Qjsi = 0.85 *522 Kvar =443.7 kvar

2.4无功补偿的意义及方法

用户中绝大数用电设备,如感应电动机,电力变压器,电焊机,电弧炉及气

体放电灯,他们都要从电网吸收大量无功电流来产生交变磁场,其功率因数均小

于1.而功率因数是衡量供配电系统是否经济运行的一个重要指标。当达不到规定

的功率因数要求时,必须考虑进行无功功率的人工补偿。

在《供电营业规则》中规定:“用户在当地供电企业规定的电网高峰负荷时的

功率因数,应达到下列规定:100kVA及以上高压供电的用户,功率因数在0.9以上。其他电力用户个大,中型电力排灌站,功率因数为0.85以上”。并规定,凡

功率因数未达到上述规定的,应增添无功补偿装置,通常采用并联电容器进行补偿。这里所指的功率因数,即为最大负荷时的功率因数。

常用的方法有:

1提高自然功率因数:功率因数不满足要求时,首先应提高自然功率因数。

自然功率因数是指未装任何补偿装置的实际功率因数。提高自然功率因数,就是

不添加任何补偿设备,采取科学的措施减少用电设备无功功率的需要量,使供电

系统总功率因数提高。它不需要添加设备,是最理想最经济改善无功功率因数的

方法。工厂里感应电机消耗无功功率的百分之六十左右,变压器消耗了百分之二

十的无功功率,提高功率因数的主要途径也是如何减少感应电机和变压器上消耗

的无功功率。合理地配置变电所变压器的容量和台数,当变压器容量选择过大而

负荷又轻时,变压器运行很不经济,系统功率因数恶化。若工厂配电变压器选用

两台或多台时,根据不同的负荷来决定投入并联变压器的台数,达到供电变压器

经济运行,减少系统消耗的无功功率。

2人工补偿功率因数:常用的方法有:(1)并联电容器:他是目前用户,企

业内广泛采用的一种补偿装置,具有有功损耗小,无旋转部分,运行维护方便,

根据系统需要增加或减少安装容量和改变安装地点,个人电容器损坏不影响整个

装置的运行等优点。同样他也有只能有级调节,不能随无功功率变化进行平滑的

自动调节,当通风不良及运行温度过高时易发生漏油,鼓肚,爆炸故障等缺点。

单台静电电容器能发出的无功功率较小,但容易组成所需的补偿容量。静电电容

器的补偿方式分为三种:个别补偿,分组补偿和集中补偿。个别补偿是在电网末

端负荷处补偿,可以最大限度地减少线路损耗和节省有色金属消耗量。个别补偿

利用率低,易受环境条件的影响,适用于长期稳定负荷且需无功功率较大的负载。

分组补偿是在电网末端多个用电设备共用一组电容器补偿装,分组补偿的电容器

利用率较高,比单个补偿节省容量。集中补偿是将电容器安装在工厂变电所变压

器的低压侧或高压侧,一般安装在低压侧,这样可以提高变压器的负荷能力。最

好的补偿方法是采用电容器集中补偿与分散相结合的补偿方法。(2)同步电动机

补偿:他是通过改变励磁电流来调节和改善供配电系统的功率因数,但是其价格

高,维修麻烦,所以同步电机应用不广。(3)动态无功功率补偿:若有冲击性负

荷,一般并联电容器的自动切换装置响应太慢,必须采用大容量,高速动态无功补

偿装置。

2.5无功补偿的计算

根据《供电营业规则》规定:100kVA及以上高压供电用户功率因数要在0.9

以上(1)补偿前:功率因数 cosΦ =Pjs/Sjs =0.66(2)考虑到无功损耗ΔQt

远大于ΔPt ,所以低压侧补偿后的功率因数应略高于0.9 取cosΦ(2)=0.94

所以低压侧装设并联电容器容量为:(查表,补偿率ΔQc=0.78)

Qc=ΔQc*Pjs= 389*(tanarccos0.64-tanarccos0.92)= 389*.078 =303.4 kvar

(3)补偿后变电所低压侧视在计算负荷:

js

S =‘计算电流 Ijs= 627.5 A 在负荷计算中,S9,SC9系列的变压器功率损耗

ΔPt=0.015*Sjs(2)=0.015* 413.5 = 6.2 kW

ΔQt=0.06*Sjs(2)=0.06* 413.5 =24.8 kvar

高压侧计算负荷 Pjs (!)=389+6.2 =395.2 kW

Qjs (1)=(443.7-303.4)+24.8 =165.1 kvar

Sjs (1)=428 kVA 新的功率因数 cos Φ= 0.93

满足≥0.9 的要求, 无功补偿后 Snt1-Snt=590 kVA -413.5 kVA= 176.5 kVA

第3章变压器台数及容量的选择

3.1变压器的分类与联结组别

电力变压器是变电所中最关键的一次设备,其功能是将电力系统中的电能电压升高或降低,以利于电能的合理输送,分配和使用。电力变压器按功能可分为升压变压器和降压变压器两大类,工厂变电所采用的都是降压变压器。直接供电给用电设备的终端变电所的降压变压器常称为配电变压器。电力变压器按容量系列分为R8和R10两大类。R8容量系列指容量等级是按1.33倍数递增的。我国老式的变压器常采用此系列。R10容量系列是指容量等级按1.26倍数递增的。我国新变压器的容量常采用此系列。

电力变压器的联结组别是指变压器一二次侧绕组因采取不同的联结方式而形成变压器一二次侧对应线电压之间的不同相位关系。对于10KV配电变压器(二次侧电压为220/380V)有Yyn0和Dyn11两种常见的联结组。我国过去差不多全采用Yyn0联结的配电变压器。近10年来,Dyn11联结的配电变压器已得到推广应用。Dyn11较之采用Yyn0联结有下列优点:(1)有利于抑制高次谐波电流。(2)Dyn11联结变压器的零序阻抗较之Yyn联结变压器的小得多,从而更有利于单相接地短路故障的保护和切除。(3)Dyn11联结变压器的中性线电流允许达到相电流的75%以上,其承担单相不平衡负荷的能力远比Yyn联结变压器大。这在现代供电系统中单相负荷急剧增长的情况下,推广采用Dyn11联结变压器就显得更有必要。

3.2变压器的容量及过负荷能力

变电所主变压器容量及台数,型号的确定

1选择主变压器台数时应考虑下列原则:(1)应满足用电负荷对供电可靠性的要求。对有大量一二级负荷的变电所,应采用两台变压器,以便当一台变压器发生故障或检修时,另一台变压器能对一二级负荷继续供电。对只有二级而无一级负荷的变电所,也可以只采用一台变压器,但必须在低压侧敷设与其他变电所相连的联络线作为备用电源,或另有自备电源。(2)对季节性负荷或昼夜负荷变动较大而宜采用经济运行方式的变电所,也可以考虑采用两台变压器。(3)除上述两种情况外,一般车间变电所宜采用一台变压器。但是负荷集中且容量相当大的

变电所,虽为三级负荷,也可以采用两台或者多台变压器。(4)在确定变电所主

变压器台数时,应适当考虑负荷的发展,留有一定余地。

2变电所主变压器容量的选择原则:(1)只装设一台主变压器的变电所:主变压器的容量Sn应满足全部用电设备计算负荷Sjs的需要,即Snt≥Sjs(I)装

设两台主变压器的变电所:任一台变压器单独运行时,宜满足计算负荷Sjs的

60%-70%的需要。即Snt≥(0.7-0.8)Sjs. 还有就是任一台变压器单独运行时,

应满足全部的一二级负荷的需要。即Snt≥Sjs(Ⅰ+Ⅱ)

3变压器并列运行的条件:(1)两台并列变压器的电压一定要相同,允许差

(2)并列运行的变压器阻抗电压必须相同,允许差值不得超过+10。值不得超过+5%。

(3)并列变压器的联结组别必须相同。此外并列运行的变压器应尽量相同或相近,

其最大容量与最小容量之比一般不宜超过3:1.若不这样,很容易在变压器间产

生环流,并且容易造成小容量变压器的过负荷。

由于我国电力不足、缺电严重、电网电压波动较大。变压器的有载调压是改

善电压质量、减少电压波动的有效手段。对电力系统,一般要求110kV及以下变

电所至少采用一级有载调压变压器,因此城网变电所采用有载调压变压器的较多。

变压器的使用年限,主要取决于变压器绕组的绝缘老化速度,而绝缘老化速度又

取决于绕组最热点的温度,变压器的绕组导体和铁心,一般可以长时间经受较高

的温度而不致损坏。但绕组长期受热时,其绝缘的弹性和机械的强度要逐渐减弱,

这就是绝缘老化的现象。绝缘老化严重时,就会变脆,容易裂纹和剥落。

按照规定:电力变压器的正常使用时的环境温度:最高气温+40度,最高年平均气

温+20度。而且在维持变压器规定的使用寿命(20年)来考虑,变压器在必要时

完全可以过负荷运行。

对于车间变电所单台变压器的容量不宜大于1000kVA,一方面是受低压开关

电器断流能力和短路稳定要求的限制,另一方面是考虑到使变压器接近车间的负

荷中心,以减少低压配电线路的电能损耗。但是如果车间负荷容量较大,负荷集

中且运行合理时,也可选择单台容量为1250kVA的配电变压器,这样可减少主变

压器台数及高压开关电器和电缆等。对于居住小区变电所内的油浸式变压器单台

容量,不宜大于630kVA,这是因为当大于630kVA时,应设置瓦斯保护。

3.3变电所主变压器容量及台数,型号的确定

总之,主变压器容量一般按变电所建成后5-10年的规划负荷选择,并适当考

虑到远期10-20年的负荷发展。对于城郊变电所,主变压器容量应与城市规划相结

合。,对于户内变压器,由于散热条件差,一般变压器室的出风口与进风口间有

15度的温差,从而使处在室中间的变压器环境温度比户外变压器环境温度高出的8度,因此户内变压器的实际容量在所计算的容量还要减少8%。根据变电所所带负荷的性质和电网结构来确定变压器的容量。对于有重要负荷变压器的变电所,应考虑当一台主变压器停运时,其余变压器容量在计及过负荷能力后的允许进间内,应保证用户的一级和二级负荷;对一般性变电所,当一台主变压器停运时,其余变压器容量应能保证全部负荷的70%-80%。同级电压的单台降压变压器容量的级别不宜太多,应从全网出发,推行系列化、标准化。

还要指出:由于变压器的负荷时变动的,大多数时间是欠负荷运行,因此必要时可以适当过负荷,并不会影响其使用寿命,油浸式变压器,户外正常过负荷30%,户内可正常过负荷20%。但是干式变压器一般不考虑过负荷。最后还必须指出,变电所主变压器台数及容量的确定,应结合主接线方案,按经济比较择优选择。

通过上面的分析:因为考虑到大连老虎滩变电所属于车间变电所,并且二级负荷占30%。所以应装设两台变压器。

当装设两台变压器:St=Snt=(0.7-0.8)Sjs=289-330.8 kV A

St= Snt≥30%St

所以我选择10kV级S9系列油浸式铜线电力变压器S9-315/10(0.4)型。并采用Dyn11 接线。

第4章主接线的设计

4.1主接线的概述

电气主接线是指变电所中的一次设备按照设计要求连接起来的,表示接受分配电能的电路,也称为主电路。电气主接线中的设备用标准的图形符号和文字负荷表示的电路称为主接线图。电气主接线的形式,将影响到配电装置的布置,供电可靠性。运行灵活性和二次接线,继电保护等问题。电气主接线对变电所以及电力系统的安全,可靠经济的运行起着重要的作用。

电气主接线的作用:(1)它是电气运行人员进行各种操作和事故处理的重要依据。(2)它表明了变压器,断路器和线路等电气设备的数量,规格,连接方式及可能的运行方式。(3)主接线的好坏直接影响到电力系统的安全,稳定,灵活,经济运行,也直接影响到工农业的生产和人民的生活。电气主接线设计是电力系统总体设计的组成部份。变电所主接线形式应根据变电所在电力系统中的地位、作用、回路数、设备特点及负荷性质等条件确定,并且应满足运行可靠、简单灵活、操作方便和节约投资等要求。

主接线设计的基本要求为:(1)供电可靠性。主接线的设计首先应满足这一要求;当系统发生故障时,要求停电范围小,恢复供电快。应符合有关国家标准和技术规范的要求,能充分保证人身和设备的安全。应满足电力负荷特别是其中一二级负荷对供电可靠性的要求。(2)适应性和灵活性。能适应一定时期内没有预计到的负荷水平变化;改变运行方式时操作方便,便于变电所的扩建。应能适应必要的各种运行方式,便于切换操作和检查,且适应负荷的发展。(3)经济性。在确保供电可靠、满足电能质量的前提下,要尽量节省建设投资和运行费用,减少用地面积。并节约电能和有色金属消耗量。(4)简化主接线。配网自动化、变电所无人化是现代电网发展必然趋势,简化主接线为这一技术全面实施,创造更为有利的条件。(5)设计标准化。同类型变电所采用相同的主接线形式,可使主接线规范化、标准化,有利于系统运行和设备检修。

参考《35~110kV变电所设计规范》第3.2.1条。变电所的主接线应根据变电所所在电网中的地位、出线回路数、设备特点及负荷性质等条件确定,并应满足供电可靠、运行灵活、操作检修方便、节约投资和便于扩建等要求。

4.2主接线的分类及其各的特点

目前变电所常用的主接线形式有:单母线、单母线分段、单母线分段带旁路、双母线、双母线分段,桥形接线。分我们在比较各种电气主接线的优劣时,主要考虑其安全可靠性、灵活性、经济性三个方面。首先,在比较主接线可靠性的时候,应从以下几个方面考虑:①断路器检修时,能否不影响供电;②线路、断路器或母线故障时以及母线或隔离开关检修时,停运出线回路数的多少和停电时间的长短,以及能否保证对Ⅰ、Ⅱ类用户的供电;③变电站全部停电的可能性;④大型机组突然停电时,对电力系统稳定性的影响与后果因素。其次,电气主接线应该能够适应各种运行状态,并且能够灵活地进行运行方式的切换。不仅正常时能安全可靠的供电,而且在电力系统故障或电气设备检修时,也能够适应调度的要求,并能灵活、简便、迅速地切换运行方式,使停电的时间最短,影响的范围为最小。再次,在设计变电站电气主接线时,电气主接线的优劣往往发生在可靠性与经济性之间,欲使电气主接线可靠、灵活,必然要选用高质量的电气设备和现代化的自动化装置,从而导致投资的增加。因此,电气主接线在满足可靠性与灵活性的前提下做到经济合理就可以了。

1单母线接线的特点

(1)优点:接线简单清晰,使用设备少,经济性比较好。运行经验表明,误操作是造成系统故障的重要原因之一,主接线简单,操作人员发生错误操作的可能性极小,因而接线简单也是评价主接线的条件之一。(2)缺点:可靠性和灵活性差。例如当母线或母线隔离开关发生故障或检修时,必须断开所有回路的电源,造成对全部用户供电中断。但当某一出线发生故障或检修出线断路器时,可只中断对该出线上用户的供电,而不影响其他用户,所以仍具有一定的可靠性。(3)适用范围:这种接线形式一般只用在出线回路少,并且没有重要负荷的发电厂和变电站中。

2单母线分段接线的特点

(1)优点:①用断路器把母线分段后,对重要用户可以从不同段引出两个回路,有两个电源供电;②当一段母线发生故障,分段断路器自动将故障段切除,保证正常段母线不间断供电和不致使大面积停电。(2)缺点:①当一段母线或母线隔离开关故障或检修时,该段母线的问路都要在检修期间内停电;②当出线为双回路时,常使架空线路出现交叉跨越;②扩建时密向两个方向均衡扩建。(3)适用范围:这种接线广泛用于中小容量发电厂和变电站6-10kV接线中。但是,由于这种接线对重要负荷必须采用两条出线供电,大大增加了出线数目,使整个

母线系统可靠性受到限制,所以在重要负荷的出线回路较多,供电容量较大时,一般不予采用。

图4.1 单母线接线图4.2 单母线分段接线3双母线接线的特点

(1)优点:首先是供电可靠。通过两组母线隔离开关的倒换操作,可以轮流检修一组母线而不致使供电中断;一组母线故障后,能迅速恢复供电;检修任一回路的母线隔离开关时,只需断开此隔离开关所属的一条回路和与此隔离开关相连的该组母线,其它回路均可通过另外一组母线继续运行,但其操作步骤必须正确。例如:欲检修工作母线,可把全部电源和线路倒换到备用母线上。其步骤是:先合上母联断路器两例的隔离开关,再合母联断路器QF,向备用母线充电,这时,两组母线等电位,为保证不中断供电,按“先通后断”原则进行操作,即先接通备用母线上的隔离开关,再断开工作母线上的隔离开关。完成转换后,再断开母联QF及其两侧的隔离开关,即可使原工作母线退出运行进行检修。其次是调度灵活。各个电源和各个回路负荷可以任意分配到某一组母线上,能灵活地适应电力系统中各种运行方式调度和潮流变化的需要。通过倒闸操作可以组成各种运行方式。例如:当母联断路器闭合,进出线分别接在两组母线上,即相当于单母线分段运行;当母联断路器断开,一组母线运行,另一组母线备用.全部进出

线均接在运行母线上,即相当于单母线运行,两组母线同时工作,并且通过母联断路器并联运行,电源与负荷平均分配在两组母线上,即称之为固定连接方式运行。这也是目前生产中最常用的运行方式,它的母线继电保护相对比较简单。还有就是扩建方便。向双母线左右任何方向扩建,均不会影响两组母线的电源和负荷自由组合分配,在施工中也不会造成原有回路停电。当有双回架空线路时,可以顺序布置,以致连接不同的母线段时,不会如单母线分段那样导致出线交叉跨越。最后就是便于试验。当个别回路需要单独进行试验时,可将该回路分开。(2)缺点:增加了电气设备的投资,当母线故障或检修时,隔离开关作为倒闸操作电器需在隔离开关和断路器之间装设闭锁装置。当馈出线断路器或线路侧隔离开关故障时停止对用户供电。(3)适用范围:由于双母线接线有较高的可靠性,广泛用于出线带电抗器的6-10kV配电装置,35-60kV出线数超过8回,或连接电源较大,负荷较大时,110-220kV出线数为5回及以上时。

图4.3 双母线接线图4.4 桥形接线(内桥)4桥形接线

可分为内桥接线和外桥接线。内桥接线适用于供电线路长,线路故障几率多,负荷比较平稳,主变压器不经常切换退出工作的,没有穿越功率的终端降压变电所。外桥接线适用于供电线路短,线路故障几率小,工厂负荷变化大,变压器操作频繁,有穿越功率流经的中间变电所,采用外桥接线,工厂降压变电所运行方

式的变化不影响公共电力系统的功率潮流。

旁路母线的设置原则:当110kV出线在6回及以上,220kV出线在4回及以上时,宜采用带专用旁路断路器的旁路母线,带有专用旁路断路器的接线,增加了投资然而对接于旁路母线的线路回数较多,且对供电可靠性有特殊需要的场合是十分必要的。

4.3大连老虎滩变电所主接线的设计

因为采用两台变压器,所以我拟定了三种主接线

1高压侧无母线,低压侧单母线分段:这种主接线的供电可靠性较高,当任一主变压器或任一电源进线停电检修或发生故障时,该变电所通过闭合低压母线分段开关,即可迅速恢复对整个变电所的供电。如果两台主变压器高压侧断路器装设互为备用的备用电源自动投入装置,则任一主变压器高压侧断路器因电源断电(失压)而跳闸时,另一主变压器高压侧的断路器在备用电源自动投入装置作用下自动合闸,恢复整个变电所的供电。这时该变电所可供一二级负荷。(如图4.5)

图4.5 高压侧无母线,低压单母线分段图4.6 高压侧单母线,低压单母线分段

35KV变电站毕业设计(完整版).doc

35kV 变电站设计原始数据 本次设计的变电站为一座35kV 降压变电站,以10kV给各农网供电,距离本变电站15km和10km处各有一个系统变电所,由这两个变电所用35kV双回架空线路向待设计的变电站供电,在最大运行方式下,待设计的变电站高压母线上的短路功率为 1500MVA。 本变电站有 8 回 10kV架空出线,每回架空线路的最大输送功率为 1800kVA;其中 #1 出线和 #2 出线为Ⅰ类负荷,其余为Ⅱ类负荷及Ⅲ类负荷, Tmax=4000h,cosφ=0.85。 环境条件:年最高温度 42℃;年最低温度 -5℃;年平均气温 25℃;海拔高度 150m;土质为粘土;雷暴日数为 30 日/ 年。

35KV变电站设计 一、变电站负荷的计算及无功功率的补偿 1.负荷计算的意义和目的 所谓负荷计算,其实就是计算在正常时通过设备和导线的最大电流,有了这个才可以知道选择多大截面的导线、设备。负荷计算是首要考虑的。要考虑很多因素才能计算出较为准确的数值。如果计算结果偏大,就会将大量的有色金属浪费, 增加制作的成本。如果计算结果偏小,就会使导线和设备运行的时候过载,影响 设备的寿命,耗电也增大,会直接影响供电系统的稳定运行。 2.无功补偿的计算、设备选择 2.1无功补偿的意义和计算 电磁感应引用在许多的用电设备中。在能量转换的过程中产生交变磁场,每个周 期内释放、吸收的功率相等,这就是无功功率。在电力系统中无功功率和有功功 率都要平衡。有功功率、无功功率、视在功率之间相互关联。 S P2Q2 S——视在功率, kVA P——有功功率, kW Q——无功功率, kvar 由上述可知,有功功率稳定的情况下,功率因数 cosφ越小则需要的无功功率越 大。如果无功功率不通过电容器提供则必须从该传输系统提供,以满足电力线和变 压器的容量需要增加的电力需求。这不仅增加了投资的供给,降低了设备的利用 率也将增加线路损耗。为此对电力的国家规定:无功功率平衡要到位,用户应该 提高用电功率因数的自然,设计和安装无功补偿设备,及时投入与它的负载和电 压的基础上变更或切断,避免无功倒送回来。还为用户提供了功率因数应符合相 应的标准,不然,电力部门可能会拒绝提供电力。所以无功功率要提高功率因

220KV变电站设计毕业

引言 随着经济的腾飞,电力系统的发展和负荷的增长,电力网容量的增大,电压等级和综合自动化水平也不断提高,科学技术突飞猛进,新技术、新电力设备日新月异,该地原有变电所设备旧,占地较大,自动化程度不高,为满足该地区经济的持续发展和人民生活的需要,电网正在进行大规模的改造,对变电所的设计提出了更高、更新的要求。建设新的变电所,采用先进的设备,使其与世界先进变电所接轨,这对提高电力网的供电可靠性,降低线路损耗,改善电能质量,增加电力企业的经济效益有很大的现实意义。 1、绪论 由于经济社会和现代科学技术的发展,电力网容量的增大,电压等级的提高,综合自动化水平的需求,使变电所设计问题变得越来越复杂。除了常规变电所之外,还出现了微机变电所、综合自动化变电所和无人值班变电所等。目前,随着我国城乡电网建设与改革工作的开展,对变电所设计也提出了更高、更新的要求。 1.1 我国变电所发展现状 变电技术的发展与电网的发展和设备的制造水平密切相关。近年来,为了满足经济快速增长对电力的需求,我国电力工业也在高速发展,电网规模不断扩大。目前我国建成的500kV变电所有近200座,220kV变电所有几千座;500kV电网已成为主要的输电网络,大经济区之间实现了联网,最终将实现全国联网。电气设备的制造水平也在不断提高,产品的性能和质量都有了较大的改进。除空气绝缘的高压电气设备外,GIS、组合化、智能化、数字化的高压配电装置也有了新的发展;计算机监控微机保护已经在电力系统中全面推广采用;代表现代输变电技术最高水平的750kV直流输电,500kV交流可控串联补偿也已经投入商业运行。

我国电网供电的可靠性近年来也有了较大的提高,在发达国家连续发生严重的电网事故的同时,我国电网的运行比较稳定,保证了经济的高速发展。 1.2 变电所未来发展需要解决的问题 在未来,随着经济的增长,变电技术还将有新的发展,同时也给电力工程技术人员提出了一些需要解决的问题,例如:高压、大容量变电所深入负荷中心进入市区所带来的如何减少变电所占地问题、环境兼容问题;电网联系越来越紧密,如何解决在事故时快速切除隔离故障点,保证电力系统安全稳定问题;系统短路电流水平不断提高,如何限制短路电流问题;在保证供电可靠性的前提下,如何恰当的选择主接线和电气设备、降低工程造价问题等。 1.3 地区变电所的未来发展 变电所实现无人值班是一项涉及面广、技术含量高、要求技术和管理工作相互配套的系统工程。它包括:电网一、二次部分、变电所装备水平、通信通道建设、调度自动化系统的建立以及无人值班变电所的运行管理工作等。所以要实现变电所的无人值班,必须满足一定的条件,主要有以下几个方面: ⑴变电所的基础设施要符合要求。如:主接线力求简单,运行方式改变易实现,变压器要具有调压能力(可以是有载调压变压器或由调压器与无载调压变压器相配合来实现调压),主开断设备要具有较高的健康水平,操作机构要能满足远方拉合要求等。另外,所还要具备一定的基础自动化水平,用以完成对一些辅助性设备实现控制(如主变风扇的开停、电容器的投切等),以减轻调度端的工作量。 ⑵调度自动化系统在达到部颁发的《县级电网电力调度自动化规》中所要求的功能的基础上,通过扩展“遥控”、“遥调”,实现“四遥”功能,达到实用

货运铁路牵引变电所的电气系统毕业设计说明

货运铁路牵引变电所的电气系统设计毕业设计任务书 题目货运铁路牵引变电所的电气系统设计 学生学号班级专业电气工程及其自动化 承担指导任务单位电气工程系导师导师 职称 讲师 一、主要容 1. 按规定供、馈电容量与要求确定电气主结线。 2. 短路电流计算。 3. 牵引变压器容量、型式及台数的选择。 4. 母线(导体)和主要一次电气设备选择。 5. 配置所需的二次系统,并进行继电保护整定计算。 6. 进行防雷与接地的设计。 二、基本要求 1. 设计计算说明书一份,要求条目清楚、计算正确、文本整洁。 2. 绘制出牵引变电所电气主接线图。 三、主要技术指标(或研究方法) 1. 包含有A、B两牵引变电所的供电系统示意图如图1所示。 图1 牵引供电系统示意图 2. 电力系统1、2均为区域变电站,电力系统容量分别为4000MVA和4800MVA选取基准容量Sj为100MVA,在最大运行方式下,电力系统1、2的综合电抗标幺值分别为0.10和0.12,在最小运行方式下,电力系统1、2的综合电抗标幺值分别为0.11和0.14。 对每个牵引变电所而言,110kV线路为一主一备。 图1中,L1、L2、L3长度分别30km、50km、20km。线路平均正序电抗X1为0.4Ω/km, 平均零序电抗X0为1.2Ω/km。 基本设计数据如表1所示。 表1 牵引变电所基本设计数据 项目A牵引变电所 左臂负荷全日有效值(A)560 右臂负荷全日有效值(A)780 左臂短时最大负荷(A)[注] 860 右臂短时最大负荷(A)1080

毕业设计开题报告

摘要 货运铁路牵引变电所是铁路系统的重要组成部分,起着变换和分配电能的作用,它直接影响整个铁路系统的安全与经济运行。 本设计主要针对牵引供电系统进行设计和研究。主要包括牵引负荷的计算、主变压器接线方式的分析比较、主变压器型号和台数的选择、牵引变电所进线和馈线方式的选择、短路计算、高压设备的选取和校验、继电保护的拟定与计算、牵引变电所防雷与接地装置的设置。其中电气主接线是变电所设计的主要环节,直接关系着整个变电所电气设备的选择、配电装置的布置、继电保护和自动装置的确定,并且是牵引变电所电气部分投资大小的决定性因素。短路电流计算是本次设计的关键部分,通过计算对断路器、隔离开关、电压互感器、电流互感器、熔断器等进行选择校验和进行继电保护的拟定计算。 本次毕业设计实现了任务书要求的全部容,选择出牵引变压器,高压侧、低压侧的电气设备,确定了主接线方式。并且用AutoCAD绘出了系统的主接线图。 关键词:主接线主变压器电气设备

35kv变电站课程设计

目录 前言 (1) 1 电气主接线设计 (2) 1.1主接线的设计依据 (2) 1.2 主接线的基本要求 (2) 1.3 主接线的设计和论证 (2) 2 主变压器台数、容量和型号的选择 (8) 3 所用变的选择 (9) 4 电气设备的选择 (10) 4.1电气设备选择的一般条件 (10) 4.2断路器、隔离开关的选择 (12) 5 互感器的选择 (15) 5.1电流互感器的选择 (15) 5.2电压互感器的选择 (16) 6 10KV母线截面的选择 (17) 7 计算书 (18) 8 参考文献 (21)

前言 变电所由主接线,主变压器,高、低压配电装置,继电保护和控制系统,所用电和直流系统,远动和通信系统,必要的无功功率补偿装置和主控制室等组成。其中,主接线、主变压器、高低压配电装置等属于一次系统;继电保护和控制系统、直流系统、远动和通信系统等属二次系统。主接线是变电所的最重要组成部分。它决定着变电所的功能、建设投资、运行质量、维护条件和供电可靠性。一般分为单母线、双母线、一个半断路器接线和环形接线等几种基本形式。主变压器是变电所最重要的设备,它的性能与配置直接影响到变电所的先进性、经济性和可靠性。一般变电所需装2~3台主变压器;330 千伏及以下时,主变压器通常采用三相变压器,其容量按投入5 ~10年的预期负荷选择。此外,对变电所其他设备选择和所址选择以及总体布置也都有具体要求。 本次设计为35KV变电所的电气部分,包括任务书、说明书、计算书,以及1张电气主接线图。

Ⅰ、电气主接线设计 把变电站、断路器等按预期生产流程连成的电路,称为电气主接线。电气主接线是由高压电器通过连接线,按其功能要求组成接受和分配电能的电路,成为传输强电流、高电压的网络,故又称为一次接线或电气主系统。主接线代表了变电站电气部分主体结构,是电力系统接线的主要组成部分,是变电站电气设计的首要部分。它表明了变压器,线路和断路器等电气设备的数量和连接方式及可能的运行方式,从而完成变电、输配电的任务。 1.1主接线的设计依据 1.负荷大小和重要性 (1)对于一级负荷必须有两个独立电源供电,且当任何一个电源失去后,能保证对全部一级负荷不间断供电。 (2)对于二级负荷一般要有两个独立电源供电,且任何一个失去后,能保证全部或大部分二级负荷的供电。 (3)对于三级负荷一般只需一个电源供电。 2. 系统备用容量大小 (1)运行备用容量不宜少于8-10%,以适应负荷突增,机组检修和事故停运三种情况。(2)装有两台及以上的变压器的变电所,当其中一台事故断开时,其余主变压器的容量应保证该变电所60%~70%的全部负荷,在计及过负荷能力后的允许时间内,应保证车间的一、二级负荷供电。 1.2 主接线的基本要求 电气主接线设计应满足可靠性、灵活性、经济性三项基本要求,其具体要求如下: 1、可靠性 研究可靠性应该重视国内外长期运行的实践经验和定性分析,要考虑发电厂或变电站在电力系统中的地位和作用、所采用的设备的可靠性以及结合一次设备和相应的二次部分在运行中的可靠性进行综合分析。其具体要求如下: (1)断路器检修时不应影响供电。系统有重要负荷,应能保证安全、可靠的供电。 (2)断路器或母线故障以及母线检修时,尽量减少停运出线回数及停电时间,并且要保证全部一级负荷和部分二级负荷的供电。 (3)尽量避免发电厂、变电所全部停运的可能性。防止系统因为某设备出现故障而导致系统解裂。 (4)大机组超高压电气主接线应满足可靠性的特殊要求。 2、灵活性

35kV箱式变电站设计(样本)

目录 摘要 (Ⅰ) Abstract (Ⅱ) 第1章绪论 (1) 1.1 供配电技术的发展 (1) 1.2箱式变电站的类型、结构与技术特点 (1) 1.2.1 箱式变电站的类型 (1) 1.2.2 箱式变电站的结构 (1) 1.2.3 箱式变电站的技术特点 (2) 1.2.4 箱式变电站与常规变电站的对比分析 (3) 1.3 箱式变电站的技术要求与设计规范 (5) 1.3.1 额定值 (5) 1.3.2 设计和结构 (6) 1.3.3 使用条件 (7) 1.3.4 箱体要求 (8) 1.3.5箱式变电站内部电器设备 (8) 1.4 本课题的主要任务 (8) 第2章35kV箱式变电站总体结构设计 (9) 2.1 电气主接线的确定 (9) 2.1.1 主接线的基本形式 (9) 2.1.2 箱式变电站对主接线的基本要求 (9) 2.1.3 主接线的比较与选择 (10) 2.1.4 高压接线方式 (11) 2.2 箱式变电站箱体的确定 (11) 2.2.1 箱体的结构的确定 (11) 2..2.2 合理配置 (11) 2.3 变压器 (12) 2.3.1 变压器容量、接线组别的确定 (12) 2.3.2 变压器的散热处理 (13) 2.3.3 用负荷开关—熔断器组合电器保护变压器 (13)

2.4 箱式变电站总体布置 (14) 第3章35kV箱式变电站一次系统设计及设备选型 (15) 3.1 主电路设计 (15) 3.1.1 概述 (15) 3.1.2 一次系统设计原则 (15) 3.1.3 一次系统设计 (15) 3.2 设备选型 (16) 3.2.1 箱式变电站设备选型应注意的方面 (16) 3.2.2 设备选型的基本原理 (17) 3.2.3 高低压电器设备选择的要求 (18) 3.2.4 断路器的选型 (19) 3.2.5 熔断器的选型 (19) 3.2.6 互感器的选型 (21) 3.2.7 隔离开关的选型 (22) 3.2.8 开关柜的选型 (22) 第4章35kV箱式变电站二次系统设计 (23) 4.1 电气二次系统设计 (23) 4.1.1 二次系统定义及分类 (23) 4.1.2 电气测量仪表 (23) 4.1.3 二次系统设计 (23) 4.2 二次系统总体方案 (24) 4.3 断路器控制与信号回路 (25) 4.3.1 概述 (25) 4.3.2 控制回路设计 (26) 4.3.3 信号回路设计 (26) 4.4 电气测量与信号系统 (26) 第5章箱式变电站智能监控功能设计 (28) 5.1 箱式变电站的监控内容 (28) 5.1.1 电量监测与保护 (28) 5.1.2 防凝露保护 (28) 5.1.3 变压器室温度保护 (28)

35KV变电站继电保护课程设计(同名16366)

35KV变电站继电保护课程设计(同名16366)

广西大学行健文理学院 课程设计 题目:35kV电网的继电保护设计 学院 专业 班级 姓名 学号 指导老师: 设计时间:2015年12月28日-2016年1月8日

摘要 电力是当今世界使用最为广泛、地位最为重要的能源之一,电力系统的安全稳定运行对国民经济、人民生活乃至社会稳定都有着极为重大的影响。 电力系统继电保护是反映电力系统中电气设备发生故障或不正常运行状态而动作于断路器跳闸或发生信号的一种自动装置。电力系统继电保护的基本作用是:全系统范围内,按指定分区实时地检测各种故障和不正常运行状态,快速及时地采取故障隔离或告警信号等措施,以求最大限度地维持系统的稳定、保持供电的连续性、保障人身的安全、防止或减轻设备的损坏。随着电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力。 随着电力系统的迅速发展。大量机组、超高压输变变电的投入运行,对继电保护不断提出新的更高要求。继电保护是电力系统的重要组成部分,被称为电力系统的安全屏障,同时又是电力系统事故扩大的根源,做好继电保护工作是保证电力系统安全运行的必不可少的重要手段,电力系统事故具有连锁反应、速度快、涉及面广、影响大的特点,往往会给国民经济和人民生活造成社会性的灾难。 本次毕业设计的题目是35kv线路继电保护的设计。主要任务是为保证电网的安全运行,需要对电网配置完善的继电保护装置.根据该电网的结构、电压等级、线路长度、运行方式以及负荷性质的要求,给35KV的输电线路设计合适的继电保护。 关键词:35kv继电保护整定计算故障分析短路电流计算

某中心牵引变电所电气系统设计_毕业设计

某中心牵引变电所电气系统设计 某中心牵引变电所电气系统设计毕业设计任务书题目某中心牵引变电所电气系统设计 学生姓名学号 5 班级专业电气工程及其自动化 承担指导任务单位电气工程系导师 姓名 导师 职称 讲师 一、主要内容 1.按规定供、馈电容量与要求确定电气主接线。 2.短路电流计算。 3.牵引变压器容量、型式及台数的选择。 4.母线(导体)和主要一次电气设备选择。 5.配置所需的二次系统。 6.进行防雷与接地的设计。 二、基本要求 1.设计计算说明书一份,要求条目清楚、计算正确、文本整洁。 2.绘制出牵引变电所电气主接线图。 三、主要技术指标(或研究方法) 1.包含有A、B、C三个牵引变电所的供电系统示意图如图1所示。 图1 牵引供电系统示意图 图1中对每个牵引变电所而言,220kV线路为一主一备。待建牵引变电所为牵引变电所A,220kV线路向220kV地区变电所供电,供电容量为2000MVA。图1中L1、L2、L3、L4长度分别30km、15km、15km、20km。线路平均正序电抗X1为0.4Ω/km,平均零序电抗X0为1.2Ω/km。 2.气象资料:本地区最高温度为38℃,最热月平均最高气温29℃,最热月地下0.8m处平均温度为22℃,年主导风向为东风,年雷暴雨日数为20天。 3.地质水文资料:本地区海拔60m,底层以砂黏土为主,地下水位为2m。 4.电源短路容量:电力系统容量分别为3000MVA 、2800MVA。选取基准容量为100MVA,在最大运行方式下,电力系统的综合电抗标幺值为0.21、0.23;在最小运行方式下,电力系统的综合标幺值为0.30、0.35。 5.负荷资料:

110kV变电站电气一次部分课程设计

课程设计任务书 设计题目: 110kV变电站电气 一次部分设计 前言 变电站(Substation)改变电压的场所。是把一些设备组装起来,用以切断或接通、改变或者调整电压。在电力系统中,变电站是输电和配电的集结点。主要作用是进行高底压的变换,一些变电站是将发电站发出的电升压,这样一方面便于远距离输电,第二是为了降低输电时电线上的损耗;还有一些变电站是将高压电降压,经过降压后的电才可接入用户。对于不同的情况,升压和降压的幅度是不同的,所以变电站是很多的,比入说远距离输电时,电压为11千伏,甚至更高,近距离时为1000伏吧,这个电压经

变压器后,变为220伏的生活用电,或变为380伏的工业用电。 随着我国电力工业化的持续迅速发展,对变电站的建设将会提出更高的要求。本文通过对110KV变电站一次系统的设计,其中针对主接线形式选择,母线截面的选择,电缆线路的选择,主变压器型号和台数的确定,保护装置及保护设备的选择方法进行了详细的介绍。其中,电气设备的选择包括断路器、隔离开关、互感器的选择和方法与计算,保护装置包括避雷器和避雷针的选择。其中分析短路电流的计算方法和原因,是为了保证供电的可靠性。 目录 第1章原始资料及其分析 (4) 1原始资料 (4) 2原始资料分析 (6) 第2章负荷分析 (6) 第3章变压器的选择 (8) 第4章电气主接线 (11) 第5章短路电流的计算 (14) 1短路电流计算的目的和条件 (14) 2短路电流的计算步骤和计算结果 (15) 第6章配电装置及电气设备的配置与选择 (18) 1 导体和电气设备选择的一般条件 (18) 2 设备的选择 (19) 结束语 (25)

毕业设计:35kV变电所设计论文(终稿).

1 35kV变电所设计论文第一节设计方案确定变电所是电力系统的重要组成部分它直接影响整个电力系统的安全与经济运行是联系上级变电所和用户的中间环节起着变换和分配电能的作用。电气主接线是变电所的主要环节电气主接线的拟定直接关系着变电所电气设备的选择、配电装置的布置、继电保护和自动装置的确定是变电所电气部分投资大小的决定性因素。本次设计为35KV海迪变电所初步设计所设计的内容力求概念清楚层次分明。本设计在撰写的过程中曾得到老师和同事们的大力支持并提供大量的资料和有益的建议对此表示衷心的感谢。龙矿集团基地35kV变电所于1994年投入运行主变容量为两台 2500kVA变压器主要负担社区居民生活用电企业办公用电等。随着集团公司的飞速发展两台主变不能满足用电负荷要求附近很多企业由于受用电负荷限制不能正常生产另外由于用电负荷中心偏移压降增大用电损耗增加不能保证用户的电能质量为此拟在公司机关再建一座35kV变电所以满足机关居民生活用电和周围企业生产用电要求。一、设计思路煤矿供电系统电压等级多为110kV、35kV、6kV等采用中性点不接地的供电方式拟建的35KV变电所从基建投资、电能损失等经济指标及电能质量、供电可靠性、配电合理性等技术指标综合分析主变压器拟采用 2 台35kV三相三绕组油浸式自冷降压变压器分为三个电压等级、各个电压等级均采用单母分段的主接线方式供电、10kV 6kV均用于中性点不接地系统。其中机关居民生活用电采用6.3/0.4降压变压https://www.doczj.com/doc/851867575.html, 2 器距变电所距离较远的用电大户采用10.5/0.4的降压变压器这样能减少线路投资、降低线路损耗提高电能质量同时能够充分利用现有运行变压器减少不必要的损失。二、主要设备设计方案、一次设备主变压器采用新型节能产品采用可调整电压的有载调压变压器SSZ11型。变电所内35kV配电装置采用JYNl—40.5(Z移开式交流金属封闭间隔式开关柜、10KV配电装置采用JYN2—12移开式交流金属封闭间隔式开关柜。馈线断路器采用ZN12-12真空断路器,实现高压断路器无油化,电流、电压互感器全封闭浇注式。及10kV、6kV避雷器采用合成绝缘金属氧化锌避雷器。操作机构为电动机储能开关一体机构具备手动功能。

220kV变电站设计

引言 发电厂及电力系统的毕业设计是培养学生综合运用所学理论知识,独立分析和解决工程实际问题的初步能力的一个重要环节。 本设计是根据毕业设计的要求,针对220/60KV降压变电所毕业设计论文。本次设计主要是一次变电所电器部分的设计,并做出阐述和说明。论文包括选择变电所的主变压器的容量、台数和形式,选择待设计变电所所含有的各种电气设备及其各项参数,并且通过计算,详细的校验了公众不同设备的热稳定和动稳定,并对其选择进行了详尽的说明。同时经过变压器的选择和变电所所带负荷情况,确定本变电所电气主接线方案和高压配电装置及其布置方式,同时根据变电所的电压等级及其在电力网中的重要地位进行继电保护和自动装置的规划设计,最后通过对主接线形式的确定及所选设备的型号绘制变电所的断面图、平面图、和继电保护原理图,同时根据所绘制的变电所平面图计算变电所屋外高压配电装置的防雷保护,并绘制屋外高压配电装置的防雷保护图。

第一篇毕业设计说明书 1 变电所设计原始资料 1.1 设计的原始资料及依据 (1) 待设计变电所建成后主要向工业用户供电,电源进线为220KV两回进线,电压等级为220/60KV。 (2) 变电所地区年平均温度14℃,最高温度36℃,最低温度-20℃。 (3) 周围空气无污染。 (4) 出线走廊宽阔,地势平坦,交通方便。 (5) 变电所60KV负荷表: (重要负荷占总负荷的80%,负荷同时率为0.7,线损率5%,Tmax=5600小时) 表1.1 变电所60kV负荷表 序号负荷名称最大负荷(KW)功率 因数出线 方式 出线 回路数 附注 近期远期 1 建成机械厂18000 25000 0.95 架空 2 有重要负荷 2 化肥厂8000 10000 0.95 架空 2 有重要负荷 3 重型机械厂10000 13000 0.95 架空 2 有重要负荷 4 拖拉机厂15000 20000 0.9 5 架空 2 有重要负荷 5 冶炼厂10000 15000 0.95 架空 2 有重要负荷 6 炼钢厂12000 18000 0.95 架空 2 有重要负荷 (6)电力系统接线方式如图所示: 图1.1 电力系统接线方式图 系统中所有的发电机均为汽轮发电机,送电线路均为架空线,单位长度正序电抗为0.4欧姆/公里

牵引变电所的设计

第1章概论 1.1 课题研究的目的意义 牵引变电所是电气化铁路牵引供电系统的心脏,它的主要任务是将电力系统输送来的三相高压电变化成适合电力机车使用的电能。而电气主接线反映牵引变电所设施的主要电气设备以及这些设备的规格、型号、技术参数以及在电气上是如何连接的,高压侧有几回进线、几台牵引变压器,有几回接触网馈电线。通过电气主接线可以了解牵引变电所等设施的规模大小、设备情况。 1.2 电气化铁路的国内外现状 变电所是对电能的电压和电流进行变换、集中和分配的场所。在电能是社会生产和生活质量中最为重要的能源和动力的今天,变电所的作用是很重要的当前我国进行的输变电建设和城乡电网的建设与改造,对未来电力工业发展有着重要的作用。因此,产品技术要先进,产品质量要过硬,应达到30~40年后也能适用的水平;而且产品必须要国产化。现阶段我过主要是使用常规变电所。常规变电所即采用传统模式进行设计、建造和管理的变电所,一般为有人值班或驻所值班,有稳定的值班队伍。继电保护为电磁型,电器就地控制,不具备四遥、远方操作功能,需要一支训练有素的运行与检修队伍和一整套相应的管理机构、制度进行管理,以满足安全运行的要求。这种模式有许多不足之处。我国的近期目标是既要充分利用原有设备,又要能够适应微机远动自动化系统;既要实现无人值班,又要满足安全经济运行的要求。 国外的变电所研究已经远远超过我国,他们在变电站的运行管理模式上, 已经能做到无人值守。 1.3 牵引变电所 1.3.1 电力牵引的电流制 电力牵引按牵引网供电电流的种类可分为三种电流制,即直流制、低频单相交流制和工频单相交流制。 (1) 直流制 即牵引网供电电流为直流的电力牵引电流制。电力系统将三相交流电送到牵引变

35kV箱式变电站设计开题报告

重庆大学网络教育学院 学生毕业设计(论文)开题报告 一、课题的目的及背景: 目的:了解研究箱式变电站的智能监控系统。箱式变电站作为一种新型的变电站,与常规变电站相比,具有占地面积小、现场安装工作量少、安装周期短、可以自由移动、减少线路损耗、投资少等优点,被广泛应用于城区、农村10~110kv中小型变(配)电站、厂矿及流动作业用变电站的建设与改造。因其易于深入负荷中心,减少供电半径,提高末端电压质量,特别适用于农村电网改造,被誉为21世纪变电站建设的目标模式。其广泛的运用,有利于实现自动化,智能化,减少人为造成的故障,提高国家电网的供电质量。为此应该对变电站进行很好的监控及保护。 背景:随着市场经济的发展,在城乡电网建设和改造中,要求高压直接进入负荷中心,形成高压受电—变压器降压—低压配电的供电格局,所以供配电要向节地、节电、紧凑型、小型化、安全、无人值守的方向发展。箱式变电站就是为适应这种发展要求设计的一种新式供电设备,又称户外成套变电站,也有称做组合式变电站,它是发展于20世纪60年代至70年代欧美等西方发达国家推出的一种户外成套变电所的新型变电设备。 箱式变电站就是为适应这种发展要求设计的一种新式供电设备,又称户外成套变电站,也有称做组合式变电站,它是发展于20世纪60年代至70年代欧美等西方发达国家推出的一种户外成套变电所的新型变电设备。国外相关研究综述:箱式变电站是60年代从国外发展起来的一种新式供电设备,从结构上来说,基本上可分为欧洲式和美国式两种。 二、基本原理: 箱式变电站通常可分为一次设备和二次设备俩大类,主接线所连接都是一次设备,而二次设备是指测量表计、控制及信号设备、继电保护设备。 三、结构组成: 箱式变电站的发展应用及箱式变电站的结构分类;掌握箱式变电站一次系统设计及其设备选型、二次系统设计;箱式变电站有美式箱式变电站和欧式箱式变电站。美式预装式变电站在我国

35kV变电所毕业设计

************ 中文题目:**** 35kV 变电站电气部分设计 外文标题:THE DESIGN OF ELECTRICAL PART OF YUJIAN 35kV' SUBSTATION 毕业设计(论文)共页(其中:外文文献及译文页)图纸共张完成日期 20 年* 月答辩日期 20 年6 月

摘要 随着电力行业的不断发展,人们对电力供应的要求越来越高,特别是供电系统的稳定性、可靠性和持续性。然而电网的稳定性、可靠性和持续性往往取决于变电所的合理设计和配置。 一个典型的变电站要求变电设备运行可靠、操作灵活、经济合理、扩建方便。出于这几方面的考虑,本论文设计了一个 35kV 降压变电站,此变电站有两个电压等级,一侧是35kV,另一侧是 10kV。本设计按照传统变电站的设计步骤进行设计,包括负荷计算,无功补偿,变电站形式,变压器的选择,主接线设计,短路电流计算,一二次设备的选择和继电保护设计以及防雷和接地等内容,同时对于变电站内的主设备进行合理的选型。 本设计选择两台主变压器,其他设备如断路器,隔离开关,电流互感器,电压互感器,无功补偿装置和微机保护装置等等也按照具体要求进行选型、设计和配置,力求做到运行安全可靠,操作简单、方便,经济合理,技术先进,具有扩建的可能性和改变运行方式时的灵活性。使其更加贴合实际,更具现实意义。 关键词:变电站;变压器;负荷;短路电流;微机保护;防雷接地

Abstract With the continuous development of electric industry, the demand of power supply system is increasing, especially its stability, reliability and continuity. However,the stability, reliability and continuity of power net are determined by the power grid’s rational design and configuration of substation. A typical substation needs its requirement reliable, flexible, economic, rational and convenient for expansion. Taking the above aspects into consideration, the paper designs a transformer substation of 35kV which has tow level of voltage, one is 35kV, and the other is 10kV. This design has its steps be in accordance with traditional substation design. It contains load calculation, reactive compensation, substation form, the choice of the transformer, the design of the main connection, short circuit current calculation, choice and protection of the secondary equipment design, as well as lightning protection and grounding, etc. At the same time, this design rationally selects the mode of the main equipments in substation. This design chooses two main transformers. Other equipments, such as Circuit Breaker, Isolating switch, Current Transformer, V oltage Transformer, Reactive power compensation device, Protective Relay and so on, are also selected, designed and configured in accordance with specific requirements. The purpose is to make it safe and reliable to operate, easy and simple to manipulate, economical, and with advanced technology. Meanwhile, it is hoped to be with the possibility of expansion and flexibility of changing its operation. The significance is to be more actual and practical. Key words: Substation, transformer, load, short-circuit current, computer protection, lightning protection and grounding

高速铁路牵引供电系统相关问题的分析与研究毕业设计

毕业设计

摘要 高速列车与牵引供电系统直接相关,是进行牵引供电系统研究的最重要的基础。为此,文首先对牵引供电系统组成进行了详细介绍,然后结合牵引供电系统供电方式及牵引供电回路的特点,对牵引供电系统供电分析论证,针对无功功率、谐波电流、负序电流,分析了牵引供电系统存在问题提出了解决办法。然后提出了理想牵引供电系统,根据运行方式与同相供电系统,研究并分析牵引变电所的(最小)补偿容量,并提出研究后的自耦变压器(AT)供电模式,从而进行新型AT供电模式的研究。 关键词:牵引供电系统、牵引变电所、供电系统、供电回路

目录 第1章绪论 (1) 1.1 本文研究的目的和意义 (1) 1.2 国外研究现状 (2) 1.2.1 概况 (2) 1.2.2 日本 (3) 1.2.3 法国 (5) 1.2.4 德国 (6) 1.3 本文主要工作 (6) 第2章高速铁路牵引供电系统系统介绍 (7) 2.1 牵引供电部分 (7) 2.2 牵引网供电方式 (9) 2.2.1 直接供电方式 (9) 2.2.2 吸流变压器—回流线装置BT (9) 2.2.3 自耦变压器供电方式(AT) (10) 2.2.4 带回流线的直接供电方式(DN) (11) 2.3 牵引供电回路 (12) 第3章高速铁路牵引供电系统相关问题 (14) 3.1 铁道牵引供电系统的组成 (14) 3.2 铁道牵引供电系统存在的问题 (14) 3.2.1 无功功率 (14) 3.2.2 谐波电流 (15) 3.2.3 负序电流 (15)

3.2.4 解决方法 (15) 第4章高速铁路牵引供电发展的若干关键技术问题 (17) 4.1 理想牵引供电系统 (17) 4.1.1 系统构成 (17) 4.1.2 运行过程 (18) 4.2 现行方式与同相供电系统 (19) 4.2.1 同相供电系统 (19) 4.2.2 牵引变电所的(最小)补偿容量 (20) 致 (21) 参考文献 (22)

课程设计(变电所)(1)

变电所设计任务书(1) 一、题目220KV区域变电所设计 二、设计原始资料: 1、变电所性质: 系统枢纽变电所,与水火两大电力系统联系 2、地理位置: 本变电所建于机械化工区,直接以110KV线路供地区工业用户负荷为主。 3、自然条件: 所区地势较平坦,海拔800m,交通方便有铁,公路经过本所附近。最高气温十38o C 最低气温-300C 年平均温度十100C 最大风速20m/s 覆冰厚度5mm 地震裂度<6级 土壤电阻率<500Ω.m 雷电日30 周围环境较清洁、化工厂对本所影响不大 冻土深度1.5m 主导风向夏南,冬西北 4、负荷资料: 220KV侧共4回线与电力系统联接 110KV侧共12回架空出线,最大综合负荷

10KV 侧装设TT —30-6型同期调相机两台 5.系统情况 设计学生:________指导教师:____________ 完成设计日期:_______________________ 4╳4╳

变电所设计任务书(2) 一、题目220KV降压变电所设计 二、设计原始资料 1.变电所性质: 本所除与水、火两系统相联外并以110及10KV电压向地方负荷供电2.地理位置: 新建于与矿区火电厂相近地区,并供电给新兴工业城市用电 3.自然条件; 所区地势较平坦,海拔600m,交通方便有铁、公路经过本所附近 最高气温十400C 最低气温—250C 年平均温度十150C 最大风速_20m/s_ 覆冰厚度10mm 地震裂度_6级 土壤电阻率>1000Ω·m 雷电日___40__ 周围环境_空气清洁_建在沿海城市地区,注意台风影响 冻土深度1·0m 主导风向夏东南风、冬西北风 4·负荷资料: 220KV侧共3回线与电力系统联接

35kV箱式变电站工程设计

35kV箱式变电站工程设计成人高等教育 毕业设计 题目:35kV箱式变电站设计 学生姓名:张立佳 专业:电气工程及其自动化 完成时刻:2012年4月20日

箱式变电站又称户外成套变电站,立即高压受电、变压器降压、低压配电等功能有机地组合在一起,安装在一个防潮、防锈、防尘、防鼠、防火、防盗、隔热、全封闭、可移动的钢结构箱体内,机电一体化,全封闭运行,专门适用于矿山、住宅小区等都市公用设施,用户可按照不同的使用条件、负荷等级选择箱式变电站。箱式变电站进展于20世纪60年代至7 0年代欧美等西方发达国家推出的一种户外成套变电所的新型变电设备,进入20世纪90年代中期,国内开始显现简易箱式变电站,并得到了迅速进展。随着中国都市现代化建设的飞速进展,都市配电网的持续更新改造,必将得到广泛的应用。 本课题的要紧内容包括箱式变电站的进展应用,箱式变电站的结构分类,以及箱式变电站一次系统设计极其设备选型以及二次系统设计。35kV 箱式变电站的设计高压侧额定电压为35kV,低压侧额定电压为10kV,主变压器容量为5000kV A。主接线采纳单母线分段接线。 关键词:箱式变电站;结构,一次系统,二次系统

摘要Ⅰ 目录Ⅰ 第一章引言1 第二章箱式变电站的类型、结构与技术特点2 2.1 箱式变电站的类型2 2.2 箱式变电站的技术特点2 2.3 箱式变电站的箱体要求 3 第三章35kV箱式变电站的总体结构设计5 3.1 箱式变电站对主接线的差不多要求 5 3.2 主接线的选择 5 3.3 高压接线方式 6 3.4 箱式变电站箱体的确定6 3.5 变压器的散热处理6 3.6 箱式变电站总体布置 7 第四章35KV箱式变电站一次系统设计与设备选型8 4.1 一次系统设计 8 4.2 箱式变电站设备选型应注意的方面 8 4.3 设备选型的差不多原理8 4.4 高压一次设备的选型 8 4.5 低压一次设备选型9 4.6 高压熔断器的选择13 4.7 开关柜的选型 13 第五章35kV箱式变电站二次系统设计13 5.1 二次系统的定义及分类14 5.2 电气测量外表及测量回路14 5.3 二次系统设计 15 5.4 断路器操纵与信号回路15 5.5 操纵回路设计 23

220kV变电站综合自动化设计毕业设计

设计(论文)题目: 220kV变电站自动化研究 摘要 随着我国科学技术的发展,特别是计算机技术的进步,电力系统对变电站的更要求也越来越高。 所谓最新的变电站综合自动化,就是广泛采用微机保护和微机远动技术,分别采集变电站的模拟量、脉冲量、开关状态量及一些非电量信号,经过功能的重新组合,按照预定的程序和要求实现变电站监视、测量、协调和控制自动化的集合体和全过程,从而实现数据共享和资源共享,提高变电站自动化的整体效益。 本设计讨论的是220kV变电站综合自动化的设计。首先对原始资料进行分析,在采用电力数据数据网系统作为整个变电站的通讯支撑的基础上进行监控系统、继电保护保护信息管理系统的设计,选择设备,然后进行防雷接地以及信息安全的设计。 关键字:计算机监控;继电保护信息管理;远动通信。

目录 第一章综合自动化概述及其特点 (5) 第一节变电站综合自动化的结构形式 (5) 第二节变电站综合自动化系统的主要功能 (6) 第二章变电站监控系统的设计 (8) 第一节概述 (8) 第二节综合自动化技术应用 (8) 第三节系统功能介绍 (10) 第四节系统主要技术参数 (12) 第五节存在问题 (12) 第六节总结 (13) 第三章继电保护及故障信息管理系统 (14) 第一节概述 (14) 第二节系统设计目标 (14) 第三节硬件平台 (14) 第四节软件系统设计 (16) 第五节典型系统简介 (21) 第六节主要技术特点 (22) 致谢 (24) 参考文献 (25)

前言 变电站对电力的生产和分配起到了举足轻重的作用,学习和了解变电站的结构和运行对电力资源的可持续发展垫下了基础。随着经济的快速发展,我国电力需求迅速增长,由于产业结构调整和居民生活水平的提高,第三产业和居民生活用电比重上升,制冷制热负荷大幅度增加,使得电网规模不断扩大,高电压、大机组、长距离输电、电网互联的趋势,使电网结构越来越复杂。常规变电站的二次部分主要由四大类装置组成:继电保护、故障录波、就地监控和远动。在微机化以前,这些装置不仅功能不同,实现的原理和技术也完全不同,因而长期以来形成了不同的专业和相应的技术管理部门。近年来,开始采用微机型继电保护装置、微机型故障录波器、微机监控和微机远动装置。这些装置尽管功能不一样,其硬件配置却大体相同,除微机系统本身以外,无非是对各种模拟量的数据采集以及I/O回路,并且装置所采集的量和要控制的对象还有许多是共同的,因而显得设备重复,互联复杂。人们自然提出这样一个问题,是否应该从全局出发来考虑全微机化的变电站二次部分的优化设计,提高变电站的可控性,更多的采用远方集中控制、操作、反事故措施等,提高劳动生产率,减少人为误操作的可能,提高运行可靠性,这就是变电站综合自动化的来历。 变电站的综合自动化由电脑继电保护和监控系统组成。最明显的特征有以下四个方面:1、功能综合化。2、结构电脑化。3、操作监视屏幕化。4、运行管理智能化。变电站的总体结构采用分布式结构,引入计算机局域网(LAN)技术,将站内所有的智能化装置(IED)连接起来。变电站综合自动化应该改变常规的保护装置不能与外界通信的缺陷,取代常规的测量系统,如变送器、录波器、指针式仪表等;改变常规的操作机构,如操作盘、模拟盘、手动同期及手控无功补偿等装置;取代常规的告警、报警装置,如中央信号系统、光字牌等;取代常规的电磁式、机械式防误闭锁设备;取代常规的远动装置等。 计算机技术、通信技术、信息技术惊人的发展,为变电站综合自动化开辟了广阔的前景。变电站综合自动化系统能够大大地提高整个电网运行的安全性和经济效益已经形成共识,其目标应实现变电站的小型化、无人化的高可靠性。综合自动化技术始终追随着计算机技术的发展而发展,计算机和通信技术发展中的任何一种新技术都很快会在变电站综合自动化中找到它的位置。

相关主题
文本预览
相关文档 最新文档