当前位置:文档之家› 基因工程应用——抗病毒

基因工程应用——抗病毒

基因工程应用——抗病毒
基因工程应用——抗病毒

讨论为什么植物转入病毒外壳蛋白(coat protein, CP)基因或病毒复制酶基因就具备抗病性,本人开始也没想明白,后来请在大学的同学帮忙才查到,欢迎大家补充!

(1)病毒外壳蛋白(coat protein, CP)基因:在植物中表达病毒外壳蛋白基因可以阻止病毒的侵染或症状的产生。

病毒外壳蛋白的抗性机理:一种假说认为,当入侵病毒的裸露核酸进入植物细胞后,它们立即被细胞中的自由CP所重新包裹,从而阻止了入侵病毒核酸的翻译和复制。在离体条件下,附加自由CP能够抑制末装配病毒的翻译的实验结果支持了上述假说;另一假说认为,抗性机制是在CP水平上抑制病毒脱壳,此说法最有力的证据是转基因植株可抗完整病毒的侵染.但不能抵御裸露病毒RNA的入侵;还有一种观点认为病毒外壳蛋白的抗性机制不是外壳蛋白在起作用,而可能是它的RNA转录物与入侵病毒RNA之间的相互作用

(2)病毒复制酶基因:RNA病毒(如烟草花叶病毒)的复制酶是依赖于RNA 的RNA聚合酶。病毒复制酶一般是在病毒核酸进入寄主细胞并结合到寄主核糖体之后形成的。在植物中表达不完整的病毒复制酶基因可以显著提高植物对病毒的抗性,作用机制还不十分清楚,可能与基因转录后沉默有关。

下面是文献:

植物抗病毒基因工程

植物病毒病难以防治已成为植物界的“癌症”,给全球农业生产造成巨大的损失。有效地防治植物病毒病,减少经济损失,满足日益增长的世界人口需求。是农业生产当务之急。病毒分子生物学,植物基因工程的迅速发展,为筛选培育抗病、优质、丰产的新植物开辟了广阔的前景。自1986年,全球范围内兴起了多种利用分子生物学及基因工程研究成果防治植物病毒病害的策略,并成功地培育筛选出多种抗病毒的工程植物。

1.病毒外壳蛋白介导的基因工程抗病性

外壳蛋白是形成病毒颗粒的结构蛋白,它的功能是将病毒基因组核酸包被起来,保护核酸;与宿主互相识别,决定宿主范围;参与病毒的长距离运输等。1986年,美国的Beachy实验室的Powell-Abel等第一次将烟草花叶病毒外壳蛋白(TMV-Cp)基因插入修饰过的农杆菌质粒中,并置于花椰菜花叶病毒(CaMV)35S启动子下,经农杆菌侵染而将TMV-Cp基因转入烟草,并在烟草中表达TMV-Cp,分子生物学检测表明TMV-Cp基因已整合到烟草的基因组中,并能稳定地遗传给子代,在转基因烟草中TMV-Cp表达量占叶蛋白0.1%左右。

攻毒试验表明:转基因烟草能够抑制TMV的复制,在一定程度上降低或阻止TMV 的系统侵染;并延迟发病12~30天。这一突破性的研究成果标志着植物抗病毒基因工程的诞生。自此科学家继续用黄瓜花叶病毒(CMV),马铃薯病毒X和Y,大豆花叶病毒(SMV),苜蓿花叶病毒(AiMV)等病毒的外壳蛋白基因导入植物体后,均得到类似的实验结果,使转基因植物获得对该病毒的抗性。至今世界各地科学家已在15个病毒组中的30多种病毒中,证实了由病毒外壳蛋白介导的抗病性,许多抗性工程植物相继进入大田试验。目前认为外壳蛋白介导的抗病性是比较成熟的植物抗病毒基因工程策略,有人认为其机制是外壳蛋白在转基因植物中的积累干扰了病毒脱衣壳,从而抑制了病毒在植物体中的复制,转运与积累,但许多实验结果预示其机制的复杂性。

2.复制酶介导的抗病性

复制酶即特异性依赖于病毒RNA的RNA多聚酶。是病毒基因组编码的自身复制不可缺少的部分,特异地合成病毒的正负链RNA。1990年Golemboski等报道他们将TMVU1株编码的复制酶的一部分基因序列,即54kD蛋白基因转入烟草中得到的工程植株用很高浓度的TMVU1(500μg/mL)及TMV RNA

(300μg/mL)接种时,均表现出很高的抗性,比一般转外壳蛋白基因的植物介导的植物抗病性高得多。后来豌豆早枯病毒54kD的蛋白基因和CMVFny RNA2编码的切去活性中心部位GDD(Gly-Asp-Asp)的复制酶部分基因片段转入烟草,均获得了高抗的工程植物。此外在马铃薯病毒X和Y中也报道了同样成功的研究结果。转入的这些基因均为切除了复制酶活性中心部位GDD核苷酸序列,大多数人认为表达的这些不稳定蛋白产物会干扰病毒复制过程中复制酶复合体的形成及其功能的行使,从而使工程植株具有抗病性。复制酶策略很有应用前景。

3.卫星RNA介导的抗病性

卫星RNA是独立于病毒基因组之外,依赖于其辅助病毒复制的小分子RNA,是病毒分子寄生物。我国田波实验室自1981年首次在国际上开展了利用卫星RNA防治病毒病害的研究工作,结果表明黄瓜花叶病毒(CMV)卫星RNA作为生物防治因子能有效地防治由强毒株系CMV引起的严重病害。1986年英国Baulcombe等首次将CMV I-17N卫星RNA以双联体基因形式转入烟草,并得到抗CMV的工程植物。此后陆续将烟草环斑病毒和CMV的卫星RNA转入烟草和番茄中并得到抗病植株。一般认为由卫星RNA介导的抗病机制是卫星RNA 与病毒RNA竞争复制酶,从而干扰病毒基因组的复制,使表达卫星RNA工程植株得到保护。因具卫星RNA的病毒数量很少,使卫星RNA介导的抗病性的应用受到限制。

4.反义RNA和核酶策略

反义RNA对基因表达具有一定的抑制作用,尤其在细菌中,与转录起始区互补的反义RNA最为有效。在真核生物中,与3′-末端序列互补的反义RNA有一定的抑制作用。Baulcombe等1987年和Cuozzo等1988年分别得到烟草环斑病毒的4个基因组RNA的反义序列和CMV-Cp反义序列的转基因植株。转基因工程株未获得对病毒的抗性或只表现微弱的抗性。Day等1991和Lindo等1992分别在双生病毒番茄金黄叶病毒和烟草蚀纹病毒上得到转反义RNA的抗性烟草。

核酶是一种高效特异的RNA内切酶,其结构包括一个几乎完全相同的17个高度保守核苷酸序列,其中有3对碱基配对形成的茎和环结构,整个结构很象一个锤头,具自我切割的活性,锤头结构是自身切割活性的结构基础。只要已知某一RNA的序列,就可以设计出用于不同目的核酶进行特异地切割。因为植物病毒大多数是RNA病毒,并且许多已被测序,可以设计出特定的核酶,切割病毒RNA基因,从而破坏其生存的功能,达到抗病毒的目的。目前由核酶介导的抗病毒策略也成功的报道。但是也存在一定的危险性,核酶也有可能将生物体内的有用的RNA作为耙子进行切割,破坏正常细胞的生理功能。以反义RNA和核酶介导的抗性还有待于进一步的研究。

5.复合基因策略

由外壳蛋白基因,缺损复制酶基因和卫星RNA介导的抗病性是比较成熟的研究策略。但这些工程植株抗病性有一定的局限性,例如转基因植物只抗一种病毒或抗亲缘关系较近的病毒。自然界中往往是几种病毒复合侵染植物。1990年Lawson将马铃薯病毒X和Y的外壳蛋白基因串联后转入马铃薯中,使转基因马铃薯表现出对这两种病毒的抗性。而且抗性高于转单一基因的对照植株。

6.其它抗病毒策略

封闭和干扰病毒的移动蛋白。病毒侵染植物体后,可以移动进行系统侵染,这种移动被认为是通过病毒编码的移动蛋白与胞间联丝相互作用,打开胞间联丝通道而进行的。封闭和干扰移动蛋白就可以限制病毒的扩散侵染。

植物抗体基因策略。1989年,Hiatt等将分泌特异性抗体的杂交瘤中得到的抗体的重链和轻链基因片段转入烟草,在转化株中表达了抗体的重链和轻链,通过表达重链和轻链的单株杂交,其后代体内得到完整的具有免疫活性的抗体。目前许多抗体基因在转基因植物体中得到表达,并用于防治植物病毒病。这表明动物的免疫系统同样能够在植物体内发挥抗病毒的作用。

缺陷RNA策略。Marsh等1991年在原生质体体系中发现缺陷型的雀麦花叶病毒RNA可以干扰野生病毒的增殖。缺陷干扰RNA在动物病毒中普遍存在,然而植物病毒中仅存在于Tombvirus和Carmovirus两个病毒组中,能干扰辅助

病毒的复制,增强或减弱辅助病毒的症状由缺陷干扰RNA介导的抗病性还在探索中。

另外植物体自身的一些抗病毒的基因也被克隆,并用于抗病毒植物基因工程中。

目前随着植物分子生物学,植物生理学,病毒分子生物学的发展以及基因工程技术的不断完善,将会出现更有效更安全的抗植物病毒的策略。

(程英豪、王继伟,生物学通报,1998年第33卷第5期,P.5)

转病毒外壳蛋白和病毒复制酶基因如何产生抗病植物

植物抗病毒基因工程

植物病毒病难以防治已成为植物界的“癌症”,给全球农业生产造成巨大的损失。有效地防治植物病毒病,减少经济损失,满足日益增长的世界人口需求。是农业生产当务之急。病毒分子生物学,植物基因工程的迅速发展,为筛选培育抗病、优质、丰产的新植物开辟了广阔的前景。自1986年,全球范围内兴起了多种利用分子生物学及基因工程研究成果防治植物病毒病害的策略,并成功地培育筛选出多种抗病毒的工程植物。

1.病毒外壳蛋白介导的基因工程抗病性

外壳蛋白是形成病毒颗粒的结构蛋白,它的功能是将病毒基因组核酸包被起来,保护核酸;与宿主互相识别,决定宿主范围;参与病毒的长距离运输等。1986年,美国的Beachy实验室的Powell-Abel等第一次将烟草花叶病毒外壳蛋白(TMV-Cp)基因插入修饰过的农杆菌质粒中,并置于花椰菜花叶病毒(C aMV)35S启动子下,经农杆菌侵染而将TMV-Cp基因转入烟草,并在烟草中表达TMV-Cp,分子生物学检测表明TMV-Cp基因已整合到烟草的基因组中,并能稳定地遗传给子代,在转基因烟草中TMV-C

p表达量占叶蛋白0.1%左右。攻毒试验表明:转基因烟草能够抑制TMV的复制,在一定程度上降低或阻止TMV的系统侵染;并延迟发病12~30天。这一突破性的研究成果标志着植物抗病毒基因工程的诞生。自此科学家继续用黄瓜花叶病毒(CMV),马铃薯病毒X和Y,大豆花叶病毒(SMV),苜蓿花叶病毒(A iMV)等病毒的外壳蛋白基因导入植物体后,均得到类似的实验结果,使转基因植物获得对该病毒的抗性。至今世界各地科学家已在15个病毒组中的30多种病毒中,证实了由病毒外壳蛋白介导的抗病性,许多抗性工程植物相继进入大田试验。目前认为外壳蛋白介导的抗病性是比较成熟的植物抗病毒基因工程策略,有人认为其机制是外壳蛋白在转基因植物中的积累干扰了病毒脱衣壳,从而抑制了病毒在植物体中的复制,转运与积累,但许多实验结果预示其机制的复杂性。

2.复制酶介导的抗病性

复制酶即特异性依赖于病毒RNA的RNA多聚酶。是病毒基因组编码的自身复制不可缺少的部分,特异地合成病毒的正负链RNA。1990年Golemboski等报道他们将TMVU1株编码的复制酶的一部分基因序列,即54kD蛋白基因转入烟草中得到的工程植株用很高浓度的TMVU1(500μg/mL)及TMV RNA(30 0μg/mL)接种时,均表现出很高的抗性,比一般转外壳蛋白基因的植物介导的植物抗病性高得多。后来豌豆早枯病毒54kD的蛋白基因和CMVFny RNA2编码的切去活性中心部位GDD(Gly-Asp-Asp)的复制酶部分基因片段转入烟草,均获得了高抗的工程植物。此外在马铃薯病毒X和Y中也报道了同样成功的研究结果。转入的这些基因均为切除了复制酶活性中心部位GDD核苷酸序列,大多数人认为表达的这些不稳定蛋白产物会干扰病毒复制过程中复制酶复合体的形成及其功能的行使,从而使工程植株具有抗病性。复制酶策略很有应用前景。

3.卫星RNA介导的抗病性

卫星RNA是独立于病毒基因组之外,依赖于其辅助病毒复制的小分子RNA,是病毒分子寄生物。我国田波实验室自1981年首次在国际上开展了利用卫星RNA防治病毒病害的研究工作,结果表明黄瓜花叶病毒(CMV)卫星RNA作为生物防治因子能有效地防治由强毒株系CMV引起的严重病害。1986年英国Baulcombe等首次将CMV I-17N卫星RNA以双联体基因形式转入烟草,并得到抗CMV的工程植物。此后陆续将烟草环斑病毒和CMV的卫星RNA转入烟草和番茄中并得到抗病植株。一般认为由卫星RNA 介导的抗病机制是卫星RNA与病毒RNA竞争复制酶,从而干扰病毒基因组的复制,使表达卫星RNA工程植株得到保护。因具卫星RNA的病毒数量很少,使卫星RNA介导的抗病性的应用受到限制。

4.反义RNA和核酶策略

反义RNA对基因表达具有一定的抑制作用,尤其在细菌中,与转录起始区互补的反义RNA最为有效。在真核生物中,与3′-末端序列互补的反义RNA有一定的抑制作用。Baulcombe等1987年和Cuozzo等1 988年分别得到烟草环斑病毒的4个基因组RNA的反义序列和CMV-Cp反义序列的转基因植株。转基因工程株未获得对病毒的抗性或只表现微弱的抗性。Day等1991和Lindo等1992分别在双生病毒番茄金黄叶病毒和烟草蚀纹病毒上得到转反义RNA的抗性烟草。

核酶是一种高效特异的RNA内切酶,其结构包括一个几乎完全相同的17个高度保守核苷酸序列,其中有3对碱基配对形成的茎和环结构,整个结构很象一个锤头,具自我切割的活性,锤头结构是自身切割活性的结构基础。只要已知某一RNA的序列,就可以设计出用于不同目的核酶进行特异地切割。因为植物病毒大多数是RNA病毒,并且许多已被测序,可以设计出特定的核酶,切割病毒RNA基因,从而破坏其生存的功能,达到抗病毒的目的。目前由核酶介导的抗病毒策略也成功的报道。但是也存在一定的危险性,核酶也有可能将生物体内的有用的RNA作为耙子进行切割,破坏正常细胞的生理功能。以反义RNA和核酶介导的抗性还有待于进一步的研究。

5.复合基因策略

由外壳蛋白基因,缺损复制酶基因和卫星RNA介导的抗病性是比较成熟的研究策略。但这些工程植株抗病性有一定的局限性,例如转基因植物只抗一种病毒或抗亲缘关系较近的病毒。自然界中往往是几种病毒复合侵染植物。1990年Lawson将马铃薯病毒X和Y的外壳蛋白基因串联后转入马铃薯中,使转基因马铃薯表现出对这两种病毒的抗性。而且抗性高于转单一基因的对照植株。

6.其它抗病毒策略

封闭和干扰病毒的移动蛋白。病毒侵染植物体后,可以移动进行系统侵染,这种移动被认为是通过病毒编码的移动蛋白与胞间联丝相互作用,打开胞间联丝通道而进行的。封闭和干扰移动蛋白就可以限制病毒的扩散侵染。

植物抗体基因策略。1989年,Hiatt等将分泌特异性抗体的杂交瘤中得到的抗体的重链和轻链基因片段转入烟草,在转化株中表达了抗体的重链和轻链,通过表达重链和轻链的单株杂交,其后代体内得到完整的具有免疫活性的抗体。目前许多抗体基因在转基因植物体中得到表达,并用于防治植物病毒病。这表明动物的免疫系统同样能够在植物体内发挥抗病毒的作用。

缺陷RNA策略。Marsh等1991年在原生质体体系中发现缺陷型的雀麦花叶病毒RNA可以干扰野生病毒的增殖。缺陷干扰RNA在动物病毒中普遍存在,然而植物病毒中仅存在于Tombvirus和Carmovirus两个病毒组中,能干扰辅助病毒的复制,增强或减弱辅助病毒的症状由缺陷干扰RNA介导的抗病性还在探索中。

另外植物体自身的一些抗病毒的基因也被克隆,并用于抗病毒植物基因工程中。

目前随着植物分子生物学,植物生理学,病毒分子生物学的发展以及基因工程技术的不断完善,将会出现更有效更安全的抗植物病毒的策略。

(程英豪、王继伟,生物学通报,1998年第33卷第5期,P.5)抗病毒植物基因工程产生的的分子基础

1986年,Powell Abel等报道,通过转TBSV基因植物基因工程技术将烟草花叶病毒(TMV)外壳蛋白基因转化烟草,获得高表达外壳蛋白的转基因烟草植株。这些转基因烟草表现出对TMV侵染的抗性。这一工作首次证明,表达病毒外壳蛋白的转基因植物可获得基因工程保护作用,由此确立了抗病毒植物基因工程这一新领域。自此以后,人们不断分离来源于病毒等的基因,设计并试验了许多不同的策略以研究通过植物基因工程技术获得抗病毒工程植物,为植物病毒病的防治开辟了一条崭新的途径。

交叉保护是植物病毒学中的一个古老的命题。交叉保护这一现象由Mckinney等于1929年首次报道的。所谓交叉保护是指预先感染了温和株系病毒的田间作物(如烟草、番茄、苹果等)可以防御与之亲源关系相近的强毒株系病毒的侵染。以后在类病毒中也发现了这一现象。八十年代初,人们曾一度利用弱毒株系来防治生产中的某些重要病毒病,并取得了一定的防效。

那么对植物病毒交叉保护作用而言,究竟是病毒的外壳蛋白(Coat Protein,CP)还是RNA或是两者共同提供了交叉保护的分子基础?早在1976年Zaitlin等以TMV弱毒株系病毒为材料,研究交叉保护形成的原因。这些弱毒株系只能产生缺损CP或根本不能合成CP,预先接种这些株系病毒的植物再接种亲源关系较近的病毒时,就能够产生交叉保护作用。然而Sherwood和Fulton(1982)的结果表明CP是交叉保护作用的基础。随后的实验证明由CP基因缺损的TMV株系产生的保护作用是非特异性的,因为芜菁花叶病毒的侵染也被抑制;而CP基因正常的株系产生的保护作用只特异于亲源关系相近的病毒。事实上,交叉保护的机制可能不止一种。一个推测是,交叉保护作用是以病毒的外壳蛋白为基础的,很可能预先感染弱毒株系的病毒所合成的外壳蛋白阻止了强毒株系病毒(后接种)的脱衣壳,或者通过

包装作用将强毒株系病毒的基因组又重新包被起来。另外两种病毒之间存在着正义链之间的抑制作用,或者是两种病毒的复制机制中存在着相互抑制作用。

交叉保护实验虽获得了一些结果,但问题是在这些实验中病毒的复制不可避免。然而,利用分子生物学和遗传转化方法,能够在整个转化植株或某些特殊的组织中表达病毒基因组的特定基因片段,以确定在没有病毒复制的情况下,这些基因是否能够提供交叉保护作用。因此,对于这一研究目的而言,植物基因工程技术提供了一个较为理想的工具与途径。

Haemilton(1980)首先提出了植物基因工程的思想:在转基因植物中表达病毒基因组序列可能是一种防御病毒侵染的途径。在De Zoeten 和Fulton(1975)以及Sherwood 和Fulton(1982)提出的交叉保护机制的基础上,Sequeria 于1984年提出,将CP基因转入到植物体内表达可能会产生保护作用。随后,Beachy于1985年讨论了利用病毒反义序列获得保护作用的可能性。Sanford 和Jhonston同年提出了如下设想:具交叉保护作用的病毒的复制酶可能结合到后感染的强毒病毒RNA中的“复制酶结合位点”(Replicate attachment site),但无复制酶活性,从而阻止了强毒株系病毒复制酶的结合。从上述所提到的设想来看,其理论基础都离不开病毒的交叉保护现象及其作用机制的研究结果这一大背景。

抗病毒植物基因工程的策略

1986年以来,研究者们纷纷利用病毒的基因来培育抗病毒的转基因植物。除CP基因外,主要是将病毒的各种非结构蛋白基因转入植物体内,这些基因包括病毒复制酶、移动蛋白基因、蛋白酶基因、RNA的结合蛋白(RNA-binding protein)基因等。这些基因的转化植物表现出对同种病毒或相近病毒或病毒RNA侵染的高水平抗性。此外,还有其它一些策略也被采用,如致弱卫星RNA、缺损干扰病毒序列(Defective interfering sequence,DI)、病毒缺损蛋白酶、抗病毒的核酶(Ribozymes)、反义RNA或抗体基因等。

在我国,中国科学院微生物所的科研人员率先将病毒的CP基因转入植物,获得了能够稳定遗传的抗病毒烟草、马铃薯、线辣椒、大豆、番木瓜、西瓜等一批转基因植物。其中同时表达TMV CP基因和黄瓜花叶病毒CP基因的转基因烟草对TMV和黄瓜花叶病毒表现很高的抗性,田间试验发现转基因烟草的抗病性能够稳定遗传,并于1993年荣获中国科学院科技

进步一等奖。转马铃薯Y病毒CP基因的马铃薯在云南表现出抗病和增产的效果。转黄瓜花叶病毒CP基因的线辣椒经过多年的田间试验,筛选出抗性高、抗性稳定、品质佳的第六代转基因线辣椒。转马铃薯Y病毒复制酶基因的烟草后代在辽宁烟草病毒病的高发区,表现出高度抗性。进一步研究发现马铃薯Y病毒复制酶基因在转录水平上介导相对广谱抗病性。此外,利用核酶技术,培育了抗类病毒的转基因马铃薯。

基因工程简答题总结

基因工程原理复习题思考题 5、简单叙述同尾酶和同裂酶的差别。 同尾酶:来源不同,识别的序列不同,但能切出相同的粘性末端,连接后不能被相关的酶同时切割。 同裂酶:识别序列相同,切割位点有些相同,有些不同。分完全同裂酶和不完全同裂酶(PS:完全同裂酶:识别位点和切点完全相同。 不完全同裂酶:识别位点相同,但切点不同。) 6、连接酶主要有哪些类型?有何异同点?影响连接酶连接效果的因素主要有哪些? 类型:DNA连接酶和RNA连接酶 异同点: 相同点:都能以DNA为模板,从5'向3'进行核苷酸或脱氧核苷酸的聚合反应。 不同点:DNA聚合酶识别脱氧核糖核苷酸,在DNA复制中起作用;而RNA聚合酶聚合的是核糖核苷酸,在转录中起作用。 7、试分析提高平端DNA连接效率的可能方法。(传说中的网上答案) 1、低温下长时间的连接效率比室温下短时间连接的好。 2、在体系中加一点切载体的酶,只要连接后原来的酶切位点消失。这样可避免载体自连,应该可以大大提高平端连接的效率。 3、足够多的载体和插入片段是最重要的。 4、平端的连接对于离子浓度很敏感 5、尽可能缩小连接反应的体积 6、建议放在四度冰箱连接两天效率更高比14度好 8、基因工程中常用的DNA聚合酶主要有哪些? 1)大肠杆菌DNA聚合酶 2)Klenow fragment 3)T7 DNA聚合酶 4)T4 DNA聚合酶 5)修饰过的T7 DNA聚合酶 6)逆转录酶 7)Taq DNA聚合酶 第四章基因克隆的载体系统 1、作为基因工程载体,其应具备哪些条件? 具有针对受体细胞的亲缘性或亲和性(可转移性); 具有合适的筛选标记; 具有较高的外源DNA的载装能力; 具有多克隆位点(MCS); 具有与特定受体细胞相适应的复制位点或整合位点。 3、载体的类型主要有哪些?在基因工程操作中如何选择载体? 基因工程中常用的载体(vector)主要包括质粒(plasmid)、噬菌体(phage)和病毒(virus)三大类。这些载体均需经人工构建,除去致病基因,并赋予一些新的功能,如有利于进行筛选的标志基因、单一的限制酶切点等。 4、质粒转化原理,影响转化率的因素有哪些?

基因工程及其应用图文稿

基因工程及其应用文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

第2节基因工程及其应用(第1课时)知识链接及考试地位 本知识与“DNA分子的结构与复制”、“基因突变和基因重组”、“DNA 重组技术的基本工具”、“基因工程的基本操作程序”等内容相联系,考试过程中常设计基因工程的原理、基本工具等基础知识,多以个别填空或选择题的形式呈现。 知识回顾 1、DNA分子的结构特点是什么? 2、什么是基因重组? 学习目标 1、简述基因工程的诞生。 2、简述基因工程的原理及技术。要明确基因工程操作的基本步骤和最基本的工具。 重难点 1.教学重点 基因工程的基本原理。 2.教学难点 基因工程的基本原理 新知探究

传统育种的方法一般只能在生物中进行,很难将一种生物的优良性状移植到生物身上。基因工程的出现使人类有可能按照自己的意愿地改变生物,培育出。 一、基因工程的原理 基因工程又叫做或。通俗地说,就是按照人们的意愿,把一种生物的某种基因提取出来,加以,然后放到另一种生物细胞里,地改造生物的遗传性状。基因工程是在DNA上进行的 水平的设计施工,基因的剪刀是指,简称限制酶。其作用特点是一种限制酶只能识别一种序列。基因的针线是 指。目前常用的运载体有、和等。质粒存在于许多以及等生物中,是细胞染色体外能够自主复制的小型分子。 基因工程的操作步骤是:、目的基因与运载体结合,目的基因导入受体细胞、目的基因的和。 二、基因工程的原理、操作对象各是什么? 三、限制性内切酶的分布、特点、作用部位和作用结果如何? 四、作为基因的运载体,需具备哪些条件? 五、DNA连接酶的作用对象、位置和结果如何? 六、基因工程的优点是什么? 七、基因重组与基因工程比较

基因工程原理与技术思考题

Chapter I Introduction 1)什么是基因?基因有哪些主要特点? 基因是一段可以编码具有某种生物学功能物质的核苷酸序列。 ①不同基因具有相同的物质基础.②基因是可以切割的。③基因是可以转移的。④多肽与基因之间存在 对应关系。⑤遗传密码是通用的。⑥基因可以通过复制把遗传信息传递给下一代。 2)翻译并解释下列名词 genetic engineering遗传工程 gene engineering基因工程:通过基因操作,将目的基因或DNA片段与合适的载体连接转入目标生物获得新的遗传性状的操作。 gene manipulation基因操作:对基因进行分离、分析、改造、检测、表达、重组和转移等操作的总称。 recombinant DNA technique重组DNA技术 gene cloning基因克隆:是指对基因进行分离和扩大繁殖等操作过程,其目的在于获得大量的基因拷贝,在技术上主要包括载体构建、大肠杆菌遗传转化、重组子筛选和扩大繁殖等环节。 molecular cloning分子克隆 3)什么是基因工程?简述基因工程的基本过程?p2 p4 4)简述基因工程研究的主要内容?p5 5)简述基因工程诞生理论基础p2和技术准备有哪些p3? 6)基因表达的产物中,氨基酸序列相同时,基因密码子是否一定相同?为什么? 否,密码子简并性 7)举例说明基因工程技术在医学、农业、工业等领域的应用。 医学:人胰岛素和疫苗 农业:抗虫BT农药 工业:工程酿酒酵母

Chapter ⅡThe tools of trade 1)什么是限制性核酸内切酶?简述其主要类型和特点? 是一种核酸水解酶,主要从细菌中分离得到。类型特点p11 2)II型核酸内切酶的基本特点有哪些p12-14?简述影响核酸内切酶活性的因素有哪些 p14? 3)解释限制酶的信号活性?抑制星号活性的方法有哪些? 4)什么是DNA连接酶p15?有哪几类p16?有何不同p16? 5)什么叫同尾酶、同裂酶p12?在基因工程中有何应用价值? 同裂酶:识别位点、切割位点均相同,来源不同。在载体构建方面往往可以取得巧妙的应用。应用较多的同裂酶比如Sma1和Xma1,它们均识别CCCGGG,但前者切后产生钝末 同尾酶:来源各异,识别序列各不相同,但切割后产生相同的粘性末端。由同尾酶(isocaudomer)产生的DNA片段,是能够通过其粘性末端之间的互补作用彼此连接起来的。 6)什么是DNA聚合酶?根据DNA聚合酶使用的模板不同,可将其分为哪两类?各有什么活 性?p17-18 聚合酶:在引物和模板的存在下,把脱氧核苷酸连续地加到双链DNA分子引物链的3‘-OH 末端,催化核苷酸的聚合作用。 ①依赖于DNA的DNA聚合酶 ②依赖于RNA的DNA聚合酶 7)Taq DNA聚合酶:是一种从水生嗜热菌中分离得到的一种耐热的dna聚合酶,具有5-3聚 合酶活性和3-5外切酶活性,在分子中主要用于PCR。 逆转录酶:RNA指导的DNA聚合酶, 8)Klenow片段的特性和用途有哪些?举例说明。p17 9)名词解释:S1核酸酶、核酸外切酶、磷酸化酶激酶、 甲基化酶

基因工程及其应用

基因工程及其应用 一.学习目标 (1)能简述基因工程的基本原理及操作步骤。 (2)能举例说明基因工程在农业、医药等领域的应用。 (3)了解转基因生物及转基因食品安全性。 二.自主学习 (一)基因工程 1.概念:基因工程,又叫做或。通俗地说,就是,把一种生物的某种基因,加以,然后放到,地改造生物的。 2.原理:_____________________。 3.基本工具 (1)基因的“剪刀”:指______________(简称_ _____),具有特异性,即一种限制酶只能识别一种_________的核苷酸序列,并在_______的位点上切割DNA分子,露出。 (2)基因的“针线”:指________ ,它能在__________与________之间形成一定的化学键,将两条DNA片段连接起来,而互补的碱基之间通过_________连接的。 (3)基因的运载体:常用的运载体有质粒、______ 、______ 等。质粒主要存在于许多____ 和_______ 等生物中,其作用是将______送入受体细胞。 质粒:是或外,能的状DNA分子,通常含有,如大肠杆菌中的质粒。 4. 基本步骤 (1)过程:__________→目的基因与运载体结合→将目的基因导入受体细胞→___________。 (2)成功的标志:获得_______________。 (二)基因工程的应用 1.作物育种 人们利用基因工程的方法,获得了___ ___、稳产和具有____ __的农作物,培育出了具有各种__ ____的作物新品种。如:转基因抗虫棉、转基因奶牛等。 2.药物研制 利用基因巩固才方法,能够地生产出、的药品,如、、、、、等等。 3.环境保护 可利用转基因细菌降解______化合物,吸收环境中的______,分解泄漏的_____,处理__ ____等。 (三)转基因生物和转基因食品的安全性 1. 认为转基因生物和转基因食品安全的理由:从化学本质上看,转基因食品的构成与非转

1.3 基因工程的应用

1.3 基因工程的应用 1.举例说出基因工程的应用及取得的丰硕成果。(重点) 2.了解基因工程的进展。3.了解基因工程在农业和医疗等方面的应用。(难点)

一、植物基因工程的成果(阅读教材P17~P20) 植物基因工程技术主要用于提高农作物的抗逆能力,以及改良农作物的品质和利用植物生产药物等方面。 1.抗虫和抗病转基因植物 2. (1)抗逆基因:调节细胞渗透压的基因使作物抗盐碱、抗干旱;鱼的抗冻蛋白基因使作物耐寒;抗除草剂基因使作物抗除草剂。 (2)成果:烟草、大豆、番茄、玉米等。 3.利用转基因改良植物的品质

植物基因工程成果表现 “三抗一优良”,三抗是指“抗虫”“抗病”和“抗逆”,一优良是指转入的优良基因表达的性状表现优良。 二、动物基因工程的前景(阅读教材P20~P21)

三、基因工程药物(阅读教材P21~P23) 1.药物来源:转基因的“工程菌”。 2.成果:重组人胰岛素、细胞因子、抗体、疫苗、激素等。 四、基因治疗(阅读教材P23~P24) 1.概念:把正常基因导入病人体内,使该基因的表达产物发挥功能,从而达到治疗疾病的目的。 2.成果:将腺苷酸脱氨酶基因转入患者淋巴细胞中,治疗复合型免疫缺陷症。 3.方法 (1)体外基因治疗:先从病人体内获得某种细胞,如T淋巴细胞,进行培养。然后,在体外完成基因转移,再筛选成功转移的细胞扩增培养,最后重新输入患者体内。 (2)体内基因治疗:直接向人体组织细胞中转移基因的治病方法。 连一连 判一判

(1)转基因抗虫棉的Bt毒蛋白基因能抗病毒、细菌、真菌。(×) (2)“转基因植物”是指植物体细胞中出现了新基因的植物。(×) 分析:转基因植物是指细胞中被转入了外源基因的植物,并非出现新基因。 (3)(2018·宿迁高二检测)基因工程中,要培育转基因植物和动物,选用的受体细胞都是受精卵。(×) (4)利用工程菌可生产人的胰岛素等某些激素。(√) (5)(2018·绵阳高二期末)直接在患者组织细胞中,进行改造致病基因的方法为体内基因治疗。(×) (6)基因治疗又叫基因诊断。(×) 三种转基因生物的生产过程

《基因工程原理与技术》标准答案及评分标准.0001

精品文档 《基因工程原理与技术》标准答案及评分标准 一、名词解释(本大题共5小题,每题2分,总计10分) 限制性内切酶的Star活性:限制性内切酶的识别和酶切活性一般在一定的温度、离子强度、pH 等条件下才表现最佳切割能力和位点的专一性。如果改变反应条件就会影响酶的专一性和切割效率,称为星号(*)活性。 受体细胞:又称为宿主细胞或寄主细胞等,从试验技术上讲是能摄取外源DNA并使其稳定维持的细胞;从试验目的讲是有应用价值和理论研究价值的细胞 T-DNA是农杆菌侵染植物细胞时,从Ti质粒上切割下来转移到植物细胞的一段DNA 该DNA片段上的基因与肿瘤的形成有关。 克隆基因的表达:指储存遗传信息的基因经过一系列步骤表现出其生物功能的整个过 程。典型的基因表达是基因经过转录、翻译,产生有生物活性的蛋白质的过程。 a -互补:3 -半乳糖苷酶(B -gal)是大肠杆菌lacZ基因的产物,当培养基中的一种色素元(X-gal )被3 -gal切割后,即产生兰色。大肠杆菌的3一半乳糖苷酶由1021个氨基酸构成,只有在四聚体状态下才有活性。大肠杆菌lacZ基因由于a区域缺失,只能编码一种在氨基端截短的多肽,形成无活性的不完全酶,称为a受体;如果载体的lacZ 基因在相反方向缺失,产生在羧基端截短的多肽,这种部分3 -半乳乳糖苷酶也无活性。 但是这种蛋白质可作为a供体。受体一旦接受了供体(在体内或体外),即可恢复3 -半乳糖苷酶的活性,这种现象称为a互补. 由载体产生的a供体能够与寄主细胞产生 的无活性的a受体互作形成一种八聚体,从而恢复3 -半乳糖苷酶的活性。如果培养基 中含有X-gal的诱导物IPTG时,凡是包含有3 -半乳糖苷酶活性的细胞将转变为蓝色,反之不含有这种酶活性的细胞将保持白色。 、填空题(本大题共7小题,每空1分,总计20 分) 1、质粒按自我转移的能力可分为—接合型—质粒和—非接合型—质粒;按复制类型可分为松 弛性质粒和严紧型质粒。 2、为了防止DNA的自身环化,可用碱性磷酸酶除去双链DNA 5'—端的磷酸基团 。 3、人工感受态的大肠杆菌细胞在温度为_0匸—时吸附DNA在温度为_42乜__ 时摄人 DNA 4、仅克隆基因(DNA片段)用途而言,最简单的质粒载体也必需包括三个组成部分: 复制区:含有复制起点__、选择标记:主要是抗性基因 ________ 、__克隆位点:便于外源_ DNA的插入_。另外,一个理想的质粒载体必须具有低分子量。 5、Southern blotting 杂交能够检测外源基因是否整合进受体细胞基因组;外源基 因的转录表达需要通过—northern_杂交或_ RT-PCR_来揭示;而外源基因_____ 翻 译—水平的表达则需通过免疫学检测或Western杂交才能揭示,其使用的探针是 —蛋白质____ 。 6、外源蛋白在大肠杆菌中的表达部位有—细胞质_、_ —周质_、一细胞外 _。 7、Vir区基因的激活信号有三类,它们是—酚类化合物_、_中性糖和酸性糖_、— _ pH 值_。 简答题(本大题共7 小题,总计50 分) 1欢迎下载

精编高一下册《基因工程及其应用》知识点梳理:生物篇

精编高一下册《基因工程及其应用》知识点 梳理:生物篇 1.概念:按照人们的意愿,把一种生物的某种基因提取出来,加以修饰改造,然后放到另一种生物的细胞里,定向地改造生物的遗传性状。 2.原理基因重组 3.工具: A.基因的剪刀:限制性内切酶 ①分布:主要在微生物中。 ②作用特点:特异性,即识别特定核苷酸序列,切割特定切点。 ③结果:产生黏性未端(碱基互补配对)。 B.基因的针线:DNA连接酶 ①连接的部位:磷酸二酯键,不是氢键。 ②结果:两个相同的黏性未端的连接。 C.基因的运载工具:运载体 ①作用:将外源基因送入受体细胞。 ②具备的条件:a、能在宿主细胞内复制并稳定地保存。b、具有多个限制酶切点。

c、有某些标记基因。 ③种类:质粒、噬菌体和动植物病毒。 ④质粒的特点:质粒是基因工程中最常用的运载体。 4.基因操作的基本步骤: ①提取目的基因:人们所需要的特定基因,如人的胰岛素基因、抗虫基因、抗病基因、干扰素基因等 ②目的基因与运载体结合(以质粒为运载体):用同一种限制酶分别切割目的基因和质粒DNA(运载体),使其产生相同的黏性末端,将切割下的目的基因与切割后的质粒混合,并加入适量的DNA连接酶,使之形成重组DNA分子(重组质粒) ③将目的基因导入受体细胞常用的受体细胞:大肠杆菌、枯草杆菌、土壤农杆菌、酵母菌、动植物细胞 ④目的基因检测与表达 检测方法如:质粒中有抗菌素抗性基因的大肠杆菌细胞放入到相应的抗菌素中,如果正常生长,说明细胞中含有重组质粒。 表达:受体细胞表现出特定性状,说明目的基因完成了表达过程。如:抗虫棉基因导入棉细胞后,棉铃虫食用棉的叶片时被杀死;胰岛素基因导入大肠杆菌后能合成出胰岛素等。 5.转基因生物和转基因食品的安全性

基因工程原理练习题及答案

基因工程原理练习题及其答案 一、填空题 1.基因工程是_________年代发展起来的遗传学的一个分支学科。 2.基因工程的两个基本特点是:(1)____________,(2)___________。 3.基因克隆中三个基本要点是:___________;_________和__________。 4.通过比较用不同组合的限制性内切核酸酶处理某一特定基因区域所得到的不同大小的片段,可以构建显示该区域各限制性内切核酸酶切点相互位置的___________。 5.限制性内切核酸酶是按属名和种名相结合的原则命名的,第一个大写字母取自_______,第二、三两个字母取自_________,第四个字母则用___________表示。 6.部分酶切可采取的措施有:(1)____________(2)___________ (3)___________等。 7.第一个分离的限制性内切核酸酶是___________;而第一个用于构建重组体的限制性内切核酸酶是_____________。8.限制性内切核酸酶BsuRI和HaeⅢ的来源不同,但识别的序列都是_________,它们属于_____________。 9.DNA聚合酶I的Klenow大片段是用_____________切割DNA聚合酶I得到的分子量为76kDa的大片段,具有两种酶活性:(1)____________;(2)________________的活性。 10.为了防止DNA的自身环化,可用_____________去双链DNA__________________。 11.EDTA是____________离子螯合剂。 12.测序酶是修饰了的T7 DNA聚合酶,它只有_____________酶的活性,而没有_______酶的活性。 13.切口移位(nick translation)法标记DNA的基本原理在于利用_________的_______和______的作用。 14.欲将某一具有突出单链末端的双链DNA分子转变成平末端的双链形式,通常可采用_________或_______________。15.反转录酶除了催化DNA的合成外,还具有____________的作用,可以将DNA- RNA杂种双链中的___________水解掉。 16.基因工程中有3种主要类型的载体:_______________、_____________、______________。 17.就克隆一个基因(DNA片段)来说,最简单的质粒载体也必需包括三个部分:_______________、_____________、______________。另外,一个理想的质粒载体必须具有低分子量。 18.一个带有质粒的细菌在有EB的培养液中培养一段时间后,一部分细胞中已测 不出质粒,这种现象叫。 19.pBR322是一种改造型的质粒,它的复制子来源于,它的四环素抗性基因来自于,它的氨苄青霉素抗性基因来自于。 20.Y AC的最大容载能力是,BAC载体的最大容载能力是。 21.pSCl01是一种复制的质粒。 22.pUCl8质粒是目前使用较为广泛的载体。pUC系列的载体是通过 和两种质粒改造而来。它的复制子来自,Amp 抗性基因则是来自。 23.噬菌体之所以被选为基因工程载体,主要有两方面的原因:一是;二是。 24.野生型的M13不适合用作基因工程载体,主要原因是 和。 25.黏粒(cosmid)是质粒—噬菌体杂合载体,它的复制子来自、COS位点序列来自,最大的克隆片段达到kb。 26.野生型的λ噬菌体DNA不宜作为基因工程载体,原因是:(1) (2) (3) 。 27.噬菌粒是由质粒和噬菌体DNA共同构成的,其中来自质粒的主要结构是,而来自噬菌体的主要结构是。 28.λ噬菌体载体由于受到包装的限制,插入外源DNA片段后,总的长度应在噬菌体基 因组的的范围内。 29.在分离DNA时要使用金属离子螯合剂,如EDTA和柠檬酸钠等,其目的是 。 30.用乙醇沉淀DNA时,通常要在DNA溶液中加人单价的阳离子,如NaCl和NaAc, 其目的是。 31.引物在基因工程中至少有4个方面的用途:(1) (2) (3) (4) 。 32.Clark发现用Taq DNA聚合酶得到的PCR反应产物不是平末端,而是有一个突出 碱基末端的双链DNA分子。根据这一发现设计了克隆PCR产物的。 33.在cDNA的合成中要用到S1核酸酶,其作用是切除在 。 34.乙醇沉淀DNA的原理是。 35.假定克隆一个编码某种蛋白质的基因,必须考虑其表达的三个基本条件:

《基因工程原理》期末复习思考题教案资料

《医用基因工程》复习思考题 第一章基因和基因组及基因工程的概念 一、名词概念 ①移动基因(插入序列;转位子);②断裂基因;③RNA剪辑; ④内含子(间隔序列)与表达子;⑤重叠基因;⑥重复序列;⑦假基因;⑧启动子与终止子;⑨起始位点、终止位点。 二、讨论题 1.什么叫基因?何谓基因的新概念?基因的主要功能是什么? 2.一种基因一种酶的提法妥否? 3.基因密码子三联体间是否存在着逗号? 4.基因表达的产物中,氨基酸序列相同时,基因密码子是否一定相同?为什么? 5.何谓转位子和转位作用?转位的后果如何? 6.基因中最小的突变单位和重组单位是什么? 7.基因工程应包括哪些内容?何谓基因工程的四大里程碑和三大技术发明? 8.真核细胞基因组中常有内含子存在,能否在原核细胞获得表达?能,为什么?不能,为什么? 第二章基因工程中常用的工具酶 1.什么是限制性核酸内切酶? 2.什么是R/M现象?如何解释? 3.II型核酸内切酶的基本特点有哪些? 4.影响II型核酸内切酶活性的因素有哪些?如何克服和避免这

些不利因素? 5.DNA连接酶有哪两类?有何不同? 6.甲基化酶有哪两类?有何应用价值? 7.什么叫同尾酶、同裂酶?在基因工程中有何应用价值? 8.平末端连接的方法有哪些?(图示) 9.Klenow酶的特性和用途有哪些?举例说明。 10.反转录酶的特性有哪些?有何应用价值? 11.列举碱性磷酸酶BAP/CAP的应用之一。 12.列举末端核苷酸序列转移酶的应用之一。 13.质粒单酶切点的基因连接如何降低本底和防止自我环化和提高连接效率? 14.基因片段与载体的平末端连接的方法有哪些? 15.用寡核苷酸和衔接物DNA的短片段连接时为使基因内部的切点保护,常用何种办法解决? 第三章基因克隆载体 1.基因工程常用的载体有哪5种?其共同特性如何? 2.什么是质粒?质粒分哪几种?有哪两种复制类型,质粒的分子生物学特性有哪些? 3.质粒存在的三种形式是什么? 4.分离质粒的基本步骤有哪些? 5.分离纯化质粒的方法有哪几种?简述CsCl密度梯度(浮密度)分离法、碱变性法的原理,如何选择合适的分离方法? 6.作为理想质粒载体的基本条件有哪些? 7.什么叫插入失活,举例说明之。 8.构建pBR322质粒载体的亲本质粒有哪些? 9.什么叫插入型和替换型噬菌体载体?插入型和替换型入噬菌体

基因工程原理与应用题库

名词解释 生物技术、RAPD、酶单位、载体、质粒、基因工程,退火,基因组文库,cDNA文库,PCR,转化,DNA甲基化,RFLP,ISSR,植物基因工程,感受态细胞,受体细胞,工具酶、YAC、探针、AFLP、基因芯片、质粒、基因治疗、基因打靶、基因疗法、原位杂交、分子标记、核酸分子杂交 选择题(单选和多选) 1、第一个作为重组DNA载体的质粒是( ) (a)pBR322 (b)ColEl (c)pSCl01 (d)pUCl8 2、Ⅱ型限制性内切核酸酶( ) (a)有内切核酸酶和甲基化酶活性且经常识别回文序列 (b)仅有内切核酸酶活性,甲基化酶活性由另外一种酶提供 (c)限制性识别非甲基化的核苷酸序列(d)有外切核酸酶和甲基化酶活性 (e)仅有外切核酸酶活性,甲基化酶活性由另外一种酶提供 3、在下列试剂中,那一种可以螯合Ca2+离子( ) (a)EDTA (b)柠檬酸钠(c)SDS (d)EGTA 4、同一种质粒DNA,以三种不同的形式存在,电泳时,它们的迁移速率是( ) (a)OCDNA>SCDNA>LDNA (b)SCDNA>LDNA>OCDNA (c)LDNA>OCDNA>SCDNA (d)SCDNA>OCDNA>LDNA 5、黏粒(cosmid)是一种人工建造的载体( ) (a)它具有COS位点,因而可进行体外包装(b)它具有质粒DNA的复制特性 (c)进入受体细胞后,可引起裂解反应(d)进入受体细胞后,可引起溶源化反应 6、用碱法分离质粒DNA时,染色体DNA之所以可以被除去,是因为( ) (a)染色体DNA断成了碎片(b)染色体DNA分子量大,而不能释放 (c)染色体变性后来不及复性(d)染色体未同蛋白质分开而沉淀 7、根据构建方法的不同,基因文库分为基因组文库、cDNA文库等。在下列文库中 ( )属cDNA文库 (a) YAC文库(b) MAC文库(c) 扣减文库(d) BAC文库 8、关于感受态细胞性质的描述,下面哪一种说法不正确( ) (a)具有可诱导性(b)具有可转移性 (c)细菌生长的任何时期都可以出现(d)不同细菌出现感受态的比例是不同的 9、在利用lacZ失活的显色反应筛选法中,IPTG的作用是( ) (a)诱导宿主的α肽的合成(b)诱导宿主的ω肽的合成 (c)作为酶的作用底物(d)作为显色反应的指示剂 10、基因工程发展史上理论上的三个重要发现是()

基因工程及其应用

第2节基因工程及其应用(第1课时) 知识链接及考试地位 本知识与“DNA分子的结构与复制”、“基因突变和基因重组”、“DNA重组技术的基本工具”、“基因工程的基本操作程序”等内容相联系,考试过程中常设计基因工程的原理、基本工具等基础知识,多以个别填空或选择题的形式呈现。 知识回顾 1、DNA分子的结构特点是什么 2、什么是基因重组 学习目标 1、简述基因工程的诞生。 2、简述基因工程的原理及技术。要明确基因工程操作的基本步骤和最基本的工具。 重难点 1.教学重点 基因工程的基本原理。 2.教学难点 基因工程的基本原理 新知探究 传统育种的方法一般只能在生物中进行,很难将一种生物的优良性状移植到生物身上。基因工程的出现使人类有可能按照自己的意愿地改变生物,培育出。 一、基因工程的原理 基因工程又叫做或。通俗地说,就是按照人们的意愿,把一种生物的某种基因提取出来,加以,然后放到另一种生物细胞里,地改造生物的遗传性状。基因工程是在DNA上进行的水平的设计施工,基因的剪刀是指,简称限制酶。其作用特点是一种限制酶只能识别一种序列。基因的针线是 指。目前常用的运载体有、和等。质粒存在于许多以及等生物中,是细胞染色体外能够自主复制的小型分子。 基因工程的操作步骤是:、目的基因与运载体结合,目的基因导入受体细胞、目的基因的和。 二、基因工程的原理、操作对象各是什么 三、限制性内切酶的分布、特点、作用部位和作用结果如何 四、作为基因的运载体,需具备哪些条件 五、DNA连接酶的作用对象、位置和结果如何 六、基因工程的优点是什么 基因工程技术 一、基因工程诞生的理论依据 (1) DNA是遗传物质

高三生物知识点归纳:基因工程及其应用

高三生物知识点归纳:基因工程及其应用 1.概念:按照人们的意愿,把一种生物的某种基因提取出来,加以修饰改造,然后放到另一种生物的细胞里,定向地改造生物的遗传性状。 高考生物知识点归纳 2.原理基因重组 3.工具: A.基因的”剪刀”:限制性内切酶 ①分布:主要在微生物中。 ②作用特点:特异性,即识别特定核苷酸序列,切割特定切点。 ③结果:产生黏性未端(碱基互补配对)。 B.基因的”针线”:DNA连接酶 ①连接的部位:磷酸二酯键,不是氢键。 ②结果:两个相同的黏性未端的连接。 C.基因的”运载工具”:运载体 ①作用:将外源基因送入受体细胞。 ②具备的条件:a、能在宿主细胞内复制并稳定地保存。b、具有多个限制酶切点。 c、有某些标记基因。 ③种类:质粒、噬菌体和动植物病毒。 ④质粒的特点:质粒是基因工程中最常用的运载体。 4.基因操作的基本步骤: ①提取目的基因:人们所需要的特定基因,如人的胰岛素基因、抗虫基因、抗病基因、干扰素基因等 ②目的基因与运载体结合(以质粒为运载体):用同一种限制酶分别切割目的基

因和质粒DNA(运载体),使其产生相同的黏性末端,将切割下的目的基因与切割后的质粒混合,并加入适量的DNA连接酶,使之形成重组DNA分子(重组质粒) ③将目的基因导入受体细胞常用的受体细胞:大肠杆菌、枯草杆菌、土壤农杆菌、酵母菌、动植物细胞 ④目的基因检测与表达 检测方法如:质粒中有抗菌素抗性基因的大肠杆菌细胞放入到相应的抗菌素中,如果正常生长,说明细胞中含有重组质粒。 表达:受体细胞表现出特定性状,说明目的基因完成了表达过程。如:抗虫棉基因导入棉细胞后,棉铃虫食用棉的叶片时被杀死;胰岛素基因导入大肠杆菌后能合成出胰岛素等。

基因工程及其应用完整版

基因工程及其应用集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

第2节基因工程及其应用(第1课时) 知识链接及考试地位 本知识与“DNA分子的结构与复制”、“基因突变和基因重组”、“DNA重组技术的基本工具”、“基因工程的基本操作程序”等内容相联系,考试过程中常设计基因工程的原理、基本工具等基础知识,多以个别填空或选择题的形式呈现。 知识回顾 1、DNA分子的结构特点是什么? 2、什么是基因重组? 学习目标 1、简述基因工程的诞生。 2、简述基因工程的原理及技术。要明确基因工程操作的基本步骤和最基本的工具。 重难点 1.教学重点 基因工程的基本原理。 2.教学难点 基因工程的基本原理 新知探究 传统育种的方法一般只能在生物中进行,很难将一种生物的优良性状移植到生物身上。基因工程的出现使人类有可能按照自己的意愿地改变生物,培育出。 一、基因工程的原理 基因工程又叫做或。通俗地说,就是按照人们的意愿,把一种生物的某种基因提取出来,加以,然后放到另一种生物细胞里,地改造生物的遗传性状。基因工程是在DNA上进行的水平的设计施工,基因的剪刀是指,简称限制酶。其作用特点是一种限制酶只能识别一种序列。基因的针线是指。目前常用的运载体有、和等。质粒存在于许多以及等生物中,是细胞染色体外能够自主复制的小型分子。 基因工程的操作步骤是:、目的基因与运载体结合,目的基因导入受体细胞、目的基因的和。 二、基因工程的原理、操作对象各是什么? 三、限制性内切酶的分布、特点、作用部位和作用结果如何? 四、作为基因的运载体,需具备哪些条件? 五、DNA连接酶的作用对象、位置和结果如何? 六、基因工程的优点是什么?

基因工程原理

基因工程原理 1、典型的DNA重组实验通常包括哪些步骤?(20分) 重组DNA技术一般包括四步:①获得目的基因;②与克隆载体连接,形成新的重组DNA分子;③用重组DNA分子转 化受体细胞,并能在受体细胞中复制和遗传;④对转化子筛选和鉴定。⑤对获得外源基因的细胞或生物体通过培养, 获得所需的遗传性状或表达出所需要的产物。 2、在PCR扩增时,(1)PCR扩增后出现的条带与预计的大小不一致,或大或 小,或者同时出现特异性扩增带与非特异性扩增带,为什么?有何对策? (2)PCR扩增后有时出现涂抹带或片状带,其原因是什么?应该如何改进? (20分) (1)其原因:一是引物与靶序列不完全互补、或引物聚合形成二聚体。二是Mg2+离子浓度过高、退火温度过低, 及PCR循环次数过多有关。其次是酶的质和量,往往一些来源的酶易出现非特异条带而另一来源的酶则不出现,酶量过多有时也会出现非特异性扩增。其对策有:①必要时重新设计引物。②减低酶量或调换另一来源的酶。③降低引物量,适当增加模板量,减少循环次数。④适当提高退火温度或采用二温度点法(93℃变性,65℃左右退火与延伸)。 (2)出现片状拖带或涂抹带 PCR扩增有时出现涂抹带或片状带或地毯样带。其原因往往由于酶量过多或酶的质量差,dNTP浓度过高,Mg2+浓度过高,退火温度过低,循环次数过多引起。其对策有:①减少酶量,或调换另一来源的酶。②减少dNTP的浓度。③适当降低Mg2+浓度。④增加模板量,减少循环次数。 3、获得一个功能未知的基因克隆后,怎样研究该基因的功能?请提出具体的 研究方案。(20分) 基因功能的研究思路主要包括: 1.基因的亚细胞定位和时空(发育期或梯度药物处理浓度, 不同组织/器官)表达谱; 2.基因在转录水平的调控(可以通过genome walking PCR或通过已有的资源库寻找该基因的启动子等转录调控区域, 通过单杂交或ChIP 等技术, 寻找该基因的转录调控蛋白)

基因工程的应用

基因工程技术的应用和前景 【摘要】基因工程问世以来短短的二十年,显示出了巨大的活力,今后基因工程将重点开展基因组学、基因工程药物、动植物生物反应器和环保等方面的研究,展望未来,基因工程的前景将是更加灿烂辉煌。基因工程研究和应用范围涉及农业、工业、医药、能源、环保等许多领域。【关键词】基因工程技术前景现状 随着基因工程技术的迅速发展,通过克隆或筛选出来的富基因,转到作物中进行表达,已取得很大的进展。由于基因工程运用DNA分子重组技术,能够按照人们预先的设计创造出许多新的遗传结合体,具有新奇遗传性状的新型产物,增强了人们改造动植物的主观能动性、预见性。而且在人类疾病的诊断、治疗等方面具有革命性的推动作用,对人口素质、环境保护等作出具大贡献。所以,各国政府及一些大公司都十分重视基因工程技术的研究与开发应用,抢夺这一高科技制高点。其应用前景十分广阔。我国基因工程技术尚落后于发达国家,更应当加速发展,切不可坐失良机。 但是,任何科学技术都是一把“双刃剑”,在给人类带来利益的同时,也会给人类带来一定的灾难。比如基因药物,它不仅能根治遗传性疾病、恶性肿瘤、心脑血管疾病等,甚至人的智力、体魄、性格、外表等亦可随意加以改造;还有,克隆技术如果不加限制,任其自由发展,最终有可能导致人类的毁灭。还有,尽管目前的转基因动植物还未发现对人类有什么危害,但不等于说转基因动植物就是十分安全的,毕竟这些东西还是新生事物,需要实践慢慢地检验。转基因生物和常规繁殖生长的品种一样,是在原有品种的基础上对其部分性状进行修饰或增加新性状,或消除原来的不利性状,但常规育种是通过自然选择,而且是近缘杂交,适者生存下来,不适者被淘汰掉。而转基因生物远远超出了近缘的范围,人们对可能出现的新组合、新性状会不会影响人类健康和环境,还缺乏知识和经验,按目前的科学水平还不能完全精确地预测。所以,我们要在抓住机遇,大力 1、植物基因工程成果丰硕 自1983年首次获得转基因烟草、马铃薯以来,短短十余年间,植物基因工程的研究和开发进展十分迅速。国际上获得转基因植株的植物已达100种以上,包括水稻、玉米、马铃薯等作物;棉花、大豆、油菜、亚麻、向日葵等经济作物;番茄、黄瓜、芥菜、甘蓝、花椰菜、胡萝卜、茄子、生菜、芹菜等蔬菜作物;首楷、白三叶草等牧草;苹果、核桃、李、木瓜、甜瓜、草荀等瓜果;短牵牛、菊花、香石竹、伽蓝菜等花卉以及杨树造林树种。转基因植物研究取得了令人鼓舞的突破性发展。十

基因工程原理-复习资料

0、基因工程的技术基础和理论基础 1)理论基础: 40年代确定遗传信息携带者,即基因的分子载体是DNA而不是蛋白质,明确了物质基础 50年代确定DNA的双螺旋模型和半保留复制机理,明确自我复制和传递 60年代提出中心法则和操纵子学说,破译遗传密码,阐明信息流向和表达。 2)技术基础: 60年代的琼脂糖凝胶和Southern转移杂交技术,用于DNA分离和检测 60年代初70年代末,发现限制性内切酶和DNA连接酶,实现体外切割 70年代中期,实现DNA分子的核苷酸序列分析技术 80年代实现体外重组DNA并进入宿主细胞 1、基因工程研究的主要内容或步骤 ①从生物有机体基因组中,经过酶切消化或PCR扩增等步骤,分离出带有目的基因的DNA片段; ②在体外,将带有目的基因的外源DNA片段连接到能够自我复制载体分子上,形成重组DNA分子; ③将重组DNA分子转移到适当的受体细胞(寄主细胞),并与之一起增殖; ④从大量细胞繁殖群体中,筛选出获得了细胞重组DNA分子的受体细胞克隆; ⑤从这些筛选出来的受体细胞克隆,提取出已经得到扩增的目的基因,供进一步分析研究使用; ⑥将目的基因克隆到表达载体上,导入寄主细胞,使之在新的遗传背景下实现功能表达,产生出人类所需要物质。 2、三位一体的基因概念 ①基因既是携带生物体遗传信息的结构单位,又是控制一个特定性状的功能单位。 ②基因是染色体上的实体 ③基因象链珠(bead)一样,孤立地呈线状地排列在染色体上 基因是功能、突变、交换“三位一体”的最小的、不可分割的、基本的遗传单位。 3、一位一体的基因概念 基因是一个具有特定功能的、完整的、不可分割的最小的遗传单位。基因内可以较低频率发生基因内的重组和交换。 4、顺反子假说 1个顺反子决定1条多肽链。能产生1条多肽链的是1个顺反子,Cistron是基因的同义词。在一个顺反子内,有若干个突变单位:突变子(muton)。在一个顺反子内,有若干个交换单位:交换子(recon)。 5、全同等位基因 在同一基因座位(locus)中,同一突变位点(site)向不同方向发生突变所形成的等位基因(homoallele)。 6、非全同等位基因 在同一基因座位(locus)中,不同突变位点(site)发生突变所形成的等位基因(heteroallele)。 7、重叠基因的概念及其生物学意义 概念: 大多数由一条DNA序列组成的基因,仅有编码一种蛋白质的功能(尽管基因在两端有非编码区,并且在编码区内有内含子)。但是,有些情况下,一条序列编码不止一种蛋白质。 生物学意义: a)原核生物进化的经济原则(较小的C值编码较多的基因信息); b)提高蛋白质的疏水性,以增强生物体自然选择的适应性。

基因工程及其应用

第6章从杂交育种到基因工程 第2节基因工程及其应用 一、教学目标 知识目标 1、简述基因工程的基本原理(概念、工具、步骤)。 2、举例说出基因工程在农业、医药等领域的应用。 能力目标 1、通过对书中以及ppt课件中的插图、图片的观察,学会科学的观察方法,培养学生收集和处理科学信息的能力、获取新知识的能力、分析和解决问题的能力。 2、利用课本以外的资料和信息解决课内学习中发现的问题,培养自主学习能力。 情感态度与价值观 1、关注转基因生物和转基因食品的安全性。 2.、通过学习了解我国基因工程的发展,培养爱国主义情感,树立努力学习科学知识造福社会的决心。 重点 1、基因工程的概念; 2、基因工程工具的特点和功能; 3、基因工程的基本操作步骤。 难点 1、基因工程工具的特点和功能 2、基因工程基本操作步骤 知识点 1、基因工程的基本原理(概念、工具、步骤)。 2、基因工程的应用。 考试点基因工程的基本原理。 能力点通过对概念、原理、方法的理解和掌握,逐步形成分析、综合等思维能力,具备运用学到的知识解决实际问题的能力。 自主探究点基因工程操作的基本步骤。 易错易混点基因工程的工具和基因工程的工具酶。 训练点基因工程的工具、基因工程操作的基本步骤。 拓展点转基因生物和转基因食品的安全性讨论。 二、教法学法

多媒体教学直观教学法小组讨论法教具:多媒体、ppt课件、动画三、教学过程

总结基因工程的工具:限制性核酸内切酶 播放flash动画引导学生思考并总结限制酶 的特点 关注小组讨论过程及时给与学生适当地评价 小组分别展示 讨论结果 得出结论 2、基因工程操作的第二步设疑:提取的荧光基因怎样进入猫的体内 总结基因工程操作的第二步: 2.目的基因与运载体结合 引出运载体的概念 提问:请同学们自行阅读课本,找到运载体的 概念及常用的运载体有哪些 进一步提问:怎样将运载体和荧光基因结合到 一起 引出基因工程的针线:DNA连接酶 播放flash动画展示DNA连接酶的作用过程 深度提问:这一步除了要用到以上两种工具 还要用到哪种工具(提示质粒是环状DNA分 子,荧光基因无法被“缝合”上去) 认真听取分析 并小组讨论回 答问题 总结基因工程操 作的第二步及工 具

基因工程的应用及前景

高二生物导学案班级 班级姓名使用时间 一、学习目标 1.举例说出基因工程应用及取得的丰硕成果。 2.关注基因工程的进展。 3.认同基因工程的应用促进生产力的提高。 二、学习重点 1.DNA重组技术的基本工具(三方面) 2.基因工程的基本操作程序(四方面) 三、学习难点 1.DNA重组技术的基本工具(三方面) 2.基因工程的基本操作程序(四方面) 一、植物基因工程硕果累累 提高农作物的(如)能力、改良农作物的,和利用植物生产等。

一、动物基因工程前景广阔 二、基因工程药物异军突起 1、方式:利用基因工程培育来生产药品。 2、成果:利用工程菌可生产、、、等。 3、什么是工程菌? 四、基因治疗 1、概念:把导入病人体内,使该基因的表达产物发挥功能,从而达到治疗疾病的目的。 2、成果:将导入患者的淋巴细胞。 3、途径:分为和。 4、注意:基因治疗治疗疾病的最有效手段。 5、基因治疗用于临床治疗了么? 作业:1.下列关于基因工程的应用,说法正确的是() A.我国转基因抗虫棉是转入了植物凝集素基因培育出来的 B.可用于转基因植物的抗虫基因只有植物凝集素基因和蛋白酶抑制剂基因 C.抗真菌转基因植物中,可使用的基因有几丁质酶基因和抗毒素合成基因 D.提高作物的抗盐碱和抗干旱的能力,与调节渗透压的基因无关 2.运用现代生物技术,将苏云金芽孢杆菌的抗虫基因整合到棉花细胞中,为检测实验是否成功,最方便的方法是检测棉花植株是否有()

A.抗虫基因B.抗虫基因产物 C.新的细胞核D.相应性状 3.科学家已能运用基因工程技术,让羊合成并由乳腺分泌抗体,相关叙述中正确的是() ①该技术将导致定向变异 ②DNA连接酶能把目的基因与载体黏性末端的碱基对连接起来 ③蛋白质中的氨基酸序列可为合成目的基因提供材料④受精卵是理想的受体 A.①②③④B.①③④ C.②③④D.①②④ 4.下列不.属于基因工程药物的是() A.从大肠杆菌体内获取的白细胞介素B.从酵母菌体内获取的干扰素 C.从青霉菌体内获取的青霉素D.从大肠杆菌体内获取的胰岛素 5.在转基因植物(如抗虫棉)的培育中,成功与否最终要看() A.用什么方法获得目的基因B.选择运载体是否得当 C.重组DNA分子的结构和大小D.是否赋予了植物抗性 6.若利用基因工程技术培育能固氮的水稻新品种,其在环境保护上的最重要意义是() A.减少氮肥使用量,降低生产成本B.减少氮肥生产量,节约能源 C.避免使用氮肥过多引起的环境污染D.改良土壤的群落结构 7.利用基因工程技术将生长激素基因导入绵羊体内,转基因绵羊生长速度比一般的绵羊提高30%,体型大50%,在基因操作过程中生长激素基因的受体细胞最好采用() A.乳腺细胞B.体细胞C.受精卵D.精巢 8.采用基因工程技术将人凝血因子基因导入山羊受精卵,培育出转基因羊。但是,人凝血因子只存在于该转基因羊的乳汁中。以下有关叙述,正确的是() A.人体细胞中凝血因子基因编码区的碱基对数目,等于凝血因子氨基酸数目的3倍B.可用显微注射技术将含有人凝血因子基因的重组DNA分子导入羊的受精卵 C.在该转基因羊中,人凝血因子基因存在于乳腺细胞,而不存在于其他体细胞中D.人凝血因子基因开始转录后,DNA连接酶以DNA分子的一条链为模板合成mRNA 9.“工程菌”是指() A.用物理或化学方法诱发菌类自身某些基因得到高效表达的菌类细胞株系 B.用遗传工程的方法,把相同种类不同株系的菌类通过杂交得到新细胞株系 C.用基因工程的方法,使外源基因得到高效表达的菌类细胞株系 D.从自然界中选取能迅速增殖的菌类 10.抗病毒转基因植物成功表达后,以下说法正确的是() A.抗病毒转基因植物可以抵抗所有病毒 B.抗病毒转基因植物对病毒的抗性具有局限性或特异性 C.抗病毒转基因植物可以抗害虫 D.抗病毒转基因植物可以稳定遗传,不会变异 11.要彻底治疗白化病必须采用() A.基因治疗B.医学手术C.射线照射D.一般药物 12.下列与基因诊断有关的一组物质是() A.蛋白质、核酸B.放射性同位素、蛋白质 C.荧光分子、核酸D.放射性同位素、糖类 13.下列关于基因工程成果的概述错误的是() A在医药卫生方面主要用于诊断治疗疾病

相关主题
文本预览
相关文档 最新文档