当前位置:文档之家› 110kV变电站课程设计........

110kV变电站课程设计........

110kV变电站课程设计........
110kV变电站课程设计........

供电技术

课程设计论文

课题110kV变电站

学院山东工商学院

专业年级电气工程及其自动化13级132班学号1305214

姓名彭雨龙

指导教师庞清乐

完成时间2016年11 月13 日

目录

一、引言.................................................. - 2 -

1.1 变电站的作用...................................... - 2 -

1.2 变电站设计的主要原则和分类........................ - 3 -

二、设计相关资料............................................ - 4 -

2.1、本站与系统互联的情况................................ - 4 -

2.2、相关负荷情况........................................ - 4 -

三、电气主接线设计及主变压器的选择.......................... - 5 -

3.1 变电站电气主接线的设计原则.......................... - 5 -

3.2主变压器的选择....................................... - 6 -

3.3 电气主接线选择.................................... - 8 -

四、短路电流计算........................................... - 11 -

4.1 短路的危害....................................... - 11 -

4.2 本变电站短路电流计算............................... - 11 -

五、主要电气设备的选择..................................... - 15 -

5.1断路器及校验........................................ - 15 -

5.2隔离开关............................................ - 17 -

5.3母线选择与校验...................................... - 19 -

5.4 10KV电缆的选择与校验............................... - 21 -

5.5电压互感器选择...................................... - 23 -

5.6电流互感器选择...................................... - 23 -

六、110KV降压变电站电气主接线.............................. - 24 -

一、引言

1.1 变电站的作用

一、变电站在电力系统中的地位

电力系统是由变压器、输电线路、用电设备组成的网络,它包括通过电的或机械的方式连接在网络中的所有设备。电力系统中的这些互联元件可以分为两类,一类是电力元件,它们对电能进行生产(发电机)、变换(变压器、整流器、逆变器)、输送和分配(电力传输线、配电网),消费(负荷);另一类是控制元件,它们改变系统的运行状态,如同步发电机的励磁调节器,调速器以及继电器等。

变电站是联系发电厂和用户的中间环节,起着变换和分配电能的作用。变电所根据它在系统中的地位,可分为下列几类:

(1)枢纽变电站;位于电力系统的枢纽点,连接电力系统高压和中压的几个部分,汇集多个电源,电压为330—500kv的变电站,成为枢纽,全所停电后,将引起系统解列,甚至出项瘫痪。

(2)中间变电站:高压侧以交换潮流为主,其系统变换功的作用。或使长距离输电线路分段,一般汇聚2—3个电源,电压为220—330kv,同时又降压供当地供电,这样的变电站起中间环节的作用,所以叫中间变电站。全所停电后,将引起区域电网解列。

(3)地区变电站:高压侧一般为110—220kv,向地区用户供电为主的变电站,这是一个地区或城市的主要变电站。全所停电后,仅使该地区中断供电。

(4)终端变电站:在输电线路的终端,接近负荷点,高压侧的电压为110kv,经降压后直接向用户供电的变电站,即为终端变电站。全所停电后,只是用户受到损失。

二、电力系统供电要求

(1)保证可靠的持续供电:供电的中断将使生产停顿,生活混乱,甚至危及人身和设备的安全,形成十分严重的后果。停电给国民经济造成的损失远远超过电力系统本身的损失。因此,电力系统运行首先足可靠、持续供电的要求。

(2)保证良好的电能质量:电能质量包括电压质量,频率质量和波形质量这三个方面,电压质量和频率质量均以偏移是否超过给定的数来衡量,例如给定的允许电压偏移为额定电压的正负5%,给定的允许频率偏移为正负0.2—0.5%HZ 等,波形质量则以畸变率是否超过给定值来衡量。所有这些质量指标,都必须采取一切手段来予以保证。

(3)保证系统运行的经济性:电能生产的规模很大,消耗的一次能源在国民经济一次能源总消耗占的比重约为1/3 ,而且在电能变换,输送,分配时的损耗绝对值也相当可观。因此,降低每生产一度电能损耗的能源和降低变换,输送,分配时的损耗,又极其重要的意义。

1.2 变电站设计的主要原则和分类

变电站设计的原则是:安全可靠、技术先进、投资合理、标准统一、运行高效、,努力做到统一性与可靠性、先进性、经济性、适应性、灵活性、时效性和和谐性的协调统一。

1. 统一性:建设标准统一,基建和生产标准统一,外部形象提醒公司企业的文化特征。

2. 可靠性:主接线方案安全可靠。

3. 经济性,按照利益最大化原则,综合考虑工程初期投资与长期运行费用,追求设备寿命期内最佳经济效益。

4. 先进性:设备选型先进合理,占地面积小,注重环保,各项技术经济可比指标先进。

5. 适应性:综合考虑不同地区的实际情况,要在系统中具有广泛的适应性,并能在一定时间内对不同规模,不同形式,不同外部条件均能适应。

6. 灵活性:规模划分合理,接口灵活,组合方案多样,规模增减方便,能够运行于不同的情况环境下。

7. 时效性:建立滚动修改机制,随着电网的发展和技术的进步,不断更新、补充和完善设计。

8. 和谐性:变电站的整体状况与变电站周边人文地理环境相协调。

变电站设计的分类按照变电站标准方式、配电装置型式和变电站规模3个层次进行划分。

(1)按照变电站布置方式分类。

110kv变电站分为户外变电站、户内变电站和半地下变电站3类。在变电站设计中,户外变电站是指最高电压等级的配电装置、主变布置在户外的变电站;户内变电站是指配电装置布置在户内,主变布置在户内、户外或者户内的变电站。半地下变电站是指主变布置在地上,其它主要电气设备布置在地下建筑内的变电站;地下变电站是指主变及其他主要电气设备布置在地下建筑内的变电站。

(2)按配电装置型式分类。

110kv配电装置可再分为常规敞开式开关设备和全封闭式组合电气2类进行设计。

(3)按变电站规模进行分类。

例如户外AIS变电站,可按最高电压等级的出线回路数和主变台数、容量等不同规模分为终端变电站、中间变电站和枢纽变电站。

二、设计相关资料

2.1、本站与系统互联的情况

该变电站通过双回110kV 线路与100公里以外的系统相连接,系统容量为1250MV A ,系统最小电抗(即系统的最大运行方式)为0.2(以系统容量为基准),系统最大电抗(即系统的最小运行方式)为0.3。

2.2、相关负荷情况

(1)10kV 部分的最大负荷

(2)35kV 部分的最大负荷

电压等级

负荷名称 容量(MW ) 负荷性质 线路类型 距离(km ) 10kV

901线 2.8 1 架空线 1.5 902线

3.2 2 电缆 1.1 903线 2.4 2 架空线 2.2 糖厂 1.3 2 架空线 1.8 机械厂 0.9 3 架空线 2 市政

1.1

3

架空线

1.6

电压等级 负荷名称 容量(MV A ) 负荷性质 距离(km ) 35kV

301线

9.2 1、2 10 302线 10.3 1、2 9.5 303线 7.5 3 11 304线

8

3

8.5

三、电气主接线设计及主变压器的选择

电气主接线又称为一次接线或电气主系统,代表了发电厂和变电站电气部分的主体结构,直接影响着配电装置的布置、继电保护装置、自动装置和控制方式的选择,对运行的可靠性、灵活性和经济性起决定性的作用。

3.1 变电站电气主接线的设计原则

1、接线方式:

对于变电站的电气接线,当能满足运行要求时,其高压侧应尽可能采用断路器较少的或不用断路器的接线,如线路—变压器组或桥型接线等。若能满足继电保护要求时,也可采用线路分支接线。在110—220kV配电装置中,当出线为2回时,一般采用桥型接线,当出线不超过4回时,一般采用单母线接线,在枢纽变电站中,当110—220kV出线在4回及以上时,一般采用双母线接线。在大容量变电站中,为了限制6—10kV出线上的短路电流,一般可采用下列措施:1)变压器分列运行。

2)在变压器回路中装置分裂电抗器。

3)采用低压侧为分裂绕组的变压器。

4)出线上装设电抗器。

2、断路器的设置:

根据电气接线方式,每回线路均应设有相应数量的断路器,用以完成切、合电路任务。

3、为正确选择接线和设备,必须进行逐年各级电压最大最小有功和无功电力负荷的平衡。

当缺乏足够的资料时,可采取下列数据:

1)最小负荷为最大负荷的60—70%,如主要农业负荷时则取20—30%;

2)负荷同时率取0.85—0.9;

当馈线在三回以下且其中有特大负荷时,可取0.95—1;

3)功率因数一般取0.8;

4)线损平均取5%。

3.2主变压器的选择

主变容量一般按变电站建成近期负荷5~10年规划选择,并适当考虑远期10~15年的负荷发展,对于城郊变电所主变压器容量应当与城市规划相结合,从长远利益考虑,根据地区供电条件、负荷性质、用电容量和运行方式等条件综合确定。在有一、二级负荷的变电所中宜装设两台主变压器,当技术经济比较合理时,可装设两台以上主变压器。

装有两台及以上主变压器的变电所,当断开一台时,其余主变压器的容量不应小于60%的全部负荷,并应保证用户的一、二级负荷。

1)相数

容量为300MW及以下机组单元接线的变压器和330kV及以下电力系统中,一般都应选用三相变压器。因为单相变压器组相对投资大,占地多,运行损耗也较大。同时配电装置结构复杂,也增加了维修工作量。

2)绕组数与结构

电力变压器按每相的绕组数为双绕组、三绕组或更多绕组等型式;按电磁结构分为普通双绕组、三绕组、自耦式及低压绕组分裂式等型式。

在发电厂或变电站中采用三绕组变压器一般不多于3台,以免由于增加了中压侧引线的构架,造成布置的复杂和困难。

3)绕组接线组别

变压器三绕组的接线组别必须和系统电压相位一致。否则,不能并列运行。电力系统采用的绕组连接有星形“Y”和三角形“D”。

在发电厂和变电站中,一般考虑系统或机组的同步并列以要求限制3次谐波对电源等因素。根据以上原则,主变一般是Y,D11常规接线。

4)调压方式

为了保证发电厂或变电站的供电质量,电压必须维持在允许范围内,通过主变的分接开关切换,改变变压器高压侧绕组匝数。从而改变其变比,实现电压调整。切换方式有两种:一种是不带电切换,称为无激磁调压。另一种是带负荷切换,称为有载调压。

通常,发电厂主变压器中很少采用有载调压。因为可以通过调节发电机励磁来实现调节电压,对于220kV及以上的降压变压器也仅在电网电压有较大变化的情况时使用,一般均采用无激磁调压,分接头的选择依据具体情况定。

5)冷却方式

电力变压器的冷却方式随变压器型式和容量不同而异,一般有自然风冷却、强迫风冷却、强迫油循环水冷却、强迫油循环风冷却、强迫油循环导向冷却。

根据以上变压器选择原则,结合原始资料提供的信息,分析后决定本变电站用2台三相三绕组的变压器,并采用YN ,yn0,d11接线。

由原始资料可知,P 10=11.7MW ,S 35=35MV A

设负荷同时率系数K 1取0.85,线损平均取5%,即K 2=1.05,功率因数cos φ取0.8。

则10kV 和35kV 的综合最大负荷分别为:

S 10MAX =K 1K 2P 10/cos φ=0.85×1.05×11.7÷0.8=13.05(MV A ) S 35MAX =K 1K 2S 35=0.85×1.05×35=31.24(MV A ) 每台变压器额定容量为:

S N =0.6S M =0.6(S 10MAX +S 35MAX )=0.6×(13.05+31.24)=28.79(MV A ) 由此查询变电站设计参考资料选得的变压器参数如下表:

检验:当一台主变不能正常工作时,只有一台主变工作且满载则,S1=31500KV A,占总负荷的百分比为31.5/44.24=71.20%,且还未计及变压器事故过负荷40%的能力,所以所选变压器满足要求。

则本变电站基础框架如下图:

型号及容量KV A 额定电压高/中/低kV

损耗(kW ) 阻抗电压(%)

空载电流

(%)

综合投资(万元)

载 短路

高-中 高-低 中-低 高-中 高-低 中-低 SFSL7-31500

/110

121/38.5/11 46 207

207

165

18

10.5

6.5

1

32.86

3.3 电气主接线选择

依据原始资料,经过分析,根据可靠性、灵活性和经济性的要求,得到以下方案:

高压侧(110kV侧)有2回进线,采用单母线分段接线方式;

中压侧(35kV侧)有4个负荷,其中2个为一类负荷,初期设计需6回出线,最终可拓展2回备用,共8回出线,可以采用双母线接线方式、单母线分段接线方式;

低压侧(10kV侧)有6个负荷,其中1个为一类负荷,初期设计需7回出线,最终可拓展3回出现,共10回出线,可以采用单母线分段接线方式。

如下图,现对35kV侧的2种接线方案进行比较:

方案一:方案二:

方案一:双母线接线方式

优点:

供电的可靠性高,调度灵活,扩建方便,便于检修和试验。

缺点:

使用设备器件多,特别是隔离开关,接线也较复杂,配电装臵复杂,投资较多,经济性较差,且操作复杂,运行人员在操作中容易发生误操作。

适用范围:

出线带电抗器的6~10kV出线;35~60kV出线超过8回或连接电源较多,负荷较大时;110~220kV出线超过5回时。

方案二:单母线分段接线方式

优点:

1、用断路器把母线分段后,对重要用户可以从不同段引出两个回路,有两个电源供电。

2、当一段母线故障时,分段断路器自动将故障段切除,保证正常段母线不间断供电,故障时停电范围小,供电的可靠性提高。

3、扩建时需向两个方面均衡扩建。

4、接线简单清晰,操作方便,不易误操作,设备少,投资小,占地面积小,为以后的发展和扩建奠定了基础。

缺点:

1、当一段母线或母线侧隔离开关故障或检修时,该母线的回路都要在检修期间停电。

2、当出线为双回路时,常使架空线路出现交叉跨越。

适用范围:

适用于6~10kV线路出线16回及以下,每段母线所接容量不宜超过25MW;35~60kV线路出线4~8回;110~220kV线路出线少于4回时。

分析:本次设计中35KV侧有2个一类负荷,出线需要为双回路才能保证其可靠性,用方案二会使架空线路出现交叉跨越,总共设计出现才8回,若用方案一不仅经济性差,而且占地广,加上该电压测负荷量不是很大,共35MV A,所以综合考虑用方案二,即35kV线路用单母线分段接线方式。

最终各电压侧接线方式确定方案如下表:

电压等级负荷名称负荷性质接线方式进/出线回数110k V 系统电源单母线分段进2回2回

35k V 301线1、2

单母线分段

出2回

8回302线1、2出2回

303线3出1回

304线3出1回

备用出2回

10k V 901线1

单母线分段

出2回

10回902线2出1回

903线2出1回

糖厂2出1回

机械厂3出1回

市政3出1回

备用出3回

在设计电气主接线时,将35kV、10kV系统用户负荷比较均衡的分配给I、II 段母线,并将其I类负荷用户分接于两段母线上,以减少事故对重要用户的影响。

本变电站最终确定接线方式如图:

四、短路电流计算

4.1 短路的危害

(1)通过故障点的短路电流和所燃起的电弧,使故障元件损坏。

(2)短路电流通过非故障元件,由于发热和电动力的作用,引起他们的损坏或缩短他们的使用寿命。

(3)电力系统中部分地区的电压大大降低,破坏用户工作的稳定性或影响工厂产品质量。

(4)破坏电力系统并列运行的稳定性,引起系统震荡,甚至整个系统瓦解。4.2 本变电站短路电流计算

用标幺值进行计算,基准容量S B=100MV A,线路每相每公里电抗值X0=0.4Ω/km基准电压U B取各级的平均电压,平均电压为1.05额定电压:

额定电压(kV)110 35 10

平均电压(kV)115 37 10.5 由于本变电站所用三绕组变压器为降压变压器,所以其各电压侧阻抗电压正好与变压器铭牌标示的相反,即:

阻抗电压%

U d1-2% U d1-3% U d2-3%

10.5 18 6.5

系统等值网络图如下:

其中,三绕组变压器电抗标幺值:

U T11%=U T21%=1/2(U d1-2%﹢U d1-3%﹣U d2-3%)=0.5×(10.5﹢18﹣6.5)=11

U T12%=U T22%=1/2(U d1-2%﹢U d2-3%﹣U d1-3%)=0.5×(10.5﹢6.5﹣18)=﹣0.5

U T13%=U T23%=1/2(U d2-3%﹢U d1-3%﹣U d1-2%)=0.5×(6.5﹢18﹣10.5)=7

则:

X T11*=X T21*=U T11%/100·S B/S N=11÷100×100÷31.5=0.3492

X T12*=X T22*=0

X T13*=X T23*=U T13%/100·S B/S N=7÷100×100÷31.5=0.2222

线路的电抗标幺值:

X L1*=X L2*=X0·l·S B/U B2=0.4×100×100÷1152=0.3025

系统电抗标幺值,由于要求三相短路电流,所以用最大运行方式下的系统电抗:X S*=X Smin·S B/S S=0.2×100÷1250=0.016

由此得到含短路点的等值网络简化图如下:

1)110kV侧(K1点)发生三相短路时:

等值网络图如下:

此时短路点总电抗标幺值为:

X∑110*=X S*+X L*=0.016+0.3025÷2=0.16725

电源对短路点的计算阻抗为:

X BS110=X∑110*·S S/S B=0.16725×1250÷100=2.09

通过查“水轮发电机运算曲线数字表”得:

I(0)“*=0.509 I(1)“*=0.525 I(2)“*=0.525 I(4)“*=0.525

110kV侧的基准电流为:

I B110=S S/√3U B110=1250÷√3÷115=6.28(kA)

短路电流有名值为:

I(0)“=I(0)“*·I B110=0.509×6.28=3.20(kA)

I(1)“=I(1)“*·I B110=0.525×6.28=3.30(kA)

I(2)“=I(2)“*·I B110=0.525×6.28=3.30(kA)

I(4)“=I(4)“*·I B110=0.525×6.28=3.30(kA)

冲击电流为:

i cj=2.55·I(0)“=2.55×3.20=8.16(kA)

2)35kV侧(K2点)发生三相短路时:

等值网络图如下:

此时短路点总电抗标幺值为:

X∑35*=X S*+X L*+X T1*+X T2*=0.016+0.3025÷2+(0.3492+0)÷2=0.34185 电源对短路点的计算阻抗为:

X BS35=X∑35*·S S/S B=0.34185×1250÷100=4.27>3.45

当X BS>3.45时,求短路电流不用查表法,用倒数法:

I“*=I∞*=1/X BS35=1÷4.27=0.2342

35kV侧的基准电流为:

I B35=S S/√3U B35=1250÷√3÷37=19.51(kA)

短路电流有名值为:

I“=I“*·I B35=0.2342×19.51=4.57(kA)

冲击电流为:

i cj=2.55·I“=2.55×4.57=11.65(kA)

2)10kV侧(K3点)发生三相短路时:

等值网络图如下:

此时短路点总电抗标幺值为:

X∑10*=X S*+X L*+X T1*+X T3*=0.016+0.3025÷2+(0.3492+0.2222)÷2=0.45295 电源对短路点的计算阻抗为:

X BS10=X∑10*·S S/S B=0.45295×1250÷100=5.66>3.45

当X BS>3.45时,求短路电流不用查表法,用倒数法:

I“*=I∞*=1/X BS10=1÷5.66=0.1767

10kV侧的基准电流为:

I B10=S S/√3U B10=1250÷√3÷10.5=68.73(kA)

短路电流有名值为:

I“=I“*·I B10=0.1767×68.73=12.14(kA)

冲击电流为:

i cj=2.55·I“=2.55×12.14=30.96(kA)

最终本变电站短路电流计算结果如下表:

短路点

系统最大运行方式下的三相短路电流

0s短路电

流(kA)

1s短路电

流(kA)

2s短路电

流(kA)

4s短路电

流(kA)

稳态短路

电流(kA)

冲击电

流(kA)

K1(110KV) 3.20 3.30 3.30 3.30 8.16 K2(35KV) 4.57 11.65 K3(10KV)12.14 30.96

五、主要电气设备的选择

5.1断路器及校验

目前,使用得最多的是少油断路器,六氟化硫断路器和空气断路器。

1、110KV断路器选择:

1)电压U g(电网工作电压)≤U N(断路器额定电流);

U N≥110kV

2)电流I gMAX(最大工作电流)≤I N(断路器额定电流)。

I N≥I gMAX=S Zmax/√3U N=44.29MV A÷√3÷110kV=232.49A

3)开断电流:I dt≤I kd。

I kd≥3.20kA

4)动稳定:I ch≤I MAX。

I MAX≥8.16kA

由以上条件查“35~500kV高压断路器技术数据表”选出断路器如下:

型号额定电

压(kV)

额定电

流(A)

开断容量

(MV A)

额定开

端电流

(kA)

极限通

过电流

(kA)

热稳态

电流

(kA)

固有分

闸时间

(s)

合闸

时间

(s)

峰值4s

SW3-110G/

1200

110 1200 3000 15.8 41 15.8 0.07 0.4 5)热稳定校验:I∞2t dZ≤I t2t。

由上表,断路器分闸时间为0.07s,设过流保护动作时间2s,则t=0.07+2=2.07(s),β=I“/I∞=1,通过查短路电流周期分量发热等值时间曲线可得t dZ=1.67。

则:

I∞2t dZ=3.302×1.67=18.19,I t2t=15.82×4=998.56>18.19

所以所选择的断路器满足要求。

2、35kV断路器选择:

1)电压U g(电网工作电压)≤U N(断路器额定电流);

U N≥35kV

2)电流I gMAX(最大工作电流)≤I N(断路器额定电流)。

I N≥I gMAX=S Zmax/√3U N=31.24MV A÷√3÷35kV=515.33A

3)开断电流:I dt≤I kd。

I kd≥4.57kA

4)动稳定:I ch≤I MAX。

I MAX≥11.65kA

由以上条件查“35~500kV高压断路器技术数据表”选出断路器如下:

型号额定电

压(kV)

额定电

流(A)

开断容量

(MV A)

额定开

端电流

(kA)

极限通过电流

(kA)

热稳

态电

(kA)

固有分

闸时间

(s)

合闸

时间

(s)

峰值有效值4s

SW2-35

/600

35 600 400 6.6 17 9.8 6.6 0.06 0.12

5)热稳定校验:I∞2t dZ≤I t2t。

由上表,断路器分闸时间为0.06s,设过流保护动作时间2s,则t=0.06+2=2.06(s),

β=I“/I∞=1,通过查短路电流周期分量发热等值时间曲线可得t dZ=1.67。

则:I

∞2t

dZ

=4.572×1.67=34.87,

I t2t=6.62×4=174.24>34.87

所以所选择的断路器满足要求。

3、10kV断路器选择:

1)电压U g(电网工作电压)≤U N(断路器额定电流);U N≥10kV

2)电流I gMAX(最大工作电流)≤I N(断路器额定电流)。

I N≥I gMAX=S Zmax/√3U N=13.05MV A÷√3÷10kV=753.44A

3)开断电流:I dt≤I kd。

I kd≥12.14kA

4)动稳定:I ch≤I MAX。

I MAX≥30.96kA

由以上条件查“10kV高压断路器技术数据”选出断路器如下:

型号额定电

压(kV)

额定电

流(A)

额定开

端电流

(kA)

极限通过电流

(kA)

热稳

态电

(kA)

固有分

闸时间

(s)

合闸

时间

(s)

峰值2s

SN10-10I

/630

10 630 16 40 16 0.05 0.2

5)热稳定校验:I∞2t dZ≤I t2t。

由上表,断路器分闸时间为0.05s,设过流保护动作时间2s,则t=0.05+2=2.05(s),β=I“/I∞=1,通过查短路电流周期分量发热等值时间曲线可得t dZ=1.67。

则:

I∞2t dZ=12.142×1.67=246.08,I t2t=162×2=512>246.08

所以所选择的断路器满足要求。

5.2隔离开关

隔离开关选择技术条件与断路器相同。对110kV,35kV出线线路侧隔离开关选用带接地刀闸的。

1、110kV隔离开关选择:

1)电压U g(电网工作电压)≤U N(断路器额定电流);

U N≥110kV

2)电流I gMAX(最大工作电流)≤I N(断路器额定电流)。

I N≥I gMAX=S Zmax/√3U N=44.29MV A÷√3÷110kV=232.49A

3)开断电流:I dt≤I kd。

I kd≥3.20kA

4)动稳定:I ch≤I MAX。

I MAX≥8.16kA

由以上条件查变电站设计参考资料选出户外隔离开关如下:

型号额定电压(kV)额定电流(A)动稳定电流(kA)热稳态电流(kA)GW4-110 110 600 50 15.8(4)

GW4-110D 110 600 50 15.8(4) 5)热稳定校验:I∞2t dZ≤I t2t。

由上表,隔离开关分闸时间为0.07s,设过流保护动作时间2s,则t=0.07+2=2.07(s),β=I“/I∞=1,通过查短路电流周期分量发热等值时间曲线可得t dZ=1.67。

则:

I∞2t dZ=3.302×1.67=18.19,I t2t=15.82×4=998.56>18.19

所以所选择的隔离开关满足要求。

2、35kV隔离开关选择:

1)电压U g(电网工作电压)≤U N(断路器额定电流);

U N≥35kV

2)电流I gMAX(最大工作电流)≤I N(断路器额定电流)。

I N≥I gMAX=S Zmax/√3U N=31.24MV A÷√3÷35kV=515.33A

3)开断电流:I dt≤I kd。

I kd≥4.57kA

4)动稳定:I ch≤I MAX。

I MAX≥11.65kA

由以上条件查变电站设计参考资料选出户外隔离开关如下:

型号额定电压(kV)额定电流(A)动稳定电流(kA)热稳态电流(kA)GW2-35 35 600 50 14(5)

GW2-35D 35 600 50 14(5) 5)热稳定校验:I∞2t dZ≤I t2t。

由上表,隔离开关分闸时间为0.06s,设过流保护动作时间2s,

则t=0.06+2=2.06(s),β=I“/I∞=1,通过查短路电流周期分量发热等值时间曲线可得t dZ=1.67。

则:

I∞2t dZ=4.572×1.67=34.87,

I t2t=142×5=980>34.87

所以所选择的隔离开关满足要求。

3、10kV隔离开关选择:

1)电压U g(电网工作电压)≤U N(断路器额定电流);

U N≥10kV

2)电流I gMAX(最大工作电流)≤I N(断路器额定电流)。

I N≥I gMAX=S Zmax/√3U N=13.05MV A÷√3÷10kV=753.44A

3)开断电流:I dt≤I kd。

I kd≥12.14kA

4)动稳定:I ch≤I MAX。

I MAX≥30.96kA

由以上条件查变电站设计参考资料选出户内隔离开关如下:

型号额定电压(kV)额定电流(A)动稳定电流(kA)热稳态电流(kA)GN8-10 10 1000 75 30(5) 5)热稳定校验:I∞2t dZ≤I t2t。

由上表,断路器分闸时间为0.05s,设过流保护动作时间2s,则t=0.05+2=2.05(s),β=I“/I∞=1,通过查短路电流周期分量发热等值时间曲线可得t dZ=1.67。

则:

I∞2t dZ=12.142×1.67=246.08,

I t2t=302×5=4500>246.08

所以所选择的隔离开关满足要求。

5.3母线选择与校验

1)软母线

110kV,35kV配电装置的母线采用钢芯铝绞线。

2)硬母线

10kV母线采用硬母线。

1、110kV母线选择:

1)按最大工作电流选择导线截面S:I gMAX≤KθI Y:

I gMAX=S Zmax/√3U N=44.29MV A÷√3÷110kV=232.49A

Kθ取0.89,则:

I Y≥232.49÷0.89=261.22(A)

查“钢芯铝绞线长期允许载流量表”可选出导线:

导线型号:LGJ-95

110kV变电站电气一次部分课程设计

课程设计任务书 设计题目: 110kV变电站电气 一次部分设计 前言 变电站(Substation)改变电压的场所。是把一些设备组装起来,用以切断或接通、改变或者调整电压。在电力系统中,变电站是输电和配电的集结点。主要作用是进行高底压的变换,一些变电站是将发电站发出的电升压,这样一方面便于远距离输电,第二是为了降低输电时电线上的损耗;还有一些变电站是将高压电降压,经过降压后的电才可接入用户。对于不同的情况,升压和降压的幅度是不同的,所以变电站是很多的,比入说远距离输电时,电压为11千伏,甚至更高,近距离时为1000伏吧,这个电压经

变压器后,变为220伏的生活用电,或变为380伏的工业用电。 随着我国电力工业化的持续迅速发展,对变电站的建设将会提出更高的要求。本文通过对110KV变电站一次系统的设计,其中针对主接线形式选择,母线截面的选择,电缆线路的选择,主变压器型号和台数的确定,保护装置及保护设备的选择方法进行了详细的介绍。其中,电气设备的选择包括断路器、隔离开关、互感器的选择和方法与计算,保护装置包括避雷器和避雷针的选择。其中分析短路电流的计算方法和原因,是为了保证供电的可靠性。 目录 第1章原始资料及其分析 (4) 1原始资料 (4) 2原始资料分析 (6) 第2章负荷分析 (6) 第3章变压器的选择 (8) 第4章电气主接线 (11) 第5章短路电流的计算 (14) 1短路电流计算的目的和条件 (14) 2短路电流的计算步骤和计算结果 (15) 第6章配电装置及电气设备的配置与选择 (18) 1 导体和电气设备选择的一般条件 (18) 2 设备的选择 (19) 结束语 (25)

(完整版)110kv变电站一次电气部分初步设计

110kv变电站一次电气部分初步设计 毕业设计 题目110KV变电站一次电气初步设计 学生姓名谭向飞学号20XX309232 专业发电厂及电力系统班级20XX3092 指导教师陈春海评阅教师完成日期 20XX 年11月6日 三峡电力职业学院 毕业设计课题任务书 课题名称学生姓名指导教师谭向飞陈春海 110kV 变电站一次电气初步设计专业指导人数发电厂及电力系统班号 20XX3096 课题概述:一、设计任务 1.选择110kV变电站接线形式; 2.计算110kV变电站的短路电流; 3.选择110kV变电站的变压器,高/低压侧断路器、隔离开关、母线、电流互感器、电压互感器,并校验。二、设计目的掌握变电站一次电气设计的计算,能选择电气设备。三、完成成果110kV变电站一次电气接线及设备选择。 I 原始资料及主要参数: 1、110kV渭北变所设计最终规

模为两台110/10kV主变,110kV两回进线路,变压器组接线线,10kV8回馈线,预计每回馈线电流为400A, 2、可行研究报告中变压器调压预测结果需用有载调压方式方可满足配电电压要求,有载调压开关选用德国MR公司M型开关,#2主变型号SZ9-40000/110, 5×110+-32%/,YNd11,Uk%=。 3、110kV配电装置隔离开关GW5-110ⅡDW/630;断路器3AP1-FG-145kV, 3150A﹑40kA;复合绝缘干式穿墙套管带CT 2×300/5;中心点隔离开关GW13-63/630,避雷器HY5W-108/268及中心点/186。 4、出八回线路、10kVⅡ段母线设备﹑变二侧开关分段以及电容补偿。10kV断路器选用ZN28E-12一体化弹簧储能操作,支架落地安装;主变10kV 侧及分段隔离开关用GN22-10G手动操作;10kV线路及电容器隔离开关用GN19-10Q手动操作;出线CT两相式,二组次级绕组,用作测量和保护;电容器回路三相式;变二侧CT 三组次级用作测量﹑纵差﹑过流及无流闭锁。参考资料及文献: 1、3~110kV高压配电装置设计规范 2、35~110kV 变电所设计规范 3、变电所总布置设计技术规程 4、中小型变电所实用设计手册丁毓山主编 5、低压配电设计规范 6、工业与民用电力装置的接地设计规范 7、电力工程电缆设计规范 8、并联电容器装置的电压、容量系列选择标准设计成果要求: 1、说明书:≥6000 字 2、图纸:A3 号 1 张号张号张 3、实习报

110KV变电站设计文献综述

110KV变电站设计文献综述 摘要:本文首先根据任务书上所给系统与线路及所有负荷的参数,分析负荷发展趋势。从负荷增长方面阐明了建站的必要性,然后通过对拟建变电站的概括以及出线方向来考虑,并通过对负荷资料的分析,安全,经济及可靠性方面考虑,确定了110kV以及站用电的主接线,然后又通过负荷计算及供电范围确定了主变压器台数,容量及型号,同时也确定了站用变压器的容量及型号,最后,根据最大持续工作电流及短路计算的计算结果,对高压熔断器,隔离开关,母线,绝缘子和穿墙套管,电压互感器,电流互感器进行了选型,从而完成了110kV电气一次部分的设计。 关键词:变电站变压器接线 1变电站的概述 纵观20世纪的社会和经济发展,一个突出的特点是,电力的使用已经渗透到社会经济,生活领域。发电厂、变电站分工完成整个电力系统的发电、变电和配电的任务,而变电站更是电力工业建设中不可缺少的一个项目。由于变电站的设计内容多,范围广,逻辑性强,不同电压等级,不同性质负荷的变电站设计时所侧重的方面不一样。 变电站是电力系统中变换电压等级、汇集电流和分配电能、控制电力的流向和调整电压的电力设施,它通过其变压器将各级电压的电网联系起来。我国电力建设经过多年的发展,系统容量越来越大,短路电流不断增大,对电气设备、系统内大量信息的实时性等要求越来越高,而随着科学技术的高速发展,制造、材料行业,尤其是计算机及网络技术的迅速发展,电力系统的变电技术也有了新的飞跃。对变电站的设计提出了更高的要求,更需要我们知识应用水平。 结合我国现状,为国民经济各部门和人民提供充足.可靠.优质.廉价的电能,因此新建变电站应充分体现出安全性、可靠性、经济性和先进性。在此我为满某地区重点需要,提高电能的质量。我拟建一座110KV变电站。 110KV变电站电气部分设计的内容 通过查阅书籍,了解了电力工业的有关政策,技术规程等方面的知识,理清自己的设计思路,清楚设计任务,如电气主接线,短路电流计算,设备的选择,防雷接地等,涉及以下内容: 1 现代电力系统是一个巨大的、严密的整体。各类发电厂、变电站分工完

110kV变电站电气部分设计

毕业设计(论文、作业)毕业设计(论文、作业)题目: 110kV变电站电气部分设计 分校(站、点): 年级、专业: 09秋机械 教育层次:本科 学生姓名: 学号: 指导教师: 完成日期: 2012年5月5日

中文摘要 变电站作为电力系统中的重要组成部分,直接影响整个电力系统的安全与经济运行。本论文中待设计的变电站是一座降压变电站,在系统中起着汇聚和分配电能的作用,担负着向该地区工厂、农村供电的重要任务。该变电站的建成,不仅增强了当地电网的网络结构,而且为当地的工农业生产提供了足够的电能,从而达到使本地区电网安全、可靠、经济地运行的目的。 本论文《110kv变电站一次部分电气设计》,首先通过对原始资料的分析及根据变电站的总负荷选择主变压器,同时根据主接线的经济可靠、运行灵活的要求,选择了两种待选主接线方案进行了技术比较,淘汰较差的方案,确定了变电站电气主接线方案。 其次进行短路电流计算,从三相短路计算中得到当短路发生在各电压等级的母线时,其短路稳态电流和冲击电流的值。再根据计算结果及各电压等级的额定电压和最大持续工作电流进行主要电气设备选择及校验(包括断路器、隔离开关、电流互感器、电压互感器等)。 最后,并绘制了电气主接线图、电气总平面布置图、防雷保护配置图等相关设计图纸。 关键词电气主接线设计;短路电流计算;电气设备选择;设计图纸 Abstract Power system substation as an important part of the entire power system directly affects the safety and economic operation. To be designed in this paper is a step-down substation substation in the system plays the role of aggregation and distribution of electric energy, charged with the factory to the region, the important task of rural electrification. The completion of the substation will not only strengthen the local power grid network structure, but also for the local industrial and agricultural production provides enough power, so that the regional power grid so as to achieve safe, reliable and economic operation purposes. The paper "110kv substation once part of the electrical design," the first original data through the analysis and selection based on total load of the substation main transformer, the main wiring under both economical and reliable, flexible operation requirements, select the main connection of two programs to be selected A technical comparison, out of poor program to determine the main electrical substation connection program. Second, the short-circuit current calculation, obtained from the three-phase short circuit calculation occurs when short-circuit the voltage level of the bus, its steady-state current and the impact of short-circuit current value. According to the results and the voltage level of voltage and maximum continuous operating current of the main electrical equipment selection and validation (including circuit breaker, disconnecting switch, current transformer, voltage transformer, etc.). Finally, the main draw of the electrical wiring diagram, electrical general layout map, lightning protection and other related design layout plan drawings.

课程设计4:110kV变电站电气主接线及配电装置平面布置图的设计9页

电气工程及其自动化专业 电力系统方向课程设计任务书和指导书 题目: 110kV变电站电气主接线及配电装置平面布置图的设计 指导教师:江静 电气主接线及配电装置平面布置图课程设计任务书 题目: 110kV变电站电气主接线及配电装置 平面布置图的设计 一、课程设计的目的要求 使学生巩固和应用所学知识,初步掌握部分工程设计基本方法及基本技能。二、题目: 110kV变电所电气主接线设计 三、已知资料 为满足经济发展的需要,根据有关单位的决定新建1座降压变电气。原始资料:1变电所的建设规模 ⑴类型:降压变电气 ⑵最终容量和台数:2×31500kV A:年利用小时数:4000h。 2电力系统与本所连接情况 ⑴该变电所在电力系统中的地位和作用:一般性终端变电所; ⑵该变电所联入系统的电压等级为110kV,出线回路数2回,分别为18公里与电力 系统相连;25公里与装机容量为100MW的水电站相连。 ⑶电力系统出口短路容量:2800 MV A; 3、电力负荷水平 ⑴高压10 kV负荷24回出线,最大输送2MW,COSΦ=0.8,各回出线的最小负荷 按最大负荷的70%计算,负荷同时率取0.8,COSΦ=0.85,Tmax=4200小时/年; ⑵24回中含预留2回备用; ⑶所用电率1% 4、环境条件 该所位于某乡镇,有公路可达,海拔高度为86米,土壤电阻系数Р=2.5×104Ω.cm,土壤地下0.8米处温度20℃;该地区年最高温度40℃,年最低温度-10℃,最热月7月份其最高气温月平均34.0℃,最冷月1月份,其最低气温月平均值为1℃; 年雷暴日数为58.2天。 四、设计内容

1、设计主接线方案 ⑴确定主变台数、容量和型式 ⑵接线方案的技术、经济比较,确定最佳方案 ⑶确定所用变台数及其备用方式。 2、计算短路电流 3、选择电气设备 4、绘制主接线图 5、绘制屋内配电装置图 6、绘制屋外配电装置平断面图 五、设计成果要求 1、设计说明书1份 编写任务及原始资料 ⑴编写任务及原始资料 ⑵确定主变压器台数、容量和型式 ⑶确定主接线方案(列表比较) ⑷计算短路电流(包括计算条件、计算过程、计算成果) ⑸选择高压电气设备(包括初选和校验,并列出设备清单)。 2、变电站电气主接线图1份 采用75×50 cm方格纸,图形符号必须按国家标准符号绘制,并有图框和标签框,字体采用仿宋体字,用铅笔绘图和书写。接线按单线图绘制,仅在局部设备配置不对称处绘制三线图,零线绘成虚线。在主母线位置上注明配电装置的额定电压等级,在相应的方框图上标明设备的型号、规范。 3、屋内10kV配电装置图1份 采用75×50 cm方格纸,图形符号必须按国家标准符号绘制,并有图框和标签框,字体采用仿宋体字,用铅笔绘图和书写。该图应能显示开关柜的排列顺序、各柜的接线方案编号、柜内的一次设备内容(数量的规格)及其连接,设备在柜内的大致部位,以及走廊的大致走向等。 4、屋外110kV配电装置平断面图1份 采用75×50 cm方格纸,图形符号必须按国家标准符号绘制,并有图框和标签框,字体采用仿宋体字,用铅笔绘图和书写。该图应能显示各主要设备的布置位置及走廊的大致走向等。 5、编制设计说明书及计算书 六、日程安排 第一天:布置任务、介绍电气设备选择 第二天:电气主接线最佳方案的确定 第三天:短路电流计算 第四、五天:电气设备选择 第六天:绘制电气主接线图 第七天:绘制10kV配电装置订货图

110KV降压变电站电气一次部分初步设计

110KV降压变电站电气一次部分初步设计 一、变电站的作用 1.变电站在电力系统中的地位 电力系统是由变压器、输电线路、用电设备组成的网络,它包括通过电的或机械的方式连接在网络中的所有设备。电力系统中的这些互联元件可以分为两类,一类是电力元件,它们对电能进行生产(发电机)、变换(变压器、整流器、逆变器)、输送和分配(电力传输线、配电网),消费(负荷);另一类是控制元件,它们改变系统的运行状态,如同步发电机的励磁调节器,调速器以及继电器等。 2.电力系统供电要求 (1)保证可靠的持续供电:供电的中断将使生产停顿,生活混乱,甚至危及人身和设备的安全,形成十分严重的后果。停电给国民经济造成的损失远远超过电力系统本身的损失。因此,电力系统运行首先足可靠、持续供电的要求。 (2)保证良好的电能质量:电能质量包括电压质量,频率质量和波形质量这三个方面,电压质量和频率质量均以偏移是否超过给定的数来衡量,例如给定的允许电压偏移为额定电压的正负5%,给定的允许频率偏移为正负0.2—0.5%HZ 等,波形质量则以畸变率是否超过给定值来衡量。 (3)保证系统运行的经济性:电能生产的规模很大,消耗的一次能源在国民经济一次能源总消耗占的比重约为1/3 ,而且在电能变换,输送,分配时的损耗绝对值也相当可观。因此,降低每生产一度电能损耗的能源和降低变换,输送,分配时的损耗,又极其重要的意义。 二、变电站与系统互联的情况 1.待建变电站基本资料 (1)待建变电站位于城郊,站址四周地势平坦,站址附近有三级公路,交通方便。 (2)该变电站的电压等级为110KV,35KV,10KV三个电压等级。110KV是本变电站的电源电压,35KV,10KV是二次电压。 (3)该变电站通过双回110KV线路与100公里外的系统相连,系统容量为1250MVA,系统最小电抗(即系统的最大运行方式)为0.2(以系统容量为基准),系统最大电抗(即系统的最小运行方式)为0.3。

110KV变电站电气部分设计

110KV变电站电气部分设计 二〇〇九年八月 目录 设计任务书 (4) 第一部分主要设计技术原则 (5) 第一章主变容量、形式及台数的选择 (6) 第一节主变压器台数的选择 (6) 第二节主变压器容量的选择 (7) 第三节主变压器形式的选择 (8) 第二章电气主接线形式的选择 (10) 第一节主接线方式选择 (12) 第三章短路电流计算 (13) 第一节短路电流计算的目的和条件 (14) 第四章电气设备的选择 (15) 第一节导体和电气设备选择的一般条件 (15) 第二节断路器的选择 (18) 第三节隔离开关的选择 (19) 第四节高压熔断器的选择 (20) 第五节互感器的选择 (20) 第六节母线的选择 (24) 第七节限流电抗器的选择 (24) 第八节站用变压器的台数及容量的选择 (25) 第九节 10kV无功补偿的选择 (26) 第五章 10kV高压开关柜的选择 (26) 第二部分计算说明书 附录一主变压器容量的选择 (27) 附录二短路电流计算 (28) 附录三断路器的选择计算 (30) 附录四隔离开关选择计算 (32) 附录五电流互感器的选择 (34) 附录六电压互感器的选择 (35) 附录七母线的选择计算 (36) 附录八 10kV高压开关柜的选择 (37) (含10kV电气设备的选择) 第三部分相关图纸 一、变电站一次主结线图 (42) 二、10kV高压开关柜配置图 (43) 三、10kV线路控制、保护回路接线图 (44) 四、110kV接入系统路径比较图 (45) 第四部分 一、参考文献 (46)

二、心得体会 (47) 设计任务书 一、设计任务: ***钢厂搬迁昌北新区,一、二期工程总负荷为24.5兆瓦,三期工程总负荷为31兆瓦,四期工程总负荷为20兆瓦;一、二、三、四期工程总负荷为75.5兆瓦,实际用电负荷 34.66兆瓦,拟新建江西洪都钢厂变电所。本厂用电负荷设施均为Ⅰ类负荷。 第一部分主要设计技术原则 本次110kV变电站的设计,经过三年的专业课程学习,在已有专业知识的基础上,了解了当前我国变电站技术的发展现状及技术发展趋向,按照现代电力系统设计要求,确定设计一个110kV综合自动化变电站,采用微机监控技术及微机保护,一次设备选择增强自动化程度,减少设备运行维护工作量,突出无油化,免维护型设备,选用目前较为先进的一、二次设备。 将此变电站做为一个终端用户变电站考虑,二个电压等级,即110kV/10kV。 设计中依据《变电所总布置设计技术规程》、《交流高压断路器参数选用导则》、《交流高压断路器订货技术条件》、《交流电气装置的过电压保护和绝缘配合》、《火力发电厂、变电所二次接线设计技术规程》、《高压配电装置设计技术规程》、《110kV-330kV变电所计算机监控系统设计技术规程》及本专业各教材。 第一章主变容量、形式及台数的选择 主变压器是变电站(所)中的主要电气设备之一,它的主要作用是变换电压以利于功率的传输,电压经升压变压器升压后,可以减少线路损耗,提高了经济效益,达到远距离送电的目的。而降压变压器则将高电压降低为用户所需要的各级使用电压,以满足用户的需要。主变压器的容量、台数直接影响主接线的形式和配电装置的结构。因此,主变的选择除依据基础资料外,还取决于输送功率的大小,与系统的紧密程度,同时兼顾负荷性质等方面,综合分析,合理选择。 第一节主变压器台数的选择 由原始资料可知,我们本次设计的江西洪都钢厂厂用电变电站,主要是接受由220kV双港变110kV的功率和220KV盘龙山变供110kV的功率,通过主变向10kV线路输送。由于厂区主要为I类负荷,停电会对生产造成重大的影响。因此选择主变台数时,要确保供电的可靠性。 为了提高供电的可靠性,防止因一台主变故障或检修时影响整个变电站的供电,变电站中一般装设两台主变压器。互为备用,可以避免因主变故障或检修而造成对用户的停电,若变电站装设三台主变,虽然供电可靠性有所提高,但是投资较大,接线网络较复杂,增大了占地面积和配电设备及继电保护的复杂性,并带来维护和倒闸操作的许多复杂化,并且会造成短路容量过大。考虑到两台主变同时发生故障的几率较小,适合负荷的增长和扩建的需要,而当一台主变压器故障或检修时由另一台主变压器可带动全部负荷的70%,能保证正常供电,故可选择两台主变压器。 第二节主变压器容量的选择 主变压器容量一般按变电站建成后5--10年规划负荷选择,并适当考虑到远期10--20年的负荷发展,对于城郊变电站主变压器容量应与城市规划相结合,该变电站近期和远期负荷都已给定,所以,应接近期和远期总负荷来选择主变容量。根据变电站所带负荷的性质和电网的结构来确定主变压器的容量,对于有重要负荷的变电站应考虑当一台主变压器停用时,其余变压器容量在计及过负荷能力的允许时间内,应保证用户的一级和二级负荷,对一般性变电站当一台主变压器停用时,其余变压器容量应能保证全部负荷的70--80%。该变电站的主变压器是按全部负荷的70%来选择,因此装设两

110kv变电站继电保护课程设计

110kv变电站继电保护课程设计 110kV变电站继电保护设计 摘要 继电保护是电网不可分割的一部分,它的作用是当电力系统发生故障时,迅速 地有选择地将故障设备从电力系统中切除,保证系统的其余部分快速恢复正常运行; 当发生不正常工作情况时,迅速地有选择地发出报警信号,由运行人员手工切除那些继续运行会引起故障的电气设备。可见,继电保护对保证电网安全、稳定和经济运行,阻止故障的扩大和事故的发生,发挥着极其重要的作用。因此,合理配置继电保护装置,提高整定和校核工作的快速性和准确性,对于满足电力系统安全稳定的运行具有十分重要的意义。 继电保护整定计算是继电保护工作中的一项重要工作。不同的部门其整定计算 的目的是不同的。对于电网,进行整定计算的目的是对电网中已经配置安装好的各种继电保护装置,按照具体电力系统的参数和运行要求,通过计算分析给出所需的各项整定值,使全网的继电保护装置协调工作,正确地发挥作用。因此对电网继电保护进行快速、准确的整定计算是电网安全的重要保证。 关键词:110kV变电站,继电保护,短路电流,电路配置 目录 0 摘 要 .................................................................... 第一章电网继电保护的配置 ............................................... 2 1.1 电网继电保护的作 用 .................................................. 2 1.2 电网继电保护

的配置和原理 ............................................ 2 1.3 35kV线 路保护配置原则 ................................................ 3 第二章3 继电保护整定计算 .................................................2.1 继电保护整定计算的与基本任务及步骤 . (3) 2.2 继电保护整定计算的研究与发展状况 .................................... 4 第三章线路保护整定计 算 ................................................. 5 3.1设计的原始材 料分析 ................................................... 5 3.2 参数计 算 ............................................................ 6 3.3 电流保护的整定计算 .................................................. 7 总结 .. (9) 1 第一章电网继电保护的配置 1.1 电网继电保护的作用 电网在运行过程中,可能会遇到各种类型的故障和不正常运行方式,这些都可 能在电网中引起事故,从而破坏电网的正常运行,降低电力设备的使用寿命,严重的将直接破坏系统的稳定性,造成大面积的停电事故。为此,在电网运行中,一方面要采取一切积极有效的措施来消除或减小故障发生的可能性:另一方面,当故障 一旦发生时,应该迅速而有选择地切除故障元件,使故障的影响范围尽可能缩小,这一任务是由继电保护与安全自动装置来完成的。电网继电保护的基本任务在于: 1(有选择地将故障元件从电网中快速、自动切除,使其损坏程度减至最轻,并 保证最大限度地迅速恢复无故障部分的正常运行。 2(反应电气元件的异常运行工况,根据运行维护的具体条件和设各的承受能 力,发出警报信号、减负荷或延时跳闸。

最新110kV变电站初步设计

110k V变电站初步设 计

一、可研阶段 1、变电站站址选择 应结合系统论证工作,进行工程选站工作。应充分考虑站用水源、站用电源、交通运输、土地用途等多种因素,重点解决站址的可行性问题,避免出现颠覆性因素。(常规变电站投资2200~2400万,其中土建部分500万左右,线路投资70万/公里(轻冰),110万/公里(重冰)。) 变电站选择应尽量避开基本农田,无法避让的应优先选用占地少的变电站技术方案。 1.1 基本规定 1.1.1 工程所在地区经济社会发展规划及站址选择过程概述。 1.1.2 根据系统要求,原则上应提出两个或两个以上可行的站址方案,如确实因各种难以克服的困难只能提供一个站址方案时,应提供充分的依据并作详细说明。 1.2 站址区域概况 1.2.1 站址所在位置的省、市、县、乡镇、村落名称。 1.2.2 站址地理状况描述:站址的自然地形、地貌、海拔高度、自然高差、植被、农作物种类及分布情况。 1.2.3 站址土地使用状况:说明目前土地使用权,土地用途(建设用地、农用地、未利用地),地区人均耕地情况。 1.2.4 交通情况:说明站址附近公路、铁路、水路的现状和与站址位置关系,进所道路引接公路的名称、路况及等级。 1.2.5 与城乡规划的关系及可利用的公共服务设施。

1.2.6 矿产资源:站址区域矿产资源及开采情况,对站址安全稳定的影响。1.2.7 历史文物:文化遗址、地下文物、古墓等的描述。 1.2.8 邻近设施:站址附近军事设施、通信电台、飞机场、导航台与变电站的相互影响;以及变电站对环境敏感目标(风景旅游区和各类保护区、医院、学校等)影响的描述。 1.3 站址的拆迁赔偿情况 应说明站址范围内己有设施和拆迁赔偿情况。 1.4 出线条件 按本工程最终规模出线回路数,规划出线走廊及排列秩序。根据本工程近区出线条件,研究确定本期一次全部建设或部分建设变电站出口线路的必要性和具体长度。 1.5 站址水文气象条件 1.5.1 水位:说明频率2%时的年最高洪水位;说明频率2%时的年最高内涝水位或历史最高内涝水位,对洪水淹没或内涝进行分析论述。 1.5.2 气象资料:列出气温、湿度、气压、风速及风向、降水量、冰雪、冻结深度等气象条件。 1.5.3 防洪涝及排水情况:应说明站区防洪涝及排水情况。(避免出现颠覆性条件) 1.6 水文地质及水源条件 1.6.1 说明水文地质条件、地下水位情况等。 1.6.2 说明水源、水质、水量情况。 1.7 站址工程地质(避免出现颠覆性条件)

变电站初步设计

xx 大学 毕业设计(论文) 题目110kV变电站初步设计 作者 xx 学号 xx 专业 xx 指导教师 xx 院系 xx xx年x月x日

摘要: 本文就是进行一个110kV变电站的设计首先根据任务书上所给系统与线路及所有负荷的参数,分析负荷发展趋势。从负荷增长方面阐明了建站的必要性,然后通过对拟建变电站的概括以及出线方向来考虑,并通过对负荷资料的分析,安全,经济及可靠性方面考虑,确定了110kV,35kV,10kV以及站用电的主接线,然后又通过负荷计算及供电范围确定了主变压器台数,容量及型号,同时也确定了站用变压器的容量及型号,最后,根据最大持续工作电流及短路计算的计算结果,对高压熔断器,隔离开关,母线,绝缘子和穿墙套管,电压互感器,电流互感器进行了选型,从而完成了110kV电气一次部分的设计。 关键词:变电站变压器接线 目录 概述 (4) 1 电气主接线 (8) 1.1 110kv电气主接线 (8) 1.2 35kv电气主接线 (10) 1.3 10kv电气主接线 (11) 1.4 站用变接线 (13) 2 负荷计算及变压器选择 (15) 2.1 负荷计算 (15) 2.2 主变台数、容量和型式的确定 (16)

2.3 站用变台数、容量和型式的确定 (17) 3 最大持续工作电流及短路电流的计算 (19) 3.1 各回路最大持续工作电流 (19) 3.2 短路电流计算点的确定和短路电流计算结果 (19) 4 主要电气设备选择 (21) 4.1 高压断路器的选择 (22) 4.2 隔离开关的选择 (23) 4.3 母线的选择 (24) 4.4 绝缘子和穿墙套管的选择 (24) 4.5 电流互感器的选择 (24) 4.6 电压互感器的选择 (25) 4.7 各主要电气设备选择结果一览表 (27) 5 继电保护方案设计 (28) 6 电气布置与电缆设施............................................................(34)7 防雷设计 (36) 8 接地及其他 (38) 致谢 (40) 参考文献 (41) 附录I 设计计算书 (42) 附录II 电气主接线图 (49) 10kv配电装置配电图 (51) 概述 变电站主接线必须满足的基本要求:1、运行的可靠;2、具有一定的灵活性;3、操作应尽可能简单、方便;4、经济上合理;5、应具有扩建的可能性。再根据变电站在电力系统中的地位、环境、负荷的性质、出线数目的多少、电网的结构等,确定110kV、35kV、10kV的接线方式,并对每一个电压等级选择两种接线方式进行综合比较,选出一种最合理的方式作为设计方案。最后确定:110kV采用双母线带旁路母线接线,35kV采用单母线分段带旁母接线,10kV采用单母线分段接线。负荷计算:要选择主变压器和站用变压器的容量,确定变压器各出线侧的最大持续工作电流。首先必须要计算各侧的负荷,包括站用电负荷(动力负荷和照明负荷)、10kVφ负荷、35kV负荷和110kV侧负荷。考虑到该变电站为一重要中间变电站,与系统联系紧密,且在一次主接线中已考虑

推荐-110kV变电站电气一次部分初步设计说明书 精品

重庆电力高等专科学校 重庆教培中心教学点 毕业专业:电力系统自动化

内容提要 根据设计任务书的要求,本次设计为110kV变电站电气一次部分初步设计,并绘制电气主接线图及其他图纸。该变电站设有两台主变压器,站内主接线分为110kV、35kV和10kV三个电压等级。各个电压等级分别采用单母线分段接线、单母线分段带旁母线和单母线分段接线。 本次设计中进行了电气主接线的设计。电路电流计算、主要电气设备选择及效验(包括断路器、隔离开关、电流互感器、母线等)、各电压等级配电装置设计及防雷保护的配置。 本设计以《电力工程专业指南》、《电力工程电气设备手册》、《高电压技术》、《电气简图用图形符号(GB/T4728.13)》、《电力工程设计手册》、《城乡电网建设改造设备使用手册》等规范规程为依据,设计的内容符合国家有关经济技术政策,所选设备全部为国家推荐的新型产品,技术先进、运行可靠、经济合理。

目录前言 第一部分110kV变电站电气一次部分设计说明书第1章原始资料 第2章电气主接线设计 第2.1节主接线的设计原则和要求 第2.2节主接线的设计步聚 第2.3节本变电站电气接线设计 第3章变压器选择 第3.1节主变压器选择 第3.2节站用变压器选择 第4章短路电流计算 第4.1节短路电流计算的目的 第4.2节短路电流计算的一般规定 第4.3节短路电流计算的步聚 第4.4节短路电流计算结果 第5章高压电器设备选择 第5.1节电器选择的一般条件 第5.2节高压断路器的选择 第5.3节隔离开关的选择 第5.4节电流互感器的选择 第5.5节电压互感器的选择 第5.6节高压熔断器的选择 第6章配电装置设计 第7章防雷保护设计 第二部分110kV变电站电气一次部分设计计算书第1章负荷计算 第1.1节主变压器负荷计算 第1.2节站用变压器负荷计算 第2章短路电流计算 第2.1节三相短路电流计算 第2.2节站用变压器低压侧短路电流计算第3章线路及变压器最大长期工作电流计算第3.1节线路最大长期工作电流计算 第3.2节主变进线最大长期工作电流计算第4章电气设备选择及效验 第4.1节高压断路器选择及效验 第4.2节隔离开关选择及效验 第4.3节电流互感器选择及效验 第4.4节电压互感器选择及效验 第4.5节熔断器选择及效验 第4.6节母线选择及效验 第5章防雷保护计算 第三部分110KV变电站电气一次部分设计图纸电气主接线图

110KV降压变电所电气一二次课程设计报告

信息工程学院 综合课程设计报告书 题目:110KV 降压变电所电气一、二次设计 专业:电气工程及其自动化 班级:___________________ 学号:____________ 学生姓名:______________ 指导教师:__________ 声明:本作品用以交差之用无实

际理论意义不确保准确性与实践性 2012 年10 月10 日 、八 前言 变电站是电力系统的一个重要组成部分,由电器设备及配电网络按一定的接线方式所构成,他从电力系统取得电能,通过其变换、分配、输送与保护等功能,它直接影响整个电力系统的安全与经济运行然后将电能安全、可靠、经济的输送到每一个用电设备的场所。 110KV 变电站属于高压网络,电气主接线是发电厂变电所的主要环节,电气主接线直关系着全厂电气设备的选择、是变电站电气部分投资大小的决定性因素。 首先,根据主接线的经济可靠、运行灵活的要求选择各个电压等级的接线方式来选择。根据主变容量选择适合的变压器,主变压器的台数、容量及形式的选择是很重要,它对发电厂和变电站的技术经济影响大。 本变电所的初步设计包括了:(1 )总体方案的确定(2)短路电流的计算(3 )高低压配电系统设计与系统接线方案选择(4 )继电保护的选择与整定(5)防雷与接地保护等内容。

最后,本设计根据典型的110kV 发电厂和变电所电气主接线图,根据厂、所继 电保护、自动装置、励磁装置、同期装置及测量表计的要求各电压等级的额定电压和最大持续工作电流进行设备选择,而后进行校验

第1章短路电流的计算 1 .1 短路的基本知识 所谓短路,就是供电系统中一相或多相载流导体接地或相互接触并产生超出规定值的大电流。 短路电流的大小也是比较主接线方案,分析运行方式时必须考虑的因素。系统短路时还会出现电压降低,靠近短路点处尤为严重,这将直接危害用户供电的安全性及可靠

110kV变电站初步设计典型方案

二.A方案 2.4.1 发电机参数 (一)工程建设规模 a)主变压器:终期2×31.5MV A,本期1×31.5MV A; b)电压等级:110/35/10kV三级; c)出线回路数: 1)110kV出线: 终期4回,本期2回; 2)35kV出线: 终期8回,本期4回; 3)10kV出线: 终期12回,本期6回; 4)无功功率补偿: 终期4×3Mvar,本期2×3Mvar; (二)设计范围 1)本典型设计范围包括变电所内下列部分: a)电力变压器及各级电压配电装置,所用电系统设备,过电压保护及接地装置,直流操作电源系统设备;相应的继电保护及自动装置,就地测量及控制操作设备,自动化系统设备以及电缆设施等。 b)与电气设备相关的建筑物、构筑物,给水排水设施,通风设施,消防设施,安全防范及环境保护措施。 2)系统通信设施、所外道路、所外上下水系统、场地平整和特殊基础处理、大件设备运输措施等不纳入本典型设计范围。其中由于通信设施需根据外部通信系统条件确定,本典型设计中仅留布置安装条件,不作具体设计。 3)设计分界点 a)变电所与线路的分界点为:110kV、35kV配电装置以架空进线耐张线夹(不含)为界。10kV 配电装置以开关柜内电缆头(不含)为界。 b)进所道路设计以变电所大门为界,大门外不属本典型设计范围。 (三)设计条件 2.4.1 发电机参数 1)所址自然条件 环境温度:-10℃~40℃ 最热月平均最高温度:35℃ 设计风速:30m/s 覆冰厚度:5mm 海拔高度:<1000m 地震烈度:6度 污秽等级:II级 设计所址高程:>频率为2%洪水位 凡所址自然条件较以上条件恶劣时,工程设计应作调整。 2)系统条件 按照系统的情况,设定110kV系统短路电流为25kA,要求10kV母线的短路电流不超过20kA (四)主要技术经济指标

110kV降压变电站电气部分初步设计说明

前言 设计是教学过程中的一个重要环节,通过设计可以巩固各课程理论知识,了解变电所设计的基本方法,了解变电所电能分配等各种实际问题,培养独立分析和解决实际工程技术问题的能力,同时对电力工业的有关政策、方针、技术规程有一定的了解,在计算绘图、编号、设计说明书等方面得到训练,为今后从事供电技术工作奠定基础。

第一章:毕业设计任务 一、设计题目:110kV降压变电所电气部分初步设计 二、设计的原始资料 1、本变电所是按系统规划,为满足地方负荷的需要而建设的终端变电所。 2、该变电所的电压等级为110/35/10kV,进出线回路数为: 110kV:2 回 35kV:4 回(其中1 回备用) 10kV:12 回(其中三回备用) 3、待设计变电所距离110kV系统变电所(可视为无限大容量系统)63.27km。 4、本地区有一总装机容量12MW的35kV出线的火电厂一座,距待设计变电所12km。 5、待设计变电站地理位置示意如下图: :

6、气象条件:年最低温度:-5℃,年最高温度:+40℃,年最高日平均温度:+32℃,地震裂度6 度以下。 7、负荷资料 (1)正常运行时由110kV系统变电所M向待设计变电所N供电。 (2)35kV侧负荷: (a)35kV侧近期负荷如下表: (b)在近期工程完成后,随生产发展,预计远期新增负荷6MW。 (3)10kV侧负荷

(a)近期负荷如下表: (b)远期预计尚有5MW的新增负荷 荷 注:(1)35kV及10kV负荷功率因数均取为cosΦ=0.85 (2)负荷同时率:35kV:kt=0.9 10kV:kt=0.85 (3)年最大负荷利用小时均取为T maX=3500小时/年 (4)网损率取为A%=5%~8% (5)所用电计算负荷50kW,cosΦ=0.87 三、设计任务 1、进行负荷分析及变电所主变压器容量、台数和型号的选择。 2、进行电气主接线的技术经济比较,确定主接线的最佳方案。 3、计算短路电流,列出短路电流计算结果。 4、主要电气设备的选择。 5、绘制变电所电气平面布置图,并对110kV、35kV户外配电装置及10kV 户内配电装置进行配置。 6、选择所用变压器的型号和台数,设计所用电接线。 7、变电站防雷布置的说明。 四、设计成品 1、设计说明书一本。 2、变电所电气主接线图一张。 3、变电所电气总平面布置图一张。 4、短路电流计算及主要设备选择结果表一张。 5、110kV出线及主变压器间隔断面图一张。

110KV变电站电气二次部分设计

**大学 毕业设计(论文)110KV变电站电气二次部分设计 完成日期 2013年 6 月 5 日

摘要 本次设计任务旨在把大学所学各科专业知识的结合到一起,整体的了解电力系统等方面的知识。首先根据任务书上所给相关资料,分析负荷发展趋势。然后通过对拟建变电站的概况以及出线方面来考虑,并对负荷资料的分析,以及从安全、经济及可靠性等方面考虑,确定了110kV,35kV,10kV输电线路及母线的主接线,然后又通过负荷计算及供电范围确定了主变压器台数及型号。 最后,根据短路计算结果,确定线路保护、变压器保护、母线保护、防雷保护的保护方案,根据保护方案对保护进行整定计算,确定设计之后再对保护的总体进行分析论证,检验二次回路的设计是否合格,从而完成了110kV电气二次部分的设计。 关键词:变电站, 继电保护, 保护整定

目录 摘要.................................................................... - 1 - 1 原始资料分析........................................................... - 4 - 2 一次部分的相关设计..................................................... - 6 -2.1主变压器的选择极其参数 (6) 2.2电气主接线设计 (7) 3 短路电流计算........................................................... - 8 -3.1概述 (8) 3.1.1 短路的原因....................................................... - 8 - 3.1.2 计算短路电流的目的............................................... - 8 -3.2短路计算.. (8) 3.2.1 计算系统电抗..................................................... - 8 - 4 线路保护.............................................................. - 11 -4.1电力系统继电保护的作用.. (11) 4.2输配电线保护 (12) 4.3线路末端短路电流 (13) 4.4线路保护整定 (14) 4.4.1 35kv侧线路保护整定........................................... - 14 - 4.4.2 10kv侧线路保护整定........................................... - 15 - 5 变压器的保护.......................................................... - 16 -5.1变压器装设的保护.. (16) 5.2变压器保护的整定方法 (16)

相关主题
文本预览
相关文档 最新文档