当前位置:文档之家› 高效晶体硅太阳能电池钝化技术 《光伏制造杂志》

高效晶体硅太阳能电池钝化技术 《光伏制造杂志》

您的位置:首页专业媒体

光伏制造

高效晶体硅太阳能电池

作者:S.W.Glunz,Fraunhofer Institute of Solar Energy System

如今的晶体硅光伏组件的成本分布主要是材料成本,特别是硅片成本。因此,采用更薄的硅片以及增加电池的转换效率引起了光伏业界的广泛兴趣。表面钝化

电介质钝化与背表面场

所有转换效率大于20%的电池结构都具有电介质层的钝化表面。然而,目前业界的晶体硅太阳能电池的表面结构多采用的是丝网印刷和热场Al背表面场(Al-BSF)。它有两个主要的限制:由烧结工艺带来的硅片弯曲;更低的电学和光学特性。特别是,Sback、背表面再复合速率是关键的参数,但是在文献中却有着大量的数值。这使得衡量Al-BSF的潜力与电介质钝化变得很困难。

我们对不同的背表面结构并结合高效前表面结构进行了实验。这将有可能准确的确定表面的再复合速率、Sback以及内部反射率Rback。

图1表示了不同背表面结构的内部量子效率,从低质量的欧姆Al接触开始一直到PERL/LBSF背表面。有效的Sback和Rback已经从IQE和反射率测量中去除。

采用这些参数就有可能确定不同背表面结构对太阳能电池性能的影响(图2)。电介质钝化甚至比高质量的发射极和更薄的硅片带来的

好处更多。

电介质层的钝化机理

良好的表面钝化有两种不同的机理:交界面状态Dit的降低;场效应钝化,即钝化层中一种载子类型与固定电荷Qf结合时的显著降低。尽管这些机理或两种机理的结合会导致较低的表面再复合速率,Seff(Δn)曲线显示了不同的特性(图3)。热生长的SiO2层更容易获得交界面状态的降低,而对于PECVD沉积的薄膜,如SiNx,场效应钝化和中等程度的Dit降低则更为常见。SiO2的Dit=1010cm2eV-1,Qf=1010cm2。而SiNx的Dit=1011cm2eV-1,Qf=1011cm2。

沉积温度

形成电介质钝化层的一个关键问题是沉积温度。目前为止,最好的电池钝化是热生长的氧化层。热氧化物在过去的几十年里,已经为MOS技术进行了大量的优化。因此,已经可以获得极低的界面状态密度和表面再复合速率。最终,典型的热氧化物温度是1050℃左右。对于高质量的FZ-Si来说,温度范围没有问题,甚至增加了Czochralski法生长的氧化物的少子寿命,但对于铸锭多晶硅却是有害的。对于这样的材料,少子寿命将会以因子为10的速度减少。因此,需要找到能够在更低的温度沉积钝化层的方法。热氧化物可以在潮湿的氛围内在850℃左右生长。潮湿的环境显著的增加了氧化速度,可以在合理的时间内获得典型的厚度为105nm的氧化层。这种方法已被应用于多晶硅,并实际测得转换效率20.3%。这些电池的平均效率高于18%,表明低质量的区域经过该种处理并没有情况恶化。另一种有意思的方法是在850℃在干燥氛围内沉积一层薄的氧化层。该较薄的氧化层上必须再沉积一层薄膜。

沉积PECVD SiNx是第二种最佳方案。最佳的沉积温度范围是350°到400℃。实现了低于10cm/s的最佳表面再复合速度。SiNx的另一优势是它和氢结合在一起可以起到多晶硅钝化层的作用。取代PECVD的最快的方案是溅射,采用该方案可以会的低于30cm/s的最

佳表面再复合速度。如果非晶硅被用作背面钝化层,那么最低的沉积温度范围是200℃到250℃。这种钝化结构已经成功的应用在HIT 上,并获得了21%的转换效率。最近的研究结果表明,非晶硅也可以用于具有扩散发射极的标准电池结构上,转换效率可以超过20%。预处理

另一个技术问题是制造节点值层之前的表面处理。洁净的表面对于氧化工艺非常重要,否则污染物会扩散进入电池。对于沉积的钝化层来说,由于工艺温度较低,这个问题不是非常严重。然而,在先前的刻蚀步骤后会留下一层浅的晶体损伤层,它将显著降低钝化层的质量。这个问题对于氧化表面来说不是非常明显,因为在氧化过程中,上层的硅已被去除。另一个课题是表面几何形状。与微电子相比,太阳能电池的表面更加粗糙,这是由于刻蚀或是湿法腐蚀制绒工艺带来的各向异性的损伤。评价粗糙的表面是否会导致较低的光学和电学性能是非常重要的。为此,我们准备了一系列具有不同表面形貌的电池,材料均为FZ-Si(图4)。电池结构是:正面为任意金字塔结构,热氧化物厚度为105nm,120Ω/sq的磷发射极;背面是105nm厚的热氧化物,2μm铝和LFC接触。

背表面被损伤刻蚀和光滑刻蚀的电池几乎表现出了相同的性能(表2)。但是背表面制绒的电池的效率较低,这是由于制绒表面特性较差而引起的电流的损失。图5是较差的长波长响应。

内部反射

紧接着钝化质量,下一个非常重要的研究室分析背表面钝化层的光学效应。传统的Si/SiO2/Al具有较高的内部反射率,这是由于SiO2较低的反射系数(n=1.46)。正面的金字塔制绒导致了不透明的光学路径和背面的全反射。因此对于太阳能电池背面的内部光学反射,可得到95%到89%的数值。但由于大多数沉积层都具有较好的钝化特性,如富Si的SiNx就具有较高的反射系数,Rback并不会很高。图6是具有制绒正表面和不同钝化层背表面的太阳能电池的反射率测量结果。如果是具有较高的折射系数(SiNx=2.9,SiCx>3)富Si介质层,Rback仍然比工业标准要好,但是低于厚热SiO2层。由于这些层通常都具有较低的表面再复合速度,所以最好将它们直接沉积在硅表面。为了改善光学特性,需要再沉积一层具有更低反射系数的介质层。事实上,如果在富Si的SiNx上沉积一层PECVD SiO2 (n=1.46),将会观察到极大的改善。同样的情况也在富Si的SiCx层(n≈2)上沉积富C的SiC上观察到(图6)。15nm厚的薄热氧化层

的光学性能也可以通过沉积一层低温PECVD SiO2得以改善。因此,“钝化”和“反射”两大任务可以通过不同的层得以实现。

太阳能电池应用

尽管看似可以通过寿命和光学测量设计完美的层堆叠结构,但最终的决定仍然需要将这些方案应用于电池上。好的表面钝化质量只是必要条件而非充分条件。尽管SiNx层在寿命测试硅片上表现出了最好的表面钝化质量,甚至优于热氧化物,但没有一种能够获得经典热氧化物带来的转换效率。特别是短路电流明显更低。这可能是由于背面接触点的SiNx层中的固定电荷引发的反型层的短路造成的。由于反型层是SiNx表面钝化机理中关键的一部分,当应用于真实电池片上时,寿命测试硅片上SiNx层的质量会明显消失。目前报导的采

用SiN背表面钝化的最佳效率是21.5%和20.6%。在第一个案例中,采用了很敏感的等离子刻蚀来打开SiNx层的接触孔,这样反型层就不会分路。在第二个案例中,硼BSF减少了反型层的分路。然而,如果采用激光烧结或机械化切割,那么转换效率将不会超过20%。这个问题可以通过两种办法解决:(i)采用SiNx层,它的钝化质量将更取决于界面状态的减少而不是场效应钝化;(ii)在SiNx层下沉积薄的热氧化层(10-15nm),这层氧化物可以用RTO在相对较低的温度下(850℃)快速生长。另外,这层薄氧化物也再正面的较轻扩散的发射极部分起到了正面钝化的作用。当采用了这样的堆叠时,转换效率可以达到20.5%。另一种优良的钝化层是非晶硅。对于HIT电池结构,由于发射极是由非晶硅层组成的,因此很自然的选择非晶硅作为背表面钝化层。这种钝化层也应用在标准电池上,得到的转换效率达到21.7%(Voc=677mV)。近来有研究表明,PECVD沉积的SiCx层也展现了良好的钝化特性(S<30cm/s)。我们是将SiCx层作为低成本衬底上的硅薄膜的再结晶的扩散阻挡层,这是由于他的良好的热稳定性。PECVD设备可以在沉积前提供原位等离子清洗步骤,这就使优化工艺步骤成为可能。为了优化SiCx的表面钝化质量,采用了1Ωcm p型高寿命FZ硅片。随后沉积SiCx,并未采用任何湿法化学工艺。实现了Δn在1×1014cm3和1×1015cm3之间,表面再复合速率低于5cm/s。成功研究了高钝化的SiCx层后,在具有高效正表面结构和背面钝化的电池上采用了不同组成的堆叠。同样,在PECVD反应腔中进行了沉积和表面处理。采用E-gun蒸发的方法沉积了2μm厚的Al层,并进行了接触部分的激光烧结。尽管在E-gun蒸发后和LFC形成后没有进行退火,还是得到了大于20%的转换效率(表3)。

热稳定性

如果背面钝化介质层必须与标准的正面丝网印刷金属化相结合,一个关键的因素就是在工艺流程中沉积这一层的位置(图7)。在烧结步骤后在背表面沉积一层介质层(图8选择1)要求表面条件足够好,包括背面发射极的刻蚀和重度的清洗,因为在这一步硅片已经经过了几步比较“脏”的工艺步骤。因此,尽管介质层在后面不会再经过任何高温步骤,但是获得较好的表面钝化仍然是一项困难的任务。

另一种方法是,在正面SiN沉积的同时在发射极扩散后沉积背面介质层(图8选择2)。在背面介质层沉积之前,背面发射极层仍然需要被刻蚀去除,并且介质层必须能够承受高温步骤,也就是随后的烧结步骤。另一种方法是再发射极扩散之前沉积背表面介质层(选择3)。在此时,硅片已经绝对干净,背面介质层将遮盖住背面的发射极扩散,去除掉背面刻蚀步骤。如果制绒条件很好的得到控制,背面介质层也能够遮盖住背表面制绒部分。这样的工艺步骤看来就完美了,但是钝化层必须能够承受后面两个高温步骤而不失去钝化的能力。因此,除了较好的电学和光学性能,良好的热稳定性对于钝化层来说也是至关重要的。传统的具有良好热稳定性的钝化层选择方案是在800℃到1050℃之间热生长的SiO2。这层薄膜在我们的第一

个试验中得以应用,将LFC技术转移到工业生产的工艺步骤。然而,由于工艺步骤的较高温度,在工业环境中应用此工艺将比较苦难,尽管在对比温度下氧化并不会降低材料的质量。

接近当前工业实际的工艺是采用PECVD沉积SiN。然而,这并不能达到与热氧化物相同的钝化效果,因为SiNx层引发的反型层会带来有害的分路。热稳定性也是一大问题,尽管最近的研究表明中等程度的钝化在烧结步骤之后能够保持。研究表明在105μm、具有i-PERC 结构的薄Cz-Si上可以得到17.3%的转换效率,这是基于烧结稳定的介质层。Al-BSF电池只有15.1%的转换效率。这样的改善证明了背表面钝化介质层的极佳的性能,以及将其应用于工业太阳能电池制造的可行性。如上所述,PECVD非晶硅沉积的电池钝化层可以达到较好的转换水平,但是这一层薄只能稳定在400℃。SiCx在热处理过程中非常稳定。研究表面,在730℃烧结步骤之后,钝化能力也没有减弱。为了证明SiCx的热稳定性,我们在寿命测试样品上进行了很多实验。在烧结步骤前后,采用准稳态的光导电测试(QSSPC)对SiCx钝化的1Ωcm Fz-Si硅片进行了寿命测试。烧结步骤是在标准带式炉中在峰值温度为800℃时进行的。(注意,选择800℃比标准的烧结步骤低,因为非金属化的样品获得温度比金属化的电池高50℃到80℃)。表4是几种具有代表性的薄膜的测量结果。沉积后的寿命与烧结稳定性并无关联。LS-66层堆叠表现出了较好但并非最好的钝化质量。基于这些发现,在0.5Ωcm FZ-Si太阳能电池上进行了第二个实验,该电池具有氧化物钝化的120Ω/sq发射极和不同的SiCx背面钝化层。在这个例子中,测量的寿命可以被直接转换成开路电压。同样的,这些结构是在800℃烧结步骤的前后测量的。

表5的两种薄膜层在烧结步骤后依然有较好的背表面钝化性能。特别的是,B薄膜层更佳,因为它能够获得很高的开路电压679mV。

在第三个试验中,更详细的评价了这些薄膜层的潜力。未制绒的太阳能电池烧结步骤后的电压可以达到682mV。在这些样品的正反面上采用了金属接触,也测量了它们的电池特性(表6)。得到的674mV开路电压表明了SiCx层的较高的潜力。

金属化

由于丝网印刷技术的成熟性和较高的生产率,它已经成为今天工业化制造的太阳能电池金属化中常用的技术。然而,网格线的较差的深宽比,较高的线电阻,下面发射极的较高的杂质浓度都是不尽如人意的特性。这些特点驱使人们寻找可替代的金属化方案。第一个未采用丝网印刷作为正表面金属化的电池片由BP Solar制造(图8)。

这里,接触层被埋在凹槽下,由激光加工,并展现了较强的磷扩散。接触结构是Ni与Si接触的多金属层。表面的其余部分被扩散发射极所覆盖,它由SiNx钝化。由于发射极较低的色差损失和较好的电学性能,该电池结构的总体性能很好。

两层金属化工艺,如LGBG工艺相信可与丝网印刷相媲美。工艺的第一步,在硅表面形成一条窄的金属线。这个种子层需要有好的机械性能,以及与硅表面较好的电学接触。在随后的生长步骤,这条线由电镀工艺加厚,以增加线传导率。采用这两层工艺,有可能在金属和工艺参数方面优化两个步骤,改善前表面金属化的性能。光致电镀

对于增厚的种子层,采用了光致电镀工艺。该工艺利用了电池的光伏效应,在电镀中只与全部金属化的背表面接触(见图9)。另外,该工艺与化学镀层相比具有更高的沉积速率。

该工艺应用于高效太阳能电池已超过十年,并得到了很高传导性能的前接触,高宽比为1:2。如今,采用了该工艺增加了丝网印刷的窄线的导电性。15.6×15.6cm2多晶硅电池上的转换效率显著的增加了0.3到0.5%,并节省了丝网印刷中的银浆使用量。当然,光致电镀工艺的全部潜力必须在种子层具有更好的电学和几个性能前提下才能获得。移印法

由于可制造小于50μm的结构,移印法成为了丝网印刷的可替代技术。尽管可以印刷很窄的接触线条,印刷的接触层的高度同时降低了,导致了线条传导性的降低。然而,与随后的光致电镀技术相结合,移印法是形成种子层的好选择。为了进一步增加线条的分辨率,我们采用了热熔浆料,并获得了很有希望的结果。为了采用热熔浆料,有必要改变移印法,即加热印刷图案。优化了工艺温度、印刷图案和其它工艺参数以获得窄的和连续的线条。我们在100×100mm2Czochralski硅上采用了该工艺,主要的步骤有:

1、化学制绒

2、发射极扩散60Ω/sq+PSG刻蚀

3、前表面SiNx:H溅射

4、背面Al丝网印刷

5、前栅条移印法

6、共烧结

7、边缘隔离8、光致电镀

印刷线条的宽度为50μm。表7是电池参数。实现的转换效率为17.9%。采用传统的银浆丝网印刷方法获得了类似的结果。

激光烧结/金属粉末熔融

第二层种子层技术包括将金属颗粒粉末沉积到电池表面上。金属粉末有扫描激光烧结或熔融以形成接触线(图10)。剩余的金属粉末很容易的从表面去除,并留下激光烧结线条。尽管可以通过反复进行此工艺而增加接触线条的高度,但我们只形成了较小的种子层,由光致银电镀方法使它增厚。

图11是光致电镀步骤后的激光烧结结构。激光烧结形成的接触既细又薄,导电性是由种子层上的电镀银产生的。

小区域(1×1cm2)的最初电池结果显示,转换效率为14.0%,尽管选择了重掺杂(18Ω/sq)的发射极。实现的开路电压为622mV。采用SunsVoc测量的伪FF为78%。尽管该值低于最佳值,但表明采用激光工艺有可能避免发射极和空间电荷区域的严重损伤。Ni的化学电镀Ni电镀被BP Solar的高效太阳能电池制造中的激光埋入接触工艺所采用。在该工艺流程中,需要在硅表面形成凹槽,然后进行损伤刻蚀和磷的重掺杂扩散。采用一步工艺形成前表面结构非常合适。这促使了采用激光烧蚀工艺去除标准电池前表面SiNx层的线条。SunsVoc测量表明该工艺没有损伤下层的硅,即PN结。在无凹槽表面和中度掺杂发射极上优化了Ni电镀工艺。图12是制绒的硅表面的Ni电镀。

在最初的实验中,我们采用了具有氧化物钝化的发射极和背表面结构的电池。由于氧化硅的不尽如人意的吸收系数,不损伤下层的硅而烧蚀氧化物是不可能的。因此,在实验中使用了光掩膜来遮盖化学刻蚀步骤,从而打开正面氧化物的栅条结构。18.9%的转换效率表明,电镀工艺的质量良好,尽管通过减少串联电阻仍有改善的空间。由于可以通过无损伤激光工艺来打开SiNx前表面栅条,有理由相信即使没有重扩散凹槽,Ni凹槽将会是形成种子层的较好的方案。金属气雾喷射

在太阳能电池表面沉积种子层的一种方法是金属喷射。然而,标准的浆料无法使用,因为其较大的颗粒尺寸(5-10μm),将会造成堵塞,这会成为喷射方法的一个严重问题。根据经验,喷嘴的尺寸至少要是颗粒的六倍,因此浆料不能直接印刷。采用了金属气雾以及特殊设计的印刷头(见图13)。在印刷头中,气雾被包裹于环状的气流中,以避免气雾一开始就与尖头相接触。环状的气流对于实现印刷线条宽度小于尖头直径非常重要。采用200μm直径的喷头可以获得50μm宽的线条。另外,印刷结果与喷头和衬底之间的距离无关,使得该技术适用于不平整的衬底。

试验了大量的浆料和非颗粒墨水。尽管非颗粒墨水的印刷结果很好,电学(接触电阻和导电性)与机械(粘合性)性能却不能令人满意。因此采用了改良的标准银浆,不管相对较大的颗粒尺寸,我们成功的获得了50-60μm的线条宽度。使用该工艺制造多晶硅电池的前栅条,并采用了以下步骤:

1、多晶硅制绒

2、发射极扩散(55Ω/sq)+PSG刻蚀

3、PECVD SiNx沉积

4、Al-BSF丝网印刷

5、气雾印刷(改良的银浆)

6、烧结

7、边缘隔离8、光致电镀

电镀后获得了两种宽度:160μm和70μm。表8是测得的太阳能电池的结果。160μm宽的电池有较高的填充系数,说明接触结构很好。

晶体硅太阳能电池的制造工艺流程

晶体硅太阳能电池的制造 工艺流程 This model paper was revised by the Standardization Office on December 10, 2020

提高太阳能电池的转换效率和降低成本是太阳能电池技术发展的主流。 晶体硅太阳能电池的制造工艺流程说明如下: (1)切片:采用多线切割,将硅棒切割成正方形的硅片。 (2)清洗:用常规的硅片清洗方法清洗,然后用酸(或碱)溶液将硅片表面切割损伤层除去30-50um。 (3)制备绒面:用碱溶液对硅片进行各向异性腐蚀在硅片表面制备绒面。 (4)磷扩散:采用涂布源(或液态源,或固态氮化磷片状源)进行扩散,制成PN+结,结深一般为-。 (5)周边刻蚀:扩散时在硅片周边表面形成的扩散层,会使电池上下电极短路,用掩蔽湿法腐蚀或等离子干法腐蚀去除周边扩散层。 (6)去除背面PN+结。常用湿法腐蚀或磨片法除去背面PN+结。 (7)制作上下电极:用真空蒸镀、化学镀镍或铝浆印刷烧结等工艺。先制作下电极,然后制作上电极。铝浆印刷是大量采用的工艺方法。 (8)制作减反射膜:为了减少入反射损失,要在硅片表面上覆盖一层减反射膜。制作减反射膜的材料有MgF2 ,SiO2 ,Al2O3,SiO ,Si3N4 ,TiO2 ,Ta2O5等。工艺方法可用真空镀膜法、离子镀膜法,溅射法、印刷法、PECVD法或喷涂法等。 (9)烧结:将电池芯片烧结于镍或铜的底板上。 (10)测试分档:按规定参数规范,测试分类。

由此可见,太阳能电池芯片的制造采用的工艺方法与半导体器件基本相同,生产的工艺设备也基本相同,但工艺加工精度远低于集成电路芯片的制造要求,这为太阳能电池的规模生产提供了有利条件。

你不知道的钝化接触太阳能电池

你不知道的钝化接触太阳能电池 晶硅太阳能电池的表面钝化一直是设计和优化的重中之重。从早期的仅有背电场钝化,到正面氮化硅钝化,再到背面引入诸如氧化硅、氧化铝、氮化硅等介质层的钝化局部开孔接触的PERC/PERL设计。虽然这一结构暂时缓解了背面钝化的问题,但并未根除,开孔处的高复合速率依然存在,而且使工艺进一步复杂。近几年来,一种既能实现背面整面钝化,且无需开孔接触的技术成为机构研究的热点,这就是钝化接触(Passivated Contact)技术。当电池两面均采用钝化接触时,还可能实现无需扩散PN结的选择性接触(SelecTIve Contact)电池结构。本文将详细介绍钝化接触技术的背景,特点及研究现状,并讨论如何使用这一技术实现选择性接触电池。 表面钝化的演进 图1,太阳能电池表面钝化结构的演进 钝化的史前时代 在90年代之前晶硅电池商业化生产的早期,太阳能电池制造商已经开始采用丝网印刷技术,但与我们如今使用的又有所不同。主要的区别在于两点:首先当时的正面网印银浆没有烧穿(Fire-through)这一功能,因此在当时的生产线上,需要先进行网印,而后沉积当时的TIO2减反射层。另一个区别在于当时的银浆与硅形成有效欧姆接触的能力较差,只有与高掺杂的硅才可以接触良好。由于TIO2没有很好的钝化功能,人们在当时并没有过多的考虑钝化。而且由于减反射层在金属电极之上,因此沉积的时候需要用模版遮挡主栅,以便后续的串焊。 虽然这一时期,在实验室中,科研人员已经采用SiO2钝化电池表面,并取得不俗的开路电压和效率。 SiNx:H第一次进化 90年代,科研机构和制造商开始探索使用等离子体增强化学气相沉积(PECVD)技术制备含氢的氮化硅(SiNx:H)薄膜用作电池正面的减反射膜。其中原因之一在于相对合适

晶体硅太阳能电池

晶体硅太阳能电池 专业班级:机械设计制造及其自动化13秋姓名:张正红 学号: 1334001250324 报告时间: 2015年12月

晶体硅太阳能电池 摘要:人类面临着有限常规能源和环境破坏严重的双重压力,能源己经成为越来越值得关注的社会与环境问题。人们开始急切地寻找其他的能源物质,而光能、风能、海洋能以及生物质能这些可再生能源无疑越来越受到人们的关注。光伏技术也便随之形成并快速地发展了起来,因此近年来,光伏市场也得到了快速发展并取得可喜的成就。本文主要就晶体硅太阳能电池发电原理及关键材料进行介绍,并对晶体硅太阳能电池及其关键材料的市场发展方向进行了展望。 关键词:太阳能电池;工作原理;晶体硅;特点;发展趋势 前言 “开发太阳能,造福全人类”人类这一美好的愿景随着硅材料技术、半导体工业装备制造技术以及光伏电池关键制造工艺技术的不断获得突破而离我们的现实生活越来越近!近20年来,光伏科学家与光伏电池制造工艺技术人员的研究成果已经使太阳能光伏发电成本从最初的几美元/KWh减少到低于20美分/KWh。而这一趋势通过研发更新的工艺技术、开发更先进的配套装备、更廉价的光伏电子材料以及新型高效太阳能电池结构,太阳能光伏(PV)发电成本将会进一步降低,到本世纪中叶将降至4美分/KWh,优于传统的发电费用。 大面积、薄片化、高效率以及高自动化集约生产将是光伏硅电池工业的发展趋势。通过降低峰瓦电池的硅材料成本,通过提升光电转换效率与延长其使用寿命来降低单位电池的发电成本,通过集约化生产节约人力资源降低单位电池制造成本,通过合理的机制建立优秀的技术团队、避免人才的不合理流动、充分保证技术上的持续创新是未来光伏企业发展的核心竞争力所在! 一、晶体硅太阳能电池工作原理 太阳能电池是一种把光能转换成电能的能量转换器,太阳能电池工作原理的基础是半导体PN结的光生伏特效应。

高效晶硅太阳能电池生产的前沿技术介绍

高效晶硅太阳能电池生产的前沿技术介绍系列之 ————SE电池技术 序言: 太阳能电池产品能够普及的关键是低成本发电。当光伏发电成本与传统能源持平甚至低于传统能源的时候,太阳能电池产品将不依赖于政府的补贴,得以在民众中普及推广。低成本的实现途径包括光电转化效率提高、生产成本下降及组件寿命提升三方面。提高太阳能电池光电转换效率一直是光伏行业工艺研发人员的工作重点,近年来发展起来的高效晶硅太阳能电池前沿技术包括:SE选择性发射电极技术、MWT技术、EWT 技术、HIT技术、表面钝化技术、IBC技术、LBSF技术、黑硅技术、双面电池技术、二次印刷技术等。虽然,到目前为止,上述太阳能电池前沿技术的生产成本还很难与常规电池工艺匹敌,无法实现大批量生产。但是,低成本光伏产品的爆炸式发展将依赖于太阳能电池新工艺技术的革新。因此,我计划对目前世界范围内研发的高效晶硅太阳能电池前沿技术进行一个系列介绍,以便于我司技术人员了解晶硅太阳能电池行业的技术动态,拓展思维方式。本期将首先介绍SE选择性发射电极技术。 一、SE电池技术介绍 SE电池技术即选择性发射极(SE-selectiveemiter)技术,即在金属栅线(电极)与硅片接触部位进行重掺杂,在电极之间位置进行轻掺杂。这样的结构可降低扩散层复合,由此可提高光线的短波响应,同时减少前金属电极与硅的接触电阻,使得短路电流、开路电压和填充因子都得到较好的改善,从而提高转换效率。其电池结构示意图如图1所示: 图1:SE电池与传统电池结构比较 二、SE结构电池的优点 1、降低串联电阻,提高填充因子 在丝网印刷工艺下,前栅接触电阻、体电阻和扩散层薄层电阻对串联电阻贡献最大。根据金属-半导体接触电阻理论,接触电阻与金属势垒(barrierheight)和表面掺杂浓度(Nb)有关,势垒越低,掺杂浓度越高,接触电阻越小。 2、减少载流子Auger复合,提高表面钝化效果 当杂质浓度大于1017cm-3时,Auger复合是半导体中主要的复合机制,而Auger复合速率与杂质浓度的平方成反比关系,所以SE的浅扩散可以有效减少载流子在扩散层横向流动时的Auger,提高载流子收集效率。

研究表面纳米级钝化的太阳能电池

研究表面纳米级钝化的太阳能电池 摘要: 纳米级太阳能电池有着其独特的属性,但也有一些缺点,尤其是在制造工艺上有着一定难度。纳米结构的晶体硅太阳能电池基于银催化的化学腐蚀法已经被可控制合成。这样,只有电池的前表面是刻蚀的后表面保护,这是发现通过新方法比通过传统的HF/AgNO3腐蚀能得到更好的光学性能。电池的开路电压和短路电流分别增加了百分之六和百分之十一。然后通过双层的(SiO 2 & SiN x )钝化和传统的氮化硅的钝化对比。它也被发现新的工艺钝化的太阳能电池的开路电压和短路电流提高了百分之四和百分之二十五。这样的结果会使得人们对纳米级晶体硅太阳能电池更加感兴趣。 介绍: 近年来,研究光伏吸引了关注。基于晶体太阳能电池硅(Si)的纳米结构(N阵列已经充当为下一代光伏候选人,由于其超低的反射率和优良的增强在捕获。相比于金字塔纹理太阳能电池,采用NS阵列的平面细胞组织—NG的报道有更好的光捕获能力,这表明更好的入射光吸收特性当入射光的反射和传输的结构 太阳能电池的能量转换效率,最终造成相当大的损失,NS阵列表现出一种很有前途的 在提高晶体硅太阳能电池性能的前景。NS阵列已通过实证的方法,包括气-液-固(VLS)的各种技术论证生长的方法,面罩辅助深反应离子蚀刻(RIE)的干蚀刻[ 10,11 ],和化学蚀刻使用银(Ag)作为催化剂[ 12,13 ]。在这些,银催化化学刻蚀技术已报道到目前为止产生具有超低垂直对齐NS阵列反射率小于3% [ 14 ]。这种技术可以制造大型NS阵列迅速在室温和大气。因此,它是非常简单的和较低的成本比其他技术,标签本身作为最幸运的工业化的适用技术。然而,直到现在,最终的能量转换NS阵列纹理单晶硅太阳能电池的效率没有相当满意。这个结果是由各种问题包括以下两个方面造成的。首先,银催化化学蚀刻是非选择性的和它所产生的NS阵列在Si晶片的两侧。作为一个结果,所制造的太阳能电池的背表面粗糙的铝(Al)的背表面场(BSF)剥离。这增加背表面的复合。其次,NS 阵列结构扩大太阳能电池的前表面面积,导致前表面复合的增加。 2. 实验内容 . P型硅片以及20 mm×20毫米细胞面积将会用到。所有的硅片三种类型(NS,NS - B,C 和NS)将清洗干净以及硫酸和氢过氧化物。原生氧化层表面会被刻蚀掉,沉积的Ag薄膜是我们在硅片正表面NS B和C电子NS电子束蒸发。然后另外两种硅片 通过快速热处理是热的。高温处理后,银纳米颗粒的分布是前线如果硅片表面。 反之,硅片在NS -是镀上 HF/AgNO3存银颗粒的混合物。 然后三种硅片都在纯水缓冲HF和H 2 O 2蚀刻溶液在25摄氏刻蚀成金字塔形的 NS变形表面。硅片表面的颜色在浓硝酸中除去银残留物但放置两小时后会变成黑色, 在传统的扩散过程对于所有的硅片是一样的,不同的钝化方法将会得到 不同种类的硅片。 (一)NS:后表面被蚀刻。表面是前线沉积的氮化硅(80 nm PECVD SiN x)中。 (二)NS(后表面是光滑的。表面是前线沉积的沉积PECVD氮化硅由80 nm。 (三)NS C:后表面是光滑的。表面是前线首先Grown of二氧化硅(SiO 2)的热氧化在750℃20分钟,然后镀上的80纳米硅用PECVD氮化。 边缘隔离后,前后两侧丝网印刷与Al和Ag浆料形成铝背场和前电极,然后烘烤的不同的贴印片。最后,干片共带了炉两端实现欧姆接触。的叙述了这三组细胞示意图,图1(a),(b)和(c)。图1(d),前回观NS纹理的太阳能电池具有不同的蚀刻方法。

高效晶体硅太阳能电池背场钝化技术

高效晶体硅太阳能电池 作者:S.W. Glunz,Fraunhofer Institute of Solar Energy System 如今的晶体硅光伏组件的成本分布主要是材料成本,特别是硅片成本。因此,采用更薄的硅片以及增加电池的转换效率引起了光伏业界的广泛兴趣。 表面钝化 电介质钝化与背表面场 所有转换效率大于20%的电池结构都具有电介质层的钝化表面。然而,目前业界的晶体硅太阳能电池的表面结构多采用的是丝网印刷和热场Al背表面场(Al-BSF)。它有两个主要的限制:由烧结工艺带来的硅片弯曲;更低的电学和光学特性。特别是,Sback、背表面再复合速率是关键的参数,但是在文献中却有着大量的数值。这使得衡量Al-BSF的潜力与电介质钝化变得很困难。 我们对不同的背表面结构并结合高效前表面结构进行了实验。这将有可能准确的确定表面的再复合速率、Sback以及内部反射率Rback。 图1表示了不同背表面结构的内部量子效率,从低质量的欧姆Al接触开始一直到PERL/LBSF背表面。有效的Sback和Rback已经从IQE和反射率测量中去除。

采用这些参数就有可能确定不同背表面结构对太阳能电池性能的影响(图2)。电介质钝化甚至比高质量的发射极和更薄的硅片带来的好处更多。 电介质层的钝化机理 良好的表面钝化有两种不同的机理:交界面状态Dit的降低;场效应钝化,即钝化层中一种载子类型与固定电荷Qf结合时的显著降低。尽管这些机理或两种机理的结合会导致较低的表面再复合速率,Seff(Δn)曲线显示了不同的特性(图3)。热生长的SiO2层更容易获得交界面状态的降低,而对于PECVD沉积的薄膜,如SiNx,场效应钝化和中等程度的Dit降低则更为常见。SiO2的Dit=1010cm2eV-1,Qf=1010cm2。而SiNx的Dit=1011cm2eV-1,Qf=1011cm2。

高效晶体硅太阳能电池钝化技术 《光伏制造杂志》

您的位置:首页专业媒体 光伏制造 高效晶体硅太阳能电池 作者:S.W.Glunz,Fraunhofer Institute of Solar Energy System 如今的晶体硅光伏组件的成本分布主要是材料成本,特别是硅片成本。因此,采用更薄的硅片以及增加电池的转换效率引起了光伏业界的广泛兴趣。表面钝化 电介质钝化与背表面场 所有转换效率大于20%的电池结构都具有电介质层的钝化表面。然而,目前业界的晶体硅太阳能电池的表面结构多采用的是丝网印刷和热场Al背表面场(Al-BSF)。它有两个主要的限制:由烧结工艺带来的硅片弯曲;更低的电学和光学特性。特别是,Sback、背表面再复合速率是关键的参数,但是在文献中却有着大量的数值。这使得衡量Al-BSF的潜力与电介质钝化变得很困难。 我们对不同的背表面结构并结合高效前表面结构进行了实验。这将有可能准确的确定表面的再复合速率、Sback以及内部反射率Rback。 图1表示了不同背表面结构的内部量子效率,从低质量的欧姆Al接触开始一直到PERL/LBSF背表面。有效的Sback和Rback已经从IQE和反射率测量中去除。

采用这些参数就有可能确定不同背表面结构对太阳能电池性能的影响(图2)。电介质钝化甚至比高质量的发射极和更薄的硅片带来的

好处更多。 电介质层的钝化机理 良好的表面钝化有两种不同的机理:交界面状态Dit的降低;场效应钝化,即钝化层中一种载子类型与固定电荷Qf结合时的显著降低。尽管这些机理或两种机理的结合会导致较低的表面再复合速率,Seff(Δn)曲线显示了不同的特性(图3)。热生长的SiO2层更容易获得交界面状态的降低,而对于PECVD沉积的薄膜,如SiNx,场效应钝化和中等程度的Dit降低则更为常见。SiO2的Dit=1010cm2eV-1,Qf=1010cm2。而SiNx的Dit=1011cm2eV-1,Qf=1011cm2。

晶硅太阳能电池的特点和种类

晶体硅太阳能电池的种类及特点 太阳能电池已经有30多年的发展历史。目前世界各国研制的硅太阳能电池种类繁多,;主要系列有单晶、多晶、非晶硅几种。其中单晶硅太阳能电池占50%,多晶硅电池占20%、非晶占30%。我国光伏发电发展需解决的关键问题。太阳能光伏发电发展的瓶颈 是成本高。为此,需加大研发力度,集中在降低成本和提高效率的关键技术上有所突破,主要包括:a)晶体硅电池技术。降低太阳硅材料的制备成本:开发专门用于晶体硅太阳 能电池的硅材料,是生产高效和低成本太阳电池的基本条件;同时实现硅材料国产化和 提高性能,从产业链的源头,抓好降低成本工作。提高电池/组件转换效率:高效钝化 技术,高效陷光技术,选择性发射区,背表面场,细栅或者单面技术,封装材料的最佳 折射率等高效封装技术等。光伏技术的发展以薄膜电池为方向,高效率、高稳定性、低 成本是光伏电池发展的基本原则。 单晶硅在太阳能的有效利用当中,太阳能光电利用是近些年来发展最快,也是最具 活力的研究领域。而硅材料太阳能电池无疑是市场的主体,硅基(多晶硅、单晶硅)太阳 能电池占80%以上,每年全世界需消费硅材料3000t左右。生产太阳能电池用单晶硅, 虽然利润比较低,但是市场需求量大,供不应求,如果进行规模化生产,其利润仍然很 可观。目前,中国拟建和在建的太阳能电池生产线每年将需要680多吨的太阳能电池用 多晶硅和单晶硅材料,其中单晶硅400多吨,而且,需求量还以每年15%~20%的增长 率快速增长。硅系列太阳能电池中,单晶硅太阳能电池在实验室里最高的转换效率为23%,而规模生产的单晶硅太阳能电池,其效率为15%,技术也最为成熟。高性能单晶 硅电池是建立在高质量单晶硅材料和相关的成熟的加工处理工艺基础上的。现在单晶硅 的电池工艺已近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂 等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。提高转化效率 主要是靠单晶硅表面微结构处理和分区掺杂工艺。在此方面,德国夫朗霍费费莱堡太阳 能系统研究所保持着世界领先水平。该研究所采用光刻照相技术将电池表面织构化,制 成倒金字塔结构。通过改进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得 的电池转化效率超过23%。单晶硅具有完整的金刚石结构。通过掺杂得到n,P型单晶硅,进而制备出p/n结、二极管及晶体管,从而使硅材料有了真正的用途。单晶硅太阳能电 池转换效率无疑是最高的,在大规模应用和工业生产中仍占据主导地位,但由于受单晶 硅材料价格及相应的繁琐的电池工艺影响,致使单晶硅成本价格居高不下,要想大幅度 降低其成本是非常困难的。 多晶硅众所周知,利用太阳能有许多优点,光伏发电将为人类提供主要的能源,但 目前来讲,要使太阳能发电具有较大的市场,被广大的消费者接受,提高太阳电池的光 电转换效率,降低生产成本应该是我们追求的最大目标,从目前国际太阳电池的发展过 程可以看出其发展趋势为单晶硅、多晶硅、带状硅、薄膜材料(包括微晶硅基薄膜、化合 1

高效晶体硅太阳能电池介绍

高效晶体硅太阳电池简介(1) PERC电池是澳大利亚新南威尔士大学光伏器件实验室最早研究 的高效电池。它的结构如图2-13a所示,正面采用倒金字塔结构,进行双面钝化,背电极通过一些分离很远的小孔贯穿钝化层与衬底接触,这样制备的电池最高效率可达到23.2%[26]。由于背电极是通过一些小孔直接和衬底相接触的,所以此处没能实现钝化。为了尽可能降低此处的载流子复合,所设计的孔间距要远大于衬底的厚度才可。然而孔间距的增大又使得横向电阻增加(因为载流子要横向长距离传输才能到达此处),从而导致电池的填充因子降低。另外,在轻掺杂的衬底上实现电极的欧姆接触非常困难,这就限制了高效PERC电池衬底材料只能选用电阻率低于0.5 Ωcm以下的硅材料。 为了进一步改善PERC电池性能,该实验室设想了在电池的背面增加定域掺杂,即在电极与衬底的接触孔处进行浓硼掺杂。这种想法早已有人提出,但是最大的困难是掺杂工艺的实现,因为当时所采用的固态源进行硼掺杂后载流子寿命会有很大降低。后来在实验过程中发现采用液态源BBr3进行硼掺杂对硅片的载流子寿命影响较小,并且可以和利用TCA制备钝化层的工艺有很好的匹配。1990年在PERC结构和工艺的基础上,J.Zhao在电池的背面接触孔处采用了BBr3定域扩散制备出PERL电池,结构如图2.13b所示[27]。定域掺硼的温度为900 ℃,时间为20 min,随后采用了drive-in step技术(1070 ℃,2 h)。经过这样处理后背面接触孔处的薄层电阻可降到20 Ω/□以下。孔间距离也进行了调整,由2 mm缩短为250 μm,大大减少了横

向电阻。如此,在0.5 Ωcm和2 Ωcm的p型硅片上制作的4 cm2的PERL电池的效率可达23-24%,比采用同样硅片制作的PERC电池性能有较大提高。 1993年该课题组对PERL电池进行改善,使其效率提高到24%,1998年再次提高到24.4%,2001年达到24.7%,创造了世界最高记录。这种PERL电池取得高效的原因是[28]:(1)正面采光面为倒金字塔结构,结合背电极反射器,形成了优异的光陷阱结构;(2)在正面上蒸镀了MgF2/ZnS双层减反射膜,进一步降低了表面反射;(3)正面与背面的氧化层均采用TCA工艺(三氯乙烯工艺)生长高质量的氧化层,降低了表面复合;(4)为了和双层减反射膜很好配合,正面氧化硅层要求很薄,但是随着氧化层的减薄,电池的开路电压和短路电流又会降低。为了解决这个矛盾,相对于以前的研究,增加了“alneal”工艺,即在正面的氧化层上蒸镀铝膜,然后在370 ℃的合成气氛中退火30 min,最后用磷酸腐蚀掉这层铝膜。经过“alneal”工艺后,载流子寿命和开路电压都得到较大提高,而与正面氧化层的厚度关系不大。这种工艺的原理是,在一定温度下,铝和氧化物中OH-离子发生反应产生了原子氢,在Si/SiO2的界面处对一些悬挂键进行钝化。(5)电池的背电场通过定域掺杂形成,掺杂的温度和时间至关重要,对实现定域掺杂的接触孔的设计也非常重要,因为这关系到能否在整个背面形成背电场以及体串联电阻的大小。在这个电池中浓硼扩散区面积为30 μm×30 μm,接触孔的面积为10 μm ×10 μm,孔间距为250 μm,浓硼扩散区的面积仅占背面积的1.44%。定域扩散

几种商业化的高效晶体硅太阳能电池技术

高效晶体硅太阳能电池技术 摘要:晶体硅太阳能电池是目前应用技术最成熟、市场占有率最高的太阳能电池。本文在解释常规太阳能电池能量损失机理的基础上,介绍了可应用于商业化生产的高效晶体硅太阳能电池技术及其工艺流程,并对每种电池技术的优、缺点及工艺难度进行了评价。 关键词:晶体硅电池;高效电池;商业化 1 引言 能源是一个国家经济和社会发展的基础. 目前广泛使用的石油、天然气、煤炭等化石能源面临着严峻的挑战. 2005年2 月我国通过了《中华人民共和国可再生能源法》,从立法角度推进可再生能源的开发和利用,这是解决我国能源与环境、实现可持续发展的重要战略决策。 不论从资源的数量、分布的普遍性,还是从清洁性、技术的可靠成熟性来说,太阳能在可再生能源中都具有更大的优越性,光伏发电已成为可再生能源利用的首要方式。而晶硅太阳电池一直占据着光伏市场的最大份额. 与其它的可再生能源一样,目前要使之从补充能源过渡到替代能源,太阳电池光伏发电推广的最大制约因素仍然是发电成本。围绕着降低生产成本的目标,以高效电池获取更多的能量来代替低效电池一直是科学研究的的热门[1]. 近年来 高效单晶硅太阳能电池研究已取得巨大成就,在美国、德国和日本,高效太阳能电池研究正如火如荼,特别是美国,商品化高效电池的转换效率已超过20%。 . 2 硅太阳能电池能量损失机理 目前研究成果表面,影响晶体硅太阳能电池转换效率的原因主要来自两个方面:①光学损失. 包括电池前表面反射损失、接触栅线的阴影损失以及长波段的非吸收损失,其中反射和阴影损失是可以通过技术措施减小的,而长波非吸收损失与半导体性质有关;②电学损失. 它包括半导体表面及体内的光生载流子复合、半导体和金属栅线的体电阻以及金属-半导体接触(欧姆接触)电阻损失. 相对而言,欧姆损失在技术上比较容易降低,其中最关键的是降低光生载流子的复合,它直接影响太阳电池的开路电压。而提高电池效率的关键之一就是提高开路电压V oc。光生载流子的复合主要是由于高浓度的扩散层在前表面引入了大量的复合中心。此外,当少数载流子的扩散长度与硅片的厚度相当或超过硅片厚度时,背表面的复合速度S b 对太阳电池特性的影响也很明显。而从商业太阳电池来看,为了降低太阳电池的成本和提高效率,现在生产厂家也在不断地减小硅片的厚度,以降低原材料的价格.因此必须有减少前、背两个表面的光生载流子复合的结构和措施. 3 高效晶体硅太阳能电池技术 3.1 背接触电池IBC/MWT/EWT (1)IBC电池(PCC电池) 背接触电池是由Sunpower公司开发的高效电池,其特点是正面无栅状电极,正负极交叉排列在背面,量产效率可达19%~20%。 这种把正面金属栅线去掉的电池结构有很多优点[2]:(1)减少正面遮光损失,相当于增加了有效半导体面积,有利于增加电池效率;(2)有可能大大降低组件装配成本,因为全部外部接触均在单一表面上;(3)从建造结构的观点看来提供了增值,因为汇流条和焊线串接存在引起的视觉不适被组件背面所替代。

【CN110021682A】一种适用于太阳能电池片的钝化处理工艺【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910119522.6 (22)申请日 2019.02.18 (71)申请人 浙江贝盛光伏股份有限公司 地址 313000 浙江省湖州市吴兴区织里镇 珍贝路800号 (72)发明人 何一峰 邱小永 赵庆国 陆波  吕文辉 金德琳 陈伟林  (74)专利代理机构 杭州千克知识产权代理有限 公司 33246 代理人 裴金华 (51)Int.Cl. H01L 31/18(2006.01) H01L 31/0216(2014.01) (54)发明名称 一种适用于太阳能电池片的钝化处理工艺 (57)摘要 本发明涉及化工设备领域,具体涉及一种适 用于太阳能电池片的钝化处理工艺。本发明的上 述技术目的是通过以下技术方案得以实现的:一 种适用于太阳能电池片的钝化处理工艺,包含制 绒、扩散、刻蚀、镀膜、印刷、烧结步骤,所述镀膜 步骤具体包含以下步骤:预热步骤、预处理步骤、 底层膜制作步骤、中间层膜制作步骤、顶层膜制 作步骤。本发明的目的是提供一种适用于太阳能 电池片的钝化处理工艺,对镀膜部分采用了新的 三层设计,增加钝化效果,减少了电子空穴对复 合, 提高了少子寿命。权利要求书2页 说明书4页CN 110021682 A 2019.07.16 C N 110021682 A

权 利 要 求 书1/2页CN 110021682 A 1.一种适用于太阳能电池片的钝化处理工艺,包含制绒、扩散、刻蚀、镀膜、印刷、烧结步骤,其特征在于:所述镀膜步骤具体包含以下步骤: S01、预热步骤; 将硅片整体升温; S02、预处理步骤; 通入氮气,经高频电离后对硅片表面进行清洗; S03、底层膜制作步骤; 通入硅烷和氨气,经高频电离后在电场的作用下沉积在硅片表面,形成底层氮化硅薄膜; S04、中间层膜制作步骤; 通入硅烷和氨气,经高频电离后在电场的作用下沉积在所述底层膜之上,形成第二层氮化硅薄膜; S05、顶层膜制作步骤; 通入硅烷和氨气,经高频电离后在电场的作用下沉积在所述中间层膜之上,形成顶层氮化硅薄膜。 2.根据权利要求1所述的一种适用于太阳能电池片的钝化处理工艺,其特征在于:在所述预热步骤中,预热温度450-500 ℃,预热时间25-30分钟。 3.根据权利要求1所述的一种适用于太阳能电池片的钝化处理工艺,其特征在于:再所述预处理步骤中,沉积温度为450-500 ℃,功率3400-4400 W,氮气流量5 slm,不抽真空,沉积时间5-15 秒。 4.根据权利要求1所述的一种适用于太阳能电池片的钝化处理工艺,其特征在于:在所述底层膜制作步骤中,镀膜薄膜参数为:沉积温度450-500℃,功率6000-7000 W,氨气流量3.5-3.9 slm,硅烷流量800-900 sccm,压力1650 mTor,占空比5:50 ms,沉积时间80-100 s;要求第一层膜折射率控制在2.20-2.30,膜厚控制在15-20 nm。 5.根据权利要求4所述的一种适用于太阳能电池片的钝化处理工艺,其特征在于:在所述中间层膜制作步骤中,镀膜薄膜参数为:沉积温度450-500 ℃,功率6000-7000 W,氨气流量3.5-4.5 slm,硅烷流量600-700 sccm,压力1650 mTor,占空比5:50 ms,沉积时间140-150 s;要求第二层膜折射率控制在2.1-2.20,膜厚控制在15-20 nm。 6.根据权利要求5所述的一种适用于太阳能电池片的钝化处理工艺,其特征在于:在所述顶层膜制作步骤中,镀膜薄膜参数为:沉积温度450-500 ℃,功率6000-7000 W,氨气流量6-7 slm,硅烷流量600-700 sccm,压力1650 mTor,占空比5:50 ms,沉积时间450-550 s;要求第三层膜折射率控制在2.00-2.02,膜厚控制在45-55 nm。 7.根据权利要求6所述的一种适用于太阳能电池片的钝化处理工艺,其特征在于:三层膜沉积完成后,整体折射率控制在2.07-2.09,膜厚控制在78-82nm。 8.根据权利要求1或2或3或4或5或6或7所述的一种适用于太阳能电池片的钝化处理工艺,其特征在于:在所述烧结工序后还包含电增强步骤。 9.根据权利要求8所述的一种适用于太阳能电池片的钝化处理工艺,其特征在于:所述电增强步骤具体包含以下步骤, S11、摆放和预热步骤,将烧结后电池片整齐摆放,上下增加电极板,开启控制电流对电 2

晶硅太阳能电池发展状况及趋势分析

晶硅太阳能电池发展状况及趋势分析 太阳能属于可再生资源,具有用之不竭、取之不尽的特点,这也推动了晶硅太阳能电池产业的快速发展。我国是晶硅太阳能电池制造大国,但在发展过程中,我国晶硅太阳能电池却遇到了一系列制约性瓶颈,对此要引起高度重视。文章对晶硅太阳能电池发展状况进行了全面和系统的研究,首先对我国晶硅太阳能电池发展状况进行了简要的回顾和分析,在此基础上对未来我国晶硅太阳能电池发展趋势进行了分析,旨在为推动我国晶硅太阳能电池发展提供一些参考。 标签:晶硅太阳能电池;发展现状;发展趋势 随着全球能源约束越来越大,能源问题已经成为制约全球经济发展的重要因素,特别是在全球都高度重视环境保护的形势下,如何开拓新的能源市场已经成为各个国家高度重视的问题,特别是加强对新能源的利用已经是大势所趋。晶硅太阳能电池是重要的新能源,而且具有绿色环保的优势,因而必须高度重视晶硅太阳能电池的发展。尽管从总体上来看,我国晶硅太阳能取得了重要的发展,但在全球市场竞争越来越激烈的情况下,我国必须大力推动晶硅太阳能电池转型发展,使其在“中国制造2025”战略方面取得重大突破,进而推动我国晶硅太阳能电池步入更加科学化的发展轨道。 1 我国晶硅太阳能电池发展现状 随着全球晶硅太阳能电池市场的不断发展壮大,全球都高度重视晶硅太阳能电池发展,特别是自2004年以来,全球晶硅太阳能电池增长率始终保持在20%以上的速度。我国是太阳能光伏电池生产大国,自1959年以来,我国在这方面不断取得新的更大的成效,我国晶硅太阳能电池组件在全球市场的占有率达到了70%左右,表明我国晶硅太阳能电池产生呈现出蓬勃发展的态势。尽管从总体上来看,我国属于晶硅太阳能电池“制造大国”,但我国还没有上升到“制造强国”的行列,还存在一些不容忽视的问题。 一是发电成本相对较高。晶硅太阳能电池的发展水平如何,最为重要的就是发电成本,只有较低的发电成本,才能使晶硅太阳能电池得到更有效的推广和利用,使其成为“清洁发电”的重要战略性举措。尽管我国不断加大晶硅太阳能电池技术创新力度,而且也取得了重要的成效,但当前我国晶硅太阳能电池发电成本仍然相对较高,远远高于普通市电价格。由于发电成本相对较高,特别是我国一些晶硅太阳能电池生产企业不注重降低成本,这也直接导致我国晶硅太阳能电池发展受到一定的影响,需要引起高度重视,并通过积极的技术创新来降低发电成本。 二是国际贸易壁垒较多。由于我国属于晶硅太阳能电池生产大国,但在出口方面却受到国际贸易壁垒的限制,导致我国晶硅太阳能电池发展受到限制。特别是2008年金融危机以来,针对我国晶硅太阳能电池的贸易壁垒越来越多,国际贸易保护主义越来越严重,比如美国的“双反”政策征收100%的关税。欧盟、印

晶硅太阳能电池片的制作过程

晶硅太阳能电池板的制作过程 1、表面制绒单晶硅绒面的制备是利用硅的各向异性腐蚀,在每平方厘米硅表面形成几百万个四面方锥体也即金字塔结构。由于入射光在表面的多次反射和折射,增加了光的吸收,提高了电池的短路电流和转换效率。硅的各向异性腐蚀液通常用热的碱性溶液,可用的碱有氢氧化钠,氢氧化钾、氢氧化锂和乙二胺等。大多使用廉价的浓度约为1%的氢氧化钠稀溶液来制备绒面硅,腐蚀温度为70-85℃。为了获得均匀的绒面,还应在溶液中酌量添加醇类如乙醇和异丙醇等作为络合剂,以加快硅的腐蚀。制备绒面前,硅片须先进行初步表面腐蚀,用碱性或酸性腐蚀液蚀去约20~25μm,在腐蚀绒面后,进行一般的化学清洗。经过表面准备的硅片都不宜在水中久存,以防沾污,应尽快扩散制结。 2、扩散制结太阳能电池需要一个大面积的PN结以实现光能到电能的转换,而扩散炉即为制造太阳能电池PN结的专用设备。管式扩散炉主要由石英舟的上下载部分、废气室、炉体部分和气柜部分等四大部分组成。扩散一般用三氯氧磷液态源作为扩散源。把P型硅片放在管式扩散炉的石英容器内,在850---900摄氏度高温下使用氮气将三氯氧磷带入石英容器,通过三氯氧磷和硅片进行反应,得到磷原子。经过一定时间,磷原子从四周进入硅片的表面层,并且通过硅原子之间的空隙向硅片内部渗透扩散,形成了N型半导体和P型半导体的交界面,也就是PN结。这种方法制出的PN 结均匀性好,方块电阻的不均匀性小于百分之十,少子寿命可大于10ms。制造PN结是太阳电池生产最基本也是最关键的工序。因为正是PN结的形成,才使电子和空穴在流动后不再回到原处,这样就形成了电流,用导线将电流引出,就是直流电。 3、去磷硅玻璃该工艺用于太阳能电池片生产制造过程中,通过化学腐蚀法也即把硅片放在氢氟酸溶液中浸泡,使其产生化学反应生成可溶性的络和物六氟硅酸,以去除扩散制结后在硅片表面形成的一层磷硅玻璃。在扩散过程中,POCL3与O2反应生成P2O5淀积在硅片表面。P2O5与Si反应又生成SiO2和磷原子,这样就在硅片表面形成一层含有磷元素的SiO2,称之为磷硅玻璃。去磷硅玻璃的设备一般由本体、清洗槽、伺服驱动系统、机械臂、电气控制系统和自动配酸系统等部分组成,主要动力源有氢氟酸、氮气、压缩空气、纯水,热排风和废水。氢氟酸能够溶解二氧化硅是因为氢氟酸与二氧化硅反应生成易挥发的四氟化硅气体。若氢氟酸过量,反应生成的四氟化硅会进一步与氢氟酸反应生成可溶性的络和物六氟硅酸。 4、等离子刻蚀由于在扩散过程中,即使采用背靠背扩散,硅片的所有表面包括边缘都将不可避免地扩散上磷。PN结的正面所收集到的光生电子会沿着边缘扩散有磷的区域流到PN结的背面,而造成短路。因此,必须对太阳能电池周边的掺杂硅进行刻蚀,以去除电池边缘的PN结。通常采用等离子刻蚀技术完成这一工艺。等离子刻蚀是在低压状态下,反应气体CF4的母体分子在射频功率的激发下,产生电离并形成等离子体。等离子体是由带电的电子和离子组成,反应腔体中的气体在电子的撞击下,

几种商业化的高效晶体硅太阳能电池技术

几种商业化的高效晶体硅太阳能电池技术 摘要:晶体硅太阳能电池是目前应用技术最成熟、市场占有率最高的太阳能电池。本文在解释常规太阳能电池能量损失机理的基础上,介绍了可应用于商业化生产的高效晶体硅太阳能电池技术及其工艺流程,并对每种电池技术的优、缺点及工艺难度进行了评价。 关键词:晶体硅电池;高效电池;商业化 1 引言 能源是一个国家经济和社会发展的基础. 目前广泛使用的石油、天然气、煤炭等化石能源面临着严峻的挑战. 2005年2 月我国通过了《中华人民共和国可再生能源法》,从立法角度推进可再生能源的开发和利用,这是解决我国能源与环境、实现可持续发展的重要战略决策。 不论从资源的数量、分布的普遍性,还是从清洁性、技术的可靠成熟性来说,太阳能在可再生能源中都具有更大的优越性,光伏发电已成为可再生能源利用的首要方式。而晶硅太阳电池一直占据着光伏市场的最大份额. 与其它的可再生能源一样,目前要使之从补充能源过渡到替代能源,太阳电池光伏发电推广的最大制约因素仍然是发电成本。围绕着降低生产成本的目标,以高效电池获取更多的能量来代替低效电池一直是科学研究的的热门[1]. 近年来 高效单晶硅太阳能电池研究已取得巨大成就,在美国、德国和日本,高效太阳能电池研究正如火如荼,特别是美国,商品化高效电池的转换效率已超过20%。 . 2 硅太阳能电池能量损失机理 目前研究成果表面,影响晶体硅太阳能电池转换效率的原因主要来自两个方面:①光学损失. 包括电池前表面反射损失、接触栅线的阴影损失以及长波段的非吸收损失,其中反射和阴影损失是可以通过技术措施减小的,而长波非吸收损失与半导体性质有关;②电学损失. 它包括半导体表面及体内的光生载流子复合、半导体和金属栅线的体电阻以及金属-半导体接触(欧姆接触)电阻损失. 相对而言,欧姆损失在技术上比较容易降低,其中最关键的是降低光生载流子的复合,它直接影响太阳电池的开路电压。而提高电池效率的关键之一就是提高开路电压V oc。光生载流子的复合主要是由于高浓度的扩散层在前表面引入了大量的复合中心。此外,当少数载流子的扩散长度与硅片的厚度相当或超过硅片厚度时,背表面的复合速度S b 对太阳电池特性的影响也很明显。而从商业太阳电池来看,为了降低太阳电池的成本和提高效率,现在生产厂家也在不断地减小硅片的厚度,以降低原材料的价格.因此必须有减少前、背两个表面的光生载流子复合的结构和措施. 3 高效晶体硅太阳能电池技术 3.1 背接触电池IBC/MWT/EWT (1)IBC电池(PCC电池) 背接触电池是由Sunpower公司开发的高效电池,其特点是正面无栅状电极,正负极交叉排列在背面,量产效率可达19%~20%。 这种把正面金属栅线去掉的电池结构有很多优点[2]:(1)减少正面遮光损失,相当于增加了有效半导体面积,有利于增加电池效率;(2)有可能大大降低组件装配成本,因为全部外部接触均在单一表面上;(3)从建造结构的观点看来提供了增值,因为汇流条和焊线串接存在引起的视觉不适被组件背面所替代。

晶体硅太阳能电池依然是主流

未来10年晶体硅太阳能电池所占份额尽管会因薄膜太阳能电池的发展等原因而下降,但其主导地位仍不会根本改变;而薄膜电池如果能够解决转换效率不高,制备薄膜电池所用设备价格昂贵等问题,会有巨大的发展空间。 目前太阳能电池主要包括晶体硅电池和薄膜电池两种,它们各自的特点决定了它们在不同应用中拥有不可替代的地位。但是,专家认为,未来10年晶体硅太阳能电池所占份额尽管会因薄膜太阳能电池的发展等原因而下降,但其主导地位仍不会根本改变;而薄膜电池如果能够解决转换效率不高、制备薄膜电池所用设备价格昂贵等问题,会有巨大的发展空间。晶体硅太阳能电池依然是主力 在太阳能光伏领域,晶体硅太阳能电池的转换效率较高,原材料来源简单,因此虽然薄膜太阳能电池迅速崛起,但晶体硅太阳能电池目前仍是太阳能电池行业的主力。在2007年全球前十大太阳能电池生产商中,有9家是以生产晶体硅太阳能电池为主的。 据应用材料公司提供的PV(光伏)产业预测,尽管多晶硅太阳能电池技术相对市场占有率有下降趋势(即2007年45%,2010年40%,2015年37%),但总体上多晶硅太阳能电池年增长率在以40%—50%的速度发展,未来市场相当可观。 硅是自然界存量最多的元素之一,硅材料来源广泛、价格低廉且容易获得,大生产制造技术成熟,电池制造成本持续下降,业内专家预计,未来10年晶体硅太阳能电池所占份额尽管会因薄膜电池的发展等原因而下降,但主导地位仍不会根本改变。而随着太阳能电池尺寸的加大,多晶硅太阳能电池制造技术的成熟,其转换效率和单晶硅电池的差距越来越小,制造成本优势逐渐显现,所占份额也会不断提高。以高纯多晶硅为原料而制备的晶硅电池占据现有太阳能电池80%以上的市场,由于其原料易于制备,电池制备工艺最为成熟,在硅系太阳能电池中转换效率最高,无论其原料还是产品都对人类无毒无害等优点而获得了广泛的开发和应用。预计在未来的20年~30年里还不可能有其他材料和技术能取代晶硅电池位居第一的地位。 多晶硅产能扩大成本降低 多晶硅太阳能电池之所以占据主流,除取决于此类电池的优异性能外,还在于其充足、廉价、无毒、无污染的硅原料来源,而近年来多晶硅成本的降低更将使多晶硅太阳能电池大行其道。 随着硅太阳能商业化电池效率不断提高、商业化电池硅片厚度持续降低和规模效应等影响,硅太阳能成本仍在降低,规模每扩大1倍,成本降低约20%。

19.2% efficient c-Si solar cells using ion implantation采用离子注入技术的晶硅太阳电池效率达到19.2%

19.2% efficient c-Si solar cells using ion implantation Jian Wu, Yumei Li, Xusheng Wang, Linjun Zhang Canadian Solar Inc., 199 Lushan Road, SND, Suzhou, Jiangsu, China ABSTRACT Ion-implantation offers numerous advantages for solar cell manufacturing. Canadian Solar Inc. (CSI) has developed an average efficiency 19.23%, champion efficiency 19.39% solar cell (156mm) process using a high throughput Varian (Applied Materials) Solion ion-implant tool based on a beam line design. The path to commercialization has included module process development, achieving 265W with 6×10 cells. With the installation of the high-throughput ion implanter for PV, optimized unit processes were transferred from the lab to the production floor at CSI. 1. INTRODUCTION Ion implantation has been reported as a breakthrough technology in PV industry to drive down $/W cost. Ion implantation is a process of precisely introducing a known amount of energetic particles into any substrate to alter its material properties. Emitters formed by ion implantation show improved cell efficiency due to the benefit in blue wavelength region. The quality of the emitters formed by ion implantation followed by activation has clear advantages over emitters made by conventional POCl3diffusion, in terms of lattice defect recovery as well as dopant activation (no dead layer), as depicted by TEM micrographs and SIMS profiles. By tailoring the activation temperature and ambient, a layer of oxide can be formed during activation [1]. J0e data show surface passivation is better with SiO2/SiN x stack than single SiN x layer. We prove ion implantation technology is mass production ready for PV cell manufacturing, and it is an essential enabler of lower $/W. 2. EXPERIMENTS Fig. 1Process simplification for fabrication of ion implantation emitter cells: (a) standard POCl3 process; (b) implanted process. Ion implanted process is described in Fig.1 (a). Fig.1 (b) presents traditional POCl3diffusion solar cell process as reference. Ion implantation is a single side process, so edge isolation is not necessary. SIMS and TEM are conducted on both POCl3diffused and ion implanted samples, to understand and characterize the emitter quality. Lower surface concentration from ion implantation is observed. The precise dose control of ion implanter provides excellent uniformity and repeatability within wafer and wafer-to-wafer on 156mm pseudo sq. wafers. Metallization was optimized to account for the modified doping profile and SiO2/SiN x stack passivation layer. The internal quantum efficiency (IQE) and dopant

相关主题
文本预览
相关文档 最新文档