当前位置:文档之家› 程佩青《数字信号处理教程》(第4版)(复习笔记 数字信号处理中的有限字长效)

程佩青《数字信号处理教程》(第4版)(复习笔记 数字信号处理中的有限字长效)

程佩青《数字信号处理教程》(第4版)(复习笔记 数字信号处理中的有限字长效)
程佩青《数字信号处理教程》(第4版)(复习笔记 数字信号处理中的有限字长效)

10.1 复习笔记

一、二进制数的表示及其对量化的影响

1.二进制的三种算术运算法

(1)定点二进制数

定点制二进制数是指在整个运算过程中,二进制小数点在整个数码中的位置是固定不变的,即c为常数的表数方法。一般定点制的小数点可固定在任意位上,为运算方便,通常把小数点固定在有效数位的最高位前,系统用纯小数进行运算,而且把符号位用一位整数表示。

(2)浮点二进制数

浮点制的阶码C及尾数M都用定点二进制数来表示,在整个运算过程中,阶码C需随时进行调整。其尾数的第一位就表示浮点数的符号,一般为了充分利用尾数的有效位数,总是使尾数字长的最高位(符号位除外)为1,称为规格化形式,这时尾数M是小数。

(3)分组浮点二进制数

兼有定点制与浮点制的某些优点,是将这两种表示法结合起来。

这种制式,一组数具有一个共同的阶码,这个阶码是这一组数中最大的那个数的阶码。这组中最大的数具有规格化的尾数,其他数则不可能刚好都是规格化的。节约存储器,简化系统。这种制式数值相近的情况特别适用。最适宜实现快速傅里叶变换算法,也可用来实现数字滤波器。

2.负数的表示法——原码、补码、反码

(1)原码

原码也称“符号-幅度码”,它的尾数部分代表数的绝对值(即幅度大小),符号位代表

数的正负号

时代表正数;时代表负数。可定义为:原码的优点是乘除运算方便,以两数符号位的逻辑加就可简单决定结果的正负号,而数值则是两数数值部分的乘除结果。

原码的加减运算则不方便,因为两数相加,先要判断两数符号是否相同,相同则做加法,不同则做减法,做减法时还要判断两数绝对值大小,以便用大者作为被减数,这样增加了运算时间。

(2)补码

①补码又称“2的补码

”。补码中正数与原码正数表示一样。补码中负数是采用2的补数来表示的,即把负数先加上2,以便将正数与负数的相加转化为正数与正数相加,从而克服原码表示法做加减法的困难。

因此,补码定义如下:

②由于负数的补码是2-|x|,故求负数的补码时,实际上要做一次减法,这是不希望的。可以发现,只要将原码正数的每位取反码(1→0,0→1),再在所得数的末位加1,则正好得到负数的补码,这简称为对尾数的“取反加1”。

③补码表示法可把减法与加法统一起来,都采用补码加法。

④任何二进制数与其补码之和等于零(将两数之和的符号位的进位位忽略不计)。

(3)反码

①反码又称“1的补码”。和补码一样,反码的正数与原码的正数表示相同。反码的负数则是将该数的正数表示形式中的所有0改为1,所有1改为0,即“求反”。因而可给反

码定义为

②“零”在反码中有两种表示,0.000与1.111,因而(b+1)位字长可表示

(2b+1-1)个不同的数,即表示从-(1-2-b)到(1-2-b)之间的数。

③反码的减法运算也可转换成加法运算,反码在做加法运算时,如果符号位相加后出现进位,则要把它送回到最低位进行相加,即做循环移位与最低位相加。

二、模拟数字(A/D)变换的量化效应

1.A/D变换的非线性模型

A/D(模数)变换是将输入模拟信号x a(t)转换为b位二进制数字信号。b的数值可以是8,12或高至20。

一个A/D变换从功能上讲可以分为两部分:抽样与量化。抽样产生序列

具有无限精度,量化是对每个抽样序列x(n)进行截尾

或舍入的量化处理,从而给出

图10-1 A/D变换的非线性模型

2.A/D变换对输入抽样信号幅度的要求

设量化输出抽样值表示成(b+1)位的补码定点小数,二进制小数点后为b位。输入的精确抽样值x(n)要舍入到最靠近的量化层标准值,以得到量化抽样值,对补码定点制输入信号z(行)的动态范围为

221()122????--<<- ? ?????x n 3.A/D 变换量化误差的统计分析

(1)A/D 变换作统计分析的条件

在统计分析中,对误差的统计特性做了如下的一些假定:

①e(n )是平稳随机序列;

②e(n )与抽样信号x (n )是不相关的;

③e(n )序列本身的任意两个值之间是不相关的,即e (n )是白噪声序列;

④e(n )在其误差范围内为均匀等概分布的。

量化误差e (n )就是一个与信号序列完全不相关的白色噪色序列,也称为量化噪声。它与信号的关系是相加性的。实际的A/D 变换的非线性模型就变成等效线性过程的统计模型,如图10-2所示,即在理想抽样器的输出端加入了一个量化白噪声序列e (n )。

图10-2 A/D 变换的统计模型

(2)量化后的信噪声比及其与字长b 的关系对于舍入处理,设信号x (n )的功率为,则信号功率与噪声功率之比为

2e σ

表示成分贝数,则为

由此式看出,信号功率越大,信噪比当然越高;另一方面,随着字长b 的增加,信噪比也增大。且有,A/D 变换的字长b 每增加一位,信噪比增加约6dB 。

三、数字滤波器的系数量化效应

1.系数量化对二阶子系统极点位置的影响

设二阶IIR 系统的差分方程为

y (n )=x (n )-a 1y (n -1

)-a 2y (n -2)

其系统函数为

若系数量化,也就是将a 1/2,a 2量化,由于a 2=r 2决定了极点的半径,而a 1=2r 则决定了极点在实轴上的坐标。三位字长的系数所能表达的极点位置就是在同心圆cos θ(对应于a 2=r 2的量化)及垂直线(对应于a

1/2=-r 的量化)的网格交点上,如cos θ图10-3所示。

图10-3 三位字长(b =3)系数所能表达的共轭极点位置

如果所需要的理想极点不在这些网格节点上时,就只能以最靠近的一个节点来代替这一极点位置,这样就会引入极点位置误差。

因而对于无限精度的系数,图10-6与图10-12两网络结构的系统函数的极点是相同的。但是图10-4中,当系数数量化时,是对r 及r 进行量化,因而所得到的网cos θsin θ格点子在

z 平面是均匀分布的,如图10-5所示,这和图

10-4是不同的。因而这里系统量化后对z 平面的所有区域,所产生的误差是相同的。

图10-4 实现复共轭极点的对偶式结构

图10-5 当系数r 和r 量化成三位码时,网络极点可能位置的网格点

cos θsin θ四、数字滤波器运算中的有限字长效应

1.IIR 滤波器运算中的有限字长效应的统计分析

1)直接I 型IIR 滤波器结构的运算中的有限字长效应的统计分析。

设N 阶差分方程为

(完整版)数字信号处理教程程佩青课后题答案

第一章 离散时间信号与系统 2.任意序列x(n)与δ(n)线性卷积都等于序列本身x(n),与δ(n-n 0)卷积x(n- n 0),所以(1)结果为h(n) (3)结果h(n-2) (2 (4) 3 .已知 10,)1()(<<--=-a n u a n h n ,通过直接计算卷积和的办法,试确定 单位抽样响应为 )(n h 的线性移不变系统的阶跃响应。 4. 判断下列每个序列是否是周期性的,若是周期性的,试确定其周期: ) 6 ()( )( )n 313 si n()( )()8 73cos( )( )(πππ π-==-=n j e n x c A n x b n A n x a 分析: 序列为)cos()(0ψω+=n A n x 或)sin()(0ψω+=n A n x 时,不一定是周期序列, n m m m n n y n - - -∞ = - ? = = ≥ ∑ 2 3 1 2 5 . 0 ) ( 0 1 当 3 4 n m n m m n n y n 2 2 5 . 0 ) ( 1 ? = = - ≤ ∑ -∞ = - 当 a a a n y n a a a n y n n h n x n y a n u a n h n u n x m m n n m m n -= = ->-= = -≤=<<--==∑∑--∞ =---∞=--1)(11)(1) (*)()(1 0,)1()()()(:1 时当时当解

①当=0/2ωπ整数,则周期为0/2ωπ; ②; 为为互素的整数)则周期、(有理数当 , 2 0Q Q P Q P =ωπ ③当=0/2ωπ无理数 ,则)(n x 不是周期序列。 解:(1)014 2/3 πω=,周期为14 (2)06 2/13 πω= ,周期为6 (2)02/12πωπ=,不是周期的 7.(1) [][]12121212()()() ()()()[()()]()()()()[()][()] T x n g n x n T ax n bx n g n ax n bx n g n ax n g n bx n aT x n bT x n =+=+=?+?=+ 所以是线性的 T[x(n-m)]=g(n)x(n-m) y(n-m)=g(n-m)x(n-m) 两者不相等,所以是移变的 y(n)=g(n)x(n) y 和x 括号内相等,所以是因果的。(x 括号内表达式满足小于等于y 括号内表达式,系统是因果的) │y(n)│=│g(n)x(n)│<=│g(n)││x(n)│x(n)有界,只有在g(n)有界时,y(n)有界,系统才稳定,否则系统不稳定 (3)T[x(n)]=x(n-n0) 线性,移不变,n-n0<=n 即n0>=0时系统是因果的,稳定 (5)线性,移变,因果,非稳定 (7)线性,移不变,非因果,稳定 (8)线性,移变,非因果,稳定 8.

数字信号处理知识点总结

《数字信号处理》辅导 一、离散时间信号和系统的时域分析 (一) 离散时间信号 (1)基本概念 信号:信号传递信息的函数也是独立变量的函数,这个变量可以是时间、空间位置等。 连续信号:在某个时间区间,除有限间断点外所有瞬时均有确定值。 模拟信号:是连续信号的特例。时间和幅度均连续。 离散信号:时间上不连续,幅度连续。常见离散信号——序列。 数字信号:幅度量化,时间和幅度均不连续。 (2)基本序列(课本第7——10页) 1)单位脉冲序列 1,0()0,0n n n δ=?=?≠? 2)单位阶跃序列 1,0 ()0,0n u n n ≥?=?≤? 3)矩形序列 1,01 ()0,0,N n N R n n n N ≤≤-?=?<≥? 4)实指数序列 ()n a u n 5)正弦序列 0()sin()x n A n ωθ=+ 6)复指数序列 ()j n n x n e e ωσ= (3)周期序列 1)定义:对于序列()x n ,若存在正整数N 使()(),x n x n N n =+-∞<<∞ 则称()x n 为周期序列,记为()x n ,N 为其周期。 注意正弦周期序列周期性的判定(课本第10页) 2)周期序列的表示方法: a.主值区间表示法 b.模N 表示法 3)周期延拓 设()x n 为N 点非周期序列,以周期序列L 对作()x n 无限次移位相加,即可得到周期序列()x n ,即 ()()i x n x n iL ∞ =-∞ = -∑ 当L N ≥时,()()()N x n x n R n = 当L N <时,()()()N x n x n R n ≠ (4)序列的分解 序列共轭对称分解定理:对于任意给定的整数M ,任何序列()x n 都可以分解成关于/2c M =共轭对称的序列()e x n 和共轭反对称的序列()o x n 之和,即

数字信号处理总结与-习题(答案

对模拟信号(一维信号,是时间的函数)进行采样后,就是 离散 信号,再进行幅度量化后就是 数字信号。2、若线性时不变系统是有因果性,则该系统的单位取样响应序列h(n)应满足的充分必要条件是 当n<0时,h(n)=0 。3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 单位圆 的N 点等间隔采样。4、)()(5241 n R x n R x ==,只有 当循环卷积长度L ≥8 时,二者的循环卷积等于线性卷积。5、已知系统的单位抽样响应为h(n),则系统稳定的充要条件是 ()n h n ∞ =-∞ <∞ ∑ 6、用来计算N =16点DFT ,直接计算需要(N 2 )16*16=256_次复乘法,采用基2FFT 算法, 需要__(N/2 )×log 2N =8×4=32 次复乘法。7、无限长单位冲激响应(IIR )滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,_级联型_和 并联型_四种。8、IIR 系统的系统函数为)(z H ,分别用直接型,级联型,并联型结构实现,其中 并 联型的运算速度最高。9、数字信号处理的三种基本运算是:延时、乘法、加法 10、两个有限长序列 和 长度分别是 和 ,在做线性卷积后结果长度是__N 1+N 2-1_。11、N=2M 点基2FFT ,共有 M 列蝶形, 每列有N/2 个蝶形。12、线性相位FIR 滤波器的零点分布特点是 互为倒数的共轭对 13、数字信号处理的三种基本运算是: 延时、乘法、加法 14、在利用窗函数法设计FIR 滤波器时,窗函数的窗谱性能指标中最重要的是___过渡带宽___与__阻带最小衰减__。16、_脉冲响应不变法_设计IIR 滤波器不会产生畸变。17、用窗口法设计FIR 滤波器时影响滤波器幅频特性质量的主要原因是主瓣使数字滤波器存在过渡带,旁瓣使数字滤波器存在波动,减少阻带衰减。18、单位脉冲响应分别为 和 的两线性系统相串联,其等效系统函数时域及频域表达式分别是h(n)=h 1(n)*h 2(n), =H 1(e j ω )× H 2(e j ω )。19、稳定系统的系统函数H(z)的收敛域包括 单位圆 。20、对于M 点的有限长序列x(n),频域采样不失真的条件是 频域采样点数N 要大于时域采样点数M 。 1、下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( y(n)=x(n 2 ) ) A.窗函数的截取长度增加,则主瓣宽度减小,旁瓣宽度减小 B.窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关 C.为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加 D.窗函数法能用于设计FIR 高通滤波4、因果FIR 滤波器的系统函数H(z)的全部极点都在(z = 0 )处。6、已知某序列z 变换的收敛域为|z|<1,则该序列为(左边序列)。7、序列)1() (---=n u a n x n ,则)(Z X 的收敛域为(a Z <。8、在对连续信号均匀 采样时,要从离散采样值不失真恢复原信号,则采样周期T s 与信号最高截止频率f h 应满足关系(T s <1/(2f h ) ) 9、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N 满足 (16=N )。10、线性相位FIR 滤波器有几种类型( 4) 。11、在IIR 数字滤波器的设计中,用哪种方法只适 合于片断常数特性滤波器的设计。(双线性变换法)12、下列对IIR 滤波器特点的论述中错误的是( C )。 A .系统的单位冲激响应h(n)是无限长的B.结构必是递归型的C.肯定是稳定的D.系统函数H(z)在有限z 平面(0<|z|<∞)上有极点 13、有限长序列h(n)(0≤n ≤N-1)关于τ= 2 1 -N 偶对称的条件是(h(n)=h(N-n-1))。14、下列关于窗函数设计法的说法中错误的是( D )。A.窗函数的截取长度增加,则主瓣宽度减小,旁瓣宽度减小 B.窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关 C.为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加 D.窗函数法不能用于设计FIR 高通滤波器 15、对于傅立叶级数而言,其信号的特点是(时域连续非周期,频域连续非周期)。

DSP汇编指令学习笔记

Knowledge 问题 谁在DSP的汇编语言中加入了NOP指令? NOP指令加入的条件是什么? About DSP 1.DSP是实时数字信号处理的核心和标志。 2.DSP分为专用和通用两种类型。专用DSP一般采用定点数据结构(一般不支持小数), 数据结构简单,处理速度快;通用DSP灵活性好,但是处理速度有所降低。 3.DSP采用取指、译码、执行三个阶段的流水线(Pipeline)技术,缩短了执行时间,提高了 运行速率。DSP具有8个Functional unit,如果并行处理的话,以600MHz的时钟计算,如果执行的指令是single cycle指令,则可以4800MIPS(指令每秒)。 4.DSP的8个functional Unit,具有独特的功能,对滤波、矩阵运算、FFT(傅里叶变换) 具有 哈弗结构 把指令空间与数据空间隔离的存储方式。 这样实现是为了实现指令的连续读取,而实现pipeline流水线结构。 传统哈弗结构:两个独立的存储空间,还使用独立总线。让取指与执行存储独立,加快执行速度。 改进型哈弗结构:指令与数据的存储空间还是独立的。但是使用公共的总线(地址总线与数据总线)。这样实现的原因是因为出现了CACHE,数据的存储动作大部分被内部的CACHE 总线承接了,所以总线冲突的情况会大大减少。同时让总线的结构与控制变得简单,CACHE 存储的速度也明显快于外设存储器。 冯诺依曼结构:是指令空间与数据空间共享的存放方式。它不能实现pipeline的执行过程。 Pipeline(流水线)技术 是把指令的取指-译码和指令的执行独立开来的技术。虽然每条指令的过程还是要经过取指-译码-执行三个阶段最少3个CPU Cycle。但是多个指令同时并行先后进行,保证总体的指

数字信号处理复习总结-最终版

绪论:本章介绍数字信号处理课程的基本概念 0.1信号、系统与信号处理 1?信号及其分类 信号是信息的载体,以某种函数的形式传递信息。这个函数可以是时间域、频率域或其它域,但最基础的域是时域。 分类: 周期信号/非周期信号 确定信号/随机信号能量信号/功率信号 连续时间信号/离散时间信号/数字信号按自变量与函数值的取值形式不同分类: 2?系统 系统定义为处理(或变换)信号的物理设备,或者说,凡是能将信号加以变换以达到人们要求的各种设备都称为系统。 3. 信号处理 信号处理即是用系统对信号进行某种加工。包括:滤波、分析、变换、综合、压缩、估计、识别等等。所谓“数字信号处理”,就是用数值计算的方法,完成对信号的处理。 0.2数字信号处理系统的基本组成 数字信号处理就是用数值计算的方法对信号进行变换和处理。不仅应用于数字化信号的处理, 而且也可应用于模拟信号的处理。以下讨论模拟信号数字化处理系统框图。 精选

PrF ADC DSP DAC PoF (1)前置滤波器 将输入信号X a(t )中高于某一频率(称折叠频率,等于抽样频率的一半)的分量加以滤除。 (2)A/D变换器 在A/D变换器中每隔T秒(抽样周期)取出一次X a(t)的幅度,抽样后的信号称为离散信号。在A/D 变换器中的保持电路中进一步变换为若干位码。 (3)数字信号处理器(DSP) (4)D/A变换器 按照预定要求,在处理器中将信号序列x(n)进行加工处理得到输出信号y(n)。由一个二进制码流产生一个阶梯波形,是形成模拟信号的第一步。 (5)模拟滤波器 把阶梯波形平滑成预期的模拟信号;以滤除掉不需要的高频分量,生成所需的模拟信号y a(t)。 0.3数字信号处理的特点 (1)灵活性。(2)高精度和高稳定性。(3)便于大规模集成。(4)对数字信号可以存储、运算、系统可以获得高性能指标。 0.4数字信号处理基本学科分支 数字信号处理(DSP)一般有两层含义,一层是广义的理解,为数字信号处理技术 ----- D igitalSignalProcessing 另一层是狭义的理解,为数字信号处理器----- DigitalSignalProcesso。 0.5课程内容 该课程在本科阶段主要介绍以傅里叶变换为基础的“经典”处理方法,包括:(1)离散傅里叶变换及其快速算法。(2)滤波理论(线性时不变离散时间系统,用于分离相加性组合的信号,要求信号 频谱占据不同的频段)。 在研究生阶段相应课程为“现代信号处理”(AdvancedSignalProcessin)信号对象主要是随机信 号,主要内容是自适应滤波(用于分离相加性组合的信号,但频谱占据同一频段)和现代谱估计。 简答题: 1 ?按自变量与函数值的取值形式是否连续信号可以分成哪四种类型?

数字信号处理学习心得

数字信号处理报告 数学与信息科学学院 信息与计算科学 学号:41312261 姓名:高萌瑶

数字信号处理 信号处理的问题在各个领域都非常普遍,信号的表现形式也多种多样。若将信号看作自变量时间影响的因变量,则也可细分为如下几种:信号的自变量和函数值均取连续值,称之为模拟信号或时域离散信号;若自变量取离散值,而函数值取连续值,则称此信号为时域离散信号;若自变量和函数值均取离散值,则称为数字信号。 1.模拟信号数字处理方法 在现实生活中及工程技术领域中涉及的信号一般都是模拟信号,即在时域与频域均连续的信号。对模拟信号的处理是通过一些模拟器件,如:晶体管、电阻、电容等,完成对信号的处理。模拟信号处理时改变参数时不具备一些灵活性,而且在计算精度方面也不能得到较高的精度,故处理模拟信号时我们更倾向于将其经过采样和量化编码形成数字信号,再采用数字信号处理技术进行处理。最后,如果需要,则可以将数字信号再转换为模拟信号,进行恢复。 图1 模拟信号数字处理框图 1.1采样间隔与采样信号表示 对模拟信号进行采样可以看作一个模拟信号通过一个电子开关S 。假设电子开关每隔周期T 合上一次,每次合上的时间为T τ<<,在电子开关输出端得到其 采样信号^()a x t 。该电子开关的作用等效成一宽度为τ,周期为T 的矩形脉冲串()P t τ相乘的结果。 如果电子开关合上的时间0τ→,则形成理想采样,此时上面的脉冲串变成单位冲激串,用()P t δ表示。()P t δ中每个单位冲激处在采样点上,强度为1。理想采样则是()a x t 与()P t δ相乘的结果。 用公式表示为: ^()() ()()()()()n a a a n P t t nT x t x t P t x t t nT δδδδ∞=-∞∞ =-∞= -=?=-∑∑ 其中上式中()t δ是单位冲激信号,在上式中只有当t nT =时,才可能有非零值,因此将采样信号表示为下式: ^ ()()()a a n x t x nT t nT δ∞ =-∞=-∑ 1.2采样速率与模拟信号最高频率的关系 为了使采样信号不失真的恢复原模拟信号,需寻找速率s f 与模拟信号最高频率c f 之间的关系。在傅里叶变换中,两个信号在时域相乘的傅里叶变换等于两个信号分别的傅里叶变换的卷积,因此: ()FT[(t)] ()FT[(t)]()FT[P (t)]a a a a X j x X j x P j δδ∧∧ Ω=Ω=Ω=

数字信号处理学习心得体会

数字信号处理学习心得 体会

数字信号处理学习心得 一、课程认识和内容理解 《数字信号处理》是我们通信工程和电子类专业的一门重要的专业基础课程,主要任务是研究数字信号处理理论的基本概念和基本分析方法,通过建立数学模型和适当的数学分析处理,来展示这些理论和方法的实际应用。 数字信号处理技术正飞速发展,它不但自成一门学科,更是以不同形式影响和渗透到其他学科:它与国民经济息息相关,与国防建设紧密相连;它影响或改变着我们的生产、生活方式,因此受到人们普遍的关注。信息科学是研究信息的获取、传输、处理和利用的一门科学,信息要用一定形式的信号来表示,才能被传输、处理、存储、显示和利用,可以说,信号是信息的表现形式。这学期数字信号处理所含有的具体内容如下: 第一单元的课程我们深刻理解到时域离散信号和时域离散系统性质和特点;时域离散信号和时域离散系统时域分析方法;模拟信号的数字处理方法。 第二单元的课程我们理解了时域离散信号(序列)的傅立叶变换,时域离散信号Z变换,时域离散系统的频域分析。 第三单元的课程我们学习了离散傅立叶变换定义和性质,离散傅立叶变换应用——快速卷积,频谱分析。 第四单元的课程我们重点理解基 2 FFT算法——时域抽取法﹑频域抽取法,FFT的编程方法,分裂基FFT算法。 第五单元的课程我们学了网络结构的表示方法——信号流图,无限脉冲响

应基本网络结构,有限脉冲响应基本网络结构,时域离散系统状态变量分析法。 第六单元的课程我们理解数字滤波器的基本概念,模拟滤波器的设计,巴特沃斯滤波器的设计,切比雪夫滤波器的设计,脉冲响应不变法设计无限脉冲响应字数字滤波器,双线性变换法设计无限脉冲响应字数字滤波器,数字高通﹑带通﹑带阻滤波器的设计。 第七单元的课程我们学习了线性相位有限脉冲响应(FIR)数字滤波器,窗函数法设计有限脉冲响应(FIR)数字滤波器,频率采样法设计有限脉冲响应(FIR)数字滤波器 二、专业认识和未来规划 通信工程是一门工程学科,主要是在掌握通信基本理论的基础上,运用各种工程方法对通信中的一些实际问题进行处理。通过该专业的学习,可以掌握电话网、广播电视网、互联网等各种通信系统的原理,研究提高信息传送速度的技术,根据实际需要设计新的通信系统,开发可迅速准确地传送各种信息的通信工具等。 对于我们通信专业,我觉得是个很好的专业,现在这个专业很热门,这个专业以后就业的方向也很多,就业面很广。我们毕业以后工作,可以进入设备制造商、运营商、专有服务提供商以及银行等领域工作。当然,就业形势每年都会变化,所以关键还是要看自己。可以从事硬件方面,比如说PCB,别小看这门技术,平时我们在试验时制作的简单,这一技术难点就在于板的层数越多,要做的越稳定就越难,这可是非常有难度的,如果学好了学精了,也是非常好找工作的。也可以从事软件方面,这实际上要我们具备比较好的模电和数电的

数字信号处理教案

数字信号处理教案 余月华

课程特点: 本课程是为电子、通信专业三年级学生开设的一门课程,它是在学生学完了信号与系统的课程后,进一步为学习专业知识打基础的课程。本课程将通过讲课、练习使学生掌握数字信号处理的基本理论和方法。课程内容包括:离散时间信号与系统;离散变换及其快速算法;数字滤波器结构;数字滤波器设计;数字信号处理系统的实现等。 本课程逻辑性很强, 很细致, 很深刻;先难后易, 前三章有一定的难度, 倘能努力学懂前三章(或前三章的0080), 后面的学习就会容易一些;只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成。这是因为数字信号分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的。论证训练是信号分析课基本的,也是重要的内容之一, 也是最难的内容之一。 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是信号分析教学贯穿始终的一项任务。 鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听为主, 力争在课堂上能听懂七、八成。 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写。基本掌握了课堂教学内容后, 再去做作业。在学习中, 要养成多想问题的习惯。 课堂讲授方法: 1. 关于教材: 《数字信号处理》 作者 丁玉美 高西全 西安电子科技大学出版社 2. 内容多, 课时紧: 大学课堂教学与中学不同的是每次课介绍的内容很多, 因此, 内容重复的次数少, 讲课只注重思想性与基本思路, 具体内容或推导特别是同类型或较简的推理论证及推导计算, 可能讲得很简, 留给课后的学习任务一般很重。. 3. 讲解的重点: 概念的意义与理解, 理论的体系, 定理的意义、条件、结论、定理证明的分析与思路, 具有代表性的证明方法, 解题的方法与技巧,某些精细概念之间的本质差别. 在教学中, 可能会写出某些定理证明, 以后一般不会做特别具体的证明叙述. 4. 要求、辅导及考试: a. 学习方法: 适应大学的学习方法, 尽快进入角色。 课堂上以听为主, 但要做课堂笔记,课后一定要认真复习消化, 补充笔记,一般课堂教学与课外复习的时间比例应为1 : 3 。 b. 作业: 大体上每两周收一次作业, 一次收清。每次重点检查作业总数的三分之一。 作业的收交和完成情况有一个较详细的登记, 缺交作业将直接影响学期总评成绩。 c. 辅导: 大体两周一次。 d. 考试: 只以最基本的内容进行考试, 大体上考课堂教学和所布置作业的内容。 课程的基本内容与要求 第一章. 时域离散信号与时域离散系统 1. 熟悉6种常用序列及序列运算规则; 2. 掌握序列周期性的定义及判断序列周期性的方法; 3. 掌握离散系统的定义及描述方法(时域描述和频域描述); 4. 掌握LSI 系统的线性移不变和时域因果稳定性的判定; 第二章 时域离散信号与系统的傅立叶变换分析方法

数字信号处理复习总结-最终版

绪论:本章介绍数字信号处理课程的基本概念。 0.1信号、系统与信号处理 1.信号及其分类 信号是信息的载体,以某种函数的形式传递信息。这个函数可以是时间域、频率域或其它域,但最基础的域是时域。 分类: 周期信号/非周期信号 确定信号/随机信号 能量信号/功率信号 连续时间信号/离散时间信号/数字信号 按自变量与函数值的取值形式不同分类: 2.系统 系统定义为处理(或变换)信号的物理设备,或者说,凡是能将信号加以变换以达到人们要求的各种设备都称为系统。 3.信号处理 信号处理即是用系统对信号进行某种加工。包括:滤波、分析、变换、综合、压缩、估计、识别等等。所谓“数字信号处理”,就是用数值计算的方法,完成对信号的处理。 0.2 数字信号处理系统的基本组成 数字信号处理就是用数值计算的方法对信号进行变换和处理。不仅应用于数字化信号的处理,而且

也可应用于模拟信号的处理。以下讨论模拟信号数字化处理系统框图。 (1)前置滤波器 将输入信号x a(t)中高于某一频率(称折叠频率,等于抽样频率的一半)的分量加以滤除。 (2)A/D变换器 在A/D变换器中每隔T秒(抽样周期)取出一次x a(t)的幅度,抽样后的信号称为离散信号。在A/D 变换器中的保持电路中进一步变换为若干位码。 (3)数字信号处理器(DSP) (4)D/A变换器 按照预定要求,在处理器中将信号序列x(n)进行加工处理得到输出信号y(n)。由一个二进制码流产生一个阶梯波形,是形成模拟信号的第一步。 (5)模拟滤波器 把阶梯波形平滑成预期的模拟信号;以滤除掉不需要的高频分量,生成所需的模拟信号y a(t)。 0.3 数字信号处理的特点 (1)灵活性。(2)高精度和高稳定性。(3)便于大规模集成。(4)对数字信号可以存储、运算、系统可以获得高性能指标。 0.4 数字信号处理基本学科分支 数字信号处理(DSP)一般有两层含义,一层是广义的理解,为数字信号处理技术——DigitalSignalProcessing,另一层是狭义的理解,为数字信号处理器——DigitalSignalProcessor。 0.5 课程内容 该课程在本科阶段主要介绍以傅里叶变换为基础的“经典”处理方法,包括:(1)离散傅里叶变换及其快速算法。(2)滤波理论(线性时不变离散时间系统,用于分离相加性组合的信号,要求信号频谱占据不同的频段)。 在研究生阶段相应课程为“现代信号处理”(AdvancedSignalProcessing)。信号对象主要是随机信号,主要内容是自适应滤波(用于分离相加性组合的信号,但频谱占据同一频段)和现代谱估计。 简答题: 1.按自变量与函数值的取值形式是否连续信号可以分成哪四种类型? 2.相对模拟信号处理,数字信号处理主要有哪些优点? 3.数字信号处理系统的基本组成有哪些?

DSP设计笔记

DSP设计笔记 CPLD可以控制不同的复位信号。CPLD的寄存器映射到EMIF的CE1数据空间,它的地址是0x90080000。U12是CPLD。 SN74LVTH16245A是三态总线收发器。- OE 输出使能,DIR是直接控制输入端。DIC与- OE 的 状态决定着A、B两总线的传输方向。当他们同为低电位时,数据由B总线传输到A总线; 当- OE 为低DIR为高时,数据由A总线传输到B总线;当- OE 为高时,收发器处于不工作状态。 DSP与PC机的PCI总线高速数据传输 [日期: 2004-12-6] 来源:国外电子元器件作者:肖逾男宋元 胜 [字体:大中 小] 摘要:介绍了TI公司的高性能浮点式数字信号处理芯片TMS320C6713的接口信号及控制寄存器,并在此基础上,指出了该DSP通过PCI总线与PC机进行高速数据传输的实现方法,同时给出了TMS320C6713和PC机通过PCI9052总线接口芯片实现接口的硬件原理图。 关键词:DSP;数据传输;TMS320C6713 PCI9052 TMS320C6713是TI公司在TMS320C6711的基础上推出的C6000系列新一代浮点DSP芯片,它是目前为止C6000系列DSP芯片中性能最高的一种。TMS320C6713可在255MHz的时钟频率下实现1800MIPS/1350MFLOPS的定点和浮点运算,因而可极大地满足通信、雷达、数字电视等高科技领域对信号处理实时性的要求。同时其主机口(HPI)可灵活地和PCI总线控制器相连接。而PC机则可通过PCI总线控制器直接访问TMS320C6713的存储空间和外围设备,从而实现PC机与TMS320C6713之间的高速数据传输。

数字信号处理--程佩青-课后习题答案-第六章习题与答案

1.用冲激响应不变法将以下 )(s H a 变换为 )(z H ,抽样周期为T 。 为任意正整数 ,)()( )2()()( )1(02 2n s s A s H b a s a s s H n a a -=+++= 分析: ①冲激响应不变法满足 ) ()()(nT h t h n h a nT t a ===,T 为抽样间隔。这种变 换法必须)(s H a 先用部分分式展开。 ②第(2)小题要复习拉普拉斯变换公式 1!][+= n n S n t L , n a n t s a S S A s H t u n t Ae t h )()()()!1()(010-= ?-=-, 可求出 ) ()()(kT Th t Th k h a kT t a ===, 又 dz z dX z k kx ) ()(-?,则可递推求解。 解: (1) 22111()()2a s a H s s a b s a jb s a jb ?? += =+??+++++-?? [] )( 2 1)()()(t u e e t h t jb a t jb a a --+-+= 由冲激响应不变法可得: []()()()() ()2 a j b nT a j b nT a T h n Th nT e e u n -+--== + 110 11() () 211n aT jbT aT jbT n T H z h n z e e z e e z ∞ ------=?? ==+??--??∑

2211cos 21cos 1 ------+--?=z e bT z e bT z e T aT aT aT (2) 先引用拉氏变换的结论[] 1!+=n n s n t L 可得: n a s s A s H ) ()(0-= )()! 1()(1 0t u n t Ae t h n t s a -=-则 )()! 1()()()(1 0k u n kT Ae T Tk Th k h n kT s a -?==- dz z dX z k kx az k u a Z Z k )()( , 11 )( 1 -?→←-?→ ←-且按 )11 ()()!1( )()!1( )()(111 1110 00--∞=---∞ =----=-== ∑∑z e dz d z n AT e z k n T TA z k h z H T s n n k k T s n n k k 可得 ???? ??? =-=-=? ??---,3,2) 1(1,1)(11 1 000n z e z e AT n z e AT z H n T s T S n T s ,可以递推求得: 2. 已知模拟二阶巴特沃思低通滤波器的归一化系统函数为: 2 ' 4142136.111 )(s s s H a ++= 而3dB 截止频率为50Hz 的模拟滤波器,需将归一化的)('s H a 中的s 变量用 50 2?πs 来代替

数字信号处理学习心得

数字信号处理学习心得 XXX ( XXX学院XXX班) 一、课程认识和内容理解 《数字信号处理》是我们通信工程和电子类专业的一门重要的专业基础课程,主要任务是研究数字信号处理理论的基本概念和基本分析方法,通过建立数学模型和适当的数学分析处理,来展示这些理论和方法的实际应用。 数字信号处理技术正飞速发展,它不但自成一门学科,更是以不同形式影响和渗透到其他学科:它与国民经济息息相关,与国防建设紧密相连;它影响或改变着我们的生产、生活方式,因此受到人们普遍的关注。信息科学是研究信息的获取、传输、处理和利用的一门科学,信息要用一定形式的信号来表示,才能被传输、处理、存储、显示和利用,可以说,信号是信息的表现形式。这学期数字信号处理所含有的具体内容如下: 第一单元的课程我们深刻理解到时域离散信号和时域离散系统性质和特点;时域离散信号和时域离散系统时域分析方法;模拟信号的数字处理方法。 第二单元的课程我们理解了时域离散信号(序列)的傅立叶变换,时域离散信号Z变换,时域离散系统的频域分析。 第三单元的课程我们学习了离散傅立叶变换定义和性质,离散傅立叶变换应用——快速卷积,频谱分析。 第四单元的课程我们重点理解基2 FFT算法——时域抽取法﹑频域抽取法,FFT的编程方法,分裂

基FFT算法。 第五单元的课程我们学了网络结构的表示方法——信号流图,无限脉冲响应基本网络结构,有限脉冲响应基本网络结构,时域离散系统状态变量分析法。 第六单元的课程我们理解数字滤波器的基本概念,模拟滤波器的设计,巴特沃斯滤波器的设计,切比雪夫滤波器的设计,脉冲响应不变法设计无限脉冲响应字数字滤波器,双线性变换法设计无限脉冲响应字数字滤波器,数字高通﹑带通﹑带阻滤波器的设计。 第七单元的课程我们学习了线性相位有限脉冲响应(FIR)数字滤波器,窗函数法设计有限脉冲响应(FIR)数字滤波器,频率采样法设计有限脉冲响应(FIR)数字滤波器 二、专业认识和未来规划 通信工程是一门工程学科,主要是在掌握通信基本理论的基础上,运用各种工程方法对通信中的一些实际问题进行处理。通过该专业的学习,可以掌握电话网、广播电视网、互联网等各种通信系统的原理,研究提高信息传送速度的技术,根据实际需要设计新的通信系统,开发可迅速准确地传送各种信息的通信工具等。 对于我们通信专业,我觉得是个很好的专业,现在这个专业很热门,这个专业以后就业的方向也很多,就业面很广。我们毕业以后工作,可以进入设备制造商、运营商、专有服务提供商以及银行等领域工作。当然,就业形势每年都会变化,所以关键还是要看自己。可以从事硬件方面,比如说PCB,别小看这门技术,平时我们在试验时制作的简单,这一技术难点就在于板的层

《数字信号处理的FPGA实现》读书笔记

<数字信号处理的FPGA实现> Verilog写状态机大概有这样几点要求: 1、组合逻辑完成状态转移的条件判断,时序逻辑完成状态机的状态转移。 2、组合逻辑和时序逻辑分别在两个不同的always块中完成,根据状态机状态通过译码逻辑产生的与状态机无关的逻辑部分不要放在专用的状态机always块中。 3、状态编码预先定义为parameter,状态较少的状态机推荐使用one-hot方式编码,以减小译码逻辑的复杂度,提高性能。 4、建议单独使用一个模块来描述状态机。 5、状态机应有一个default状态,在上电复位的时候作为初始状态。 6、注意状态机组合逻辑中的if...else语句,不要出现latch。 7、对于复杂状态机,最好采用状态机嵌套方式完成。 其实上面很多都是按照Synopsys LEDA的coding style的要求的,状态机的写法相对固定,因此很多Design entry的工具可以自动生成状态机代码,Xilinx也有工具支持直接由状态转移图输入完成状态机的编码。所以关键还是画好状态转移图,其他就相对简单了。 visual hdl+ISE+synplify Pro+modelsim! 1.设计输入 1)设计的行为或结构描述。 2)典型文本输入工具有UltraEdit-32和Editplus.exe.。 3)典型图形化输入工具-Mentor的Renoir。 4)我认为UltraEdit-32最佳。 2.代码调试 1)对设计输入的文件做代码调试,语法检查。 2)典型工具为Debussy。 3.前仿真 1)功能仿真 2)验证逻辑模型(没有使用时间延迟)。 3)典型工具有Mentor公司的ModelSim、Synopsys公司的VCS和VSS、Aldec公司的Active、Cadense公司的NC。 4)我认为做功能仿真Synopsys公司的VCS和VSS速度最快,并且调试器最好用,Mentor 公司的ModelSim对于读写文件速度最快,波形窗口比较好用。 4.综合 1)把设计翻译成原始的目标工艺 2)最优化 3)合适的面积要求和性能要求 4)典型工具有Mentor公司的LeonardoSpectrum、Synopsys公司的DC、Synplicity公司的Synplify。 5)推荐初学者使用Mentor公司的LeonardoSpectrum,由于它在只作简单约束综合后的速度和面积最优,如果你对综合工具比较了解,可以使用Synplicity公司的Synplify。 5.布局和布线 1)映射设计到目标工艺里指定位置 2)指定的布线资源应被使用

数字信号处理课程总结(全)

数字信号处理课程总结 以下图为线索连接本门课程的内容: ) (t x a ) (t y a ) (n x 一、 时域分析 1. 信号 ? 信号:模拟信号、离散信号、数字信号(各种信号的表示及关系) ? 序列运算:加、减、乘、除、反褶、卷积 ? 序列的周期性:抓定义 ? 典型序列:)(n δ(可表征任何序列)、)(n u 、)(n R N 、 n a 、jwn e 、)cos(θ+wn ∑∞ -∞ =-= m m n m x n x )()()(δ 特殊序列:)(n h 2. 系统 ? 系统的表示符号)(n h ? 系统的分类:)]([)(n x T n y = 线性:)]([)]([)]()([2121n x bT n x aT n bx n ax T +=+ 移不变:若)]([)(n x T n y =,则)]([)(m n x T m n y -=- 因果:)(n y 与什么时刻的输入有关 稳定:有界输入产生有界输出 ? 常用系统:线性移不变因果稳定系统 ? 判断系统的因果性、稳定性方法 ? 线性移不变系统的表征方法: 线性卷积:)(*)()(n h n x n y = 差分方程: 1 ()()()N M k k k k y n a y n k b x n k === -+ -∑∑

3. 序列信号如何得来? ) (t x a ) (n x 抽样 ? 抽样定理:让)(n x 能代表)(t x a ? 抽样后频谱发生的变化? ? 如何由)(n x 恢复)(t x a ? )(t x a = ∑ ∞ -∞ =--m a mT t T mT t T mT x ) ()] (sin[ ) (π π 二、 复频域分析(Z 变换) 时域分析信号和系统都比较复杂,频域可以将差分方程变换为代数方程而使分析简化。 A . 信号 1.求z 变换 定义:)(n x ?∑∞ -∞ =-= n n z n x z X )()( 收敛域:)(z X 是z 的函数,z 是复变量,有模和幅角。要其解析,则z 不能取让)(z X 无穷大的值,因此z 的取值有限制,它与)(n x 的种类一一对应。 ? )(n x 为有限长序列,则)(z X 是z 的多项式,所以)(z X 在z=0或∞时可 能会有∞,所以z 的取值为:∞<

数字信号处理(程佩青)课后习题解答(7)

第七章 有限长单位冲激响应(FIR )数字滤波器的设计方法 1. 用矩形窗设计一个FIR 线性相位低通数字滤波器。已知 21, 5.0==N c πω。求出)(n h 并画出)(log 20ωj e H 曲线。 分析:此题给定的是理想线性相位低通滤波器,故 ?????<<<<≤≤=-。 -- , , 0- , )(c c c c ωωππωωωωωωαω j j d e e H 解: ωπ π π ωω d e e H n h n j j d d ?-= )(21)( ) ()](sin[21αωαωπ ωωπ ωω ωωα --= = ?--n n d e e c c c n j j c c ?????? ? ≤≤--====-=为其他 故:其中n n n n n w n h n h N d c ,0200,)10(]2sin[)()()(5.0 102/)1( πππωα h( 0)= 9.7654073033E-4 h( 1)= 3.5358760506E-2 h( 2)= -9.7657600418E-4 h( 3)= -4.5465879142E-2 h( 4)= 9.7651791293E-4 h( 5)= 6.3656955957E-2 h( 6)= -9.7658322193E-4 h( 7)= -1.0610036552E-1 h( 8)= 9.7643269692E-4 h( 9)= 3.1830877066E-1 h( 10)= 4.9902343750E-1 h( 11)= 3.1830900908E-1 h( 12)= 9.7669276875E-4 h( 13)= -1.0610023141E-1 h( 14)= -9.7654142883E-4 h( 15)= 6.3657015562E-2 h( 16)= 9.7660662141E-4 h( 17)= -4.5465819538E-2 h( 18)= -9.7654841375E-4 h( 19)= 3.5358794034E-2 h( 20)= 9.7658403683E-4

谈谈对数字信号处理(DSP)的认识

浅谈数字信号处理 20091111 崔琦中文摘要: 数字信号处理的目的是对真实世界的连续模拟信号进行测量或滤波。因此在进行数字信号处理之前需要将信号从模拟域转换到数字域,这通常通过模数转换器实现。而数字信号处理的输出经常也要变换到模拟域,这是通过数模转换器实现的。 关键词:数字信号处理;芯片发展;应用 ABSTRACT: The purpose of digital signal processing is the real world of continuous analog signals measured or filter. Therefore in digital signal processing is needed before will signal from analog to digital domain, the field that usually through the adc. And digital signal processing output often will transform into analog domain, it is realized by digital-to-analog converters. Keywords:Digital signal processing;Chip development;application 正文: 数字信号处理作为信号和信息处理的一个分支学科,已渗透到科学研究、技术开发、工业生产、国防和国民经济的各个领域,取得了丰硕的成果。对信号在时域及变换域的特性进行分析、处理,能使我们对信号的特性和本质有更清楚的认识和理解,得到我们需要的信号形式,提高信息的利用程度,进而在更广和更深层次上获取信息。DSP芯片,也称数字信号处理器,是一种特别适合进行数字信号处理运算的微处理器。DSP芯片的出现和发展,促进数字信号处理技术的提高,许多新系统、新算法应运而生,其应用领域不断拓展。目

笔记数字信号处理

笔记数字信号处理 1离散时间傅立叶变换(DTFT) DTFT将一个离散信号 变换为实变量的复值连续函数,称为数字频率,以rad(弧度)计。这是一个关于连续变量的函数。 2z变换 2.1双边z变换 其中,z是复变量。对于 存在的z值的集合称为收敛域(ROC), 这里, 是某个正数。并且,反变换中的c是位于ROC内,环绕远点的某一逆时针方向闭合围线。 注意: a)复变量z称为复频率,给出为z=|z|,这里的|z|是衰减(阻尼),是实频率。 也就是说DTFT里不收敛的x(n),通过|z|的衰减,实现收敛。因此z变化更具普适意义。 b)函数|z|=1(或z=)是在z平面内半径为1的圆,也称为单位圆。如果ROC包括 单位圆,那么就可以在单位圆上对求值:

因此,DTFT可以认为是z变换X(z)的特例。 c)z域LTI稳定性:当且仅当单位圆是在H(z)的ROC内,一个LTI系统就是稳定的。 d)z域因果LTI稳定性:当且仅当系统函数H(z)的全部极点位于单位圆内时,一个因 果LTI系统是稳定的。 2.2z域的系统表示 系统函数H(z)给出为: ; 从差分方程表示求系统函数: 等式两边取z变换: 其中, 是系统零点, 是系统极点。 3离散傅立叶变换(DFT) 3.1离散傅立叶级数 由傅立叶分析可知,周期函数能用复指数的线性组合来合成,这些复指数的频率都是基波频率(如)的倍数,一个周期序列 式中, 称为离散傅立叶级数系数,由下式给出:

3.2离散傅立叶变换 对于一个有限长序列x(n),需要先构造一个周期为n的周期信号: 则此N点序列的离散傅立叶变换为: 其余 , 其中 所以,傅立叶级数和傅立叶变换的区别和联系就在于是否是周期信号。同样适用于模拟域。 4关于 Ω的联系和区别 ω=Ω*T Ω=/ T Ω:称为连续时间频率变量 ω:归一化频率 Ω可以理解为f*2,ω再归一化到2上。其实这个Ω与之前的ω是一个意思,都是角频率,只不过奥本海姆的书上把它特别表示成了Ω。 5关于抽取和内插 参考奥本海姆的《离散时间信号处理》 5.1抽取 对于一个连续时间信号的样本序列:x[n] = x c(nT) 假设降低采样率后的新序列定义为:x d[n] = x[nM] = x c(nMT) 对应的,x[n] = x c(nT)的离散时间傅立叶变换为:

相关主题
文本预览
相关文档 最新文档