当前位置:文档之家› 各类最小二乘法比较

各类最小二乘法比较

---------------------------------------------------------------最新资料推荐------------------------------------------------------

各类最小二乘法比较

最小二乘法(LS)最小二乘是一种最基本的辨识方法,最小二乘法可以用于线性系统,也可以用于非线性系统;可用于离线估计和在线估计。

在随机情况下,利用最小二乘法时,并不要求观测数据提供其概率统计方法的信息,而其估计结果,却有相当好的统计特性。

但它具有两方面的缺陷:

一是当模型噪声是有色噪声时,最小二乘估计不是无偏、一致估计;二是随着数据的增长,将出现所谓的数据饱和现象。

针对这两个问题,出现了相应的辨识算法,如遗忘因子法、限定记忆法、偏差补偿法、增广最小二乘、广义最小二乘、辅助变量法、二步法及多级最小二乘法等。

广义最小二乘法(GLS)广义最小二乘法(GLS)广义最小二乘法的基本思想在于引入一个所谓成形滤波器(白化滤波器),把相关噪声转化成白噪声。

优:

能够克服当存在有色噪声干扰时,基本最小二乘估计的有偏性,估计效果较好,在实际中得到较好的应用。

缺:

1、计算量大,每个循环要调用两次最小二乘法及一次数据滤波,

2、求差分方程的参数估值,是一个非线性最优化问题,不一定总能

1 / 3

保证算法对最优解的收敛性。

广义最小二乘法本质上是一种逐次逼近法。

对于循环程序的收敛性还没有给出证明。

3、GLS 算法的最小二乘指标函数 J 中可能存在一个以上局部极小值,(特别在信噪比不大时,J 可能是多举的)。

GLS 方法的估计结果往往取决于所选用参数的初始估值。

参数估计初值应选得尽量接近优参数。

在没有验前信息的情况下,最小二乘估值被认为是最好的初始条件。

4、广义最小二乘法的收敛速度不是很高。

递推最小二乘法(RLS)递推最小二乘法(RLS)优点:

1、无需存储全部数据,取得一组观测数据便可估计一次参数,而且都能在一个采样周期中完成,所需计算量小,占用的存储空间小。

2、具有一定的实时处理能力辅助变量法(IV、RIV)计算较简单,估计是无偏估计,但计算精度较低辅助变量法、增广矩阵法能保证精度和收敛,算法简单,可同时得到参数和噪声模型的估计,工程应用效果很好但计算量也较大。

RIV 总收敛于参数真值。

加权最小二乘法加权最小二乘法可对不同置信度的测量值采用加权的办法分别对待,置信度加权高的,权重取得大些;置信度低的,权重取的小些。

但加权最小二乘法仅能用于事先能估计方程误差对参数估计的影

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 响。

快速多阶段最小二乘法大大减少计算时间。

快速多阶段最小二乘法大大减少计算时间。

证明矩阵求逆引理矩阵求逆引理的证明:

①矩阵求逆引理:

②证明:

考虑到由展开上式可得:

(2a) (2b)(3a) (3b)C 1 和 C 2 非奇异,由(3a)和(2b)联立可得:

(4a) (4b) 将式 4a、4b 分别代入(2a)、(3b),得到(5a) (5b) 将(5b)代入(4b),得将展开,得上式即为:

将(6)式代入上式,有终上,得证。

3 / 3

最小二乘法及其应用..

最小二乘法及其应用 1. 引言 最小二乘法在19世纪初发明后,很快得到欧洲一些国家的天文学家和测地学家的广泛关注。据不完全统计,自1805年至1864年的60年间,有关最小二乘法的研究论文达256篇,一些百科全书包括1837年出版的大不列颠百科全书第7版,亦收入有关方法的介绍。同时,误差的分布是“正态”的,也立刻得到天文学家的关注及大量经验的支持。如贝塞尔( F. W. Bessel, 1784—1846)对几百颗星球作了三组观测,并比较了按照正态规律在给定范围内的理论误差值和实际值,对比表明它们非常接近一致。拉普拉斯在1810年也给出了正态规律的一个新的理论推导并写入其《分析概论》中。正态分布作为一种统计模型,在19世纪极为流行,一些学者甚至把19世纪的数理统计学称为正态分布的统治时代。在其影响下,最小二乘法也脱出测量数据意义之外而发展成为一个包罗极大,应用及其广泛的统计模型。到20世纪正态小样本理论充分发展后,高斯研究成果的影响更加显著。最小二乘法不仅是19世纪最重要的统计方法,而且还可以称为数理统计学之灵魂。相关回归分析、方差分析和线性模型理论等数理统计学的几大分支都以最小二乘法为理论基础。正如美国统计学家斯蒂格勒( S. M. Stigler)所说,“最小二乘法之于数理统计学犹如微积分之于数学”。最小二乘法是参数回归的最基本得方法所以研究最小二乘法原理及其应用对于统计的学习有很重要的意义。 2. 最小二乘法 所谓最小二乘法就是:选择参数10,b b ,使得全部观测的残差平方和最小. 用数学公式表示为: 21022)()(m in i i i i i x b b Y Y Y e --=-=∑∑∑∧ 为了说明这个方法,先解释一下最小二乘原理,以一元线性回归方程为例. i i i x B B Y μ++=10 (一元线性回归方程)

最小二乘法曲线拟合 原理及matlab实现

曲线拟合(curve-fitting ):工程实践中,用测量到的一些离散的数据},...2,1,0),,{(m i y x i i =求一个近似的函数)(x ?来拟合这组数据,要求所得的拟合曲线能最好的反映数据的基本趋势(即使)(x ?最好地逼近()x f ,而不必满足插值原则。因此没必要取)(i x ?=i y ,只要使i i i y x -=)(?δ尽可能地小)。 原理: 给定数据点},...2,1,0),,{(m i y x i i =。求近似曲线)(x ?。并且使得近似曲线与()x f 的偏差最小。近似曲线在该点处的偏差i i i y x -=)(?δ,i=1,2,...,m 。 常见的曲线拟合方法: 1.使偏差绝对值之和最小 2.使偏差绝对值最大的最小 3.使偏差平方和最小 最小二乘法: 按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。 推导过程: 1. 设拟合多项式为: 2. 各点到这条曲线的距离之和,即偏差平方和如下: 3. 问题转化为求待定系数0a ...k a 对等式右边求i a 偏导数,因而我们得到 了: ....... 4、 把这些等式化简并表示成矩阵的形式,就可以得到下面的矩阵: 5. 将这个范德蒙得矩阵化简后可得到:

6. 也就是说X*A=Y,那么A = (X'*X)-1*X'*Y,便得到了系数矩阵A,同时,我们也就得到了拟合曲线。 MATLAB实现: MATLAB提供了polyfit()函数命令进行最小二乘曲线拟合。 调用格式:p=polyfit(x,y,n) [p,s]= polyfit(x,y,n) [p,s,mu]=polyfit(x,y,n) x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。x必须是单调的。矩阵s包括R(对x进行QR分解的三角元素)、df(自由度)、normr(残差)用于生成预测值的误差估计。 [p,s,mu]=polyfit(x,y,n)在拟合过程中,首先对x进行数据标准化处理,以在拟合中消除量纲等影响,mu包含标准化处理过程中使用的x的均值和标准差。 polyval( )为多项式曲线求值函数,调用格式: y=polyval(p,x) [y,DELTA]=polyval(p,x,s) y=polyval(p,x)为返回对应自变量x在给定系数P的多项式的值。 [y,DELTA]=polyval(p,x,s) 使用polyfit函数的选项输出s得出误差估计Y DELTA。它假设polyfit函数数据输入的误差是独立正态的,并且方差为常数。则Y DELTA将至少包含50%的预测值。 如下给定数据的拟合曲线: x=[0.5,1.0,1.5,2.0,2.5,3.0], y=[1.75,2.45,3.81,4.80,7.00,8.60]。 解:MATLAB程序如下: x=[0.5,1.0,1.5,2.0,2.5,3.0]; y=[1.75,2.45,3.81,4.80,7.00,8.60]; p=polyfit(x,y,2) x1=0.5:0.05:3.0; y1=polyval(p,x1); plot(x,y,'*r',x1,y1,'-b') 运行结果如图1 计算结果为: p =0.5614 0.8287 1.1560 即所得多项式为y=0.5614x^2+0.08287x+1.15560 图1 最小二乘法曲线拟合示例 对比检验拟合的有效性: 例:在[0,π]区间上对正弦函数进行拟合,然后在[0,2π]区间画出图形,比较拟合区间和非拟合区间的图形,考察拟合的有效性。 在MATLAB中输入如下代码: clear x=0:0.1:pi; y=sin(x); [p,mu]=polyfit(x,y,9)

对比分析最小二乘法与回归分析

对比分析最小二乘法与回归分析

摘要 最小二乘法是在模型确定的情况下对未知参数由观测数据来进行估计,而回归分析则是研究变量间相关关系的统计分析方法。 关键词:最小二乘法回归分析数据估计

目录 摘要 (2) 目录 (3) 一:最小二乘法 (4) 主要内容 (4) 基本原理 (4) 二:回归分析法 (6) 回归分析的主要内容 (6) 回归分析原理 (7) 三:分析与总结 (10)

一:最小二乘法 主要内容 最小二乘法又称最小平方法是一种数学优化技术。它通过定义残差平方和的方式,最小化残差的平方和以求寻找数据的最佳函数匹配,可以从一组测定的数据中寻求变量之间的依赖关系, 这种函数关系称 为经验公式.利用最小二乘法可以十分简便地求得未知的数据,并使 得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化 熵用最小二乘法来表达。 基本原理 考虑超定方程组(超定指未知数大于方程个数): 其中m 代表有m 个等式,n 代表有n 个未知数(m>n);将其进行向量化后为: ,

, 显然该方程组一般而言没有解,所以为了选取最合适的 让该等式"尽量成立",引入残差平方和函数S (在统计学中,残差平方和函数可以看成n 倍的均方误差当时, 取最小值,记作: 通过对进行微分求最值,可以得到: 如果矩阵非奇异则 有唯一解:

二:回归分析法 回归分析是确定两种或两种以上变量间相互依赖的相关关系的一种 统计分析方法。回归分析是应用极其广泛的数据分析方法之一。它基于观测数据建立变量间适当的依赖关系,建立不同的回归模型,确立不同的未知参数,之后使用最小二乘法等方法来估计模型中的未知参数,以分析数据间的内在联系。当自变量的个数等于一时称为一元回归,大于1时称为多元回归,当因变量个数大于1时称为多重回归,其次按自变量与因变量之间是否呈线性关系分为线性回归与非线性 回归。最简单的情形是一个自变量和一个因变量,且它们大体上有线性关系,叫一元线性回归。 回归分析的主要内容 ①从一组数据出发,确定某些变量之间的定量关系式,即建立数 学模型并估计其中的未知参数。估计参数的常用方法是最小二乘法。 ②对这些关系式的可信程度进行检验。 ③在许多自变量共同影响着一个因变量的关系中,判断哪个(或 哪些)自变量的影响是显著的,哪些自变量的影响是不显著的,将影 响显著的自变量加入模型中,而剔除影响不显著的变量,通常用逐步回归、向前回归和向后回归等方法。 ④利用所求的关系式对某一生产过程进行预测或控制。

最小二乘法及其应用

最小二乘法及其应用 最小二乘法是一个比较古老的方法,早在十八世纪,就由高斯首先创立并成功地应用于天文观测和大地的测量工作中。此后,近三百年来,它已被广泛应用于科学实验与工程技术中。随着现代电子计算机的普及与发展,这个古老的方法更加显示出其强大的生命力。 最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可以用于曲线拟合,其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。 最小二乘法拟合曲线的基本原理是:成对等精度地测得一组数据x,只(i=l,2,…,n),试找出一条最佳的拟合曲线,使得这条拟合曲线上的各点的值与测量值的差的平方和在所有拟合曲线中最小。所谓“拟合”,即不要求所作的曲线完全通过所有的数据点,只要求所得的曲线能反映数据的基本趋势。曲线拟合的几何解释是:求一条曲线,使数据点均在离此曲线的上方或下方不远处。 用最小二乘法拟合的曲线较为精确,接近于实际曲线。因而,最小二乘法拟合曲线在实际生活和科学研究中有着重要的意义,并渗透到各个领域,在物理、气象、化学、医学等方面有着广泛的应用。例如,在物理方面,我们通常通过实验测得数据,然后根据这些实验数据拟合曲线,从而总结出某种现象的规律或者变化趋势,进而采取相应的措施避免或加强其变化程度。这对于指导我们了解物理现象,并深刻理解物理知识是非常有帮助的。又如,在气象方面,在温室效应的研究中,科学家们通过对1860年到1980年的11个地球平均温度增加值的分析,利用最小二乘法进行曲线拟合,通过精确计算,建立了地球平均温度增加值与时间之间的函数关系。从而得出在2080年左右,地球的平均温度会比1980年上升约6℃,从而会引起诸如冰川后退、海平面上升等一系列严重的环境问题。到时极地冰盖就会融化,从而引起大量的洪水泛滥和大片的陆地被淹没,这一认识对进行环境质量评价和提出保护地球的措施具有重要的理论意义。

最小二乘法的原理及其应用

最小二乘法的原理及其应用 一、研究背景 在科学研究中,为了揭示某些相关量之间的关系,找出其规律,往往需要做数据拟合,其常用方法一般有传统的插值法、最佳一致逼近多项式、最佳平方逼近、最小二乘拟合、三角函数逼近、帕德(Pade)逼近等,以及现代的神经网络逼近、模糊逼近、支持向量机函数逼近、小波理论等。 其中,最小二乘法是一种最基本、最重要的计算技巧与方法。它在建模中有着广泛的应用,用这一理论解决讨论问题简明、清晰,特别在大量数据分析的研究中具有十分重要的作用和地位。随着最小二乘理论不断的完善,其基本理论与应用已经成为一个不容忽视的研究课题。本文着重讨论最小二乘法在化学生产以及系统识别中的应用。 二、最小二乘法的原理 人们对由某一变量t或多个变量t1…..tn 构成的相关变量y感兴趣。如弹簧的形变与所用的力相关,一个企业的盈利与其营业额,投资收益和原始资本有关。为了得到这些变量同y之间的关系,便用不相关变量去构建y,使用如下函数模型 , q个相关变量或p个附加的相关变量去拟和。 通常人们将一个可能的、对不相关变量t的构成都无困难的函数类型充作函数模型(如抛物线函数或指数函数)。参数x是为了使所选择的函数模型同观测值y相匹配。(如在测量弹簧形变时,必须将所用的力与弹簧的膨胀系数联系起来)。其目标是合适地选择参数,使函数模型最好的拟合观测值。一般情况下,观测值远多于所选择的参数。 其次的问题是怎样判断不同拟合的质量。高斯和勒让德的方法是,假设测量误差的平均值为0。令每一个测量误差对应一个变量并与其它测量误差不相关(随机无关)。人们假设,在测量误差中绝对不含系统误差,它们应该是纯偶然误差,围绕真值波动。除此之外,测量误差符合正态分布,这保证了偏差值在最后的结果y上忽略不计。 确定拟合的标准应该被重视,并小心选择,较大误差的测量值应被赋予较小的权。并建立如下规则:被选择的参数,应该使算出的函数曲线与观测值之差的平方和最小。用函数表示为:

最小二乘法的编程实现

1、最小二乘法: 1)(用1 T A A 方法计算逆矩阵) #include #include #include #include #include #define N 200 #define n 9 void Getdata(double sun[N])//从txt文档中读取数据(小数){ char data; char sunpot[10]={0000000000};//为防止结果出现‘烫’字int i=0,j=0; double d; FILE *fp=fopen("新建文本文档.txt","r"); if(!fp) { printf("can't open file\n"); } while(!feof(fp)) { data=fgetc(fp); if(data!='\n') { sunpot[i]=data; i++; } else if(data=='\n') { sunpot[i]='\0';//给定结束符 d=atof(sunpot);//将字符串转换成浮点数 sun[j]=d; j++; i=0;//将i复位 } } } void Normal(double sun[N],double sun1[N])//将数据进行标准化{

double mean,temp=0,variance=0; int i; for(i=0;i

最小二乘法应用实例

数值计算方法 实际应用(论文) 题目最小二乘法原理实际生活应用 学院信息工程学院 专业软件工程 姓名张同 班级 13级2班 学号1402130235

摘要 最小二乘法(又称最小平方法)是一种数学优化技术,是利用最小化误差的平方和寻找数据的最佳函数匹配的一种计算方法[1],目前在测量学、城市道路规划、物理学、地质勘探学、概率论、统计学等领域有着广泛的应用。本文对最小二乘法进行了深入细致的研究,利用Visual C++编制程序实现最小二乘法的界面化设计,通过实验数据的输入,实现线性和二次拟合曲线的输出,并利用设计的程序实现了一些实际问题的求解和处理。 关键词:最小二乘法曲线拟合Visual C++

最小二乘法在实际生活中的应用 一.实际问题描述: 早在19世纪后期,英国生物学家Galton 在研究父母身高与子女身高关系时,观察了1078个家庭中父亲、母亲身高的平均值x 和其中一个成年儿子身高y,建立了x 与y 之间的线性关系。 二.提出问题: 通过父母平均身高推算出成年儿子身高 三.分析问题: 平时我们在实验过程中会遇到两量y x ,如果存在b ax y +=的线性关系时,其中b a ,为线性函数的参数。当实验数据存在这种线性关系时,通常我们运用作图法对其参数进行处理运算、进而求出实验结果。但是作图法很难得到好的结果,而运用最小二乘法可以得到比较好的线性拟合 [19] 。对其两种方法比较可以最小二乘法的数据处理方法是比较理想的办法。 四.实验原理: 最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。 最小二乘法拟合:对给定数据点{(Xi ,Yi)}(i=0,1,…,m),在取定的函数类Φ 中,求p(x)∈Φ ,使误差的平方和E ^2最小,E^2=∑[p(Xi)-Yi]^2。从几何意义上讲,就是寻求与给定点 {(Xi ,Yi)}(i=0,1,…,m)的距离平方和为最小的曲线y=p(x)。函数p(x)称为拟合函数或最小二乘解,求拟合函数p(x)的方法称为曲线拟合的最小二乘法。 五.解决方案: 运用数值计算方法中的最小二乘法处理数据,计算出a 与b ,得到y=a+bx 关系式。 1.根据实验数据列以下表格: 表1 实验数据收集 父母平均身高x (cm ) 155 160 165 170 175 180 成年儿子身高y (cm ) 158 164 168 175 178 188 2.主要程序代码: #include #include

最小二乘法原理及应用【文献综述】

毕业论文文献综述 信息与计算科学 最小二乘法的原理及应用 一、国内外状况 国际统计学会第56届大会于2007年8月22-29日在美丽的大西洋海滨城市、葡萄牙首都里斯本如期召开。应大会组委会的邀请,以会长李德水为团长的中国统计学会代表团一行29人注册参加了这次大会。北京市统计学会、山东省统计学会,分别组团参加了这次大会。中国统计界(不含港澳台地区)共有58名代表参加了这次盛会。本届大会的特邀论文会议共涉及94个主题,每个主题一般至少有3-5位代表做学术演讲和讨论。通过对大会论文按研究内容进行归纳,特邀论文大致可以分为四类:即数理统计,经济、社会统计和官方统计,统计教育和统计应用。 数理统计方面。数理统计作为统计科学的一个重要部分,特别是随机过程和回归分析依然展现着古老理论的活力,一直受到统计界的重视并吸引着众多的研究者。本届大会也不例外。 二、进展情况 数理统计学19世纪的数理统计学史, 就是最小二乘法向各个应用领域拓展的历史席卷了统计大部分应用的几个分支——相关回归分析, 方差分析和线性模型理论等, 其灵魂都在于最小二乘法; 不少近代的统计学研究是在此法的基础上衍生出来, 作为其进一步发展或纠正其不足之处而采取的对策, 这包括回归分析中一系列修正最小二乘法而导致的估计方法。 数理统计学的发展大致可分 3 个时期。① 20 世纪以前。这个时期又可分成两段,大致上可以把高斯和勒让德关于最小二乘法用于观测数据的误差分析的工作作为分界线,前段属萌芽时期,基本上没有超出描述性统计量的范围。后一阶段可算作是数理统计学的幼年阶段。首先,强调了推断的地位,而摆脱了单纯描述的性质。由于高斯等的工作揭示了最小二乘法的重要性,学者们普遍认为,在实际问题中遇见的几乎所有的连续变量,都可以满意地用最小二乘法来刻画。这种观点使关于最小二乘法得到了深入的发展,②20世纪初到第二次世界大战结束。这是数理统计学蓬勃发展达到成熟的时期。许多重要的基本观点和方法,以及数理统计学的主要分支学科,都是在这个时期建立和发展起来的。这个时期的成就,包含了至今仍在广泛使用的大多数统计方法。在其发展中,以英国统计学家、生物学家费希尔为代表的英国学派起了主导作用。③战后时期。这一时期中,数理统计学在应用和理论两方面继续获得很大的进展。

实验3__最小二乘法的实现

实验3 最小二乘法的实现 实验报告 哈尔滨工业大学 航天学院控制科学与工程系 专业:

1.实验题目: 实验3最小二乘法的实现 2.实验目的 理解并掌握系统辨识中的最小二乘法原理。 3?实验主要原理 给定系统 y (k)二-a i y (k -1)- a 2y (k - 2) -111 - a n y (k - n) b)u(k) bu(k-1) IH b n u(k -n) (k) ( 1) 其中a i ,a2^l,a n ,0,0,鸟,|||,0为待辨识的未知参数, (k)是不相关随机 序列。y 为系统的输出,u 为系统的输入。分别测出n ? N 个输出、n ? N 输入 值 y(1),y(2), y(3)J||y(n N),u(1),u(2)川|u(n N),则可写出 N 个方程,具体写 成矩阵形式,有 ■aj (2) 力」 则式(2)可写为 「y(n+1) 1 + + + 飞(n+1) 1 『5+2) 亠 , — a n —+2) + + t o + + + 4 R ?(n + N)_ y 二 --y(n) -y( n+1) + + III III -y(1) -y(2) ■ u( n + 1) u(n +2) + III HI + u(1)1 u(2) + y(n + N — 1) III I- -y(N) ■1 u( n + N) + HI r u(N)_ ①= 一 -y( n) - y(1) u( n+1)川 u(1) 1 -y( n+1) 出 -y(2) r u( n+2)川 ■ + u(2) —y(n + N —1) I- -y(N) u(n +N)川 卜 u(N)_ (n 1) + 勺 n+2) : 工(n + N) 一 』(n +N) 一 a n b o ■y( n+1) 1 y(n +2)

数值计算_第6章 曲线拟合的最小二乘法

第6章曲线拟合的最小二乘法 6.1 拟合曲线 通过观察或测量得到一组离散数据序列,当所得数据比较准确时,可构造插值函数逼近客观存在的函数,构造的原则是要求插值函数通过这些数据点,即。此时,序列与 是相等的。 如果数据序列,含有不可避免的误差(或称“噪音”),如图6.1 所示;如果数据序列无法同时满足某特定函数,如图6.2所示,那么,只能要求所做逼近函数最优地靠近样点,即向量与的误差或距离最小。按与之间误差最小原则作为“最优”标准构造的逼近函数,称为拟合函数。 图6.1 含有“噪声”的数据 图6.2 一条直线公路与多个景点 插值和拟合是构造逼近函数的两种方法。插值的目标是要插值函数尽量靠近离散点;拟合的目标是要离散点尽量靠近拟合函数。 向量与之间的误差或距离有各种不同的定义方法。例如: 用各点误差绝对值的和表示: 用各点误差按模的最大值表示: 用各点误差的平方和表示: 或(6.1)

其中称为均方误差,由于计算均方误差的最小值的方法容易实现而被广泛采用。按 均方误差达到极小构造拟合曲线的方法称为最小二乘法。本章主要讲述用最小二乘法构造拟合曲线的方法。 在运筹学、统计学、逼近论和控制论中,最小二乘法都是很重要的求解方法。例如,它是统计学中估计回归参数的最基本方法。 关于最小二乘法的发明权,在数学史的研究中尚未定论。有材料表明高斯和勒让德分别独立地提出这种方法。勒让德是在1805年第一次公开发表关于最小二乘法的论文,这时高斯指出,他早在1795年之前就使用了这种方法。但数学史研究者只找到了高斯约在1803年之前使用了这种方法的证据。 在实际问题中,怎样由测量的数据设计和确定“最贴近”的拟合曲线?关键在选择适当的拟合曲线类型,有时根据专业知识和工作经验即可确定拟合曲线类型;在对拟合曲线一无所知的情况下,不妨先绘制数据的粗略图形,或许从中观测出拟合曲线的类型;更一般地,对数据进行多种曲线类型的拟合,并计算均方误差,用数学实验的方法找出在最小二乘法意义下的误差最小的拟合函数。 例如,某风景区要在已有的景点之间修一条规格较高的主干路,景点与主干路之间由各具特色的支路联接。设景点的坐标为点列;设主干路为一条直线 ,即拟合函数是一条直线。通过计算均方误差最小值而确定直线方程(见图6.2)。 6.2线性拟合和二次拟合函数 线性拟合 给定一组数据,做拟合直线,均方误差为 (6.2) 是二元函数,的极小值要满足 整理得到拟合曲线满足的方程:

最小二乘法的基本原理和多项式拟合matlab实现_0

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 最小二乘法的基本原理和多项式拟合matlab实现最小二乘法的基本原理和多项式拟合 matlab 实现最小二乘法的基本原理和多项式拟合一、最小二乘法的基本原理从整体上考虑近似函数 p(x) 同所给数据点(xi, yi) (i=0, 1, , m) 误差 ri p(xi) yi(i=0, 1, , m) 的大小,常用的方法有以下三种: 一是误差 riri p(xi) yi(i=0, 1, , m) 绝对值的最大值max0 i m,即误差向量 r (r0, r1, rm) T 的范数;二是误差绝对值的和i 0mri,即误差向量 r 的 1范数;三是误差平方和 i 0 rm2i 的算术平方根,即误差向量 r 的 2范数;前两种方法简单、自然,但不便于微分运算,后一种方法相当于考虑 2范数的平方,因此在曲线拟合中常采用误差平方和 i 0 体大小。 rm2i 来度量误差 ri(i=0, 1,, m) 的整数据拟合的具体作法是: 对给定数据 (xi, yi) (i=0, 1, , m) ,在取定的函数类中,求 p(x) , 使误差 ri p(xi) yi(i=0, 1, , m)的平方和最小,即 i 0 rm2i i 0 p(x) y iim2 min 从几何意义上讲,就是寻求与给定点(xi, yi) (i=0, 1, , m) 的距离平方和为最小的曲线y p(x) (图 6-1)。 函数 p(x) 称为拟合函数或最小二乘解,求拟合函数 p(x) 的 1 / 15

最小二乘法原理及其简单应用_邹乐强

科技信息 SCIENCE &TECHNOLOGY INFORMATION 2010年第23期y (%) 1.000.90.90.810.60.560.35x (%) 3.6 3.7 3.8 3.9 4.0 4.1 4.2 最小二乘法原理及其简单应用 邹乐强 (河南工程技术学校河南 焦作 454000) 【摘要】最小二乘法是从误差拟合角度对回归模型进行参数估计或系统辨识,并在参数估计、系统辨识以及预测、预报等众多领域中得到极为广泛的应用。然而,最小二乘法因其抽象、难懂常常被大家所忽视。本文就最小二乘法的引入,原理的证明,简单的应用进行归纳和总结,使读者对最小二乘法有更为清晰、系统、全面地认识。 【关键词】最小二乘法;回归模型;参数估计;系统辨识最小二乘法作为一种传统的参数估计方法,早已经被大家所了解。然而大多同学对最小二乘法的认识都比较模糊,仅仅把最小二乘法理解为简单的线性参数估计。事实上,最小二乘法在参数估计、系统辨识以及预测、预报等众多领域都有着广泛的应用。本文就最小二乘法的引入、最小二乘法原理的简单证明、最小二乘法在线性参数估计、欧氏空间、多项式拟合以及经济领域的模型参数估计等应用方面进行具体的阐释。本文的一些理论建立在学习过高等代数、数值分析及了解简单的经济计量学的基础上。本文的理论简明易懂,仅对现实中常见的问题用最小二乘法理论结合阐释。 1问题的引入 例 已知某种材料在生产过程中的废品率y 与某种化学成分x 有关。下列表中记载了某工厂生产中y 与相应的x 的几次数值: 我们想找出y 对x 的一个近似公式。 解把表中数值划出图来看,发现它的变化趋势近于一条直线。因此我们决定选取x 的一次式ax+b 来表达。当然最好能选到适当的a ,b 使下面的等式 3.6a+b -1.00=03.7a+b -0.9=03.8a+b -0.9=03.9a+b -0.81=0 4.0a+b -0.60=04.1a+b -0.56=04.2a+b -0.35=0 都成立。实际上是不可能的,任何a ,b 代入上面各式都会发生误差。于是想找a ,b 使上面各式的误差的平方和最小,即找到a ,b 使 (3.6a+b -1.00)2+(3.7a+b -0.9)2+(3.8a+b -0.9)2+(3.9a+b -0.81)2+(4.0a+b -0.60)2+(4.1a+b -0.56)2+(4.2a+b -0.35)2 最小。这里讨论的是误差的平方即二乘方,故称为最小二乘法。现在转向为一般的最小二乘法问题: 实系数线性方程组 a 11x 1+a 12x 2+…+a 1n x n - b 1=0 a 21x 1+a 22x 2+…+a 2n x n - b 2=0………… a m 1x 1 +a m 2x 2+…+a mn x n -b m = 1.1 可能无解。即任何一组实数x 1,x 2,……,x s 都可能使 m i =1 Σ(a i 1x 1+a i 2x 2+…+a in x n -b i )2 (*) 不等于零。 我们设法找到实数组x 0 1,x 0 2,…,x 0 s 使最小,这样的x 0 1,x 0 2,…,x 0 s 称为方程组的最小二乘解。这样问题就叫最小二乘法问题。 [1] 2 最小二乘法原理的证明 2.1 最小二乘法原理的初等证明 定理:X =(x 1,x 2,……x n )T 是矛盾方程组(1.1)的最小二乘解的充要条件是X 是方程组 (m i =1Σa 2 i 1)x 1+ m i =1Σa i 1a i 211x 2+…+ m i =j Σa i 1a in 11x n =m i =1 Σa i 1b i m i =1Σa i 2a i 1 1 1x 1+ m i =1Σa 2 i 2 11x 2+…+m i =1Σa i 2a in 11x n = m i =1Σa i 2b i m i =1 Σa in a i 11 1x 1+m i =1Σa in a i 211x 2+…+ m i =1 Σa 2 in 11x n = m i =1 Σa in b i 2.2 的解[2] 证明:设Y = m i =1Σ b i -n k =1 Σa ik x k 11 2 2.3 把Y 整理为关于x j (1≦j ≦n)的二次函数得 Y = m i =1 Σa 2ij 1 1x 2 j +2m i =1 Σ(a j (a i 1x 1+…+a i ,j -1x j -1+a i ,j +1x j +1+…+a 1n x n b j ))x j +m i =1 Σ(a i 1x 1+…+a i ,j -1x j -1+a i ,j +1x j +1+…+a in x n -b j )2 j=1,2,3,……,n 必要性:设X =(x 1,x 2,……,x n )T 是方程组⑴的最小二乘解,由定义1知⑴式中Y 有最小值,且X 是最小值点。由二次函数的性质得知二次函数 m i =1 Σa 2ij 〉0(j=1,2,……,n ),故a ij 不全部为零(与A 列满秩的假设一 致),且X 满足: X = m i =1 Σ[a ij (a i 1x 1 +…+a i ,j -1x i,j -1 +a i ,j +1x i,j +1+…+a in x n -b n )] m i =1 Σa ij (j=1,2,……,n) 2.4 化简得: m i =1 Σa ij a i 111x 1+m i =1Σa ij a i 211x 2+…+ m i =1Σa ij a i,j-111x j -1+ m i =1 Σa 2 ij 11x j + m i =1Σa ij a i,j+111x j +1+…+m i =1Σa ij a in 1 1x n =m i =1 Σa ij b i (j=1,2,…n) 这就是方程组⑵。不难看出方程组⑵的系数矩阵为A T A (A T 表示A 的转置矩阵),由A 列满秩知|A T A |≠0,故⑵有唯一解。必要性得证。 充分性:设X 是方程组(2)2.2的解,由x j (j =1,2,...,n )满足方程组2.2,也就是满足⑷式,再由于A 列满秩,a ij (i =1,2,...,m )不全为零,故⑶中二次项系数 m i =1 Σa 2 ij >0,因此,⑷中式Y 有最小值且最小值点为X =(x 1 , x 2,...,x n ),所以X 是方程组⑴的最小二乘解。 2.2利用欧氏空间证明最小二乘法下面我们利用欧氏空间的概念来表达最小二乘法,并给出最小二乘解所满足的代数条件。令 A = a 11a 12…a 1n a 21a 22 …a 2n … ……… a m 1 a m 2… a mn ≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠B = b 1b 2… b m ≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠ X = x 1x 2… x m ≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠ Y =n j =1Σa 1j x 1n j =1Σa 2j x 2n j =1 Σa mj x m ≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠ ≠ ≠≠≠≠ ≠ ≠≠≠≠≠ ≠≠ ≠ =AX 2.5 ○职校论坛○ 282

最小二乘法在误差分析中的应用

误差理论综述与最小二乘法讨论 摘要:本文对误差理论和有关数据处理的方法进行综述。并且针对最小二乘法(LS)的创立、发展、思想方法等相关方面进行了研究和总结。同时,将近年发展起来的全面最小二乘法(TLS)同传统最小二乘法进行了对比。 1.误差的有关概念 对科学而言,各种物理量都需要经过测量才能得出结果。许多物理量的发现,物理常数的确定,都是通过精密测量得到的。任何测试结果,都含有误差,因此,必须研究,估计和判断测量结果是否可靠,给出正确评定。对测量结果的分析、研究、判断,必须采用误差理论,它是我们客观分析的有力工具 测量基本概念 一个物理量的测量值应由数值和单位两部分组成。按实验数据处理的方式,测量可分为直接测量、间接测量和组合测量。 直接测量:可以用测量仪表直接读出测量值的测量。 间接测量:有些物理量无法直接测得,需要依据待测物理量与若干直接测量量的函数关系求出。 组合测量:如有若干个待求量,把这些待求量用不同方法组合起来进行测量,并把测量结果与待求量之间的函数关系列成方程组,用最小二乘法求出这个待求量的数值,即为组合测量。 误差基本概念 误差是评定测量精度的尺度,误差越小表示精度越高。若某物理量的测量值为y,真值为Y,则测量误差dy=y-Y。虽然真值是客观存在的,但实际应用时它一般无从得知。按照误差的性质,可分为随机误差,系统误差和粗大误差三类。 随机误差:是同一测量条件下,重复测量中以不可预知方式变化的测量误差分量。 系统误差:是同一测量条件下,重复测量中保持恒定或以可预知方式变化的测量误差分量。 粗大误差:指超出在规定条件下预期的误差。 等精度测量的随机误差 当对同一量值进行多次等精度的重复测量,得到一系列的测量值,每个测量

普通最小二乘法(OLS)

普通最小二乘法(OLS ) 普通最小二乘法(Ordinary Least Square ,简称OLS ),是应用最多的参数估计方 法,也是从最小二乘原理出发的其他估计方法的基础,是必须熟练掌握的一种方法。 在已经获得样本观测值 i i x y ,(i=1,2,…,n )的情况下 (见图2.2.1中的散点),假如模型(2.2.1)的参数估计量 已经求得到,为^0β和^ 1β,并且是最合理的参数估计量,那 么直线方程(见图2.2.1中的直线) i i x y ^ 1^0^ββ+= i=1,2,…,n (2.2.2) 应该能够最好地拟合样本数据。其中 ^ i y 为被解释变量的估计值,它是由参数估计量和解释 变量的观测值计算得到的。那么,被解释变量的估计值与观测值应该在总体上最为接近,判断的标准是二者之差的平方和最小。 ),()(102 2101ββββQ u x y Q i i n i i ==--=∑∑= ()() ),(min ????1 02 1 102 12?,?1 1 ββββββββQ x y y y u Q n i i n i i i =--=-==∑∑∑== (2.2.3) 为什么用平方和?因为二者之差可正可负,简单求和可能将很大的误差抵消掉,只有平方和才能反映二者在总体上的接近程度。这就是最小二乘原则。那么,就可以从最小二乘原则和样本观测值出发,求得参数估计量。 由于 2 1 ^ 1^01 2 ^ ))(()(∑∑+--=n i i n i i x y y y Q ββ= 是 ^ 0β、^ 1β的二次函数并且非负,所以其极小值总是存在的。根据罗彼塔法则,当Q 对^ 0β、 ^ 1β的一阶偏导数为0时,Q 达到最小。即

最小二乘法 (C语言)

#include #include //////////////////////////////////////////////////////////////////////////// ////////////// //矩阵结构体 struct Matrix { int m,n;//m为行数,n为列数 double **pm;//指向矩阵二维数组的指针 }; //初始化矩阵mt,并置矩阵的行为m,列为n void InitMatrix(struct Matrix *mt,int m,int n) { int i; //指定矩阵的行和列 mt->m=m; mt->n=n; //为矩阵分配内存 mt->pm=new double *[m]; for(i=0;ipm[i]=new double[n]; } } //用0初始化矩阵mt,并置矩阵的行为m,列为n void InitMatrix0(struct Matrix *mt,int m,int n) { int i,j; InitMatrix(mt,m,n); for(i=0;i

for(j=0;jpm[i][j]=0.0; } //销毁矩阵mt void DestroyMatrix(struct Matrix *mt) { int i; //释放矩阵内存 for(i=0;im;i++) { delete []mt->pm[i]; } delete []mt->pm; } //矩阵相乘mt3=mt1*mt2 //成功返回1,失败返回0 int MatrixMul(Matrix *mt1,Matrix *mt2,Matrix *mt3) { int i,j,k; double s; //检查行列号是否匹配 if(mt1->n!=mt2->m||mt1->m!=mt3->m||mt2->n!=mt3->n) retu rn 0; for(i=0;im;i++) for(j=0;jn;j++) { s=0.0; for(k=0;kn;k++) s=s+mt1->pm[i][k]*mt2->pm[k][j]; mt3->pm[i][j]=s; } return 1;

最小二乘法--计算方法

生活中的计算方法应用实例——— 最小二乘法,用MATLAB实现1. 数值实例 下面给定的是某市最近1个月早晨7:00左右(新疆时间)的天气预报所得到的温度 天数 1 2 3 4 5 6 7 8 9 10 温度9 10 11 12 13 14 13 12 11 9 天数11 12 13 14 15 16 17 18 19 20 温度10 11 12 13 14 12 11 10 9 8 天数21 22 23 24 25 26 27 28 29 30 温度7 8 9 11 9 7 6 5 3 1 下面用MATLAB编程对上述数据进行最小二乘拟合,按照数据找出任意次曲线拟合方程和它的图像。 2、程序代码 x=[1:1:30]; y=[9,10,11,12,13,14,13,12,11,9,10,11,12,13,14,12,11,10,9,8,7,8,9,11,9,7, 6,5,3,1]; a1=polyfit(x,y,3) %三次多项式拟合% a2= polyfit(x,y,9) %九次多项式拟合% a3= polyfit(x,y,15) %十五次多项式拟合% b1= polyval(a1,x) b2= polyval(a2,x) b3= polyval(a3,x) r1= sum((y-b1).^2) %三次多项式误差平方和% r2= sum((y-b2).^2) %九次次多项式误差平方和% r3= sum((y-b3).^2) %十五次多项式误差平方和% plot(x,y,'*') %用*画出x,y图像% hold on plot(x,b1, 'r') %用红色线画出x,b1图像% hold on plot(x,b2, 'g') %用绿色线画出x,b2图像% hold on plot(x,b3, 'b:o') %用蓝色o线画出x,b3图像% 3、数值结果 不同次数多项式拟合误差平方和为: r1=67.6659

最小二乘法在经济预测中的应用

编号(学号):12914008 优化理论课程论文 ( 08 级 1班) 题目:最小二乘法在经济预测中的应用 学院:理学院 专业:信息与计算科学 姓名:刘天政 指导教师:张永祥 完成日期: 2011 年 12 月 18 日

最小二乘法在经济预测中的应用 摘要:由于经济发展呈现一种鹏飞的状态及其可能的动荡会引起严重的后果,使得经济预测成为了一个必然产物,预测会使人们在将来经济上可能出现的波动有所准备降低损失或增加收益.本文选择了经济预测中的其中一种方法最小二乘法的基本原理,并且利用了线性回归预测模型.同时对相关系数和标准偏差进行检验.最后给出了利用最小二乘法进行经济预测的实例.实现对产品生产的预测让各方面对产品的产量有个简单的了解. 关键词:最小二乘法;线性回归;产品生产预测 一.引言 随着改革开放的步伐带动各地的经济发展状态呈现一片大好的形势,由于地域人文不同各地经济特色也各显风骚.本文以某县为例,该县是全国经济百强县之一,全县大都以染料、纺织和布匹等生产加工为主.笔者了解到支撑该县经济支柱的大部分是以生产加工上述产品的中小企业甚至家庭型企业.由于他们规模不是很大,因此相应的各技术部门没有很好的配备,所以进行生产管理的方式没有像大型企业那样规范,他们产品的年产量往往根据企业主近几年摸爬滚打中积累起来对市场的判断来制订的,而没有进行科学的经济预测,这常常导致大量产品销售不够或大量产品积压在家,给企业带来严重影响. 经济预测是进行经济决策活动的一个重要组成部分.在实际经济活动中,预测的结果可以揭示经济现象在未来时期发展变化的情况和发现经济发展过程中存在的问题,从而为进行决策、制订计划、提高经济管理水平以及获取较好的经济效益提供了科学依据.运用定量预测模型进行预测的方法有很多,依据笔者对许多家庭型企业的了解及对企业主知识层次的分析,本文介绍的最小二乘法在经济预测中的应用方法简单明了,比较适合这些企业在进行预测产品产量时参考,从而能够避免盲目的生产和经营,尽可能地为企业获得最大利润.

相关主题
文本预览
相关文档 最新文档