当前位置:文档之家› 整理生物化学复习要点

整理生物化学复习要点

整理生物化学复习要点
整理生物化学复习要点

生物化学复习要点

一、核酸化学

1、核酸有哪些种类?它们的分布和功能是什么?

核酸:是以核苷酸为基本组成单位的以3,5-磷酸二酯键连接的线性大分子,携带和传递遗传信息。天然存在的核酸包括DNA和RNA。

核酸的分类及分布

2、说明waston-crick 建立双螺旋结构的特点

DNA分子有两条反向平行的多核苷酸链相互盘绕形成双螺旋结构,两条链围绕同一个中心轴形成右手螺旋,双螺旋的直径为2nm。

由脱氧核糖和磷酸间隔相连而成的亲水骨架在双螺旋的外侧,而疏水的碱基对则在双螺旋内部,剪辑平面与中心轴垂直,螺旋旋转一周为10个碱基对,螺距为3.4nm。

两条链通过碱基之间的氢键连接,AT两个氢键,CG三个氢键。

两条链偏向一侧,形成一条大沟和一条小沟。

3、什么是增色效应和减色效应,说明其原因。

双螺旋结构解体,两条链分开形成单链,由于双螺旋分子内部的碱基暴露,260nm紫外吸收值升高,这种现象称为增色效应。

两条彼此分开的单链重新缔合成为双螺旋结构的过程成为复性,260nm紫外吸收下降的现象叫做减色效应。

4、RNA的功能

5、真核和原核信使RNA的异同点

原核生物中MRNA转录后一般不需加工和修饰,直接进行蛋白质的翻译。转录和翻译在可以发生在同一空间,而且可以同时进行。一条MRNA可以翻译出几种蛋白质,为多顺反子。转录后1分钟很快就发上降解了。

真核生物MRNA必须由前提核内不均一RNA剪接并修饰灾后才能进入细胞质中参与蛋白质的合成。所以转录和翻译发生在不同的时间和空间。单顺反子,一个MRNA只包含一条多肽链的信息。转录之后在5’端增加帽子结构,3’端增加尾部结构。

二、蛋白质化学

1、蛋白质的一级二级三级四级结构。

蛋白质的一级结构指多肽链中氨基酸的排列顺序。这种顺序由基因的碱基序列所决定。主要的化学键肽键,有些蛋白质还包括二硫键。

蛋白质的二级结构是肽链不同肽段通过自身的相互作用,形成氢键,沿某一主轴盘旋折叠而形成的局部空间结构,因此是蛋白质结构的构象单元,主要有α螺旋,β折叠,β转角和无规卷曲等。蛋白质二级结构是以一级结构为基础的。

-螺旋或β-折叠,它就会出现相应的二级结构。在许多蛋白质分子中,可发现二个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象,被称为模体或模序(motif),也有人称其为超二级结构。结构域是在二级结构和超二级结构基础上形成并相对独立的三级结构局部折叠区,是在空间上能够辨认的三维实体。

三级结构指的是多肽链在二级结构的基础上,通过侧链基团的相互作用进一步卷曲折叠,借助次级键维系是二级结构相互配置而形成的特定的构象。

四级结构是指由相同或不同亚基按照一定排布方式聚集而成的蛋白结构,维持四级结构稳定的作用力是疏水作用,离子键,氢键和范德华力。

2、蛋白质的主要理化性质有哪些?

(一)蛋白质的两性电离:蛋白质分子除两端的氨基和羧基可解离外,氨基酸残基侧链中某些基团,在一定的溶液pH条件下都可解离成带负电荷或正电荷的基团。

(二)蛋白质的等电点( isoelectric point, pI)

当蛋白质溶液处于某一pH时,蛋白质解离成正、负离子的趋势相等,即成为兼性离子,净电荷为零,此时溶液的pH称为蛋白质的等电点。

(三)蛋白质的胶体性质

蛋白质属于生物大分子之一,分子量可自1万至100万Da之巨,其分子的直径可达1~100 nm,为胶粒范围之内。

蛋白质胶体稳定的因素:水化膜、颗粒表面电荷

(四)蛋白质的沉淀和凝固

在一定条件下,蛋白疏水侧链暴露在外,肽链相互缠绕继而聚集,因而从溶液中析出。

变性的蛋白质易于沉淀,有时蛋白质发生沉淀,但并不变性。

三、酶化学

1、酶的活性中心

必需基团(essential group):酶分子中氨基酸残基侧链的化学基团中,一些与酶活性密切相关的化学基团。

酶的活性中心:或称活性部位(active site),指必需基团在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合并将底物转化为产物。辅助因子常参与构成酶的活性中心

活性中心内的必需基团:

结合基团:与底物相结合

催化基团:催化底物转变成产物

活性中心外的必需基团-结构必需基团

位于活性中心以外,维持酶活性中心应有的空间构象所必需。

2、影响酶活性的因素有哪些?

温度对反应速度的影响

双重影响:温度升高,酶促反应速度升高;由于酶的本质是蛋白质,温度升高,可引起酶的变性,从而反应速度降低。

最适温度:酶促反应速度最快时的环境温度。

1.pH对反应速度的影响

最适pH:酶催化活性最大时的环境pH。

pH的改变既影响酶对底物的结合,也影响酶的催化能力。

2.抑制剂对酶的抑制剂(inhibitor)

凡能使酶的催化活性下降而不引起酶蛋白变性的物质称为酶的抑制剂。反应速度的影响

激活剂对酶作用的影响。凡是能提高酶活性加速酶促反应进行的物质,都称为激活剂。

四、糖代谢

1.葡萄糖在体内分解有三种途径:

在无氧条件下进行酵解;

在有氧条件下进行有氧分解,通过三羧酸循环,完全氧化;

通过磷酸戊糖途径进行代谢。

2.糖酵解:将葡萄糖降解为丙酮酸并伴随着ATP生成的一系列反应。

糖酵解的反应部位:胞浆

糖酵解分为三个阶段:第一阶段:己糖的磷酸化

第二阶段:磷酸己糖的裂解

第三阶段:ATP及丙酮酸的合成

3.第一阶段:(1)葡萄糖磷酸化为6-磷酸葡萄糖

(2)6-磷酸葡萄糖转变为 6-磷酸果糖

(3)6-磷酸果糖磷酸化生成1,6-双磷酸果糖

4.第二阶段:1,6-双磷酸果糖裂解成2分子磷酸丙糖

1,6-双磷酸果糖磷酸丙糖磷酸二羟丙酮+磷酸丙糖

5.第三阶段:(1)3-磷酸甘油醛氧化为1,3-二磷酸甘油酸

(2)1,3-二磷酸甘油酸转变成3-磷酸甘油酸

这是糖酵解过程中第一次产生ATP的反应,这种底物氧化过程中产生的能量直接将ADP磷酸化生成ATP的过程,称为底物水平磷酸化

(3)3-磷酸甘油酸变位转变为2-磷酸甘油酸

(4)2-磷酸甘油酸脱水生成磷酸烯醇式丙酮酸

(5)磷酸烯醇式丙酮酸转变成丙酮酸

6.丙酮酸的去路

有氧条件下转变为乙酰CoA

丙酮酸进入线粒体,氧化脱羧生成乙酰CoA (acetyl CoA),进入三羧酸

循环,被彻底氧化生成CO2和H2O。

无氧条件下还原成乳酸

无氧条件下还原成乙醇

7.糖酵解的反应特点

反应部位:细胞液

整个过程无需氧的参与

糖酵解通过底物水平磷酸化可产生少量能量

三个限速酶催化了三步不可逆的单向反应

8.糖的有氧氧化:指在机体供氧充足时,葡萄糖或糖原彻底氧化成H2O和

CO2,并释放出能量的过程。

有氧氧化是糖分解代谢的主要方式,机体大多数组织通过此方式获得能量。

9.有氧氧化的反应过程

第一阶段:糖酵解途径

第二阶段:丙酮酸的氧化脱羧

第三阶段:三羧酸循环和ATP生成

第四阶段:氧化磷酸化

10.三羧酸循环

也称为柠檬酸循环,这是因为循环反应中的第一个中间产物是一个含三个羧基的柠檬酸(乙酰CoA和草酰乙酸缩合生成)

反应部位:所有的反应均在线粒体中进行

11.磷酸戊糖途径

磷酸戊糖途径是葡萄糖在体内氧化分解的另一条重要途径,是指由葡萄糖生成磷酸戊糖及NADPH+H+,前者再进一步转变成3-磷酸甘油醛和6-磷酸果糖的反应过程。主要发生在肝脏、脂肪组织、哺乳期的乳腺、肾上腺皮质、性腺、骨髓和红细胞等组织细胞的胞液中。

12.糖异生

指从非糖化合物转变为葡萄糖或糖原的过程。

13.糖异生作用的过程

基本上是糖酵解的逆过程

跨越三个能障。酵解途径中有3个由关键酶催化的不可逆反应。在

糖异生时,须由另外的反应和酶代替。

五、生物氧化

1.生物氧化概念:

生物细胞将糖、脂、蛋白质等燃料分子氧化分解,最终生成CO2和H2O并释放出能量的作用称为生物氧化。

2.生物氧化的特点

生物氧化是在生物细胞内进行的酶促氧化过程,反应条件温和(水

溶液,中性pH和常温)

氧化进行过程中,必然伴随生物还原反应的发生。

水是许多生物氧化反应的氧供体。通过加水脱氢作用直接参予了氧

化反应。

在生物氧化中,碳的氧化和氢的氧化是非同步进行的。氧化过程中

脱下来的氢质子和电子,通常由各种载体,如NADH等传递到氧并生成

水。

生物氧化是一个分步进行的过程

生物氧化释放的能量,通过与ATP合成相偶联,转换成生物体能够

直接利用的生物能ATP。

3.生物氧化中CO2的生成

方式:糖、脂、蛋白质等有机物转变成含羧基的中间化合物,然后

在酶催化下脱羧而生成CO2。

类型:α-脱羧和β-脱羧、氧化脱羧和单纯脱羧

4.生物氧化中H2O的生成

代谢物在脱氢酶催化下脱下的氢由相应的氢载体(NAD+、NADP+、

FAD、FMN等)所接受,再通过一系列递氢体或递电子体传递给氧而生

成H2O

5.生物氧化的三个阶段

6.氧化磷酸化

代谢物在生物氧化过程中释放出的自由能用于合成ATP(即ADP+Pi→ATP),这种氧化放能和ATP生成(磷酸化)相偶联的过程称氧化磷酸化。

底物水平磷酸化:底物氧化过程中,形成了某些高能中间代谢物,

再通过酶促磷酸基团转移反应,直接偶联ATP的形成,称为底物水平磷

酸化。

例如:糖酵解中生成的1,3-二磷酸甘油酸、磷酸烯醇式丙酮酸、三羧酸

循环中的琥珀酰CoA等。

氧化磷酸化(电子传递水平磷酸化):电子从NADH或FADH2经电子

传递链传递到分子氧形成水,同时偶联ADP磷酸化生成ATP。称为电子

传递偶联的磷酸化或氧化磷酸化,是需氧生物合成ATP的主要途径。

六、脂类代谢

1.脂肪酸β-氧化过程

脂酸的活化形式为脂酰CoA(胞液):脂酰CoA合成酶存在于内质网

及线粒体外膜上。

脂酰CoA经肉碱转运进入线粒体,是脂酸β-氧化的主要限速步骤

肉碱脂酰转移酶Ⅰ是脂酸β-氧化的限速酶。

脂酸的β-氧化的最终产物主要是乙酰CoA

2.甘油三酯的合成代谢

合成主要场所:肝脏、脂肪组织、小肠粘膜

合成原料:甘油和脂酸主要来自于葡萄糖代谢、CM中的FFA(来自

食物脂肪)

合成基本过程:甘油一酯途径(小肠粘膜细胞

甘油二酯途径(肝、脂肪细胞)

3.脂酸合成酶系及反应过程

乙酰CoA羧化酶(acetyl CoA carboxylase)是脂酸合成的限速酶,存在于胞液中,其辅基是生物素,Mn2+是其激活剂。其活性受别构调节和磷酸化、去磷酸化修饰调节。

七、蛋白质代谢

1.氨基酸代谢概况

2.生物固氮的概念

细菌和蓝绿藻将N2转变为有机形式,称为固氮作用。生物固氮(biological nitrogen fixation)是微生物,藻类与高等植物共生的微生物,通过自身的固氮酶复合物把分子氮变成氨的过程。

自然界通过生物固氮量,可达每年1011kg,约占地球上固氮量的60%,闪电和紫外辐射固定氮约占15%,其余为工业固氮。

3.氨的同化

氮素循环中,生物固氮和硝酸盐还原形成无机态NH3,进一步NH3

便被同化转变成含氮有机物。

所有生物都通过Glu脱氢酶或Gln合成酶催化形成Glu和Gln的方式

同化氨。

Glu和Gln中的氮,通过进一步生化反应形成其他有机含氮化合物

谷氨酰胺合成酶:Gln合成酶催化Glu和氨反应形成Gln,此酶对NH3

有高亲和性,完成反应还需ATP水解提供的能量。形成Gln既是氨同化

的一种方式,又可消除过高氨浓度带来的毒害,还可作为氨的供体,用

于Glu的合成。

α-酮戊二酸来源于TCA的中间产物,还原剂为NADPH或还原态铁氧还蛋白。

4.氨基酸的生物合成

氨基酸的合成与转氨基作用:生物机体内各种转氨酶催化的反应都

是可逆的,转氨基过程既发生在AA分解过程,也发生在AA合成过程。

反应方向与当时细胞中具体代谢的需要有关。

谷氨酸是氨基的转换站:许多AA都可作为氨基的供体,其中最重要

的是Glu,它可由α-酮戊二酸与无机态氨合成,然后通过转氨基作用转给

其他α-酮酸合成相应的AA。

各种-酮酸主要来自糖代谢

八、核酸代谢与蛋白质合成

1.基因:是指DNA分子上携带着遗传信息的碱基序列片段,是遗传的功能

单位

2.中心法则:反映了从蛋白质的遗传信息主流,揭示了生物体

内遗传信息的贮存、传递和表达的规律。

3.转录:以 DNA为模板合成RNA,将DNA的遗传信息传递到RAN分子中的

过程

实质:按碱基配对规律(T-A,A-U,G-C)合成一条与模板链互补的RNA 链的过程。

4.参与蛋白质生物合成的物质包括:

原料:20种氨基酸

模板:mRNA(信使RNA)

场所:核糖体(又称为核糖核蛋白)

氨基酸的“搬运工具”: tRNA(转运RNA)

酶及蛋白因子:启动、延长、终止因子

能量:ATP、GTP

5.携带遗传密码的mRNA

mRNA是蛋白质合成的直接模板

遗传学将编码一个多肽的遗传单位称为顺反子

原核细胞中数个结构基因常串联为一个转录单位,转录生成的mRNA 可编码几种功能相关的蛋白质,为多顺反子

真核生物一个mRNA只编码一种蛋白质,为单顺反子

6.转运氨基酸的tRNA

作为搬运活性氨基酸的工具,tRNA既能识别mRNA分子上的遗传密码,又能与相应的氨基酸结合,按mRNA序列的指示,将氨基酸逐个带到核糖体,以合成多肽链。

7.核糖体:合成蛋白质的细胞器,其唯一的功能是按照mRNA的指令由氨基酸高效且精确地合成多肽链。是tRNA、mRNA和蛋白质相互作用的场所

8.蛋白质合成的几个阶段

氨基酸的活化;

活化氨基酸的转运;

核糖体循环(包括肽链合成的起始、延长、终止与释放)

9.氨基酸的活化与转运

氨基酸+ATP+E —→氨基酰-AMP-E+ PPi (氨基酰-tRNA合成酶催化)

生物化学知识点整理

生物化学知识点整理(总33 页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

生物化学知识点整理 注: 1.此材料根据老师的PPT及课堂上强调需掌握的内容整理 而成,个人主观性较强,仅供参考。(如有错误,请以课本为主) 2.颜色注明:红色:多为名解、简答(或较重要的内容) 蓝色:多为选择、填空 第八章脂类代谢 第一节脂类化学 脂类:包括脂肪和类脂,是一类不溶于水而易溶于有机溶剂,并能为 机体利用的有机化合物。 脂肪:三脂肪酸甘油酯或甘油三酯。 类脂:胆固醇、胆固醇酯、磷脂、糖脂。 第二节脂类的消化与吸收

脂类消化的主要场所:小肠上段 脂类吸收的部位:主要在十二指肠下段及空肠上段 第三节三酰甘油(甘油三酯)代谢 一、三酰甘油的分解代谢 1.1)脂肪动员:储存在脂肪细胞中的脂肪,被肪脂酶逐步水解为 脂肪酸及甘油,并释放入血以供其他组织氧化利用的过程。 2)关键酶:三酰甘油脂肪酶 (又称“激素敏感性三酰甘油脂肪酶”,HSL) 3)脂解激素:能促进脂肪动员的激素,如胰高血糖素、去甲肾 上腺素、肾上腺素等。 4)抗脂解激素:抑制脂肪动员,如胰岛素、前列腺素、烟酸、 雌二醇等。 2.甘油的氧化 甘油在甘油激酶的催化下生成3-磷酸甘油,随后脱氢生成磷酸二羟丙酮,再经糖代谢途径氧化分解释放能量或经糖异生途径生成糖。 3.脂肪酸的分解代谢 饱和脂肪酸氧化的方式主要是β氧化。 1)部位:组织:脑组织及红细胞除外。心、肝、肌肉最活跃; 亚细胞:细胞质、线粒体。 2)过程: ①脂酸的活化——脂酰CoA的生成(细胞质)

生物化学知识点总整理

一、蛋白质 1.蛋白质的概念:由许多氨基酸通过肽键相连形成的高分子含氮化合物,由C、H、O、N、S元素组成,N的含量为16%。 2.氨基酸共有20种,分类:非极性疏水R基氨基酸、极性不带电荷R基氨基酸、带正电 荷R基氨基酸(碱性氨基酸)、带负电荷R基氨基酸(酸性氨基酸)、芳香族氨基酸。 3.氨基酸的紫外线吸收特征:色氨酸和酪氨酸在280纳米波长附近存在吸收峰。 4.氨基酸的等电点:在某一PH值条件下,氨基酸解离成阳离子和阴离子的趋势及程度相同,溶液中氨基酸的净电荷为零,此时溶液的PH值称为该氨基酸的等电点;蛋白质等电点: 在某一PH值下,蛋白质的净电荷为零,则该PH值称为蛋白质的等电点。 5.氨基酸残基:氨基酸缩合成肽之后氨基酸本身不完整,称为氨基酸残基。 6.半胱氨酸连接用二硫键(—S—S—) 7.肽键:一个氨基酸的α-羧基与另一个氨基酸α-氨基脱水缩合形成的化学键。 8.N末端和C末端:主链的一端含有游离的α氨基称为氨基端或N端;另一端含有游离的 α羧基,称为羧基端或C端。 9.蛋白质的分子结构:(1)一级结构:蛋白质分子内氨基酸的排列顺序,化学键为肽键和二硫键;(2)二级结构:多肽链主链的局部构象,不涉及侧链的空间排布,化学键为氢键, 其主要形式为α螺旋、β折叠、β转角和无规则卷曲;(3)三级结构:整条肽链中,全部氨基 酸残基的相对空间位置,即肽链中所有原子在三维空间的排布位置,化学键为疏水键、离子键、氢键及范德华力;(4)四级结构:蛋白质分子中各亚基的空间排布及亚基接触部位的布局和 相互作用。 10.α螺旋:(1)肽平面围绕Cα旋转盘绕形成右手螺旋结构,称为α螺旋;(2).螺旋上升一圈,大约需要3.6个氨基酸,螺距为0.54纳米,螺旋的直径为0.5纳米;(3).氨基酸的R基分布在 螺旋的外侧;(4).在α螺旋中,每一个肽键的羰基氧与从该羰基所属氨基酸开始向后数第五个氨基酸的氨基氢形成氢键,从而使α螺旋非常稳定。 11.模体:在许多蛋白质分子中可发现两个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象,被称为模体。 12.结构域:大分子蛋白质的三级结构常可分割成一个或数个球状或纤维状的区域,折叠得较为紧密,各行使其功能,称为结构域。 13.变构效应:蛋白质空间结构的改变伴随其功能的变化,称为变构效应。 14.蛋白质胶体结构的稳定因素:颗粒表面电荷与水化膜。 15.什么是蛋白质的变性、复性、沉淀?变性与沉淀关系如何?导致蛋白质的变性因素?举 例说明实际工作中应用和避免蛋白质变性的例子? 蛋白质的变性:在理化因素的作用下,蛋白质的空间构象受到破坏,其理化性质发生改变,生物活性丧失,其实质是蛋白质的次级断裂,一级结构并不破坏。 蛋白质的复性:当变性程度较轻时,如果除去变性因素,蛋白质仍能恢复或部分恢复其原 来的构象及功能,这一现象称为蛋白质的复性。

生物化学复习重点

绪论 掌握:生物化学、生物大分子和分子生物学的概念。 【复习思考题】 1. 何谓生物化学? 2. 当代生物化学研究的主要内容有哪些 蛋白质的结构与功能 掌握:蛋白质元素组成及其特点;蛋白质基本组成单位--氨基酸的种类、基本结构及主要特点;蛋白质的分子结构;蛋白质结构与功能的关系;蛋白质的主要理化性质及其应用;蛋白质分离纯化的方法及其基本原理。 【复习思考题】 1. 名词解释:蛋白质一级结构、蛋白质二级结构、蛋白质三级结构、蛋白质四级结构、肽单元、模体、结构域、分子伴侣、协同效应、变构效应、蛋白质等电点、电泳、层析 2. 蛋白质变性的概念及本质是什么有何实际应用? 3. 蛋白质分离纯化常用的方法有哪些其原理是什么? 4. 举例说明蛋白质结构与功能的关系 核酸的结构与功能 掌握:核酸的分类、细胞分布,各类核酸的功能及生物学意义;核酸的化学组成;两类核酸(DNA与RNA)分子组成异同;核酸的一级结构及其主要化学键;DNA 右手双螺旋结构要点及碱基配对规律;mRNA一级结构特点;tRNA二级结构特点;核酸的主要理化性质(紫外吸收、变性、复性),核酸分子杂交概念。 第三章酶 掌握:酶的概念、化学本质及生物学功能;酶的活性中心和必需基团、同工酶;酶促反应特点;各种因素对酶促反应速度的影响、特点及其应用;酶调节的方式;酶的变构调节和共价修饰调节的概念。 第四章糖代谢 掌握:糖的主要生理功能;糖的无氧分解(酵解)、有氧氧化、糖原合成及分解、糖异生的基本反应过程、部位、关键酶(限速酶)、生理意义;磷酸戊糖途径的生理意义;血糖概念、正常值、血糖来源与去路、调节血糖浓度的主要激素。 【复习思考题】 1. 名词解释:.糖酵解、糖酵解途径、高血糖和糖尿病、乳酸循环、糖原、糖异生、三羧酸循环、活性葡萄糖、底物水平磷酸化。 2.说出磷酸戊糖途径的主要生理意义。 3.试述饥饿状态时,蛋白质分解代谢产生的丙氨酸转变为葡萄糖的途径。

生物化学超详细复习资料图文版

一。 核酸的结构和功能 脱氧核糖核酸( deoxyribonucleic acid, DNA ):遗传信息的贮存和携带者,生物的主要遗传物质。在真核细胞中,DNA 主要集中在细胞核,线粒体和叶绿体中均有各自的DNA 。原核细胞没有明显的细胞核结构,DNA 存在于称为类核的结构区。 核糖核酸(ribonucleic acid, RNA ):主要参与遗传信息的传递和表达过程,细胞的RNA 主要存在于细胞质中,少量存在于细胞核中。 DNA 分子中各脱氧核苷酸之间的连接方式(3′-5′磷酸二酯键)和排列顺序叫做DNA 的一级结构,简称为碱基序列。一级结构的走向的规定为5′→3′。 DNA 的双螺旋模型特点: 两条反向平行的多聚核苷酸链沿一个假设的中心轴右旋相互盘绕而形成。 ?磷酸和脱氧核糖单位作为不变的骨架组成位于外侧,作为可变成分的碱基位于侧,链间碱基按A —T ,G —C 配对(碱基配对原则,Chargaff 定律) ?螺旋直径2nm ,相邻碱基平面垂直距离0.34nm,螺旋结构每隔10个碱基对(base pair, bp )重复一次,间隔为3.4nm DNA 的双螺旋结构稳定因素 ? 氢键 ?碱基堆集力 ?磷酸基上负电荷被胞组蛋白或正离子中和 DNA 的双螺旋结构的意义 该模型揭示了DNA 作为遗传物质的稳定性特征,最有价值的是确认了碱基配对原则,这是DNA 复制、转录和反转录的分子基础,亦是遗传信息传递和表达的分子基础。该模型的提出是本世纪生命科学的重大突破之一,它奠定了生物化学和分子生物学乃至整个生命科学飞速发展的基石。 DNA 的三级结构 在细胞,由于DNA 分子与其它分子(主要是蛋白质)的相互作用,使DNA 双螺旋进一步扭曲形成的高级结构. RNA 类别: ?信使RNA (messenger RNA ,mRNA ):在蛋白质合成中起模板作用; ?核糖体RNA (ribosoal RNA ,rRNA ):与蛋白质结合构成核糖体(ribosome ),核糖体是蛋白质合成的场所; ?转移RNA (transfor RNA ,tRNA ):在蛋白质合成时起着携带活化氨基酸的作用。 rRNA 的分子结构 特征:? 单链,螺旋化程度较tRNA 低 ? 与蛋白质组成核糖体后方能发挥其功能

医学生物化学重点总结

第二章蛋白质的结构和功能 第一节蛋白质分子组成 一、组成元素: N为特征性元素,蛋白质的含氮量平均为16%.-----测生物样品蛋白质含量:样品含氮量×6.25 二、氨基酸 1.是蛋白质的基本组成单位,除脯氨酸外属L-α-氨基酸,除了甘氨酸其他氨基酸的α-碳原子都是手性碳原子。 2.分类:(1)非极性疏水性氨基酸:甘、丙、缬、亮、异亮、苯、脯,甲硫。(2)极性中性氨基酸:色、丝、酪、半胱、苏、天冬酰胺、谷氨酰胺。(3)酸性氨基酸:天冬氨酸Asp、谷氨酸Glu。(4)(重)碱性氨基酸:赖氨酸Lys、精氨酸Arg、组氨酸His。 三、理化性质 1.两性解离:两性电解质,兼性离子静电荷+1 0 -1 PH〈PI PH=PI PH〉PI 阳离子兼性离子阴离子等电点:PI=1/2(pK1+pK2) 2.紫外吸收性质:多数蛋白质含色氨酸、酪氨酸(芳香族),最大吸收峰都在280nm。 3.茚三酮反应:茚三酮水合物与氨基酸发生氧化缩合反应,成紫蓝色的化合物,此化合物最大吸收峰为570nm波长。此反应可作为氨基酸定量分析方法。 四、蛋白质分类:单纯蛋白、缀合蛋白(脂、糖、核、金属pr) 五、蛋白质分子结构 1.肽:氨基酸通过肽键连接构成的分子肽肽键:两个氨基酸α氨基羧基之间缩合的化学键(—CO—NH—) 2.二肽:两分子氨基酸借一分子的氨基与另一分子的羧基脱去一分子的水缩合成 3.残基:肽链中的氨基酸分子因脱水缩合而残缺,故被称为氨基酸残基。 4.天然存在的活性肽: (1)谷胱甘肽GSH:谷,半胱,甘氨酸组成的三肽 ①具有还原性,保护机体内蛋白质或酶分子免遭氧化,使蛋白质或酶处于活性状态。②在谷胱甘肽过氧化物酶催化下,GSH可还原细胞内产生的过氧化氢成为水,同时,GSH被氧化成氧化性GSSG,在谷胱甘肽还原酶作用下,被还原为GSH③GSH的硫基具有噬核特性,能与外源性的噬电子毒物(如致癌物,药物等)结合,从而阻断,这些化合物与DNA,RNA或蛋白质结合,以保护机体(解毒) (2)多肽类激素及神经肽 ①促甲状腺激素释放激素TRH②神经肽:P物质(10肽)脑啡肽(5肽)强啡肽(17肽)

生物化学与分子生物学复习归纳笔记

生物化学与分子生物学重点(1) https://www.doczj.com/doc/8110786300.html, 2006-11-13 23:44:37 来源:绿色生命网 第一章绪论 一、生物化学的的概念: 生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。 二、生物化学的发展: 1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。 2.动态生物化学阶段:是生物化学蓬勃发展的时期。就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。 3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。 三、生物化学研究的主要方面: 1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。 2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。 3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。 4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。 5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的

一个重要内容。 第二章蛋白质的结构与功能 一、氨基酸: 1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。 2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:① 非极性中性氨基酸(8种); ② 极性中性氨基酸(7种);③ 酸性氨基酸(Glu和Asp);④ 碱性氨基酸(Lys、Arg和His)。 二、肽键与肽链: 肽键(peptide bond)是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经脱水而形成的共价键(-CO-NH-)。氨基酸分子在参与形成肽键之后,由于脱水而结构不完整,称为氨基酸残基。每条多肽链都有两端:即自由氨基端(N端)与自由羧基端(C端),肽链的方向是N端→C端。 三、肽键平面(肽单位): 肽键具有部分双键的性质,不能自由旋转;组成肽键的四个原子及其相邻的两个α碳原子处在同一个平面上,为刚性平面结构,称为肽键平面。 四、蛋白质的分子结构: 蛋白质的分子结构可人为分为一级、二级、三级和四级结构等层次。一级结构为线状结构,二、三、四级结构为空间结构。 1.一级结构:指多肽链中氨基酸的排列顺序,其维系键是肽键。蛋白质的一级结构决定其空间结构。 2.二级结构:指多肽链主链骨架盘绕折叠而形成的构象,借氢键维系。主要有以下几种类型: ⑴α-螺旋:其结构特征为:①主链骨架围绕中心轴盘绕形成右手螺旋;②螺旋每上升一圈是3.6个氨基酸残基,螺距为0.54nm;③ 相邻螺旋圈之间形成许多氢键;④ 侧链基团位于螺旋的外侧。 影响α-螺旋形成的因素主要是:① 存在侧链基团较大的氨基酸残基;② 连续存在带相同电荷的氨基酸残基;③ 存在脯氨酸残基。 ⑵β-折叠:其结构特征为:① 若干条肽链或肽段平行或反平行排列成片;② 所有肽键的C=O和

生物化学期末考试重点

等电点:在某PH的溶液中,氨基解离呈阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的P H称为该氨基酸的等电点 DNA变性:某些理化因素会导致氢键发生断裂,使双链DNA解离为单链,称为DNA变性 解链温度(Tm):在解链过程中,紫外吸收值得变化达到最大变化值的一半时所对应的温度 酶的活性中心:酶分子中一些必需基团在空间结构上彼此靠近,组成具有特定空间结构的区域,能和底物特异结合,并将底物转化为产物,这一区域称为酶的活性中心 同工酶:指催化相同化学反应,但酶蛋白的分子结构、理化性质、免疫学性质不同的一组酶 诱导契合:在酶和底物相互接近时,其结构相互诱导、相互变性、相互适应,这一过程为酶底物结合的诱导契合 米氏常数(Km值):等于酶促反应速率为最大反应速率一半时的底物浓度 酶原的激活:酶的活性中心形成或暴露,酶原向酶的转化过程即为。。 有氧氧化:葡萄糖在有氧条件下彻底氧化成水和二氧化碳的反应过程称为有氧氧化 三羧酸循环:是指乙酰CoA和草酰乙酸缩合生成含3个羧基的柠檬酸,再4次脱氢,2次脱羧,又生成草酰乙酸的循环反应过程 糖异生:从非糖化合物转化为葡萄糖或糖原的过程称为。。 脂肪动员:指储存在脂肪细胞中的甘油三酯,被酯酸逐步水解为游离脂酸和甘油并释放入血,通过血液运输至其他组织,氧化利用的过程 酮体:是脂酸在肝细胞线粒体中β-氧化途径中正常生成的中间产物:乙酰乙酸、β-羟丁酸、丙酮脂蛋白:血浆中脂类物质和载脂蛋白结合形成脂蛋白 呼吸链:线粒体内膜中按一定顺序排列的一系列具有电子传递功能的酶复合体,可通过连锁的氧化还原将代谢物脱下的电子最终传递给氧生成水。这一系列酶和辅酶称为呼吸链或电子传递链 营养必需氨基酸:体内需要而又不能自身合成,必须由食物提供的氨基酸 一碳单位:指某些氨基酸在分解代谢过程中产生的含有一个碳原子的基因 半保留复制:DNA生物合成时,母链DNA解开为两股单链,各自作为模极,按碱基配对规律,合成与模极互补的子链、子代细胞的DNA。一股单链从亲代完整的接受过来,另一股单链则完全重新合成。两个子细胞的DNA都和亲代DNA碱基序列一致,这中复制方式称为半保留复制 生物转化:机体对内外源性的非营养物质进行代谢转变,使其水溶性提高,极性增强,易于通过胆汁或尿液排出体外,这一过程为生物转化 氧化磷酸化:代谢物脱氢进入呼吸链,彻底氧化成水的同时,ADP磷酸化生成ATP,称为氧化磷酸化 底物水平磷酸化:底物由于脱氢脱水作用,底物分子内部能量重新分布生成高能键,使ATP磷酸化生成ATP的过程 密码子:在mRNA的开放阅读框架区,以每3个相邻的核苷酸为一组,代表一种氨基酸。这种三联体形成的核苷酸行列称为密码子 盐析:在蛋白质溶液中加入大量中性盐,以破坏蛋白质的胶体性质,使蛋白质从溶液中沉淀析出称为盐析 糖酵解:葡萄糖或糖原在组织中进行类似的发酵的降解反应过程,最终形成乳酸或丙酮酸,同时释放出部分能量,形成ATP供组织利用 蛋白质的一级结构:指在蛋白质分子从N-端至C-端的氨基酸排列顺序 蛋白质的二级结构:多肽链主链骨架原子的相对空间位置。 蛋白质的三级结构:整条肽链中全部氨基酸残基的相对空间位置。即肽链中所有原子在三维空间的排布位置。 蛋白质的四级结构:蛋白质分子中各亚基的空间排布及亚基接触部位的布局和相互作用 DNA的空间结构与功能

生物化学 复习资料 重点+试题 第五章 脂类代谢

第六章脂类代谢 一、知识要点 (一)脂肪的生物功能: 脂类是指一类在化学组成和结构上有很大差异,但都有一个共同特性,即不溶于水而易溶于乙醚、氯仿等非极性溶剂中的物质。通常脂类可按不同组成分为五类,即单纯脂、复合脂、萜类和类固醇及其衍生物、衍生脂类及结合脂类。 脂类物质具有重要的生物功能。脂肪是生物体的能量提供者。 脂肪也是组成生物体的重要成分,如磷脂是构成生物膜的重要组分,油脂是机体代谢所需燃料的贮存和运输形式。脂类物质也可为动物机体提供溶解于其中的必需脂肪酸和脂溶性维生素。某些萜类及类固醇类物质如维生素A、D、E、K、胆酸及固醇类激素具有营养、代谢及调节功能。有机体表面的脂类物质有防止机械损伤与防止热量散发等保护作用。脂类作为细胞的表面物质,与细胞识别,种特异性和组织免疫等有密切关系。 (二)脂肪的降解 在脂肪酶的作用下,脂肪水解成甘油和脂肪酸。甘油经磷酸化和脱氢反应,转变成磷酸二羟丙酮,纳入糖代谢途径。脂肪酸与ATP和CoA在脂酰CoA合成酶的作用下,生成脂酰CoA。脂酰CoA在线粒体内膜上肉毒碱:脂酰CoA转移酶系统的帮助下进入线粒体衬质,经β-氧化降解成乙酰CoA,在进入三羧酸循环彻底氧化。β-氧化过程包括脱氢、水合、再脱氢和硫解四个步骤,每次β-氧化循环生成FADH2、NADH、乙酰CoA和比原先少两个碳原子的脂酰CoA。此外,某些组织细胞中还存在α-氧化生成α羟脂肪酸或CO2和少一个碳原子的脂肪酸;经ω-氧化生成相应的二羧酸。 萌发的油料种子和某些微生物拥有乙醛酸循环途径。可利用脂肪酸β-氧化生成的乙酰CoA 合成苹果酸,为糖异生和其它生物合成提供碳源。乙醛酸循环的两个关键酶是异柠檬酸裂解酶和苹果酸合成酶前者催化异柠檬酸裂解成琥珀酸和乙醛酸,后者催化乙醛酸与乙酰CoA生成苹果酸。 (三)脂肪的生物合成 脂肪的生物合成包括三个方面:饱和脂肪酸的从头合成,脂肪酸碳链的延长和不饱和脂肪酸的生成。脂肪酸从头合成的场所是细胞液,需要CO2和柠檬酸的参与,C2供体是糖代谢产生的乙酰CoA。反应有二个酶系参与,分别是乙酰CoA羧化酶系和脂肪酸合成酶系。首先,乙酰CoA在乙酰CoA羧化酶催化下生成,然后在脂肪酸合成酶系的催化下,以ACP作酰基载体,乙酰CoA为C2受体,丙二酸单酰CoA为C2供体,经过缩合、还原、脱水、再还原几个反应步骤,先生成含4个碳原子的丁酰ACP,每次延伸循环消耗一分子丙二酸单酰CoA、两分子NADPH,直至生成软脂酰ACP。产物再活化成软脂酰CoA,参与脂肪合成或在微粒体系统或线粒体系统延长成C18、C20和少量碳链更长的脂肪酸。在真核细胞内,饱和脂肪酸在O2的参与和专一的去饱和酶系统催化下,进一步生成各种不饱和脂肪酸。高等动物不能合成亚油酸、亚麻酸、花生四烯酸,必须依赖食物供给。 3-磷酸甘油与两分子脂酰CoA在磷酸甘油转酰酶作用下生成磷脂酸,在经磷酸酶催化变成二酰甘油,最后经二酰甘油转酰酶催化生成脂肪。 (四)磷脂的生成 磷脂酸是最简单的磷脂,也是其他甘油磷脂的前体。磷脂酸与CTP反应生成CDP-二酰甘油,在分别与肌醇、丝氨酸、磷酸甘油反应,生成相应的磷脂。磷脂酸水解成二酰甘油,再与CDP-胆碱或CDP-乙醇胺反应,分别生成磷脂酰胆碱和磷脂酰乙醇胺。 二、习题

生物化学知识点整理

生物化学知识点整理 注: 1.此材料根据老师的PPT及课堂上强调需掌握的内容整理 而成,个人主观性较强,仅供参考。(如有错误,请以课本为主) 2.颜色注明:红色:多为名解、简答(或较重要的内容) 蓝色:多为选择、填空 第八章脂类代谢 第一节脂类化学 脂类:包括脂肪和类脂,是一类不溶于水而易溶于有机溶剂,并能为机体利用的有机化合物。 脂肪:三脂肪酸甘油酯或甘油三酯。 类脂:胆固醇、胆固醇酯、磷脂、糖脂。

第二节脂类的消化与吸收 脂类消化的主要场所:小肠上段 脂类吸收的部位:主要在十二指肠下段及空肠上段 第三节三酰甘油(甘油三酯)代谢 一、三酰甘油的分解代谢 1.1)脂肪动员:储存在脂肪细胞中的脂肪,被肪脂酶逐步水解为 脂肪酸及甘油,并释放入血以供其他组织氧化利用的过程。 2)关键酶:三酰甘油脂肪酶 (又称“激素敏感性三酰甘油脂肪酶”,HSL) 3)脂解激素:能促进脂肪动员的激素,如胰高血糖素、去甲肾

上腺素、肾上腺素等。 4)抗脂解激素:抑制脂肪动员,如胰岛素、前列腺素、烟酸、 雌二醇等。 2.甘油的氧化 甘油在甘油激酶的催化下生成3-磷酸甘油,随后脱氢生成磷酸二羟丙酮,再经糖代谢途径氧化分解释放能量或经糖异生途径生成糖。 3.脂肪酸的分解代谢 饱和脂肪酸氧化的方式主要是β氧化。 1)部位:组织:脑组织及红细胞除外。心、肝、肌肉最活跃; 亚细胞:细胞质、线粒体。 2)过程: ①脂酸的活化——脂酰CoA的生成(细胞质) 脂肪酸 脂酰 消耗了2 ②脂酰CoA进入线粒体 酶:a.肉碱酰基转移酶 I(脂肪酸氧化分解的关键酶、限速酶) b.肉碱酰基转移酶Ⅱ c.脂酰肉碱——肉碱转位酶(转运体) ③脂酸的β氧化 a.脱氢:脂酰

生物化学深刻复习资料(全)

生物化学复习资料 第一章蛋白质化学 第一节蛋白质的基本结构单位——氨基酸 凯氏定氮法:每克样品蛋白质含量(g)=每克样品中含氮量x 6.25 氨基酸结构通式: 蛋白质是由许多不同的α-氨基酸按一定的序列通过肽键缩合而成的具有生物学功能的生物大分子。 氨基酸分类:(1)脂肪族基团:丙氨酸、缬氨酸、亮氨酸、异亮氨酸、甘氨酸、脯氨酸(2)芳香族基团:苯丙氨酸、色氨酸、酪氨酸(3)含硫基团:蛋氨酸(甲硫氨酸)、半胱氨酸(4)含醇基基团:丝氨酸、苏氨酸(5)碱性基团:赖氨酸、精氨酸、组氨酸(6)酸性基团:天冬氨酸、谷氨酸(7)含酰胺基团:天冬酰胺、谷氨酰胺 必需氨基酸(8种):人体必不可少,而机体内又不能合成,必需从食物中补充的氨基酸。蛋氨酸(甲硫氨酸)、缬氨酸、赖氨酸、异亮氨酸、苯丙氨酸、亮氨酸、色氨酸、苏氨酸 氨基酸的两性性质:氨基酸可接受质子而形成NH3+,具有碱性;羧基可释放质子而解离成COO-,具有酸性。这就是氨基酸的两性性质。 氨基酸等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH值。 蛋白质中的色氨酸和酪氨酸两种氨基酸具有紫外吸收特性,在波长280nm处有最大吸收值。镰刀形细胞贫血:血红蛋白β链第六位上的Glu→Val替换。 第二节肽 肽键:一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水综合而形成的酰胺键叫肽键。肽键是蛋白质分子中氨基酸之间的主要连接方式,它是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基缩合脱水而形成的酰胺键。 少于10个氨基酸的肽称为寡肽,由10个以上氨基酸形成的肽叫多肽。 谷胱甘肽(GSH)是一种存在于动植物和微生物细胞中的重要三肽,含有一个活泼的巯基。参与细胞内的氧化还原作用,是一种抗氧化剂,对许多酶具有保护作用。 化学性质:(1)茚三酮反应:生产蓝紫色物质(2)桑格反应 第三节蛋白质的分子结构 蛋白质的一级结构:是指氨基酸在肽链中的排列顺序。 蛋白质的二级结构:是指蛋白质分子中多肽链本身的折叠方式。二级结构有α-螺旋、β-折叠、β-转角和无规则卷曲。 蛋白质的三级结构:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子结构的构象。 蛋白质的四级结构:指数条具有独立的三级结构的多肽链通过非共价键相互连接而成的聚合体结构。 维持蛋白质一级结构的化学键有肽键和二硫键,维持二级结构靠氢键,维持三级结构和四级结构靠次级键,其中包括氢键、疏水键、离子键和范德华力。 第四节蛋白质的重要性质书P16 蛋白质的等电点:当蛋白质解离的阴阳离子浓度相等即净电荷为零,此时介质的pH即为蛋白质的等电点。

生物化学复习要点.docx

生物化学重点 第一章绪论一、牛.物化学的的概念:生物化学(biochemistry):研究生命现象的化学本质的科学。 第二章核酸化学 一、核酸的化学组成: 1 .含氮碱:参与核酸和核背酸构成的含氮碱主要分为嚓吟碱和唏噪碱两人类。组成核昔酸的喘噪碱主要有三种——尿喀喘(U)、胞唸喘(C)和胸腺嗨喘(T),它们都是喘喘的衍生物。纽成核苛酸的瞟吟碱主要冇两种——腺瞟吟 (A)和鸟嚓吟(G),它们都是II票吟的衍生物。 2.戊糖:核苛酸中的戊糖主要有两种,即卩?D■核糖与p-D-2-脱氧核糖,由此构成的核苻酸也分为核糖核苻酸与脱氧核糖核酸两大类。 3.核涉核苛是山戊糖与含氮碱基经脱水缩合而生成的化合物。由“稀有碱基”所生成的核昔称为“稀有核昔”。如:假尿背(屮) 二、核昔酸的结构与命名: 核汗酸是由核TT与磷酸经脱水缩合后生成的磷酸酯类化合物,包折核糖核苻酸和脱氧核糖核酸两大类。核TT酸又可按其在亍位缩合的磷酸基的多少,分为一磷酸核昔(核昔酸)、二磷酸核昔和三磷酸核昔。 此外,生物体内述存在一些特殊的环核背酸,常见的为环一磷酸腺昔(CAMP)和环一磷酸角昔(cGMP),它们通常是作为激素作用的第二信使。 核汗酸通常使用缩写符号进行命名。第一位符号用小写字母d代表脱氧,第二位用人写字母代表碱基,第三位用大写字母代农磷酸基的数目,笫四位用大吗字母P代农磷酸。 三、核酸的一级结构: 核昔酸通过3,,5「磷酸二酯键连接起來形成的不含侧链的多核昔酸长链化介物就称为核酸。核酸具有方向性,5?位上具冇自由磷酸基的末端称为5、端,3,■位上具冇自由疑基的末端称为3,■端。 DNA由dAMP、dGMP、dCMP和dTMP四种脱氧核糖核冇酸所组成。DNA的一级结构就是指DNA分子中脱氧核糖核TT酸的排列顺序及连接方式。RNA由AMP, GMP, CMP, UMP四种核糖核弁酸组成。 四、DNA的二级结构: DNA双螺旋结构是DNA二级结构的一种重要形式,它是Watson和Crick两位科学家于1953年提出來的一种结构模型,其主要实验依据是Chargaff研究小组对DNA的化学组成进行的分析研究,即DNA分子中四种碱基的摩尔百分比为A=T、G=C、A+G=T+C (Chargaff原则),以及由Wilkins研究小组完成的DNA晶体X线衍射图谱分析。 天然DNA的二级结构以B型为主,其结构特征为:①为右手双螺旋,两条链以反平行方式排列;②主链位于螺旋外侧,碱基位于内侧;③两条链间存在碱基互补,通过氢键连系,且A-T、G-C (碱基互补原则);④螺旋的稳定因素为氢键和碱基堆砌力;⑤螺旋的螺距为3.4nm, 10碱基为一个螺旋。 五、DNA的超螺旋结构: 戏螺旋的DNA分子进一步盘旋形成的超螺旋结构称为DNA的三级结构。 绝大多数原核生物的DNA都是共价封闭的环状双螺旋,其三级结构呈麻花状。 六、RNA的空间结构与功能: RNA分了的种类较多,分了大小变化较大,功能多样化。RNA通常以单链存在,但也可形成局部的双螺旋结构。1.mRNA的结构与功能:mRNA是单链核酸,其在冀核生物中的初级产物称为HnRNA。大多数真核成熟的mRNA 分子具有典型的5,■端的7■中棊鸟苻三磷酸(n/G)帽子结构和3,■端的多聚腺苻酸(polyA)尾巴结构。mRNA的功能是为蛋口质的合成提供模板,分子中带有遗传密码。原核生物的mRNA -般是多顺反子。其核生物的mRNA—般是单顺反子。 2.tRNA的结构与功能:IRNA是分子最小,但含冇稀冇碱基最多的RNA。IRNA的二级结构由于局部双螺旋的形成而表现为“三叶草”形,故称为“三叶草”结构,可分为:①氨基酸臂:3,?端都带冇?CCA?顺序,可与氨基酸结合而携带氨基酸。②DIIU册环:含有二氢尿喘睫核弁。③反密码特/环:其反密码环中部的三个核冇酸组成三联体,在蛋白质生物合成中,可以用来识别mRNA ±相应的密码,故称为反密码(anticodon)o④T屮C皆/环:含保守的T屮C顺序。⑤可变环。 3.rRNA的结构与功能:rRNA是细胞小含量鼓多的RNA,町与蛋H质一起构成核蛋白体,作为蛋白质生物介成的场所。原核生物中的rRNA有三种:5S, 16S, 23S。真核生物中的rRNA有四种:5S, 5.8S, 18S, 28S。

生物化学知识点总结

生物化学知识点总结 一、蛋白质 蛋白质的元素组成:C、H、O、N、S 大多数蛋白质含氮量较恒定,平均16%,即1g氮相当于6.25g蛋白质。6.25称作蛋白质系数。 样品中蛋白质含量=样品中含氮量×6.25 蛋白质紫外吸收在280nm,含3种芳香族氨基酸,可被紫外线吸收 等电点(pI):调节氨基酸溶液的pH值,使氨基酸所带净电荷为零,在电场中,不向任何一极移动,此时溶液的pH叫做氨基酸的等电点。 脯氨酸和羟脯氨酸与茚三酮反应产生黄色物质,其余的氨基酸与茚三酮反映均产生蓝紫色物质。氨基酸与茚三酮反应非常灵敏,几微克氨基酸就能显色。 肽平面:肽键由于C-N键有部分双键的性质,不能旋转,使相关的6个原子处于同一平面,称作肽平面或酰胺平面。 生物活性肽:能够调节生命活动或具有某些生理活动的寡肽和多肽的总称。 1)谷胱甘肽:存在于动植物和微生物细胞中的一种重要三肽,由谷氨酸(Glu)、半胱氨酸(Cys)和甘氨酸(Gly)组成,简称GSH。由于GSH含有一个活泼的巯基,可作为重要的还原剂保护体内蛋白质或酶分子中的巯基免遭氧化,使蛋白质或酶处在活性状态。 寡肽:10个以下氨基酸脱水缩合形成的肽 多肽:10个以上氨基酸脱水缩合形成的肽 蛋白质与多肽的区别: 蛋白质:空间构象相对稳定,氨基酸残基数较多 多肽:空间构象不稳定,氨基酸残基数较少 蛋白质的二级结构:多肽链在一级结构的基础上,某局部通过氢键使肽键平面进行盘曲,折叠,转角等形成的空间构象。 α?螺旋的结构特点: 1)以肽键平面为单位,以α?碳原子为转折盘旋形成右手螺旋;肽键平面与中心轴平行。2)每3.6个氨基酸残基绕成一个螺圈,螺距为0.54nm,每个氨基酸上升0.15nm。

大学生物化学复习资料

一、名词解释 1、血液:血液中的葡萄糖称为血糖。 2、糖原合成与分解:由单糖合成糖原的过程称为糖原合成。 糖原分解成葡萄糖的过程称为糖原的分解。 3、糖异生:由非糖物质合成葡萄糖的过程叫糖异生。 4、有氧氧化:指糖、脂肪、蛋白质在氧的参与下分解为二氧化碳和水,同时释放大量能量,供二磷酸腺苷(ADP)再合成三磷酸腺苷(ATP)。 5、三羧酸循环(TAC循环):由乙酰CoA和草酰乙酸缩合成有三个羧基的柠檬酸, 柠檬酸经一系列反应, 一再氧化脱羧, 经α酮戊二酸、琥珀酸, 再降解成草酰乙酸。而参与这一循环的丙酮酸的三个碳原子, 每循环一次, 仅用去一分子乙酰基中的二碳单位, 最后生成两 分子的CO2 , 并释放出大量的能量。反应部位在线粒体基质。 6、糖酵解:是指细胞在细胞质中分解葡萄糖生成丙酮酸的过程。(在供氧不足时,葡萄糖在胞液中分解成丙酮酸,丙酮酸再进一步还原乳酸。) 7、血脂:血中的脂类物质称为血脂。 8、血浆脂蛋白:指哺乳动物血浆(尤其是人)中的脂-蛋白质复合物。(脂类在血浆中的存在形式和转运形式) 9、脂肪动员:指在病理或饥饿条件下,储存在脂肪细胞中的脂肪,被脂肪酶逐步水解为游离脂酸(FFA)及甘油并释放入血以供其他组织氧化利用,该过程称为脂肪动员。 (补充知识:脂肪酶—催化甘油三酯水解的酶的统称。甘油三酯脂肪酶—脂肪分解的限速酶。)10、酮体:在肝脏中,脂肪酸的氧化很不完全,因而经常出现一些脂肪酸氧化分解的中间产物,这些中间产物是乙酰乙酸、β-羟基丁酸及丙酮,三者统称为酮体。(知识补充:酮体是脂肪分解的产物,而不是高血糖的产物。进食糖类物质也不会导致酮体增多。)

(完整版)生物化学知识点重点整理

一、蛋白质化学 蛋白质的特征性元素(N),主要元素:C、H、O、N、S,根据含氮量换算蛋白质含量:样品蛋白质含量=样品含氮量*6.25 (各种蛋白质的含氮量接近,平均值为16%), 组成蛋白质的氨基酸的数量(20种),酸性氨基酸/带负电荷的R基氨基酸:天冬氨酸(D)、谷氨酸(E); 碱性氨基酸/带正电荷的R基氨基酸:赖氨酸(K)、组氨酸(H)、精氨酸(R) 非极性脂肪族R基氨基酸:甘氨酸(G)、丙氨酸(A)、脯氨酸(P)、缬氨酸(V)、亮氨酸(L)、异亮氨酸(I)、甲硫氨酸(M); 极性不带电荷R基氨基酸:丝氨酸(S)、苏氨酸(T)、半胱氨酸(C)、天冬酰胺(N)、谷氨酰胺(Q); 芳香族R基氨基酸:苯丙氨酸(F)、络氨酸(Y)、色氨酸(W) 肽的基本特点 一级结构的定义:通常描述为蛋白质多肽链中氨基酸的连接顺序,简称氨基酸序列(由遗传信息决定)。维持稳定的化学键:肽键(主)、二硫键(可能存在), 二级结构的种类:α螺旋、β折叠、β转角、无规卷曲、超二级结构, 四级结构的特点:肽键数≧2,肽链之间无共价键相连,可独立形成三级结构,是否具有生物活性取决于是否达到其最高级结构 蛋白质的一级结构与功能的关系:1、蛋白质的一级结构决定其构象 2、一级结构相似则其功能也相似3、改变蛋白质的一级结构可以直接影响其功能因基因突变造成蛋白质结构或合成量异常而导致的疾病称分子病,如镰状细胞贫血(溶血性贫血),疯牛病是二级结构改变 等电点(pI)的定义:在某一pH值条件下,蛋白质的净电荷为零,则该pH值为蛋白质的等电点(pI)。 蛋白质在不同pH条件下的带电情况(取决于该蛋白质所带酸碱基团的解离状态):若溶液pHpI,则蛋白质带负电荷,在电场中向正极移动。(碱性蛋白质含碱性氨基酸多,等电点高,在生理条件下净带正电荷,如组蛋白和精蛋白;酸性蛋白质含酸性氨基酸多,等电点低,在生理条件下净带负电荷,如胃蛋白酶), 蛋白质稳定胶体溶液的条件:(颗粒表面电荷同性电荷、水化膜), 蛋白质变性:指由于稳定蛋白质构象的化学键被破坏,造成其四级结构、三级结构甚至二级结构被破坏,结果其天然构象部分或全部改变。实质:空间结构被破坏。变性导致蛋白质理化性质改变,生物活性丧失。变性只破坏稳定蛋白质构象的化学键,即只破坏其构象,不破坏其氨基酸序列。变性本质:破坏二硫键 沉降速度与分子量及分子形状有关沉降系数:沉降速度与离心加速度的比值为一常数,称沉降系数 沉淀的蛋白质不一定变性变性的蛋白质易于沉淀 二、核酸化学 核酸的特征性元素:P,组成元素:C、H、O、N、P,核苷酸的组成成分:一分子磷酸、一分子戊糖、一分子碱基(腺嘌呤A、鸟嘌呤G、胞嘧啶C、胸腺嘧啶T、尿嘧啶U),

生物化学复习资料

什么是蛋白质的变性作用?引起蛋白质变性的因素有哪些?有何临床意义?在某些理化因素作用下, 使蛋白质严格的空间结构破坏,引起蛋白质理化性质改变和生物学活性丧失的现象称为蛋白质变性。引起蛋白质变性的因素有:物理因素,如紫外线照射、加热煮沸等;化学因素,如强酸、强碱、重金属盐、有机溶剂等。临床上常常利用加热或某些化学士及使病原微生物的蛋白质变性,从而达到消毒的目的,在分离、纯化或保存活性蛋白质制剂时,应采取防止蛋白质变性的措施。 比较蛋白质的沉淀与变性 蛋白质的变性与沉淀的区别是:变性强调构象破坏,活性丧失,但不一定沉淀;沉淀强调胶体溶液稳定因素破坏,构象不一定改变,活性也不一定丧失,所以不一定变性。 试述维生素B1的缺乏可患脚气病的可能机理 在体内Vit B1 转化成TPP,TPP 是α-酮酸氧化脱羧酶系的辅酶之一,该酶系是糖代谢过程的关键酶。维生素B1 缺乏则TPP 减少,必然α-酮酸氧化脱羧酶系活性下降,有关代谢反应受抑制,导致ATP 产生减少,同时α-酮酸如丙酮酸堆积,使神经细胞、心肌细胞供能不足、功能障碍,出现手足麻木、肌肉萎缩、心力衰竭、下肢水肿、神经功能退化等症状,被通称为“脚气病”。 简述体内、外物质氧化的共性和区别 共性①耗氧量相同。②终产物相同。③释放的能量相同。

区别:体外燃烧是有机物的C 和H 在高温下直接与O2 化合生成CO2 和H2O,并以光和热的形式瞬间放能;而生物氧化过程中能量逐步释放并可用于生成高能化合物,供生命活动利用。 简述生物体内二氧化碳和水的生成方式 ⑴CO2 的生成:体内CO2 的生成,都是由有机酸在酶的作用下经脱羧反应而生成的。根据释放CO2 的羧基在有机酸分子中的位置不同,将脱羧反应分为: α-单纯脱羧、α-氧化脱羧、β-单纯脱羧、β-氧化脱羧四种方式。 ⑵水的生成:生物氧化中的H2O 极大部分是由代谢物脱下的成对氢原子(2H),经一系列中间传递体(酶和辅酶)逐步传递,最终与氧结合产生的。 试述体内两条重要呼吸链的排练顺序,并分别各举两种代谢物氧化脱氢 NADH 氧化呼吸链:顺序:NADH→FMN/(Fe-S)→CoQ→Cytb→c1→c→aa3 如异柠檬酸、苹果酸等物质氧化脱氢,生成的NADH+H+均分别进入NADH 氧化呼吸链进一步氧化,生成2.5 分子ATP。 琥珀酸氧化呼吸链:FAD·2H/(Fe-S)→CoQ→Cytb→c1→c→aa3 如琥珀酸、脂酰CoA 等物质氧化脱氢,生成的FAD·2H 均分别进入琥珀酸氧化呼吸链进一步氧化,生成1.5 分子ATP。 试述生物体内ATP的生成方式 生物体内生成ATP 的方式有两种:底物水平磷酸化和氧化磷酸化。

生物化学考试重点_总结

第一章蛋白质的结构与功能 第一节蛋白质的分子组成 一、蛋白质的主要组成元素:C、H、O、N、S 特征元素:N(16%)特异元素:S 凯氏定氮法:每克样品含氮克数×6.25×100=100g样品中蛋白质含氮量(g%) 组成蛋白质的20种氨基酸 (名解)不对称碳原子或手性碳原子:与四个不同的原子或原子基团共价连接并因而失去对称性的四面体碳 为L-α-氨基酸,其中脯氨酸(Pro)属于L-α-亚氨基酸 不同L-α-氨基酸,其R基侧链不同 除甘氨酸(Gly)外,都为L-α-氨基酸,有立体异构体 组成蛋白质的20种氨基酸分类 非极性氨基酸:甘氨酸(Gly)、丙氨酸(Ala)、缬氨酸(Val)、 亮氨酸(Leu)、异亮氨酸(Ile)、脯氨酸(Pro) 极性中性氨基酸:丝氨酸(Ser)、半胱氨酸(Cys)、蛋氨酸(Met) 天冬酰胺(Asn)、谷氨酰胺(Gln)、苏氨酸(Thr) 芳香族氨基酸:苯丙氨酸(Phe)、色氨酸(Trp)、酪氨酸(Tyr) 酸性氨基酸:天冬氨酸(Asp)、谷氨酸(Glu) 碱性氨基酸:赖氨酸(Lys)、精氨酸(Arg)、组氨酸(His) 其中:含硫氨基酸包括:半胱氨酸、蛋氨酸 四、氨基酸的理化性质 1、两性解离及等电点 ①氨基酸分子中有游离的氨基和游离的羧基,能与酸或碱类物质结合成盐,故它是一种两性电解质。 ②氨基酸是两性电解质,其解离程度取决于所处溶液的酸碱度。 ③(名解)等电点(pI点):在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的pH称为该氨基酸的等电点。 pHpI 阴离子氨基酸带净正电荷,在电场中将向负极移动 ④在一定pH范围内,氨基酸溶液的pH离等电点越远,氨基酸所携带的净电荷越大 2、含共轭双键的氨基酸具有紫外吸收性质 色氨酸、酪氨酸的最大吸收峰在280 nm 附近 大多数蛋白质含有这两种氨基酸残基,所以测定蛋白质溶液280nm的光吸收值是分析溶液中蛋白质含量的快速简便的方法 3、氨基酸与茚三酮反应生成蓝紫色化合物 在pH5~7,80~100℃条件下,氨基酸与茚三酮水合物共热,可生成蓝紫色化合物,其最大吸收峰在570nm处。此吸收峰值与氨基酸的含量存在正比关系,因此可作为氨基酸定量分析方法 五、蛋白质是由许多氨基酸残基组成的多肽链 (一)氨基酸通过肽键连接而形成肽 1、(名解)肽键(peptide bond)是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的化学键 2、肽是由氨基酸通过肽键缩合而形成的化合物 3、10个以内氨基酸连接而成多肽称为寡肽;由更多的氨基酸相连形成的肽称多肽 肽链中的氨基酸分子因为脱水缩合而基团不全,被称为氨基酸残基

生物化学复习提纲

生物化学复习提纲 1. 生物氧化 a) 呼吸链:代谢物上的氢原子被脱氢酶激活脱落后,经过一系列的传递体,最后传递给被激活的氧分子,并与之结 合生成水的全部体系称呼吸链。 b) P/0比值:物质氧化时,每消耗 1摩尔氧原子所消耗无机磷的摩尔数,即一对电子经电子传递链转移至 1摩尔氧原 子时生成ATP 的摩尔数。 c) 生物氧化:有机物在生物体内氧的作用下,生成 CQ 和水并释放能量的过程称为生物氧化。 d) 高能化合物:含自由能高的磷酸化合物称为高能化合物。 e) 氧化磷酸化:伴随放能的氧化作用而进行的磷酸化作用称为氧化磷酸化。 f) 底物水平磷酸化:底物水平磷酸化是在被氧化的底物上发生磷酸化作用,即在底物被氧化的过程中,形成了某些 高能的磷酸化合物,这些高能磷酸化合物通过酶的作用使 ADP 生成ATP g) 电子水平磷酸化:电子由NADH 或FADH 经呼吸链传递给氧,最终形成水的过程中伴有 ADP 磷酸化为ATP,这一过程 称为电子水平磷酸化。 h) 磷酸-甘油穿梭系统:在脑和骨骼肌,胞液中产生的还原当量转运进入线粒体氧化的方式。以磷酸甘油为载体,进 入线粒体FADH 氧化呼吸链氧化,生成 1.5分钟ATPo i) 苹果酸-天冬氨酸穿梭系统:在心肌和肝,胞液中产生的还原当量转运进入线粒体氧化的方式。以苹果酸为载体, 进入线粒体NADH R 化呼吸链氧化,生成 2.5分钟ATPo 各种生物的新陈代谢过程虽然复杂,但却有共同特点:反应条件温和,由酶所催化,对内外环境条件有高度的适应 性和灵敏的自动调节机 制。 有机物在生物体内氧的作用下,生成 CO 和HLO 并释放能量的过程称为生物氧化。生物体内氧化反应有脱氢、脱电 子、加氧等类型。 常见的高能化合物: 磷酸烯醇丙酮酸、乙酰磷酸、腺苷三磷酸、磷酸肌酸、乙酰辅酶 A 典型的呼吸链有 NADH 乎吸链与FADH 呼吸链。呼吸链由线粒体内膜上 NADH 兑氢酶复合物(复合物I ),细胞色素b 、 C 1复合物(复合物III )和细胞色素氧化酶(复合物IV ) 3个蛋白质复合物组成。呼吸链中的主要成员包括以 NA D 或 NADP 为辅酶的烟酰胺脱氢酶类、以 FMN 或 FAD 作为辅基的黄素脱氢酶类、铁硫蛋白类( Fe-S )、辅酶Q 及依靠铁的化合价的 变化来传递电子的细胞色素类。 NADH T FMN T Fe-S — CoQ — Fe-S — CoQ 还原型 Cyt c — Cu A — a — a 3 — Cu B — Q 2 Cyt b — Cyt c 1 — Cyt c — Cyt a — Cyt a 3 — 1/2 Q 2 NADH H 化呼吸链:NADH — 复合体I — 辅酶Q — 复合体III — Cyt c — 复合体IV — Q ? 琥珀酸氧化呼吸链: 琥珀酸 — 复合体II — 辅酶Q —复合体III — Cyt c —复合体IV —。2 电子传递体系磷酸化是生物体内生成 ATP 的主要方式。电子传递是氧化放能反应,而 ADP 与 Pi 生成ATP 的磷酸化 是吸能反应,氧化和磷酸化是偶联进行的。化学渗透假说从能量转化方面解决了氧化磷酸化的基本问题,构象变化学说 可以详细地解释 ATP 生成的机制。在电子传递过程中,将 从线粒体内膜的内侧,转移到外侧的膜间隙,使内膜外侧的 H 浓度高于内侧,形成电化学势,当 H+通过ATP 合酶回到线粒体内膜的内侧时,释放的能量用于合成 ATPo 复合体I 电子传递顺序: 复合体II 电子传递顺序: 琥珀酸 —FAD — 几种Fe-S — CoQ 复合体III 电子传递顺序: QH2 — b;Fe-S;c 1 — Cyt c 复合体IV 电子传递顺序: 细胞色素传递电子的顺序:

相关主题
文本预览
相关文档 最新文档