当前位置:文档之家› 电容式触摸屏的原理(Robot360[1].cn)

电容式触摸屏的原理(Robot360[1].cn)

电容式触摸屏的原理(Robot360[1].cn)
电容式触摸屏的原理(Robot360[1].cn)

电容式触控技术原理简介

触控面板依构造和感测形式的不同可分为电阻式、电容式、音波式以及光学式等种类,一般在市售产品中较常见的为电阻式与电容式之触控面板。

电阻式触控面板主要由上下两组ITO Film和ITO Glass导电层迭合而成,中间由DOT所隔开,在两导电层之间通入5V的电压,使用时利用压力使上下电极导通,经由控制器测知面板电压变化而计算出接触点(X,Y)轴位置,达到定位的目的。电阻式又可分为四线式、五线式,其四线式电阻线路XY轴分别配置于ITO Film和ITO Glass,当ITO Film被严重刮伤时将会形成断路,使得触控面板无法动作,而五线式原理虽然可以将面板刮伤断路的情况控制在刮伤区域内(其他部分依然可以动作),但其不耐刮的缺点依然存在。

电阻式触控面板技术门坎较低,成本低廉,一般常应用于消费性电子产品如PDA、电子字典、手机、点餐系统、信用卡POS签名机等。

图一、电阻式触控面板结构

电容式触控技术于20多年前诞生,早期由美商3M公司独占整个国际市场,在基本专利到期后全球触控面板的生产业者才得以开发电容式触控面板,电容式触控面板的应用可由触控面板、控制器及软件驱动程序等三部份说明。

n触控面板

电容式触控面板基本上是为了改良电阻式不耐刮的特性而来的,在结构上最外层为一薄薄的二氧化硅硬化处理层,硬度达到7H,第二层为ITO,在玻璃表面建立一均匀电场,最下层的ITO 作用为遮蔽功能,以维持Touch Panel能在良好无干扰的环境下工作。

图二、电容式触控面板结构

图三为两种安装电极的方式,电流分别是从四边或者四个角输入。当使用者与触控面板没有接触时,各种电极是同电位的,触控面板没有上没有电流通过,反之与触控面板接触时,人体内的静电流入而产生微弱电流通过,传感器透过电流值的变化来定位目前接触的坐标,形成一个电容场,当手指移动改变电流时,四边(or四个角)的电流也会跟着变动,传感器就能利用这个变化来算出行走的路径,并送出精确的坐标讯号给计算机。从四条边上输入时,根据上下、左右电流比计算就可以得出,检测方法较为简单。从四个角输入时,检测方法要求出与四条边的距离比,位置计算也较为复杂。

图三、电容式触控面板电极安装方式

电容式触控产品具备防尘、防刮、强固耐用及具有高分辨率等优点,但因制程步骤较多,且驱动IC与电路较复杂,因此在成本及技术进展上不利应用于中小尺寸产品,多用于10.4吋以上高单价市场,如图书馆、车站等公共场所的信息导览系统、银行自动柜员机、博物馆导览型机器人等。

n控制器

由于不平衡的透明导电模厚度会造成工作位置精度的偏差,且触控面板做的愈大此情形愈加明显,因此为了得到正确位置精度,需藉由控制器作线性分析及补偿。控制器经由多点线性补偿功能(Multi-point Linearity Compensation Function),将补偿数据纪录于EEPROM中,以对通过不平衡的透明导电膜而引起的偏差进行补偿,通常此对策能将现性偏差控制在1%以下。

n软件驱动程序

软件驱动程序对于不同作业平台支持的能力通常反应在一家公司的竞争力及市占率上,一般软件驱动程序作业平台包括:

微软Windows OS:95、98、Me、2000、NT4、XP and Tablet PC Edtion

微软Windows CE:2.12、3.0、https://www.doczj.com/doc/816746208.html, and 5.0

Linux:RedHat 9.0、Mandrake 9.2、SuSE 10.0、Yellow Dog 3.x and Fedora Core 4

Dos及iMac 9.0 and 10.x版本

另外对于操作用户来说,软件驱动程序所支持的功能也是选购时的考虑。一般多同时支持RS232及USB的通讯接口,2048x2048的屏幕分辨率,4点校正、25点线性补偿功能,微软Windows作业平台下支持多国语系,屏幕旋转(Monitor Rotation)及多重屏幕(Multi-monitor Supported)等功能。

目前将触控面板技术应用在机器人上大多属于服务型与娱乐型机器人,下图四为日本四国大冢国际美术馆内的导览服务型机器人,提供触控屏幕供参观民众查询与展品解说。图五则是属于智能型手机与音乐机器人结合的产品,此款机器人具备类似Sony的Rolly音乐跳舞机器人功能外,还可借着蓝芽传输功能经由触控屏幕来操作,同时可监测使用者的身体状态而提供适当的建议食谱与运动。

图四、导览服务机器人图五、KDDI Polaris Robot

小结:

一般传统的电容式触控面板为单点触控,近年来则发展出多点触控的投射电容式触控技术,使得人机接口的操作更加便利,以往电容式触控面板多用于尺寸较大、单价较高的市场,从iPhone开始使用电容式触控面板后,其他手机大厂也都应用该技术让操作更为方便,而微软最新一代的Windows 7操作系统亦强调触控技术的活化应用,另外在日本、台湾等地的博物馆内亦有专属的导览服务型机器人以及消费型的娱乐机器人,因此,可以想见未来也会有更多应用电容式触控面板的产品出现在市场上。

现今厂商必需克服电容式的技术门坎较高、良率较低、成本相对提高的问题,才能将性能较好的电容式触控面板发展成市场的主流。

参考文献:

1.万达光电科技https://www.doczj.com/doc/816746208.html,/

2.坤巨信息股份有限公司https://www.doczj.com/doc/816746208.html,/tc/tech_principle.html

3.育政科技有限公司https://www.doczj.com/doc/816746208.html,/

4.技术在线http://big

https://www.doczj.com/doc/816746208.html,/

5.大冢国际美术馆http://www.o-museum.or.jp/

6.https://www.doczj.com/doc/816746208.html,/

触摸屏的种类及工作原理

触摸屏种类及原理 随着多媒体信息查询的与日俱增,人们越来越多地谈到触摸屏,因为触摸屏不仅适用于中国多媒体信息查询的国情,而且触摸屏具有坚固耐用、反应速度快、节省空间、易于交流等许多优点。利用这种技术,我们用户只要用手指轻轻地碰计算机显示屏上的图符或文字就能实现对主机操作,从而使人机交互更为直截了当,这种技术大大方便了那些不懂电脑操作的用户。 触摸屏作为一种最新的电脑输入设备,它是目前最简单、方便、自然的一种人机交互方式。它赋予了多媒体以崭新的面貌,是极富吸引力的全新多媒体交互设备。触摸屏在我国的应用范围非常广阔,主要是公共信息的查询;如电信局、税务局、银行、电力等部门的业务查询;城市街头的信息查询;此外应用于领导办公、工业控制、军事指挥、电子游戏、点歌点菜、多媒体教学、房地产预售等。将来,触摸屏还要走入家庭。 随着使用电脑作为信息来源的与日俱增,触摸屏以其易于使用、坚固耐用、反应速度快、节省空间等优点,使得系统设计师们越来越多的感到使用触摸屏的确具有具有相当大的优越性。触摸屏出现在中国市场上至今只有短短的几年时间,这个新的多媒体设备还没有为许多人接触和了解,包括一些正打算使用触摸屏的系统设计师,还都把触摸屏当作可有可无的设备,从发达国家触摸屏的普及历程和我国多媒体信息业正处在的阶段来看,这种观念还具有一定的普遍性。事实上,触摸屏是一个使多媒体信息或控制改头换面的设备,它赋予多媒体系统以崭新的面貌,是极富吸引力的全新多媒体交互设备。发达国家的系统设计师们和我国率先使用触摸屏的系统设计师们已经清楚的知道,触摸屏对于各种应用领域的电脑已经不再是可有可无的东西,而是必不可少的设备。它极大的简化了计算机的使用,即使是对计算机一无所知的人,也照样能够信手拈来,使计算机展现出更大的魅力。解决了公共信息市场上计算机所无法解决的问题。 随着城市向信息化方向发展和电脑网络在国民生活中的渗透,信息查询都已用触摸屏实现--显示内容可触摸的形式出现。为了帮助大家对触摸屏有一个大概的了解,笔者就在这里提供一些有关触摸屏的相关知识,希望这些内容能对大家有所用处。 一、触摸屏的工作原理 为了操作上的方便,人们用触摸屏来代替鼠标或键盘。工作时,我们必须首先用手指或其它物体触摸安装在显示器前端的触摸屏,然后系统根据手指触摸的图标或菜单位置来定位选择信息输入。触摸屏由触摸检测部件和触摸屏控制器组成;触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU发来的命令并加以执行。 二、触摸屏的主要类型

触摸屏原理及基础知识全解析

触摸屏原理及基础知识全解析 本文来自: 中国触摸屏网(https://www.doczj.com/doc/816746208.html,) 详细出处参考:https://www.doczj.com/doc/816746208.html,/technology/principle/200812/26-977.html 【导读】:目前主要有几种类型的触摸屏,它们分别是:电阻式(双层),表面电容式和感应电容式,表面声波式,红外式,以及弯曲波式、有源数字转换器式和光学成像式。它们又可以分为两类,一类需要ITO,比如前三种触摸屏,另一类的结构中不需要ITO, 比如后几种屏。 目前主要有几种类型的触摸屏,它们分别是:电阻式(双层),表面电容式和感应电容式,表面声波式,红外式,以及弯曲波式、有源数字转换器式和光学成像式。它们又可以分为两类,一类需要ITO,比如前三种触摸屏,另一类的结构中不需要ITO, 比如后几种屏。 触摸屏在我们身边已经随处可见了,在PDA等个人便携式设备领域中,触摸屏节省了空间便于携带,还有更好的人机交互性。 目前主要有几种类型的触摸屏,它们分别是:电阻式(双层),表面电容式和感应电容式,表面声波式,红外式,以及弯曲波式、有源数字转换器式和光学成像式。它们又可以分为两类,一类需要ITO,比如前三种触摸屏,另一类的结构中不需要ITO, 比如后几种屏。目前市场上,使用ITO材料的电阻式触摸屏和电容式触摸屏应用最为广泛。 电阻式触摸屏 ITO 是铟锡氧化物的英文缩写,它是一种透明的导电体。通过调整铟和锡的比例,沉积方法,氧化程度以及晶粒的大小可以调整这种物质的性能。薄的ITO材料透明性好,但是阻抗高;厚的ITO材料阻抗低,但是透明性会变差。在PET聚脂薄膜上沉积时,反应温度要下降到150度以下,这会导致ITO氧化不完全,之后的应用中ITO会暴露在空气或空气隔层里,它单位面积阻抗因为自氧化而随时间变化。这使得电阻式触摸屏需要经常校正。 图一是电阻触摸屏的一个侧面剖视图。手指触摸的表面是一个硬涂层,用以保护下面的PET层。PET层是很薄的有弹性的PET薄膜,当表面被触摸时它会向下弯曲,并使得下面的两层ITO涂层能够相互接触并在该点连通电路。两个ITO层之间是约千分之一英寸厚的一些隔离支点使两层分开。最下面是一个透明的硬底层用来支撑上面的结构,通常是玻璃

喷码机触摸屏的工作原理与应用

喷码机触摸屏的工作原理与应用 一、触摸屏的工作原理为了操作上的方便,人们用触摸屏来代替鼠标或键盘。工作时,我们必须首先用手指或其它物体触摸安装在显示器前端的触摸屏,然后系统根据手指触摸的图标或菜单位置来定位选择信息输入。触摸屏由触摸检测部件和触摸屏控制器组成;触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU 发来的命令并加以执行。二、触摸屏的主要类型从技术原理来区别触摸屏,可分为五个基本种类:矢量压力传感技术触摸屏、电阻技术触摸屏、电容技术触摸屏、红外线技术触摸屏、表面声波技术触摸屏。其中矢量压力传感技术触摸屏已退出历史舞台。触摸屏红外屏价格低廉,但其外框易碎,容易产生光干扰,曲面情况下失真;电容屏设计理论好,但其图象失真问题很难得到根本解决;电阻屏的定位准确,但其价格颇高,且怕刮易损。表面声波触摸屏解决了以往触摸屏的各种缺陷,清晰抗暴,适于各种场合,缺憾是屏表面的水滴、尘土会使触摸屏变的迟钝,甚至不工作。按照触摸屏的工作原理和传输信息的介质,我们把触摸屏分为四种,它们分别为电阻式、红外线式、电容感应式以及表面声波式,下面笔者就对上述的各种类型的触摸屏进行简要介绍: 1、电阻式触摸屏电阻触摸屏的屏体部分是一块与显示器表面非常配合的多层复合薄膜,由一层玻璃或有机玻璃作为基层,表面涂有一层透明的导电层(OTI,氧化铟),上面再盖有一层外表面硬化处理、光滑防刮的塑料层,它的内表面也涂有一层OTI,在两层导电层之间有许多细小(小于千分之一英寸)的透明隔离点把它们隔开绝缘。当手指接触屏幕,两层OTI 导电层出现一个接触点,因其中一面导电层接通Y轴方向的5V 均匀电压场,使得侦测层的电压由零变为非零,控制器侦测到这个接通后,进行A/D 转换,并将得到的电压值与5V 相比,即可得触摸点的Y 轴坐标,同理得出X 轴的坐标,这就是电阻技术触摸屏共同的最基本原理。电阻屏根据引出线数多少,分为四线、五线等多线电阻触摸屏。五线电阻触摸屏的A面是导电玻璃而不是导电涂覆层,导电玻璃的工艺使其的寿命得到极大的提高,并且可以提高透光率。 电阻式触摸屏的OTI 涂层比较薄且容易脆断,涂得太厚又会降低透光且形成内反射降低清晰度,OTI 外虽多加了一层薄塑料保护层,但依然容易被锐利物件所破坏;且由于经常被触动,表层OTI 使用一定时间后会出现细小裂纹,甚至变型,如其中一点的外层OTI 受破坏而断裂,便失去作为导电体的作用,触摸屏的寿命并不长久。但电阻式触摸屏不受尘埃、水、污物影响。这种触摸屏利用压力感应进行控制。它用两层高透明的导电层组成触摸屏,两层之间距离仅为2.5 微米。当手指按在触摸屏上时,该处两层导电层接触,电阻发生变化,在X 和Y 两个方向上产生信号,然后送触摸屏控制器。这种触摸屏能在恶劣环境下工作,但手感和透光性较差,适合配带手套和不能用手直接触控的场合。电阻类触摸屏的关键在于材料科技,常用的透明导电涂层材料有:A、ITO,氧化铟,弱导电体,特性是当厚度降到1800 个(埃=10-10 米)以下时会突然变得透明,透光率为80%,再薄下去透光率反而下降,到300 埃厚度时又上升到80%。ITO 是所有电阻技术触摸屏及电容技术触摸屏都用到的主要材料,实际上电阻和电容技术触摸屏的工作面就是ITO 涂层。B、镍金涂层,五线电阻触摸屏的外层导电层使用的是延展性好的镍金涂层材料,外导电层由于频繁触摸,使用延展性好的镍金材料目的是为了延长使用寿命,但是工艺成本较为高昂。镍金导电层虽然延展性好,但是只能作透明导体,不适合作为电阻触摸屏的工作面,因为它导电率高,而且金属不易做到厚度非常均匀,不宜作电压分布层,只能作为探层。 2、电容式触摸屏电容式触摸屏的构造主要是在玻璃屏幕上镀一层透明的薄膜体层,再在导体层外加上一块保护玻璃,双玻璃设计能彻底保护导体层及感应器。电容式触摸屏在

表面声波式触摸屏原理

表面声波式触摸屏原理--- 表面声波触摸屏的触摸屏部分可以是一块平面、球面或是柱面的玻璃平板,安装在CRT、LED、LCD或是等离子显示器屏幕的前面。这块玻璃平板只是一块纯粹的强化玻璃,区别于别类触摸屏技术是没有任何贴膜和覆盖层。玻璃屏的左上角和右下角各固定了竖直和水平方向的超声波发射换能器,右上角则固定了两个相应的超声波接收换能器。玻璃屏的四个周边则刻有45°角由疏到密间隔非常精密的反射条纹。 工作原理以右下角的X-轴发射换能器为例: 发射换能器把控制器通过触摸屏电缆送来的电信号转化为声波能量向左方表面传递,然后由玻璃板下边的一组精密反射条纹把声波能量反射成向上的均匀面传递,声波能量经过屏体表面,再由上边的反射条纹聚成向右的线传播给X-轴的接收换能器,接收换能器将返回的表面声波能量变为电信号。 当发射换能器发射一个窄脉冲后,声波能量历经不同途径到达接收换能器,走最右边的最早到达,走最左边的最晚到达,早到达的和晚到达的这些声波能量叠加成一个较宽的波形信号,不难看出,接收信号集合了所有在X轴方向历经长短不同路径回归的声波能量,它们在Y轴走过的路程是相同的,但在X轴上,最远的比最近的多走了两倍X轴最大距离。因此这个波形信号的时间轴反映各原始波形叠加前的位置,也就是X轴坐标。 发射信号与接收信号波形在没有触摸的时候,接收信号的波形与参照波形完全一样。当手指或其它能够吸收或阻挡声波能量的物体触摸屏幕时,X轴途经手指部位向上走的声波能量被部分吸收,反应在接收波形上即某一时刻位置上波形有一个衰减缺口。 接收波形对应手指挡住部位信号衰减了一个缺口,计算缺口位置即得触摸坐标控制器分析到接收信号的衰减并由缺口的位置判定X坐标。之后Y轴同样的过程判定出触摸点的Y坐标。除了一般触摸屏都能响应的X、Y坐标外,表面声波触摸屏还响应第三轴Z轴坐标,也就是能感知用户触摸压力大小值。其原理是由接收信号衰减处的衰减量计算得到。三轴一旦确定,控制器就把它们传给主机。 ---表面声波触摸屏特点--- 表面声波触摸屏第一大特点就是抗暴,因为表面声波触摸屏的工作面是一层看不见、打不坏的声波能量,触摸屏的基层玻璃没有任何夹层和结构应力(表面声波触摸屏可以发展到直接做在CRT表面从而没有任何“屏幕”),因此非常抗暴力使用,适合公共场所。 表面声波第二大特点就是清晰美观,因为结构少,只有一层普通玻璃,透光率和清晰度都比电容电阻触摸屏好得多。反应速度快,是所有触摸屏中反应速度最快的,使用时感觉很顺畅。 表面声波第四大特点是性能稳定,因为表面声波技术原理稳定,而表面声波触摸屏的控制器靠测量衰减时刻在时间轴上的位置来计算触摸位置,所以表面声波触摸屏非常稳定,精度也非常高,目前表面声波技术触摸屏的精度通常是4096×4096×256级力度。 表面声波触摸屏的缺点是触摸屏表面的灰尘和水滴也阻挡表面声波的传递,虽然聪明的控制卡能分辨出来,但尘土积累到一定程度,信号也就衰减得非常厉害,此时表面声波触摸屏变得迟钝甚至不工作,因此,表面声波触摸屏一方面推出防尘型触摸屏,一方面建议别忘了每年定期清洁触摸屏。 表面声波触摸屏能聪明的知道什么是尘土和水滴,什么是手指,有多少在触摸。因为:我们的手指触摸在4096×4096×256级力度的精度下,每秒48次的触摸数据不可能是纹丝不变的,而尘土或水滴就一点都不变,控制器发现一个“触摸”出现后纹丝不变超过三秒钟即自动识别为干扰物。 表面声波触摸屏还具有第三轴Z轴,也就是压力轴响应,这是因为用户触摸屏幕的力量越大,接收信号波形上的衰减缺口也就越宽越深。目在所有触摸屏中只有声波触摸屏具有能感知触摸压力这个性能,有了这个功能,每个触摸点就不仅仅是有触摸和无触摸的两个

触摸屏的工作原理及常见问题解析

一、什么是触摸屏 所谓触摸屏,从市场概念来讲,就是一种人人都会使用的计算机输入设备,或者说是人人都会使用的与计算机沟通的设备。不用学习,人人都会使用,是触摸屏最大的魔力,这一点无论是键盘还是鼠标,都无法与其相比。 从技术原理角度讲,触摸屏是一套透明的绝对寻址系统,首先它必须保证是透明的,因此它必须通过材料科技来解决透明问题,像数字化仪、写字板、电梯开关,它们都不是触摸屏;其次它是绝对坐标,手指摸哪就是哪,不需要第二个动作,不像鼠标,是相对定位的一套系统,我们可以注意到,触摸屏软件都不需要游标,有游标反倒影响用户的注意力,因为游标是给相对定位的设备用的,相对定位的设备要移动到一个地方首先要知道现在在何处,往哪个方向去,每时每刻还需要不停的给用户反馈当前的位置才不致于出现偏差。这些对采取绝对坐标定位的触摸屏来说都不需要;再其次就是能检测手指的触摸动作并且判断手指位置,各类触摸屏技术就是围绕“检测手指触摸”而八仙过海各显神通的。 二、触摸屏的工作原理 触摸屏做为一种特殊的计算机外设,它是目前最简单、方便、自然的一种人机交互方式。它赋予了多媒体以崭新的面貌,是极富吸引力的全新多媒体交互设备。触摸屏在我国的应用范围非常广阔,主要是公共信息的查询;如电信局、税务局、银行、电力等部门的业务查询;城市街头的信息查询;此外应用于领导办公、工业控制、军事指挥、电子游戏、点歌点菜、多媒体教学、房地产预售等。尤其是公共场合信息查询服务,它的使用与推广大大方便了人们查阅和获取各种信息。可你对触摸屏了解多少呢? 触摸屏的基本原理是,用手指或其他物体触摸安装在显示器前端的触摸屏时,所触摸的位置(以坐标形式)由触摸屏控制器检测,并通过接口(如RS-232串行口)送到CPU,从而确定输入的信息。

四大触摸屏技术工作原理及特点分析

四大触摸屏技术工作原理及特点分析 为了操作上的方便,人们用触摸屏来代替鼠标或键盘。工作时,我们必须首先用手指或其它物体触摸安装在显示器前端的触摸屏,然后系统根据手指触摸的图标或菜单位置来定位选择信息输入。触摸屏由触摸检测部件和触摸屏控制器组成;触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU发来的命令并加以执行。 触摸屏的主要类型 按照触摸屏的工作原理和传输信息的介质,我们把触摸屏分为四种,它们分别为电阻式、电容感应式、红外线式以及表面声波式。每一类触摸屏都有其各自的优缺点,要了解那种触摸屏适用于那种场合,关键就在于要懂得每一类触摸屏技术的工作原理和特点。下面对上述的各种类型的触摸屏进行简要介绍一下: 1.电阻式触摸屏

电阻式触摸屏的工作原理 这种触摸屏利用压力感应进行控制。电阻触摸屏的主要部分是一块与显示器表面非常配合的电阻薄膜屏,这是一种多层的复合薄膜,它以一层玻璃或硬塑料平板作为基层,表面涂有一层透明氧化金属(透明的导电电阻)导电层,上面再盖有一层外表面硬化处理、光滑防擦的塑料层、它的表面也涂有一层涂层、在他们之间有许多细小的(小于1/1000英寸)的透明隔离点把两层导电层隔开绝缘。当手指触摸屏幕时,两层导电层在触摸点位置就有了接触,电阻发生变化,在X 和Y两个方向上产生信号,然后送触摸屏控制器。控制器侦测到这一接触并计算出(X,Y)的位置,再根据模拟鼠标的方式运作。这就是电阻技术触摸屏的最基本的原理。电阻类触摸屏的关键在于材料科技,常用的透明导电涂层材料有:(1)ITO,氧化铟,弱导电体,特性是当厚度降到1800个埃(埃=10-10米)以下时会突然变得透明,透光率为80%,再薄下去透光率反而下降,到300埃厚度时又上升到80%。ITO是所有电阻技术触摸屏及电容技术触摸屏都用到的主要材料,实际上电阻和电容技术触摸屏的工作面就是ITO涂层。 (2)镍金涂层,五线电阻触摸屏的外层导电层使用的是延展性好的镍金涂层材料,外导电层由于频繁触摸,使用延展性好的镍金材料目的是为了延长使用寿命,但是工艺成本较为高昂。镍金导电层虽然延展性好,但是只能作透明导体,不适合作为电阻触摸屏的工作面,因为它导电率高,而且金属不易做到厚度非常均匀,不宜作电压分布层,只能作为探层。 1.1 四线电阻屏 四线电阻模拟量技术的两层透明金属层工作时每层均增加5V恒定电压:一个竖直方向,一个水平方向。总共需四根电缆。特点:高解析度,高速传输反

触摸屏原理及应用实例

触摸屏原理及应用实例 一、触摸屏的结构及工作原理 触摸屏从工作原理上可以分为电阻式、电容式、红外线式、矢量压力传感器式等,以四线电阻式触摸屏为例。 1、触摸屏的结构 典型触摸屏的工作部分一般由三部分组成,如下图所示:两层透明的阻性导体层、两层导体之间的隔离层、电极。阻性导体层选用阻性材料,如铟锡氧化物(ITO)涂在衬底上构成,上层衬底用塑料,下层衬底用玻璃。隔离层为粘性绝缘液体材料,如聚脂薄膜。电极选用导电性能极好的材料(如银粉墨)构成,其导电性能大约为ITO(一种N型氧化物半导体氧化铟锡,ITO薄膜即铟锡氧化物半导体透明导电膜,通常有两个重要的性能指标:电阻率和光透过率)的1000倍。 触摸屏结构触摸屏工作时,上下导体层相当于电阻网络,如下图所示。 2、触摸屏的测量过程工作原理

电阻式触摸屏有四线和五线两种,四线最具有代表性。 在外ITO 层的上、下两边各渡一个狭长电极,引出端为Y +、Y -,在内IT0层的左、右两边分别渡上狭长电极,引出端为X +、X -。为了获得触摸点在X 方向的位置信号,在内IT0层的两电极X +,X -上别加REF V ,0 V 电压,使内IT0层上形成了从了从0-REF V 的电压梯度,触摸点至X -端的电压为该两端电阻对REF V 的分压,分压值代表了触摸点在X 方向的位置,然后将外lT0层的一个电极(如Y -)端悬空,可从另一电极(Y +)取出这一分压,将该分压进行A/D 转换,并与REF V 进行比较,便可得到触摸点的X 坐标。 为了获得触摸点在y 方向的位置信号,需要在外ITO 层的两电极Y +,Y -上分别加REF V ,0 V 电压,将内lT0层的一个电极(X -)悬空,从另一电极上取出触摸点在y 方向的分压。 四线电阻触摸屏测量原理 测量电压与测量点关系等效电路 测量触摸点P处测量结果计算如下:212CC y V V R R R = ?+4 34 CC x V V R R R =?+

触摸屏在S3C2410上的应用实例

触摸屏在S3C2410上的应用实例 [日期:2005-2-27] 来源:单片机及嵌入式系统应用作者:国防科技大学宋 成孙广富 [字体:大中小] 摘要:给出S3C2410上触摸屏的实现原理、硬件结构和软件程序;对软件进行优化,改进软件滤波的实现方法。其算法使用C语言实现,可移植到任何操作系统的触摸屏驱动程序中。 关键词:触摸屏S3C2410 滤波 引言 随着个人数字助理(PDA)、瘦容户机等的普及,触摸屏作为终端与用户交互的媒介,在我们的生活中使用得越来普遍。触摸屏分为电阻式、电容式、声表面波式和红外线扫描式等类型,使用得最多的是4线电阻式触摸屏。 本文以三星公司ARM9内核芯片S3C2410触摸屏接口为基础,通过外接4线电阻式触摸屏构成硬件基础。在此基础上,开发了触摸屏面图板程序。 1 触摸屏原理 S3C2410接4线电阻式触摸屏的电路原理如图1所示。整个触摸屏由模向电阻比和纵向电阻线组成,由nYPON、YMON、nXPON、XMON四个控制信号控制4个MOS管(S1、S2、S3、S4)的通断。S3C2410有8个模拟输入通道。其中,通道7作为触摸屏接口的X坐标输入(图1的AIN[7]),通道5作为触摸屏接口的Y坐标输入(图1的AIN[5])。电路如图2所示。在接入S3C2410触摸屏接口前,它们都通过一个阻容式低通滤器滤除坐标信号噪声。这里的滤波十分重要,如果传递给S3C2410模拟输入接口的信号中干扰过大,不利于后续的软件处理。在采样过程中,软件只用给特殊寄存器置位,S3C2410的触摸屏控制器就会自动控制触摸屏接口打开或关闭各MOS管,按顺序完成X坐标点采集和Y坐标点采集。

触摸屏工作原理

0 引言 随着信息技术的飞速发展,人们对电子产品智能化、便捷化、人性化要求也不断提高,触摸屏作为一种人性化的输入输出设备,在我国的应用范围非常广阔,是极富吸引力的多媒体交互没备。目前,触摸屏的需求动力主要来自于消费电子产品,如手机、PDA、便携导航设备等。随着触摸屏技术的不断发展,它在其他电子产品中的应用也会得到不断延伸。现在市面上已有的触摸屏控制器普遍价格比较高且性能相对比较固定,一些场合下无法满足用户的实际需求。本文基于上述考虑,根据电阻式触摸屏的工作原理,选用51系列单片机作为控制核心,设计一种实用且低成本的触摸屏控制系统。 1 触摸屏的工作原理 触摸屏由触摸检测部件和触摸屏控制器件组成(如图1所示);触摸检测部件用于检测用户触摸位置,接收后送触摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息送给控制器,它同时能接收控制器发来的命令并加以执行。

触摸屏的主要3大种类是:电阻技术触摸屏、表面声波技术触摸屏、电容技术触摸屏。其中,电阻式触摸屏凭借低廉的价格以及对于手指及输入笔触摸的良好响应性,涵盖了100多家触摸屏元件制造商中的2/3,成为过去5年中销售量最高的触摸屏产品。在这里根据要设计应用的触摸屏控制器,重点介绍一下四线电阻式触摸屏。 电阻触摸屏的屏体部分是一块与显示器表面相匹配的多层复合薄膜,由一层玻璃或有机玻璃作为基层,表面涂有一层透明的导电层,上面再盖有一层外表面硬化处理、光滑防刮的塑料层,它的内表面也涂有一层透明导电层,在两层导电层之间有许多细小(小于千分之一英寸)的透明隔离点把它们隔开绝缘。当手指触

摸屏幕时,平常相互绝缘的两层导电层就在触摸点位置有了一个接触,因其中一面导电层接通Y轴方向的5 V均匀电压场,使得侦测层的电压由零变为非零,这种接通状态被控制器侦测到后,进行A/D转换,并将得到的电压值与5 V相比即可得到触摸点的Y轴坐标,同理得出X轴的坐标,这就是四线电阻式触摸屏基本原理,其原理如图2所示。 2 触摸屏控制系统硬件设计 根据四线电阻式触摸屏的工作原理可以看出,在硬件设计上的主要工作就在于将触摸点所在的X轴及Y轴坐标通过控制驱动模块加以精确识别。 2.1 总体结构设计 触摸屏控制器的设计关键在于对驱动模块的控制,本文采用AT89C2051作为驱动电路的控制核心,通过ADS7843模块接收触摸屏上得到的信号并控制驱动电

触摸屏的原理与应用

触摸屏的原理与应用 触摸屏又称为“触控屏”、“触控面板”,是一种可接收触头等输入讯号的感应式液晶显示装置,当接触了屏幕上的图形按钮时,屏幕上的触觉反馈系统可根据预先编程的程式驱动各种连结装置,可用以取代机械式的按钮面板,并借由液晶显示画面制造出生动的影音效果。 触摸屏原理:主要由其二大特性决定。第一:绝对坐标系统,第二:传感器。 首先先来区别下,鼠标与触摸屏的工作原理有何区别?借此来认识绝对坐标系统和相对坐标系统的区别。 鼠标的工作原理是通过检测鼠标器的位移,将位移信号转换为电脉冲信号,再通过程序的处理和转换来控制屏幕上的鼠标箭头的移动,属于相对坐标定位系统。而绝对坐标系统要选哪就直接点那,与鼠标这类相对定位系统的本质区别是一次到位的直观性。绝对坐标系的特点是每一次定位坐标与上一次定位坐标没有关系,触摸屏在物理上是一套独立的坐标定位系统,每次触摸的数据通过校准数据转为屏幕上的坐标。 第二:定位传感器 检测触摸并定位,各种触摸屏技术都是依靠各自的传感器来工作的,甚至有的触摸屏本身就是一套传感器。各自的定位原理和各自所用的传感器决定了触摸屏的反应速度、可靠

性、稳定性和寿命。 通过以上两个特性,触摸屏工作时,首先用手指或其它物体触摸安装在显示器前端的触摸屏,然后系统根据手指触摸的图标或菜单位置(即绝对坐标系统)来定位选择信息输入。触摸屏由触摸检测部件和触摸屏控制器组成;触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触摸屏控制器(即传感器);而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU发来的命令并加以执行。触摸屏传感器技术 从触摸屏传感器技术原理来划分:有可分为五个基本种类:矢量压力传感技术触摸屏、电阻技术触摸屏、电容技术触摸屏、红外线技术触摸屏、表面声波技术触摸屏。 其中矢量压力传感技术触摸屏已退出历史舞台;红外线技术触摸屏价格低廉,但其外框易碎,容易产生光干扰,曲面情况下失真;电容技术触摸屏设计构思合理,但其图像失真问题很难得到根本解决;电阻技术触摸屏的定位准确,但其价格颇高,且怕刮易损;表面声波触摸屏解决了以往触摸屏的各种缺陷,清晰不容易被损坏,适于各种场合,缺点是屏幕表面如果有水滴和尘土会使触摸屏变的迟钝,甚至不工作。按照触摸屏的工作原理和传输信息的介质,把触摸屏分为四种,它们分别为电阻式、电容感应式、红外线式以及表面声

触摸工作原理

电容触摸感应MCU工作原理与基本特征 现在的电子产品中,触摸感应技术日益受到更多关注和应用,并不断有新的技术和IC 面世。与此同时,高灵敏度的电容触摸技术也在快速地发展起来,其主要应用在电容触摸屏和电容触摸按键,但由于电容会受温度、湿度或接地情况的不同而变化,故稳定性较差,因而要求IC的抗噪性能要好,这样才能保证稳定正确的触摸感应。 针对市场的需求,来自美国的高效能模拟与混合信号IC创新厂商Silicon Laboratories (简称:Silicon Labs)公司特别推出了C8051F7XX和C8051F8XX系列的MCU(单片机),专门针对电容触摸感应而设计,在抗噪性能和运算速度上表现的非常突出。 一、Silicon Labs公司的电容触摸系列MCU 目前Silicon Labs公司推出的C8051F7xx和C8051F8xx等电容触摸系列MCU,以高信噪比高速度的特点在业界表现尤为出色。同时,灵活的I/O配置,给设计带来更多的方便。另外,由于该系列MCU内部集成了特殊的电容数字转换器(CDC),所以能够进行高精度的电容数字转换实现电容触摸功能。 CDC的具体工作原理: 如图1所示,IREF是一个内部参考电流源,CREF是内部集成的充电电容,ISENSOR 属于内部集成的受控电流源,CSENSOR为外部电容传感器的充电电容,由于人体的触摸引起CSENSOR的变化,通过内部调整过的ISENSOR对CSENSOR进行瞬间的充电,在CSENSOR上产生一个电压VSENSOR,然后相对内部参考电压经过一个共模差分放大器进行放大;同理IC内部的IREF对CREF充电后也产生一个参考电压并相对同样的VREF 经过差分放大,最后将2个放大后的信号通过SAR(逐次逼近模数转换器)式的ADC采样算出ISENSOR的值。 图1 Silicon Labs SAR式的ADC采样可选择12-16位的分辨率,如图2所示,采用16位的分辨率进行逐位比较采样:首先从确定最高位第16位(IREF=0x8000)开始,最高位的

触摸屏原理

触摸屏原理及技术发展简介 董炜 2010.10.08 随着多媒体信息查询的与日俱增,人们越来越多地谈到触摸屏,因为触摸屏作为一种最新的电脑输入设备,它是目前最简单、方便、自然的而且又适用于中国多媒体信息查询国情的输入设备,触摸屏具有坚固耐用、反应速度快、节省空间、易于交流等许多优点。利用这种技术,我们用户只要用手指轻轻地指碰计算机显示屏上的图符或文字就能实现对主机操作,从而使人机交互更为直截了当,这种技术极大方便了那些不懂电脑操作的用户。这种人机交互方式。它赋予了多媒体以崭新的面貌,是极富吸引力的全新多媒体交互设备。触摸屏在我国的应用范围非常广阔,主要有公共信息的查询,如电信局、税务局、银行、电力等部门的业务查询;城市街头的信息查询;此外还可广泛应用于领导办公、工业控制、军事指挥、电子游戏、点歌点菜、多媒体教学、房地产预售等,将来,触摸屏还要走入家庭。随着城市向信息化方向发展和电脑网络在日常生活中的渗透,信息查询都会以触摸屏——显示内容可触摸的形式出现。 工作原理及基本技术: 一:触摸屏的工作理 为了操作上的方便,人们用触摸屏来代替鼠标或键盘。工作时,我们必须首 先用手指或其它物体触摸安装在显示器前端的触摸屏,然后系统根据手指触摸的 图标或菜单位置来定位选择信息输入。触摸屏由触摸检测部件和触摸屏控制器组成;触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触 摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息, 并将它转换成触点坐标,再送给CPU,它同时能接收CPU发来的命令并加以执行。二:触摸屏的技术原理 从技术原理来区别触摸屏,可分为五个基本种类: 1.矢量压力传感技术触摸屏、 2.电阻技术触摸屏、

触摸屏的原理与应用

触摸屏的原理与应用触摸屏又称为“触控屏”、“触控面板”,是一种可接收触头等输入讯号的感应式液晶显示装置,当接触了屏幕上的图形按钮时,屏幕上的触觉反馈系统可根据预先编程的程式驱动各种连结装置,可用以取代机械式的按钮面板,并借由液晶显示画面制造出生动的影音效果。 触摸屏原理:主要由其二大特性决定。第一:绝对坐标系统,第二:传感器。 首先先来区别下,鼠标与触摸屏的工作原理有何区别?借此来认识绝对坐标系统和相对坐标系统的区别。 鼠标的工作原理是通过检测鼠标器的位移,将位移信号转换为电脉冲信号,再通过程序的处理和转换来控制屏幕上的鼠标箭头的移动,属于相对坐标定位系统。而绝对坐标系统要选哪就直接点那,与鼠标这类相对定位系统的本质区别是一次到位的直观性。绝对坐标系的特点是每一次定位坐标与上一次定位坐标没有关系,触摸屏在物理上是一套独立的坐标定位系统,每次触摸的数据通过校准数据转为屏幕上的坐标。 第二:定位传感器 检测触摸并定位,各种触摸屏技术都是依靠各自的传感器来工作的,甚至有的触摸屏本身就是一套传感器。各自的定位原理和各自所用的传感器决定了触摸屏的反应速度、可靠 性、稳定性和寿命。 通过以上两个特性,触摸屏工作时,首先用手指或其它物体触摸安装

在显示器前端的触摸屏,然后系统根据手指触摸的图标或菜单位置(即绝对坐标系统)来定位选择信息输入。触摸屏由触摸检测部件和触摸屏控制器组成;触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触摸屏控制器(即传感器);而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU它同时能接收CPU发来的命令并加以执行。触摸屏传感器技术从触摸屏传感器技术原理来划分:有可分为五个基本种类:矢量压力传感技术触摸屏、电阻技术触摸屏、电容技术触摸屏、红外线技术触摸屏、表面声波技术触摸屏。 其中矢量压力传感技术触摸屏已退出历史舞台;红外线技术触摸屏价格低廉,但其外框易碎,容易产生光干扰,曲面情况下失真;电容技术触摸屏设计构思合理,但其图像失真问题很难得到根本解决;电阻技术触摸屏的定位准确,但其价格颇高,且怕刮易损;表面声波触摸屏解决了以往触摸屏的各种缺陷,清晰不容易被损坏,适于各种场合,缺点是屏幕表面如果有水滴和尘土会使触摸屏变的迟钝,甚至不工作。按照触摸屏的工作原理和传输信息的介质,把触摸屏分为四种,它们分别为电阻式、电容感应式、红外线式以及表面声波式。每一类触摸屏都有其各自的优缺点,要了解哪种触摸屏适用于哪种场合,关键就在于要懂得每一类触摸屏技术的工作原理和特点。 下面对上述的各种类型的触摸屏进行简要介绍一下: 1、表面声波屏 声波屏的三个角分别粘贴着X,Y 方向的发射和接收声波的换能器(换

电容式触摸屏的原理(Robot360[1].cn)

电容式触控技术原理简介 触控面板依构造和感测形式的不同可分为电阻式、电容式、音波式以及光学式等种类,一般在市售产品中较常见的为电阻式与电容式之触控面板。 电阻式触控面板主要由上下两组ITO Film和ITO Glass导电层迭合而成,中间由DOT所隔开,在两导电层之间通入5V的电压,使用时利用压力使上下电极导通,经由控制器测知面板电压变化而计算出接触点(X,Y)轴位置,达到定位的目的。电阻式又可分为四线式、五线式,其四线式电阻线路XY轴分别配置于ITO Film和ITO Glass,当ITO Film被严重刮伤时将会形成断路,使得触控面板无法动作,而五线式原理虽然可以将面板刮伤断路的情况控制在刮伤区域内(其他部分依然可以动作),但其不耐刮的缺点依然存在。 电阻式触控面板技术门坎较低,成本低廉,一般常应用于消费性电子产品如PDA、电子字典、手机、点餐系统、信用卡POS签名机等。 图一、电阻式触控面板结构 电容式触控技术于20多年前诞生,早期由美商3M公司独占整个国际市场,在基本专利到期后全球触控面板的生产业者才得以开发电容式触控面板,电容式触控面板的应用可由触控面板、控制器及软件驱动程序等三部份说明。 n触控面板 电容式触控面板基本上是为了改良电阻式不耐刮的特性而来的,在结构上最外层为一薄薄的二氧化硅硬化处理层,硬度达到7H,第二层为ITO,在玻璃表面建立一均匀电场,最下层的ITO 作用为遮蔽功能,以维持Touch Panel能在良好无干扰的环境下工作。

图二、电容式触控面板结构 图三为两种安装电极的方式,电流分别是从四边或者四个角输入。当使用者与触控面板没有接触时,各种电极是同电位的,触控面板没有上没有电流通过,反之与触控面板接触时,人体内的静电流入而产生微弱电流通过,传感器透过电流值的变化来定位目前接触的坐标,形成一个电容场,当手指移动改变电流时,四边(or四个角)的电流也会跟着变动,传感器就能利用这个变化来算出行走的路径,并送出精确的坐标讯号给计算机。从四条边上输入时,根据上下、左右电流比计算就可以得出,检测方法较为简单。从四个角输入时,检测方法要求出与四条边的距离比,位置计算也较为复杂。 图三、电容式触控面板电极安装方式 电容式触控产品具备防尘、防刮、强固耐用及具有高分辨率等优点,但因制程步骤较多,且驱动IC与电路较复杂,因此在成本及技术进展上不利应用于中小尺寸产品,多用于10.4吋以上高单价市场,如图书馆、车站等公共场所的信息导览系统、银行自动柜员机、博物馆导览型机器人等。 n控制器 由于不平衡的透明导电模厚度会造成工作位置精度的偏差,且触控面板做的愈大此情形愈加明显,因此为了得到正确位置精度,需藉由控制器作线性分析及补偿。控制器经由多点线性补偿功能(Multi-point Linearity Compensation Function),将补偿数据纪录于EEPROM中,以对通过不平衡的透明导电膜而引起的偏差进行补偿,通常此对策能将现性偏差控制在1%以下。

触摸屏种类与工作原理

触摸屏种类与工作原理 触摸屏的基本原理是,用手指或其他物体触摸安装在显示器前端的触控屏时,所触摸的位置(以坐标形式)由触摸屏控制器检测,并通过接口(如RS-232串行口) 送到CPU,从而确定输入的信息。 触摸屏系统一般包括触摸屏控制器(卡)和触摸检测装置两个部分。其中,触控屏控制器(卡)的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU发来的命令并加以执行:触摸检测装置一般安装在显示器的前端,主要作用是检测用户的触摸位置,并传送给触控屏 控制卡。 1.电阻触摸屏(电阻式触摸屏工作原理图) 电阻触摸屏的屏体部分是一块与显示器表面相匹配的多层复合薄膜,由一层玻璃或有机玻璃作为基层,表面涂有一层透明的导电层,上面再盖有一层外表面硬化处理、光滑防刮的塑料层,它的内表面也涂有一层透明导电层,在两层导电层之间有许多细小 (小于千分之一英寸)的透明隔离点把它们隔开绝缘。 当手指触摸屏幕时,平常相互绝缘的两层导电层就在触摸点位置有了一个接触,因其中一面导电层接通Y轴方向的5V均匀电压场,使得侦测层的电压由零变为非零,这种接通状态被控制器侦测到后,进行A/D转换,并将得到的电压值与5V相比即可得到触摸点的Y轴坐标,同理得出X轴的坐标,这就是所有电阻技术触摸屏共同的最基本原理。电阻类触摸屏的关键在于材料科技。电阻屏根据引出线数多少,分为四线、五线、六线等多线电阻触摸屏。电阻式触摸屏在强化玻璃表面分别涂上两层OTI透明氧化金属导电层,最外面的一层OTI涂层作为导电体,第二层OTI则经过精密的网络附上横竖两个方向的+5V至0V的电压场,两层OTI之间以细小的透明隔离点隔开。当手指接触屏幕时,两层OTI导电层就会出现一个接触点,电脑同时检测电压及电流,计算出触摸的位置,反应速度为 10-20ms。 五线电阻触摸屏的外层导电层使用的是延展性好的镍金涂层材料,外导电层由于频繁触摸,使用延展性好的镍金材料目的是为了延长使用寿命,但是工艺成本较为高昂。镍金导电层虽然延展性好,但是只能作透明导体,不适合作为电阻触控屏的工作面,因为它导电率高,而且金属不易做到厚度非常均匀,不宜作电

电容触摸屏工艺流程

?电容触摸屏工作原理 ?1.黄光SITO结构触摸屏制程 ?2.黄光DITO结构触摸屏制程 ?3.FILM自容结构触摸屏制程 ?4.FILM-FILM互容结构触摸屏制程 ?5.GLASS-DITO印刷工艺互容结构触摸屏制程 ?6.名词解释

电容触摸屏工作原理 普通电容式触摸屏的感应屏是一块四层复合玻璃屏,玻璃屏的内表面和夹层各涂有一层导电层,最外层是一薄层矽土玻璃保护层。当我们用手指触摸在感应屏上的时候,人体的电场让手指和和触摸屏表面形成一个耦合电容,对于高频电流来说,电容是直接导体,于是手指从接触点吸走一个很小的电流。这个电流分从触摸屏的四角上的电极中流出,并且流经这四个电极的电流与手指到四角的距离成正比,控制器通过对这四个电流比例的精确计算,得出 触摸点的位置。

1.黄光SITO 结构触摸屏制程ITO 绝缘材料金属或ITO 介绍:SITO 是Single ITO 的简称。即菱型 线路做法。XY 轴(发射极和感应极)都在玻璃的 同一面。 X PATTERN 和Y PATTERN 通过搭桥的方 式,实现触摸屏发射极和感应极的作用。 架桥的选择: 金属架桥:导电性好(0.4Ω/■左右),但 是金属点会可见,影响外观。(推荐) ITO 架桥:导电性差(40Ω/■左右),解决 了金属点可见的问题,同时增加一道光照,成本增加。

2.黄光DITO结构触摸屏制程 介绍:DITO是Double ITO的简称。即两面 线路做法。XY轴分别布于玻璃上下两层 X PATTERN和Y PATTERN分别在玻璃的两 面,实现触摸屏发射极和感应极的作用。

4.FILM-FILM互容结构触摸屏制 程 PATTERN和Y PATTERN分别在两个 FILM上,实现触摸屏发射极和感应极 的作用。

浅谈触摸屏的工作原理及典型应用

毕业设计(论文) 论文题目:浅谈触摸屏的工作原理及典型应用 教学中心:电子科技大学网络教育重庆学习中心 指导老师:田丰职称:讲师 学生姓名:李鹏学号: V09642742125 专业:机械电子工程 2011年05月15日

毕业设计(论文)任务书 题目:浅谈触摸屏的工作原理及典型应用 任务与要求: 了解触摸屏的基本结构及工作原理。要求写作内容鲜明,严格围绕题目述写,逻辑性思维要强,内容理论联系实际,涉及他人观点,对本设计有全面的论证。设计原理、计算、电路和本产品设计独特的优势,要有个全面阐述清楚。格式要严格按照学校规定排序。如有不熟悉的知识点,向指导老师请教。 时间:2011 年2月25 日至2011年 5 月15 日共10 周 办学单位:电子科技大学网络教育重庆学习中心 学生姓名:李鹏学号:V09642742125 专业:机械电子工程 指导单位或教研室:重庆科创职业学院 指导教师:田丰职称:讲师 2011年2月25日

毕业设计(论文)进度计划表

电子科技大学毕业设计(论文)中期检查记录表

摘要 随着多媒体信息查询的与日俱增,人们越来越多地谈到触摸屏,因为触摸屏作为一种最新的电脑输入设备,它是目前最简单、方便、自然的而且又适用于中国多媒体信息查询国情的输入设备,触摸屏具有坚固耐用、反应速度快、节省空间、易于交流等许多优点。利用这种技术,我们用户只要用手指轻轻地指碰计算机显示屏上的图符或文字就能实现对主机操作,从而使人机交互更为直截了当,这种技术极大方便了那些不懂电脑操作的用户。这种人机交互方式。它赋予了多媒体以崭新的面貌,是极富吸引力的全新多媒体交互设备。触摸屏在我国的应用范围非常广阔,主要有公共信息的查询,如电信局、税务局、银行、电力等部门的业务查询;城市街头的信息查询;此外还可广泛应用于领导办公、工业控制、军事指挥、电子游戏、点歌点菜、多媒体教学、房地产预售等,将来,触摸屏还要走入家庭。随着城市向信息化方向发展和电脑网络在日常生活中的渗透,信息查询都会以触摸屏——显示内容可触摸的形式出现。本文提供一些有关触摸屏的相关基础技术知识,希望这些内容能对广大用户有所用处。 关键词:触摸屏嵌入式系统ADS7843

iPhone触摸屏工作原理首先我们要知道5800和iPhone使用的是两种

iPhone触摸屏工作原理 首先我们要知道5800和iPhone使用的是两种不同的工作原理。 5800采用的是电阻式触摸屏,利用压力感应进行控制的,而iPhone采用的电容式触摸屏,通过人体的感应电流来工作。 电阻式触摸屏的构成是显示屏及一块与显示屏紧密贴合的电阻薄膜屏。这个电阻薄膜屏通常分为两层,一层是由玻璃或有机玻璃构成的基层,其表面涂有透明的导电层;基层外面压着我们平时直接接触的经过硬化及防刮处理的塑料层,塑料层内部同样有一层导电层,两个导电层之间是分离的。当我们用手指或其他物体触摸屏幕的时候,两个导电层发生接触,电阻产生变化,控制器则根据电阻的具体变化来判断接触点的坐标并进行相应的操作。 而iPhone则采用的是电容式触摸屏,它是通过人体的感应电流来进行工作的。 普通电容式触摸屏的感应屏是一块四层复合玻璃屏,玻璃屏的内表面和夹层各涂有一层导电层,最外层是一薄层矽土玻璃保护层。当我们用手指触摸在感应屏上的时候,人体的电场让手指和和触摸屏表面形成一个耦合电容,对于高频电流来说,电容是直接导体,于是手指从接触点吸走一个很小的电流。这个电流分从触摸屏的四角上的电极中流出,并且流经这四个电极的电流与手指到四角的距离成正比,控制器通过对这四个电流比例的精确计算,得出触摸点的位置。

电容式触摸屏与传统的电阻式触摸屏有很大区别。电阻式触控屏幕在工作时每次只能判断一个触控点,如果触控点在两个以上,就不能做出正确的判断了,所以电阻式触摸屏仅适用于点击、拖拽等一些简单动作的判断。而电容式触摸屏的多点触控,则可以将用户的触摸分解为采集多点信号及判断信号意义两个工作,完成对复杂动作的判断。电容式触摸屏也有以下几个缺点:1.精度不高。2.易受环境影响。 3.成本偏高。 大多数情况下,这些系统都能正确探测到触摸的精确位置。但如果您试着同时触摸屏幕的好几个地方,结果就可能出错。有些屏幕只能对您第一次触摸到的地方作出反应。还有些屏幕可以同时探测到好几处触点,但软件无法计算出每次触摸的精确位置。其原因如下: ?很多系统沿着轴线或者某个特定的方向探测变化,而不是探测屏幕的每个点。 ?有些触摸屏用系统内触点的平均值来探测触摸位置。 ?有些系统在测量时首先建立一道基线,当您触摸屏幕时,您的触摸产生了一道新的基线。所以如果同时触摸多处就会导致系统使用错误的基线作为起点进行测量。 以下引用Discovery旗下网站原创文章对iPhone触摸原理的解析,我们通过对比发现目前通过软件5800不可能达到iPhone多点触控的高度。 为了能让用户输入多触点的命令,iPhone对已有技术做出了全新改进。和其它很多触摸屏一样,它的触摸屏含有一层电容材料。但是iPhone的电容器是根据一个坐标系来设计的。电容器的电路能够感应到沿线各点所发生的变化。也就是说,所有的点在被触摸时都能生成自己的信号,然后将信号传送给iPhone 的处理器。这使得iPhone能够确定在多个点同时发生触摸的位置和运动方向。由于iPhone是依靠电容材料来工作的,因此您必须用手指去触摸它,用触控笔或者带着手套去触摸它都是无法操作的。 互耦合电容式触摸屏包括了一排的驱动线和一排的检测线

相关主题
文本预览
相关文档 最新文档