当前位置:文档之家› 研究生数值分析试卷上课讲义

研究生数值分析试卷上课讲义

研究生数值分析试卷上课讲义
研究生数值分析试卷上课讲义

研究生数值分析试卷

2005~2006学年第一学期硕士研究生期末考试试题(A 卷)

科目名称:数值分析 学生所在院: 学号: 姓名:

注意:所有的答题内容必须答在答题纸上,凡答在试题或草稿纸上的一律无效。

一、(15分)设求方程 0cos 2312=+-x x 根的迭代法

k k x x cos 3

2

41+=+

(1) 证明对R x ∈?0,均有*lim x x k k =∞

→,其中*x 为方程的根.

(2) 此迭代法收敛阶是多少? 证明你的结论.

二、(12分)讨论分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解下列方程组的收敛性。

???

??=++-=++=-+.

022,1,122321

321321x x x x x x x x x

三、(8分)若矩阵???

?

?

??=a a a a A 000002,说明对任意实数0≠a ,方程组b AX =都

是非病态的。(范数用∞?)

四、(15

求)(

x f 的Hermite 插值多项式)(3x H ,并给出截断误差)()()(3x H x f x R -=。 五、(10分)在某个低温过程中,函数 y 依赖于温度x (℃)的试验数据为

已知经验公式的形式为 2bx ax y += ,试用最小二乘法求出 a ,b 。 六、(12分)确定常数 a ,b 的值,使积分

[

]

dx x b ax b a I 2

1

1

2

),(?--+=

取得最小值。

七、(14分)已知Legendre(勒让德)正交多项式)(x L n 有递推关系式:

??

?

?

???=+-++===-+),2,1()(1)(112)()(,

1)(1110 n x L n n x xL n n x L x x L x L n n n 试确定两点的高斯—勒让德(G —L )求积公式

?

-+≈1

1

2211)()()(x f A x f A dx x f

的求积系数和节点,并用此公式近似计算积分

?=2

11

dx e I x

八、(14分)对于下面求解常微分方程初值问题 ?????==0

0)()

,(y x y y x f dx dy

的单步法:

???

?

???

++==++=+)

,()

,()2

121(1

21211

hk y h x f k y x f k k k h y y n n n n n n (1) 验证它是二阶方法;

(2) 确定此单步法的绝对稳定域。

2005~2006学年第一学期硕士研究生期末考试试题(B 卷)

科目名称:数值分析 学生所在院: 学号: 姓名:

注意:所有的答题内容必须答在答题纸上,凡答在试题或草稿纸上的一律无效。

一、(12分)讨论分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解下列方程组的收敛性。

???

??=++-=++=-+.

022,1,122321

321321x x x x x x x x x 二、(15分)设求方程 0cos 2312=+-x x 根的迭代法

k k x x cos 3

2

41+=+

(1) 证明对R x ∈?0,均有*lim x x k k =∞

→,其中*x 为方程的根.

(2) 此迭代法收敛阶是多少? 证明你的结论.

三、(8分)若矩阵???

?

? ??=a a a a A 000002,说明对任意实数0≠a ,方程组b AX =都

是非病态的。(范数用∞?)

四、(15

求)(x f 的Hermite 插值多项式)(3x H ,并给出截断误差)()()(3x H x f x R -=。 五、(10分)在某个低温过程中,函数 y 依赖于温度x (℃)的试验数据为

已知经验公式的形式为 2bx ax y += ,试用最小二乘法求出 a ,b 。 六、(12分)确定常数 a ,b 的值,使积分

[

]

dx x b ax b a I 2

1

1

2

),(?--+=

取得最小值。

七、(14分)对于求积公式:?∑=≈b

a

n

k k k x f A dx x f x 1

)()()(ρ,其中:)(x ρ是区间

),(b a 上的权函数。

(1) 证明此求积公式的代数精度不超过2n-1次; (2) 若此公式为Gauss 型求积公式,试证明

∑?==n

k b

a

k dx x A 1

)(ρ

八、(14分)对于下面求解常微分方程初值问题 ?????==0

0)()

,(y x y y x f dx dy

的单步法:

???

?

???

++==++=+)

,()

,()2

121(1

21211

hk y h x f k y x f k k k h y y n n n n n n (3) 验证它是二阶方法; (4) 确定此单步法的绝对稳定域。

2006~2007学年第一学期硕士研究生期末考试试题(B 卷)

科目名称:数值分析 学生所在院: 学号: 姓名:

注意:所有的答题内容必须答在答题纸上,凡答在试题或草稿纸上的一律无效。

一、(12分)讨论分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解下列方程组的收敛性。

???

??=++-=++=-+.

022,1,122321

321321x x x x x x x x x 二、(8分)若矩阵???

?

? ??=a a a a A 000002,说明对任意实数0≠a ,方程组b AX =都

是非病态的。(范数用∞?)

三、(15分)设)(x ?导数连续,迭代格式)(1k k x x ?=+一阶局部收敛到点*x 。构造新的迭代格式: )(1k k k x x x μ?λ+=+

问如何选取常数λ及μ,使新迭代格式有更高的收敛阶,并问是几阶收敛。 四、(15

求)(x f 的Hermite 插值多项式)(3x H ,并给出截断误差)()()(3x H x f x R -=。 五、(10分)在某个低温过程中,函数 y 依赖于温度x (℃)的试验数据为

已知经验公式的形式为 2bx ax y += ,试用最小二乘法求出 a ,b 。 六、(12分)确定常数 a ,b 的值,使积分

[

]

dx x b ax b a I 2

1

1

2

),(?--+=

取得最小值。

七、(14分)对于求积公式:?∑=≈b

a

n

k k k x f A dx x f x 1

)()()(ρ,其中:)(x ρ是区间

),(b a 上的权函数。

(3) 证明此求积公式的代数精度不超过2n-1次; (4) 若此公式为Gauss 型求积公式,试证明

∑?==n

k b

a

k

dx x A

1

)(ρ

八、(14分)对于下面求解常微分方程初值问题 ?????==0

0)()

,(y x y y x f dx dy

的单步法:

???

?

???

++==++=+)

,()

,()2

121(1

21211

hk y h x f k y x f k k k h y y n n n n n n (5) 验证它是二阶方法; (6) 确定此单步法的绝对稳定域。

2006~2007学年第一学期硕士研究生期末考试试题(A 卷)

科目名称:数值分析 学生所在院: 学号: 姓名:

北师大网络教育 数值分析 期末试卷含答案

注:1、教师命题时题目之间不留空白; 2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考北师大网络教育——数值分析——期末考试卷与答案 一.填空题(本大题共4小题,每小题4分,共16分) 1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。 2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。 3.设110111011A -????=--????-??,233x ?? ??=?? ???? ,则1A = ,1x = 。 4. 1n +个节点的高斯求积公式的代数精确度为 。 二.简答题(本大题共3小题,每小题8分,共24分) 1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定? 2. 什么是不动点迭代法?()x ?满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ?的不动点? 3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥ ,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。 三.求一个次数不高于3的多项式()3P x ,满足下列插值条件: i x 1 2 3 i y 2 4 12 i y ' 3 并估计误差。(10分) 四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1 01 1I dx x =+? 。(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。(10分) 六.试用Doolittle 分解法求解方程组:

注:1、教师命题时题目之间不留空白; 2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考 12325610413191963630 x x x -?????? ??????-=?????? ??????----?????? (10分) 七.请写出雅可比迭代法求解线性方程组1231231 23202324 812231530 x x x x x x x x x ++=?? ++=??-+=? 的迭代格式,并 判断其是否收敛?(10分) 八.就初值问题0(0)y y y y λ'=??=?考察欧拉显式格式的收敛性。(10分)

2014级硕士研究生数值分析上机实习报告

2014级硕士研究生数值分析上机实习(第一次) 姓名:学号:学院: 实习题目:分别用二分法和Newton迭代法求方程x3■ 2x210x-20=0的根.实习目的:掌握两种解法,体会两种解法的收敛速度. 实习要求:用C程序语言编程上机进行计算,精确到8位有效数字. 报告内容: 1.确定实根的个数以及所在区间 2.将最后两次计算结果填入下表(保留8位数字): 3.实习过程中遇到哪些问题?如何解决?有何心得体会?

4.两种解法的计算程序(此页写不下时可以加页):

2014级硕士研究生数值分析上机实习(第二次)姓名:学号:学院: 实习题目:计算8阶三对角矩阵A=tridiag(0.235, 1.274, 0.235)的行列式.实习目的:掌握计算行列式的方法. 实习要求:首先选择一种算法,然后用C程序语言编程上机进行计算.报告内容: 1.简单描述所采用的算法: 2?计算结果: A 3.实习过程中遇到哪些问题?如何解决?有何心得体会?

4.写出C语言计算程序(此页写不下时可以加页):

2014级硕士研究生数值分析上机实习(第三次) 姓名:学号:学院: 分别用Jacobi迭代法和Gauss-Seidel迭代法求解线性方程组实习题目: 2lx + 9.8y+ 3.4z= 6.7 <2.7x + 1.8y+ 7.2z= 2.4 8.6x + 1.5y + 3.4z = 1.9 实习目的:感受两种迭代法的收敛速度. 首先构造收敛的Jacobi迭代法和Gauss-Seidel迭代法,然后用实习要求: C程序语言编程上机进行求解,初始值均取为0,精确到4位小 数. 报告内容: 1.写出收敛的Jacobi迭代法和Gauss-Seidel迭代法:

2009哈工大级研究生《数值分析》试卷

2009级研究生《数值分析》试卷 一.(6分) 已知描述某实际问题的数学模型为x y y x y x u 223),(+=,其中,y x ,由 统计方法得到,分别为4,2==y x ,统计方法的误差限为0.01,试求出u 的误差限 )(u ε和相对误差限)(u r ε. 二.(6分) 已知函数13)(3+=x x f 计算函数)(x f 的2阶均差]2,1,0[f ,和4阶均差]4,3,2,1,0[f . 三.(6分)试确定求积公式: )]1(')0('[12 1 )]1()0([21)(10f f f f dx x f -++≈?的代数精 度. 四.(12分) 已知函数122)(2 3 -++=x x x x f 定义在区间[-1,1]上,在空间 },,1{)(2x x Span x =Φ上求函数)(x f 的最佳平方逼近多项式. 其中,权函数1)(=x ρ,15 4 ))(),((,1532))(),((,34))(),((210-==-=x x f x x f x x f ???. 五.(16分) 设函数)(x f 满足表中条件: (1) 填写均差计算表(标有*号处不填): (2) 分别求出满足条件)2,1,0(),()(),()(22===k x f x N x f x L k k k k 的 2次 Lagrange 和 Newton 差值多项式.

(3) 求出一个四次插值多项式)(4x H ,使其满足表中所有条件.并用多项式降幂形式表示. 六.(16分) (1). 用Romberg 方法计算?3 1 dx x ,将计算结果填入下表(*号处不填). (2). 试确定三点 Gauss-Legender 求积公式?∑-=≈1 1 2 )()(k k k x f A dx x f 的Gauss 点k x 与系数 k A ,并用三点 Gauss-Legender 求积公式计算积分: ?3 1dx x . 七.(14分) (1) 证明方程02ln =--x x 在区间(1,∞)有一个单根.并大致估计单根的取值范围. (2) 写出Newton 迭代公式,并计算此单根的近似值.(要求精度满足: 5 110||-+<-k k x x ). 八. (12分) 用追赶法求解方程组: ???? ?? ? ??=??????? ????????? ??022112111131124321x x x x 的解. 九. (12分) 设求解初值问题???==0 0)() ,('y x y y x f y 的计算格式为: )],(),([111--+++=n n n n n n y x bf y x af h y y ,假设11)(,)(--==n n n n y x y y x y ,试确定参数b a ,的值,使该计算格式的局部截断误差为二阶,即截断部分为: )(3h o .

数值分析学期期末考试试题与答案(A)

期末考试试卷(A 卷) 2007学年第二学期 考试科目: 数值分析 考试时间:120 分钟 学号 姓名 年级专业 一、判断题(每小题2分,共10分) 1. 用计算机求 1000 1000 1 1 n n =∑时,应按照n 从小到大的顺序相加。 ( ) 2. 为了减少误差,进行计算。 ( ) 3. 用数值微分公式中求导数值时,步长越小计算就越精确。 ( ) 4. 采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。( ) 5. 用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有 关,与常数项无关。 ( ) 二、填空题(每空2分,共36分) 1. 已知数a 的有效数为0.01,则它的绝对误差限为________,相对误差限为_________. 2. 设1010021,5,1301A x -????????=-=-????????-???? 则1A =_____,2x =______,Ax ∞ =_____. 3. 已知5 3 ()245,f x x x x =+-则[1,1,0]f -= ,[3,2,1,1,2,3]f ---= . 4. 为使求积公式 1 1231 ()()(0)33 f x dx A f A f A f -≈- ++? 的代数精度尽量高,应使1A = ,2A = ,3A = ,此时公式具有 次的代数精度。 5. n 阶方阵A 的谱半径()A ρ与它的任意一种范数A 的关系是 . 6. 用迭代法解线性方程组AX B =时,使迭代公式(1) ()(0,1,2,)k k X MX N k +=+=产 生的向量序列{ }() k X 收敛的充分必要条件是 . 7. 使用消元法解线性方程组AX B =时,系数矩阵A 可以分解为下三角矩阵L 和上三角矩

数值分析试卷及其答案2

1、(本题5分)试确定7 22作为π的近似值具有几位有效数字,并确定其相对误差限。 解 因为 7 22=3.142857…=1103142857.0-? π=3.141592… 所以 3 12 10 2 110 21005.0001264.07 22--?= ?= <=- π (2分) 这里,3,21,0=-=+-=n n m m 由有效数字的定义可知7 22作为π的近似值具有3位有效数字。 (1分) 而相对误差限 3 10 2 10005.00004138.0001264.07 22-?= <≈= -= π π πε r (2分) 2、(本题6分)用改进平方根法解方程组:???? ? ??=????? ??????? ??--654131321 112321x x x ; 解 设???? ? ? ?????? ? ?????? ??===????? ? ?--11 1 11113 1321 11232312132 1 32 31 21 l l l d d d l l l LDL A T 由矩阵乘法得: 5 7,21,21527,25,2323121321- == - == -==l l l d d d (3分) 由y D x L b Ly T 1 ,-==解得 T T x y )9 23,97,910( ,)5 63, 7,4(== (3分) 3、(本题6分)给定线性方程组??? ? ? ??=++-=+-+=-+-=-+17722238231138751043214321 321431x x x x x x x x x x x x x x 1)写出Jacoib 迭代格式和Gauss-Seidel 迭代格式; 2)考查Jacoib 迭代格式和Gauss-Seidel 迭代格式的敛散性; 解 1)Jacoib 迭代格式为

研究生数值分析试卷

2005~2006学年第一学期硕士研究生期末考试试题(A 卷) 科目名称:数值分析 学生所在院: 学号: 姓名: 注意:所有的答题内容必须答在答题纸上,凡答在试题或草稿纸上的一律无效。 一、(15分)设求方程 0cos 2312=+-x x 根的迭代法 k k x x cos 3 2 41+=+ (1) 证明对R x ∈?0,均有*lim x x k k =∞ →,其中*x 为方程的根. (2) 此迭代法收敛阶是多少? 证明你的结论. 二、(12分)讨论分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解下列方程组的收敛性。 ??? ??=++-=++=-+. 022,1, 122321 321321x x x x x x x x x 三、(8分)若矩阵??? ? ? ??=a a a a A 000002,说明对任意实数0≠a ,方程组b AX =都是非病态的。(范数用∞?) 四、( 求)(x f 的Hermite 插值多项式)(3x H ,并给出截断误差)()()(3x H x f x R -=。 五、(10分)在某个低温过程中,函数 y 依赖于温度x (℃)的试验数据

为 已知经验公式的形式为 2bx ax y += ,试用最小二乘法求出 a ,b 。 六、(12分)确定常数 a ,b 的值,使积分 [ ] dx x b ax b a I 2 1 1 2 ),(?--+= 取得最小值。 七、(14分)已知Legendre(勒让德)正交多项式)(x L n 有递推关系式: ?? ? ? ???=+-++===-+),2,1()(1)(112)()(, 1)(1110 n x L n n x xL n n x L x x L x L n n n 试确定两点的高斯—勒让德(G —L )求积公式 ? -+≈1 1 2211)()()(x f A x f A dx x f 的求积系数和节点,并用此公式近似计算积分 ?=2 11 dx e I x 八、(14分)对于下面求解常微分方程初值问题 ?????==0 0)() ,(y x y y x f dx dy 的单步法: ??? ? ??? ++==++=+) ,() ,()2 121(1 21211 hk y h x f k y x f k k k h y y n n n n n n

研究生数值分析试题

昆明理工大学2010级硕士研究生考试试卷 (注:考试时间150分钟;所有答案,包括填空题答案一律答在答题纸上,否则不予记分。) 一、 填空(每空2分,共24分) 1.近似数490.00的有效数字有 位,其相对误差限为 。 2.设7 4 ()431f x x x x =+++,则017[2,2,......2]f = ,018 [2,2,......2]f = 。 3.设4()2,[1,1]f x x x =∈-,()f x 的三次最佳一致逼近多项式为 。 4.1234A ??=??-??,1A = ,A ∞= ,2A = 。 5.210121012A -????=-????-?? ,其条件数2()Cond A = 。 6.2101202A a a ????=?????? ,为使分解T A L L =?成立(L 是对角线元素为正的下三角阵),a 的取 值范围应是 。 7.给定方程组121 122 ,x ax b a ax x b -=?? -+=?为实数。当a 满足 且02ω 时,SOR 迭代法收敛。 8.对于初值问题/ 2 100()2,(0)1y y x x y =--+=,要使用欧拉法求解的数值计算稳定,应限定步长h 的范围是 。 二、 推导计算 (15分)

(小数点后至少保留5位)。(15分) 3.确定高斯型求积公式 01 1010 ()()(),(0,1)f x d x A f x A f x x x ≈+ ∈? 的节点01,x x 及积分系数01,A A 。(15分) 三、 证明 1. 在线性方程组AX b =中,111a a A a a a a ?? ??=?????? 。证明当112a - 时高斯-塞德尔法 收敛,而雅可比法只在11 22 a - 时才收敛。 (10分) 2. 给定初值02 0, x a ≠以及迭代公式 1(2) ,(0,1,2...., 0) k k k x x a x k a +=-=≠ 证明该迭代公式是二阶收敛的。(7分) 3. 试证明线性二步法 212(1)[(3)(31)]4 n n n n n h y b y by b f b f ++++--=+++ 当1b ≠-时,方法是二阶,当1b =-时,方法是三阶的。(14分)

北航2010-2011年研究生数值分析期末模拟试卷1-3

数值分析模拟试卷1 一、填空(共30分,每空3分) 1 设??? ? ??-=1511A ,则A 的谱半径=)(a ρ______,A 的条件数=________. 2 设 ,2,1,0,,53)(2==+=k kh x x x f k ,则],,[21++n n n x x x f =________, ],,[321+++n n n n x x x x f ,=________. 3 设?????≤≤-++≤≤+=2 1,121 0,)(2 323x cx bx x x x x x S ,是以0,1,2为节点的三次样条函数,则b=________,c=________. 4 设∞=0)]([k k x q 是区间[0,1]上权函数为x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x q ,则 ?=1 )(dx x xq k ________,=)(2 x q ________. 5 设???? ??????=11001a a a a A ,当∈a ________时,必有分解式,其中L 为下三角阵,当 其对角线元素)3,2,1(=i L ii 满足条件________时,这种分解是唯一的. 二、(14分)设4 9,1,41,)(2102 3 === =x x x x x f , (1)试求)(x f 在]4 9,41[上的三次Hermite 插值多项式)(x H 使满足 2,1,0),()(==i x f x H i i ,)()(11x f x H '='. (2)写出余项)()()(x H x f x R -=的表达式. 三、(14分)设有解方程0cos 2312=+-x x 的迭代公式为n n x x cos 3 2 41+ =+, (1) 证明R x ∈?0均有? ∞ →=x x n x lim (? x 为方程的根); (2) 取40=x ,用此迭代法求方程根的近似值,误差不超过,列出各次迭代值; (3)此迭代的收敛阶是多少?证明你的结论. 四、(16分) 试确定常数A ,B ,C 和,使得数值积分公式 有尽可能高的代数精度. 试问所得的数值积分公式代数精度是多少?它是否为Gauss 型的?

2008级研究生数值分析试题

太原科技大学 2008级硕士研究生08/09学年第一学期 《数值分析》考试试卷 说明:1、Legendre 正交多项式)(x L n 有三项递推关系式: ?? ?? ???=+-++===-+ ,2,1)(1)(112)()(,1)(1110n x L n n x xL n n x L x x L x L n n n 2、Chebyshev 多项式)(x T n 有三项递推关系式: ?? ? ??=-===-+ ,2,1)()(2)()(,1)(1110n x T x xT x T x x T x T n n n 一、填空题:(每题4分,共20分) 1、设??? ? ??-=1511A ,则=∞)(A Cond 2、为提高数值计算精度,当x 充分小时,应将 x x sin cos 1-改写为 3、设)5()(2 -+=x a x x ?,要使)(1k k x x ?=+局部收敛到5* = x ,则a 的取值范围为 4、近似数235.0* =x 关于真值229.0=x 有 位有效数字。 5、设,1)(3 -+=x x x f 则差商=]3,2,1,0[f 二、(本题满分10分)用数值积分的方法建立求解初值问题b x a y a y y x f y a ≤≤==',)(),,(的Simpson 公式: )4(3 1111-+-++++=n n n n n f f f h y y 其中1,,1),,(+-==n n n i y x f f i i i ,11-+-=-=n n n n x x x x h . 三、(本题满分15分)设要用Gauss-Seidel 迭代法求解下列线性方程组

研究生《数值分析》教学大纲

研究生《数值分析》教学大纲 课程名称:数值分析 课程编号:S061005 课程学时:64 学时 课程学分: 4 适用专业:工科硕士生 课程性质:学位课 先修课程:高等数学,线性代数,计算方法,Matlab语言及程序设计 一、课程目的与要求 “数值分析”课是理工科各专业硕士研究生的学位课程。主要介绍用计算机解决数学问题的数值计算方法及其理论。内容新颖,起点较高,并加强了数值试验和程序设计环节。通过本课程的学习,使学生熟练掌握各种常用的数值算法的构造原理和过程分析,提高算法设计和理论分析能力,并且能够根据数学模型,提出相应的数值计算方法编制程序在计算机上算出结果。力求使学生掌握应用数值计算方法解决实际问题的常用技巧。 二、教学内容、重点和难点及学时安排: 第一章? 数值计算与误差分析( 4学时) 介绍数值分析的研究对象与特点,算法分析与误差分析的主要内容。 第一节数值问题与数值方法 第二节数值计算的误差分析 第三节数学软件工具----MATLAB 语言简介 重点:误差分析 第二章? 矩阵分析基础( 10学时) 建立线性空间、赋范线性空间、内积空间的概念,为学习以后各章打好基础。矩阵分解是解决数值代数问题的常用方法,掌握矩阵的三角分解、正交分解、奇异值分解,并能够编写算法程序。 第一节? 矩阵代数基础

第二节? 线性空间 第三节? 赋范线性空间 第四节? 内积空间和内积空间中的正交系 第五节矩阵的三角分解 第六节矩阵的正交分解 第七节矩阵的奇异值分解 难点:内积空间中的正交系。矩阵的正交分解。 重点:范数,施密特(Schmidt) 正交化过程,正交多项式,矩阵的三角分解, 矩阵的正交分解。 第三章? 线性代数方程组的数值方法( 12学时) 了解研究求解线性代数方程组的数值方法分类及直接法的应用范围。高斯消元法是解线性代数方程组的最常用的直接法,也是其它类型直接法的基础。在此方法基础上加以改进,可得选主元的高斯消元法、按比例增减的高斯消元法,其数值稳定性更高。掌握用列主元高斯消元法解线性方程组及计算矩阵的行列式及逆,并且能编写算法程序。掌握矩阵的直接三角分解法:列主元LU 分解,Cholesky分解。了解三对角方程组的追赶法的分解形式及数值稳定性的充分条件。掌握矩阵条件数的定义,并能利用条件数判别方程组是否病态以及对方程组的直接方法的误差进行估计。 迭代解法是求解大型稀疏方程组的常用解法。熟练掌握雅可比迭代法、高斯- 塞德尔迭代法及SOR 方法的计算分量形式、矩阵形式,并能在计算机上编出三种方法的程序用于解决实际问题。了解极小化方法:最速下降法、共轭斜量法。迭代法的收敛性分析是研究解线性代数方程组的迭代法时必须考虑的问题。对于上述常用的迭代法,须掌握其收敛的条件。而对一般的迭代法,掌握其收敛性分析的基本方法和主要结果有助于进一步探究新的迭代法。 第一节求解线性代数方程组的基本定理 第二节高斯消元法及其计算机实现 第三节矩阵分解法求解线性代数方程组 第三节? 误差分析和解的精度改进 第四节? 大型稀疏方程组的迭代法 第五节? 极小化方法 难点:列主元高斯消元法,直接矩阵三角分解。迭代法的收敛性,雅可比迭代法,高斯-塞德尔迭代法,SOR 迭代法。

数值分析试题A卷10.1

中国石油大学(北京)2009--2010学年第一学期 研究生期末考试试题A (闭卷考试) 课程名称:数值分析 注:计算题取小数点后四位 一、填空题(共30分,每空3分) 1、 已知x =是由准确数a 经四舍五入得到的近似值,则x 的绝对误差 界为_______________。 2、数值微分公式()() '()i i i f x h f x f x h +-≈ 的截断误差为 。 3、已知向量T x =,求Householder 变换阵H ,使(2,0)T Hx =-。 H = 。 4、利用三点高斯求积公式 1 1 ()0.5556(0.7746)0.8889(0)0.5556(0.7746)f x dx f f f -≈-++? 导出求积分 4 0()f x dx ?的三点高斯求积公式 。 5、4 2 ()523,[0.1,0.2,0.3,0.4,0.5]_____.f x x x f =+-= 若则 6、以n + 1个互异节点x k ( k =0,1,…,n ),(n >1)为插值节点的 Lagrange 插值基函数为l k (x)( k =0,1,…,n ),则 (0)(1)__________.n k k k l x =+=∑ 7、已知3()P x 是用极小化插值法得到的cos x 在[0,4]上的三次插值多项式,则3()P x 的 截断误差上界为3()cos ()R x x P x =-≤_________.

8、已知向量(3,2,5)T x =-,求Gauss 变换阵L ,使(3,0,0)T Lx =。L =_________. 9、设3 2 ()(7)f x x =-, 给出求方程()0f x =根的二阶收敛的迭代格式_________。 10、下面M 文件是用来求解什么数学问题的________________________. function [x,k]=dd (x0) for k=1:1000 x=cos (x0); if abs(x-x0)<, break end x0=x; end 二、(15分)已知矛盾方程组Ax=b ,其中11120,1211A b ???? ????==???????????? , (1)用施密特正交化方法求矩阵A 的正交分解,即A=QR 。 (2)用此正交分解求矛盾方程组Ax=b 的最小二乘解。 三、(10分)已知求解线性方程组Ax=b 的分量迭代格式 1 (1) (1) ()1 +1 /, 121,,i n k k k i i ij j ij j ii j j i x b a x a x a i n n -++===-- =-∑∑(),, (1)试导出其矩阵迭代格式及迭代矩阵; (2)若11a A a ?? = ??? ,推导上述迭代格式收敛的充分必要条件。 四、(15分)(1)证明对任何初值0x R ∈,由迭代公式11 1sin ,0,1,2, (2) k k x x k +=+ = 所产生的序列{}0k k x ∞ =都收敛于方程1 1sin 2 x x =+ 的根。 (2)迭代公式11 21sin ,0,1,2, (2) k k k x x x k +=-- =是否收敛。 五、(15分)用最小二乘法确定一条经过原点(0,0)的二次曲线,使之拟合下列数据

硕士研究生数值分析试卷

数值分析(研究生,2008-12-15) 1.(10分)求函数???≤≤++<≤-+=1 0,101,1sin )(2x x x x x x f 在区间[-1,1]上的最佳平方逼近式 x e a x a a x 210)(++=φ。 2.(15分)利用乘幂法计算下列矩阵的主特征值和相应的特征向量 ???? ??????----110141012,初始向量为T x ]0,0,1[0=(要求结果有三位有效数字)。同时计算该矩阵的1-条件数和谱条件数。

3.(15分)已知函数x x f sin )(=在36.0,3 4.0,32.0210===x x x 处的值分别为352274.0,333487.0,314567.0210===y y y 。用Lagrange 插值多项式对3167.0=x 的函数值进行近似计算,并估计近似计算的误差界。

4.(15分)用Newton 迭代法求方程0ln 2=+x x 在区间(0,2 π)内的解,选择你认为合适的初始点,计算方程的根,使得近似解具有四位有效数字。请从理论上估计达到所需精度所需的迭代次数。

5.(15分)用Gauss-Seidel 迭代法解方程组 ?????? ????-=????????????????????---542834*********x x x 取初始近似向量0[0,0,0]T x =,估计达到4位有效数字需要的迭代次数,并实际计算之。就该具体问题分析计算过程中总的乘除法计算量。

6. (10分)应用拟牛顿法解非线性方程组 ?????=-+=-+. 12,2322112221x x x x x x 取T x ]1,0[)0(= ,终止容限210-=ε。 7.(10分) 求解矛盾方程组 ???????=++=++=++=++2 32328.12221321321 321321x x x x x x x x x x x x

数值分析期末试题

一、(8分)用列主元素消去法解下列方程组: ??? ??=++-=+--=+-11 2123454 321321321x x x x x x x x x 二、(10分)依据下列数据构造插值多项式:y(0)=1,y(1)= —2,y '(0)=1, y '(1)=—4 三、(12分)分别用梯形公式和辛普生公式构造 复化的梯形公式、复化的辛普生公式并利用复化的梯形公式、复化的辛普生公式计算下列积分: ? 9 1dx x n=4 四、(10分)证明对任意参数t ,下列龙格-库塔方法是二阶的。 五、(14分)用牛顿法构造求c 公式,并利用牛顿法求115。保留有效数字五位。 六、(10分)方程组AX=B 其中A=????????? ?10101a a a a 试就AX=B 建立雅可比迭代法和高斯-赛德尔迭代法,并讨论a 取何值时 迭代收斂。 七、(10分)试确定常数A,B,C,a,使得数值积分公式?-++-≈2 2 ) (}0{)()(a Cf Bf a Af dx x f 有尽可能多的 代数精确度。并求该公式的代数精确度。 八、{6分} 证明: A ≤ 其中A 为矩阵,V 为向量. 第二套 一、(8分)用列主元素消去法解下列方程组: ??? ??=++=+-=+3 2221 43321 32132x x x x x x x x 二、(12分)依据下列数据构造插值多项式:y(0)=y '(0)=0, y(1)=y '(1)= 1,y(2)=1 三、(14分)分别用梯形公式和辛普生公式构造 复化的梯形公式、复化的辛普生公式,并利用复化的梯形公式、 复化的辛普生公式及其下表计算下列积分: ?2 /0 sin πxdx ????? ? ? -+-+=++==++=+1 3121231)1(,)1(() ,(),()(2 hk t y h t x f k thk y th x f k y x f k k k h y y n n n n n n n n

硕士研究生数值分析试卷

数值分析(研究生,2008-12-15) ( 分)求函数???≤≤++<≤-+=1 0,101,1sin )(2x x x x x x f 在区间?? , 上的最佳平方逼近式 x e a x a a x 210)(++=φ。 .( 分)利用乘幂法计算下列矩阵的主特征值和相应的特征向量 ???? ??????----110141012,初始向量为T x ]0,0,1[0=(要求结果有三位有效数字)。同时计算该矩阵的 条件数和谱条件数。

( 分)已知函数x x f sin )(=在36.0,34.0,32.0210===x x x 处的值分别为352274.0,333487.0,314567.0210===y y y 。用????????插值多项式对3167.0=x 的函数值进行近似计算,并估计近似计算的误差界。

( 分)用??????迭代法求方程0ln 2=+x x 在区间( ,2 π)内的解,选择你认为合适的初始点,计算方程的根,使得近似解具有四位有效数字。请从理论上估计达到所需精度所需的迭代次数。

?( 分)用??◆????????●迭代法解方程组 ?????? ????-=????????????????????---542834*********x x x 取初始近似向量0[0,0,0]T x =,估计达到 位有效数字需要的迭代次数,并实际计算之。就该具体问题分析计算过程中总的乘除法计算量。

? ( 分)应用拟牛顿法解非线性方程组 ?????=-+=-+. 12,2322112221x x x x x x 取T x ]1,0[)0(= ,终止容限210 -=ε。 ( 分) 求解矛盾方程组 ???????=++=++=++=++2 32328 .12221 321321321321x x x x x x x x x x x x

数值分析整理版试题及复习资料

例1、 已知函数表 求()f x 的Lagrange 二次插值多项式和Newton 二次插值多项式。 解: (1) 插值基函数分别为 ()()()()()()()()()() 1200102121()1211126 x x x x x x l x x x x x x x ----= ==-------- ()()()()()()()() ()()021******* ()1211122x x x x x x l x x x x x x x --+-= ==-+---+- ()()()()()()()()()()0122021111 ()1121213 x x x x x x l x x x x x x x --+-= ==-+--+- 故所求二次拉格朗日插值多项式为 () ()()()()()()()()()()2 20 2()11131201241162314 121123537623k k k L x y l x x x x x x x x x x x x x ==?? =-? --+?-+-+?+-????=---++-=+-∑ (2)一阶均差、二阶均差分别为

[]()()[]()()[][][]010********* 011201202303 ,11204 ,412 3 4,,5 2,,126 f x f x f x x x x f x f x f x x x x f x x f x x f x x x x x ---===-----= = =----=== --- 故所求Newton 二次插值多项式为 ()()[]()[]()() ()()()20010012012,,,35 311126537623P x f x f x x x x f x x x x x x x x x x x x =+-+--=-+ +++-=+- 例2、 设2 ()32f x x x =++,[0,1]x ∈,试求()f x 在[0, 1]上关于()1x ρ=,{} span 1,x Φ=的最佳平方逼近多项式。 解: 若{}span 1,x Φ=,则0()1x ?=,1()x x ?=,且()1x ρ=,这样,有 ()()()()()()()()1 1 200110 1 1 2011000 1 210 1 ,11, ,3 1 23 ,,, ,3226 9,324 dx x dx xdx f x x dx f x x x dx ??????????==== ====++= =++= ????? 所以,法方程为 011231261192 34a a ??????????=?????????? ?????????? ,经过消元得012311 62110123a a ??? ???????=???????????????????? 再回代解该方程,得到14a =,011 6a =

研究生《数值分析》练习题

硕士研究生 《数值分析》练习题 一、判断题 1、用Newton 切线法求解非线性线性方程可以任选初值。 ( ) 2、求解非线性线性方程,Newton 切线法比弦截法迭代次数多。 ( ) 3、若n n A R ?∈非奇异,用Jacobi 迭代法求解线性方程组Ax b =必收敛。( ) 4、Lagrange 插值法与Newton 插值法得到同一个插值多项式。 ( ) 二、填空题 1、近似数 3.14108937a =关 于π具 位有效数字。 2、双点弦截法具有 阶收敛速度。 3、求方程x x e =根的单点弦截法迭代公式是 。 4、设2112A ?? = ? ?? ? ,则()A ρ= 。 5、若(),0,1,2,3i l x i =是以01231,3,,x x x x ==为插值节点的Lagrange 插值基函数,则()()3 3012i i i x l =-=∑ 。 6、由下数据表确定的代数插值多项式的不超过 次。 7、若()8754321f x x x x =+-+,则差商[]0,1,2,,8f = 。 8、拟合三点()()()0,1,1,3,2,2A B C 的 直线是y = 。 三、分析与计算题 1、设()14,2,3515T A x -??==-?? -?? ,求∞=,2,1,,p x A p p 和()1A cond 。

2、1001012,20253A x -???? ? ? == ? ? ? ?-???? ,试计算p p x A ,,p=1,2,∞,和1)(A c o n d 。 3、线性方程组,0Ax b b =≠,用Jacobi 迭代法是否收敛,为什么?其中 122111221A -?? ?=-- ? ?--?? 。 4、线性方程组,0Ax b b =≠,用Jacobi 迭代法是否收敛,为什么?其中 2-11=11111-2A ?? ???? ???? 。 5、已知函数表如下: ⑴ ()111.75ln11.75L ≈、估计截断误差并说明结果有几位有效数字; ⑵ ()211.75ln11.75N ≈、估计截断误差并说明结果有几位有效数字。 6、已知函数表 如下: ⑴用Lagrange 插值法求ln 0.55的近似值()10.55N 、估计截断误差并说明结果的有效数字; ⑵用Newton 插值法求ln 0.55的近似值()20.55N 、估计截断误差并说明结果的有效数字。 7、已知数据如下,求满足条件的Hermite 插值多项式。

研究生数值分析试卷

1 I(a,b) 2 ax 2 b x dx 2005~2006学年第一学期硕士研究生期末考试试题(A 卷) 科目名称:数值分析 学生所在院: ________ 学号: ________ 姓名: ______ 注意:所有的答题内容必须答在答题纸上,凡答在试题或草稿纸上的一律无效。 一、 (15分)设求方程12 3x 2cosx 0根的迭代法 / 2 X ki 4 cosx k 3 (1) 证明对X o R ,均有lim X k x *,其中X *为方程的根. k (2) 此迭代法收敛阶是多少?证明你的结论. 二、 (12分)讨论分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解下列方程组的 收敛性。 x 1 2x 2 2x 3 1, X 1 X 2 X 3 1, 2x 1 2x 2 x 3 0. 0 0a 非病态的。(范数用HI ) 求f (X )的Hermite 插值多项式H 3(x ),并给出截断误差R (x ) f (x ) H 3(x ) 五、(10分)在某个低温过程中,函数 y 依赖于温度x (T )的试验数据为 已知经验公式的形式为 y ax bx 2,试用最小二乘法求出 a , b 、(8分)若矩阵A 2a a 0 0 a 0,说明对任意实数a 0,方程组AX b 都是 四、(15六、(12分)确定常数 a ,b 的值,使积分

、(15分)设求方程 12 3x 2cosx 0根的迭代法 取得最小值。 七、(14分)已知Legendre 勒让德)正交多项式L n (x )有递推关系式: L o (x) 1, L i (x) x (n 1, 2,) 试确定两点的咼斯一勒让德(G — L )求积公式 1 1 f (x )dx 入仁花)A 2f (x 2) 的求积系数和节点,并用此公式近似计算积分 1 2 一 e x dx 1 八、(14分)对于下面求解常微分方程初值冋题 dx f (x,y )的单步法: y (x 。) y 。 1 1 y n 1 y n h(?k 1 - k 2) k 1 f(X n ,y n ) k 2 f(X n h, y n hkj (1) 验证它是二阶方法; (2) 确定此单步法的绝对稳定域。 2005~2006学年第一学期硕士研究生期末考试试题(B 卷) 科目名称:数值分析 学生所在院: _______ 学号: _________ 姓名: ______ 注意:所有的答题内容必须答在答题纸上,凡答在试题或草稿纸上的一律无效。 一、(12分)讨论分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解下列方程组的 收敛性。 X 1 2x 2 2x 3 1, X 1 X 2 X 3 1, 2x 1 2x 2 x 3 0. L n 1(X ) 2n 1 n 1 xL n (x) L n 1(X )

2019年数值分析第二学期期末考试试题与答案A

卷)期末考试试卷(A2007学年第二学期考试科目:数值分析分钟考试时间:120 年级专业学号姓 名 题号一2二三0四总分 分)分,共10一、判断题(每小题210001?n)( 1. 用计算机求时,应按照从小到大的顺序相加。1000n1n?219992001?为了减少误差2. ,应将表达式进行计算。(改写为)19992001?) ( 3. 用数值微分公式中求导数值时,步长越小计算就越精确。) 4. 采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。(系数矩阵及其演变方式有用迭代法解线性方程组时,5. 迭代能否收敛与初始向量的选择、) (关,与常数项无关。 分)二、填空题(每空2分,共36_________. ________,相对误差限为已知数a的有效数为0.01,则它的绝对误差限为1. 0?110??????????xA?Ax,0?21,x??5A?_____. 则设______,_____,2. ????21?????1?130????53f(x)?2x?4x?5x,f[?1,1,0]?f[?3,?2,?1,1,2,3]? 3. 已知则, . 331?)?Af(0)?Af(f(x)dx?Af(?)的代数精度尽量高,应使4. 为使求积公式321331?A?A?A?,此时公式具有,,次的代数精度。312 ?nA)(A的关系是 5. A阶方阵的谱半径与它的任意一种范数. (k?1)(k)BAX??N(k?XMX?0,1,2,)产时,使迭代公式用迭代法解线性方程组6. ??)k(X . 生的向量序列收敛的充分必要条件是

AX?BAL和上三角矩7. 使用消元法解线性方程组系数矩阵时,可以分解为下三角矩阵1 4?2??BAX?.A?LUU?A,则阵若采用高斯消元法解的乘积,即,其中??21??L?U?AX?B,则,______________;若使用克劳特消元法解_______________u?lu BAX?的大小关系为_____(选填:则____;若使用平方根方法解>与,,111111<,=,不一定)。 ??x?yy?8. 以步长为1的二阶泰勒级数法求解初值问题的数值解,其迭代公式为 ?y(0)?1?___________________________. 三、计算题(第1~3、6小题每题8分,第4、5小题每题7分,共46分) 32?x01??3x?xf(x)?2)(1, 1.在区间为初值用牛顿迭代法求方程内的根,要求以0证明用牛顿法解此方程是收敛的;(1),xx,计算结果(2)给出用牛顿法解此方程的迭代公式,并求出这个根(只需计算21位)。取到小数点后4 2 2.给定线性方程组 x?0.4x?0.4x?1?312?0.4x?x?0.8x?2?321?0.4x?0.8x?x?3?312(1)分别写出用Jacobi和 Gauss-Seidel迭代法求解上述方程组的迭代公式; (2)试分析以上两种迭代方法的敛散性。

相关主题
文本预览
相关文档 最新文档