当前位置:文档之家› 木质素磺酸钠

木质素磺酸钠

木质素磺酸钠
木质素磺酸钠

木质素磺酸钠(木钠)

木质素磺酸钠sodium ligninsulfonate是一种天然高分子聚合物,具有很强的分散性,由于分子量和官能团的不同而具有不同程度的分散性,是一种表面活性物质,能吸附在各种固体质点的表面上,可进行金属离子交换作用,也因为其组织结构上存在各种活性基,因而能产生缩合作用或与其他化合物发生氢键作用。印染工业中使用的分散剂-NNO 即是以木质素磺酸钠为主要原料复配的。

阴离子表面活性剂。是木浆与二氯化硫水溶液和亚硫酸盐反应产物,是生产纸浆的副产物,一般为4-羟基-3-甲氧基苯的多聚物。由于木材种类不同,磺化反应的差异,木质素磺酸盐的分子量由200到10000不等,化学结构尚未确定。一般说低分子木质素磺酸盐,多为直链,在溶液中缔合在一起;高分子木质素磺酸盐多为支链,在水介质中显示出聚合电介的行为。粗制的木质素磺酸盐大量用于在动物饲料的粒化,精制木质素磺酸盐用于石油钻井泥浆的分散剂;矿石浮选剂,矿泥、染料、农药的分散剂;对重金属,尤其是铁、铜、亚锡离子有较好的螯合能力,是有效的螯合剂。

木质素磺酸钠是一种天然高分子聚合物,具有很强的分散性,由于分子量和官能团的不同而具有不同程度的分散性,是一种表面活性物质,能吸附在各种固体质点的表面上,可进行金属离子交换作用,也因为其组织结构上存在各种活性基,因而能产生缩合作用或与其他化合物发生氢键作用。

印染工业中使用的分散剂-NNO 即是以木质素磺酸钠为主要原料复配的。

木质素磺酸钠的用途:

木质素磺酸钠(木钠)是竹子制浆过程提取物,经过浓缩改性反应并喷雾干燥而成。产品为浅黄色(棕色)自由流动性粉末,易溶于水,化学性质稳定,长期密封储存不分解。木质素系列产品是一种表面活性剂,可以通过改性、加工、复配等方法生产多个产品,主要用于树脂、橡胶、染料、农药、陶瓷、水泥、沥青、饲料、水处理、水煤浆、混凝土、耐火材料、油田钻井、复合肥料、冶炼、铸造、粘合剂。通过实验证明,木质素磺酸盐防止沙土化土壤十分有效,还可以做沙漠固定沙剂。本产品系改性木质素磺酸钠,其质量标准如下:木质素磺酸钠含量45-50%还原物含量<8%水不溶物含量<1.5%PH值(1%水溶液)7-9含水量<5%细度120目筛余≤4%。主要性能有:

1、混凝土减水剂:系粉状低引气性缓凝减水剂,属于阴离子表面活性物质,对水泥有吸附及分散作用,能改善混凝土各种物理性能。减少用水13%以上,改善砼的和易性,并能大幅度降低水泥水化初期水化热,可复配成早强剂、缓凝剂、防冻剂、泵送剂等,与萘系高效减水剂复配后制成的液体外加剂基本没有沉淀产生。

2、水煤浆添加剂:在制备水煤浆过程中加入本产品,能提高高磨机产量、维持制浆系统状况正常、降低制浆电耗,使水煤浆提高浓度,在气化过程中,氧耗、煤耗下降,冷煤气效率提高,并能使水煤浆降低粘度且达到一定的稳定性和流动性。

3、耐火材料及陶瓷坯体增强剂:在大规格墙地砖及耐火砖制造过程中,可以使坯体原料微粒牢固粘结起来,可使干坯强度提高20%—60%以上。

4、染料工业和农药加工的填充剂和分散剂:在用作还原染料及分散染料的分散剂和填充剂时,可使染料色力增高,着色更均匀,缩短染料研磨的时间;在

农药加工中可作为填充剂、分散剂和悬浮剂,大大提高可湿性粉剂的悬浮率和润湿性能。

5、作为粉状和颗粒状物料的粘结剂:用于铁矿粉、铅锌矿粉、粉煤、焦碳粉的压球;铸铁、铸钢砂型的压制;泥砖墙地砖等挤压成型;矿料的成球方面可获得强度高、稳定性好、润滑模具等良好效果。

6、在钻井中用作稀释分散剂、降粘剂;改进原油输送中的流动性,降低能耗。在石油产品中,作为洁净剂、分散剂、高碱性添加剂、防锈剂、抗静电剂、乳化降粘剂、消蜡防蜡剂等。

分散剂

分散剂是一种在分子内同时具有亲油性和亲水性两种相反性质的界面活性剂。可均一分散那些难于溶解于液体的无机,有机颜料的固体颗粒,同时也能防止固体颗粒的沉降和凝聚,形成安定悬浮液所需的药剂。

分散剂的作用是使用润湿分散剂减少完成分散过程所需要的时间和能量,稳定所分散的颜料分散体,改性颜料粒子表面性质,调整颜料粒子的运动性,具体体现在以下几个方面:缩短分散时间,提高光泽,提高着色力和遮盖力,改善展色性和调色性,防止浮色发花,防止絮凝,防止沉降。

造纸黑液制取木素磺酸钠的实验研究

引言

以植物纤维资源为主要原料的造纸工业是我国重要的轻工产业,是典型的用水大户,总排水量仅次于化工工业和冶金工业[1]。其排放废水污染主要来自化学制浆过程中产生的蒸煮废液,俗称“黑液”。每生产1t纸浆要排出黑液约10t。黑液是一个组分复杂的体系,其中70%的固体物为有机物,包括木质素、聚糖类、腐殖酸和纤维素降解产物等;30%的固体物为无机物,包括游离的钠盐和含硅的化合物等,其中的木质素、聚糖类、腐殖酸等物质均属活性物质[2]。

木质素是造纸黑液的主要成分,它是以苯丙烷的衍生物为结构单元通过C—O键和C—C链连接而成的天然高分子化合物,具有超分子特性和高比表面积,含有大量的功能基团,如酚羟基、甲氧基、苄式羟基、羰基、羧基、乙烯基等[3],易于发生羟甲基化、磺化、羧基化、烷基化等各种化学反应[4]。利用木质素具有酚羟基的性质,稍加酸化、磺化处理,就可制成含木质素磺酸盐的复杂混合物,可稍加处理或直接用作纯度要求不高的水煤浆添加剂[5]。

本研究立足于造纸黑液资源化,探讨了诸相关因素对木浆造纸黑液中木素磺化的影响。

1实验材料与方法

1.1实验材料实验用黑液取自吉林纸业股份有限公司制浆车间,该公司所用造纸原料为被子植物(阔叶木),其黑液中木素主要由愈创木基和紫丁香基丙烷构成[4]。该公司化学浆采用碱法制浆,黑液成分见表1。

1 。2试验仪器LD5-2A低速离心机;250mL压力反应釜;85-Z恒温磁力搅拌器;XMZ型数字显示仪;节点温度计。

1 。3工艺过程

工艺流程见图1。

1 。4条件控制

反应釜温度110℃~130℃;反应时间1h;压力2 0×105PA;反应体系Ph值6 0

左右;NA2SO3质量分数为21%;粗木素70g/L。实验在以上基础条件下进行,初步获得了生产工业用表面活性剂的工艺参数。

2结果与讨论

2 。1温度对磺化产率的影响

由图2可知,随着温度的升高,磺化产率增加。温度升高,具有足够蒸发动能的分子的百分数增加了,结果出现较高的蒸发速率,使釜内的蒸汽压力急剧增加,从而在一定程度上使反应液体积压缩,反应物浓度增加。根据化学反应碰撞理论,发生反应须同时满足两个条件,即最低的能量限度和适当的方位。升高反

应温度则反应分子具有更大的平均动能,分子碰撞更为有效而频繁,这是温度在小于120℃时反应速率迅速增加的原因。温度稍升高,就足可使具有引起反应的碰撞所需的最小能量的分子数所占的比例增大很多,这是使木素磺酸钠产率提高的主要原因[6]。其次,反应液体黏度(指单位面积的液层以单位速度流过相隔单位距离的固定液面时所需的切线力,N/(m2·S))也是一个重要的影响因素。根据液体黏度经验公式[7~12]:η=AeB/T(A,B为常数),温度升高使反应液体黏度降低,木素分子及水解产生的hSO-3在反应釜内运动更为自由,有利于它们之间发生碰撞,使有效碰撞频率增加。

2。 2压力与磺化产率的相关性该试验通过向反应釜中注入N2以提高釜内压力。从图3可以看出,在P<2 0×105PA时,随着釜内压力的增加磺化产率明显增加。这是因为压力的增大会使反应液体积有一定程度的减小,使反应物浓度增大,有利于反应的进行。但由于整个过程不涉及气相的反应,液体的可压缩性很小[13],所以当P>2 0×105PA时,压力不再是影响反应的关键因素,产率变化幅度整体较小。

2 。3时间与磺化产率的关系从图4可见,随着反应时间的增长,木素磺酸钠产率增加。这符合一般化学反应规律即反应时间越长,反应物分子接触碰撞的几率就越大,产率越高。随着反应的进行,反应物浓度逐渐减小而生成物浓度不断增加,且生成物的存在阻碍了反应物间的碰撞,使反应速率下降。在反应进行15h后,曲线趋于平缓,磺化产率无明显变化。

2。4Ph值对磺化产率的影响由图5可以看出,随着反应体系Ph值增大,木素磺酸钠产率增加。在一定范围内随着Ph值的升高,析出的木素颗粒直径减小,也就是说反应物分子间接触面积增大,有利于磺化反应的进行。此外,Ph 值的高低直接影响到磺化反应体系的酸度。由于反应中NA2SO3首先水解为NAhSO3,在酸性范围内,Ph值越高,酸度越小,越有利于NA2SO3水解,从而促进反应的进行,使磺化产率提高。

2 。5木素浓度与磺化产率的相关性从图6可以看出,木素磺酸钠产率随粗木素浓度的增加基本呈下降趋势。粗木素质量浓度小于52 5g/L范围内随着木素浓度增大,溶出的木素增多,因而磺化产率稍有上升;当粗木素质量浓度大于52 5g/L时,反应体系木素溶出受该酸度条件下木素的溶解度限制,多呈颗粒态存在,使反应体系黏度增加,不利于反应物的运动碰撞,因而产率随木素含量增大而下降。该条件下反应的最佳粗木素的质量浓度为52 5g/L。2 6

NA2SO3量与磺化产率的关系从图7可见,随着NA2SO3质量分数的增大,木素磺酸钠产率迅速增加。

以NA2SO3为磺化剂的磺化反应属于亲核取代反应[17]。该反应过程中NA2SO3首先水解为NAhSO3,在一定的条件下与木素作用发生磺化。根据化学反应基本规律,反应物浓度越大,反应进行得越迅速、越彻底。在木素含量一定的情况下,NA2SO3浓度越高,水解后为反应体系提供的hSO-3越多,hSO-3的增多大大提高了其与木素的碰撞接触,加快了反应速率。但NA2SO3加入量过

大将造成产品的灰分增高,同时过高的NA2SO3用量不仅增加成本,而且会污染环境[4]。

3结论

(1)在100℃~120℃范围随着反应温度的升高磺化产率增加;当温度高于120℃时产率无明显变化,至140℃时仅增加1 。6%,可见120℃是反应的经济温度。(2)当P>2 0×105PA时对产率的影响甚微;釜内自成压一般可达(1 5~2 0)×105PA,因此压力应以釜内自成压为主。(3)反应1 5h基本达到最大产率;在酸性条件下磺化产率随着Ph值增大而提高。(4)随木质素浓度升高磺化产率基本呈下降趋势,反应体系木质素质量浓度以52 。5g/L为佳。(5)磺化试剂与绝干木素比例的增加有利于产率的提高,但考虑产品灰分及环境影响等因素,其比例以21%为宜。

工业测定木质素磺酸钠的PH值的方法:

(一)仪器

酸度计各种型号的实验室用酸度计。

(二)操作步骤

称取15.0g试样(称准至0.1g),置于200ml烧杯中,加100ml蒸馏水充分搅拌,使全部溶解。按酸度计测定pH值使用方法的规定,对此溶液测量pH值。

取平行测定结果的算术平均值为结果。平行测定结果与平均值的结果差值不大于±0.03。

注:

本方法参照标准ZBG 73001—1985,适用于由钙基亚硫酸制浆(以云杉为主要用材)废液经石灰乳沉降、酸溶、转化而制得的分散剂M-9。分散剂M-9为一种木质素磺酸钠类产品。主要用作染料工业的分散剂及填充剂。

本标准对于由其他原料或方法制得的木质素磺酸钠类产品不完全适用。

分散剂M-9为棕色均匀粉末,主要质量指标应符合表1要求。

木质素磺酸钠含水率的测定

本方法参照标准GB 2386—1980。测定方法如下:

本方法参照标准GB2386—1980,用已恒量之扁形称量瓶(恒量误差±0.0004g)称取试样2~5g(称准至0.0004g),置于烘箱中,于l00~105℃或根据试样的性质于相应产品标准中所规定温度下烘至恒量(恒量误差±0.0004g)。

水分含量的质量分数X按式(1)计算

(1)

式中X——水分含量的质量分数,%;

——干燥前称量瓶连同试样的质量,g;

m

2

m

——干燥后称量瓶连同试样的质量,g;

l

m——试样的质量,g。

注:

本方法参照标准ZBG 73001—1985,适用于由钙基亚硫酸制浆(以云杉为主要用材)废液经石灰乳沉降、酸溶、转化而制得的分散剂M-9。分散剂M-9为一种木质素磺酸钠类产品。主要用作染料工业的分散剂及填充剂。

本标准对于由其他原料或方法制得的木质素磺酸钠类产品不完全适用。

分散剂M-9为棕色均匀粉末,主要质量指标应符合表1要求。

木质素

木质素编辑词条 B添加义项 ? 木质素(英语:Lignin)是一种广泛存在于植物体 中的无定形的、分子结构中含有氧代苯丙醇或其衍 生物结构单元的芳香性高聚物。植物的木质部(一 种负责运水和矿物质的构造)含有大量木质素,使 木质部维持极高的硬度以承拓整株植物的重量。 10 本词条正文缺少必要目录和内容, 欢迎各位编辑词条,额 外获取10个积分。 基本信息 ? 中文学名 ? 木质素 ? ? 别称 ? Lignin ? ? 界 ? 植物界 ? ? 门 ? 被子植物门 ? ?

纲 ? 双子叶植物纲 ? ? 分布区域 ? 许多 ? 目录 1基本简介 2主要特性3单体结构 4相关应用 5其他资料

基本简介折叠编辑本段 木质素是由聚合的芳香醇构成的一类物质,存在于木质组织中,主要作用是通过形成交织网来硬化细胞壁。木质素主要位于纤维素纤维之间,起抗压作用。在木本植物中,木质素占25%,是世界上第二位最丰富的有机物(纤维素是第一位)。 复纳新材料木质素 复纳新材料木质素主要特性折叠编辑本段 日本的八浜羲和曾对木质素下过这样的定义:木质素是在酸作用下难以水解的相对分子质量较高的物质,主要存在于木质化植物的细胞中,强化植物组织。其化学结构是苯丙烷类结构单元组成的复杂化合物,共有三种基本结构(非缩合型结构),即愈创木基结构、紫丁香基结构和对羟苯基结构,分子结构式如图所示, 木质素单体的分子结构折叠

同时含有多种活性官能团,如羟基、羰基、羧基、甲基及侧链结构。其中羟基在木质素中存在较多,以醇羟基和酚羟基两种形式存在,而酚羟基的多少又直接影响到木质素的物理和化学性质,如能反映出木质素的醚化和缩合程度,同时也能衡量木质素的溶解性能和反应能力;在木质素的侧链上,有对羟基安息香酸、香草酸、紫丁香酸、对羟基肉桂酸、阿魏酸等酯型结构存在,这些酯型结构存在于侧链的α位或γ位。在侧链α位除了酯型结构外,还有醚型连接,或作为联苯型结构的碳-碳联结。同酚羟基一样,木质素的侧链结构也直接关系到它的化学反应性。 对羟苯基结构愈创木基结构紫丁香基 结构折叠 由于木质素的分子结构中存在着芳香基、酚羟基、醇羟基、碳基共扼双键等活性基团,因此可以进行氧化、还原、水解、醇解、酸解甲氧基、梭基、光解、酞化、磺化、烷基化、卤化、硝化、缩聚或接枝共聚等许多化学反应。其中,又以氧化、酞化、磺化、缩聚和接枝共聚等反应性能在研究木质素的应用中显示着尤为重要的作用,同时也是扩大其应用的重要途径。在此过程中,磺化反应又是木质素应用的基础和前提,到目前为止,木质素的应用大都以木质素磺酸盐的形式加以利用。在亚硫酸盐法生产纸浆的工艺中,正是由于亚硫酸盐溶液与木粉中的原本木质素发生了磺化反应,引进了磺酸基,增加了亲水性,而后这种木质素磺酸盐在酸性蒸煮液中进一步发生水解反应,使与木质素结合着的半纤维素发生解聚,从而使木质素磺酸盐溶出,实现

Q_TMSL 018-2019水质处理剂 木质素磺酸钠粉

Q/TMSL 龙岩台迈三略制药有限公司企业标准 Q/TMSL018-2019水质处理剂木质素磺酸钠粉 2019-09-01发布2019-09-10实施

前 言 本公司产品水质处理剂木质素磺酸钠粉,由于目前没有适用的国家标准和行业标准,特制定企业标准。 本标准参照HG/T3507-2008《木质素磺酸钠分散剂》制定。 本标准的编写按GB/T 1.1-2009《标准化工作导则第1部分:标准的结构和编写》的规定进行。 本标准由龙岩台迈三略制药有限公司提出。 本标准由龙岩台迈三略制药有限公司质量管理部负责起草。 本标准主要起草人:罗金成

水质处理剂木质素磺酸钠粉 1范围 本标准规定了水质处理剂木质素磺酸钠粉的要求、试验方法、检验规则及标签、包装、运输、贮存、保质期。 本标准适用于以木质素磺酸钠为主要原料,通过粉碎、过筛与辅料石粉混合等工艺制得粉末,用于降低养殖水体中的亚硝酸盐的含量,改良养殖水体水环境的水质处理剂。 2规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T8170-2008数值修约规则与极限数值的表示和判定 GB8569固体化学肥料包装 GB/T8576复混肥料中游离水含量的测定真空烘箱法 GB18382肥料标识内容和要求 DB21/T1751-2009饲料级石粉 HG/T3507-2008木质素磺酸钠分散剂 JJF1070-2005定量包装商品净含量计量检验规则 NY1110水溶肥料汞、砷、镉、铅、铬的限量要求 国家质量监督检验检疫总局令第75号(2005)《定量包装商品计量监督管理办法》 3要求 3.1感官 本品为灰黄色或灰黑色粉末,略有刺激性气味。 3.2原料要求 原料木质素磺酸钠应符合HG/T3507-2008的要求; 石粉应符合DB21/T1751-2009的要求。 3.3技术指标 应符合表1的规定。

农药用分散剂木质素磺酸盐的制备与应用

农药用分散剂木质素磺酸盐的制备与应用 摘要 文章介绍了自然界木质素的形成,工业木质素的来源,木质素磺酸盐的生产工艺和流程;分析了木质素磺酸盐的分散机理,热稳定性机理,及影响分散和热稳的诸多因素;同时,对国产木质素磺酸盐的现状做了概述,对国产木质素磺酸盐在农药上的应用提出很好的建议。 一,前言 木质素磺酸盐作为分散剂历史悠久,早在1909年,人们发现木质素可以作为分散剂用于染料加工中。但当时所谓分散剂是用造纸废液中直接使用,它的质量和化学性质较差。 最早(60年前),我国在农药上使用,也是把亚硫酸制浆废液在用“液体”和“粉体”农药上,叫“展着剂”,起到分散和粘结作用。随着科学技术的进步,农药工业的发展和剂型加工技术的提高,对农药质量,特别是农药加工水平提出了更高的要求。70年代国内企业对亚硫酸制浆废液经过一系列化学改性后生产的木质素分散剂质量有明显改善,大量用于可湿性粉剂的加工。 80年代末到90年代初期,国外的木质素分散剂相继进入中国,包括:美国Westvaco 公司,牛皮浆的磺化木质素磺酸钠分散剂,挪威Borrgaard公司,亚硫酸法制浆的木质素磺酸盐分散剂,两个世界上生产和销售木质素磺酸盐产品最大和最主要的公司,由于木质素分散剂的品种很多,有的和染料分散剂是通用的。 目前,由于木质素分散剂绿色,环保,可降解,是用来加工农药剂型的主要助剂,已经得到业内人士的共识。已知,生产农药可湿性粉剂,一般性能的木质素分散剂就可以满足要求,国内的亚硫酸盐法木质素磺酸盐分散剂已经大量使用。对于近年发展的悬浮剂,水分散颗粒剂,干悬浮剂上用的木质素分散剂质量要求高,必须采用高质量的木质素磺酸盐分散剂。主要是经过进一步处理的木质素分散剂可与多种农药有良好的相容性,无论在常温下还是高温下都可以有良好的分散效果。 长期以来,高端木质素分散剂市场,有国外公司的产品占优。他们进入中国的分散剂都是以木材为原料生产的木质素产品。国内的木质素磺酸盐,由于各种原料复杂,有稻草的,有芦苇的,有木材的,质量参差不齐,所以很难做到高性能的农药分散剂。 在市场经济的大浪淘沙中,我国仅有的三家木材为原料的亚硫酸盐制浆的企业,转产的一家,关停的一家,仅剩下在吉林省靠近俄罗斯和朝鲜的边陲小镇的“延边石岘双鹿实业有限责任公司”,其前身是中国第一造纸厂,延边石岘白麓纸业有限公司(上市公司)。现在已经完全私有化。公司新开发的几只农药木质素分散剂能满足高质量农药剂型的需要,制备高标准可湿性粉剂,水分散颗粒剂,干悬浮剂性能优良。质量和国外产品具有可比性。 木质素分散剂加工剂型农药有如下优点:1.加工各种制剂都有好的分散性和润湿性,2.与农药活性成分有良好的相容性,3.绿色环保,完全可生物降解,4.资源丰富,价格低廉,5.具有抗沉淀和保护胶体作用,6.与金属离子有螯合作用,7.增强悬浮剂的抗硬水能力,其缺点是:1.降低表面张力、润湿性和渗透力方面较差,2.带有颜色,不能制备白色和浅颜色剂型,3.脱糖不彻底的产品有吸潮性。 二,木质素磺酸盐的制备 1.木质素形成与特性 在自然界的植物中二氧化碳通过光合作用生成D-葡萄糖,进一步生成莽草酸,再进一步生成芳香基的搁氨酸和对-羟基肉桂酸,然后再进一步生成木质素的典型单体结构,苯基丙烷。它们是:丁香醇(硬木),松柏醇(软木),香豆醇(草类),统称“苯基丙烷”。如图

甾体激素行业市场及关键中间体产业现状分析

甾体激素行业市场及关键中间体产业现状分析 各位领导、同事: 大家下午好!今天我想就之前了解过的甾体激素类药物的市场及关键中间体产业现状并结合上个月参加的甾体激素原料及中间体产业与市场论坛了解的信息向大家做个汇报和交流。对于甾体类药物,我们之前调研过其中间体雄烯二酮、植物甾醇和氨基葡萄糖等,但是就我个人而言,对于这个领域相对比较陌生。通过参加此次行业论坛,使我对这个行业的现状有了相对比较深刻的认识。我想在此抛砖引玉,和大家一起交流学习一下。 一、什么是甾体类药物 甾体激素药物在防治疾病方面发挥着重要的作用。包括医药、兽药和农药,国外已经上市的甾体和激素类药物共有400多种,我国临床常用品种近百种包括剂型和成盐药物。甾体激素药物是仅次于抗生素的第二大类药物,广泛用于治疗风湿性关节炎、支气管哮喘、皮肤病;也可用于避孕安胎、减轻女性更年期症状、减肥等。 目前,我国已经把甾体激素药物新资源开发作为医药行业近期发展的方向和重点之一。而且激素类原料药和中间体的出口已成为我国原料药走向世界的重要品种。然而我国在甾体药物研究、生产和临床研究方面与世界先进国家相比还有一定的差距,一方面是甾体药物合成步骤多、反应复杂、收率低、分离纯化困难;另一方面,甾体药物使用的上游原料由植物资源提取向微生物转化是革命性的。利用生物转化和化学合成相结合的方法,替代高污染、高成本的植物原料,具有显著的经济效益和社会效益。 我国已加工的甾体激素产业链产品有:皂素、双烯、澳氏氧化物、雄烯二酮、雄烯二醇、去氢表雄酮、表雄酮、单酯脱溴等。甾体激素原料药以资源为起始的产业链延伸,受到环保、资源利用和政策门槛的影响,使市场对原料需求不断增加,原料和关键中间体价格多变起伏。特别是国家加强了环保在经济发展中的重要作用,对传统的黄姜皂素产业提出了严峻的挑战。 例如我国湖北的十堰市处于南水北调的核心水源区,一度被称为“黄姜之乡”,各县将黄姜作为支柱产业发展,种植面积曾高达60万亩,姜农近100万人。由

木质素的性质及应用

木质素的性质及应用 张XX (北京联合大学生物化学工程学院,北京,100023) 摘要 随着人类对环境污染和资源危机等问题的认识不断深刻,天然高分子所具有的可再生、可降解等性质日益受到重视。在自然界中,木质素的储量仅次于纤维素,而且每年都以500亿吨的速度再生。增强其制浆造纸工业每年要从植物中分离出大约14亿吨纤维素,同时得到5000万吨左右的木质素副产品,截止到2002年时,超过95%的木质素仍直接排入江河或浓缩后烧掉,绝少得到高效利用[1]。被用于化工高分子材料却仅占 1%。所以对于木质素的研究、开发及应用等具有十分重要的意义。本文简单介绍木质素的结构、性质。主要介绍其在发泡塑料方面的应用。 关键词:木质素;树脂;改性;发泡; 木质素的结构 木质素,是聚酚类的三维网状高分子化合物,其基本结构单元为苯丙烷结构,共有三种基本结构(非缩合型结构),即愈创木基结构、紫丁香基结构和对羟基苯基结构。木质素是由松柏醇基、紫丁香基和香豆基三种单体以 C-C 键、醚键等形式连接而成的具有三维空间结构的天然高分子物质。[2] 木质素的化学性质 木质素的分子结构中存在着芳香基、酚羟基、醇羟基、羰基、甲氧基、共轭双键等活性基团,可以进行氧化、还原、水解、醇解、酸解、光解、酰化、磺化、烷基化、卤化、硝化、缩聚或接枝共聚等许多化学反应,从而奠定了木质素在多方面应用的基础。特别是在高分子材料方面,以木质素为原料可以合成酚醛树脂,既可以用作酚与甲醛反应,也可用作醛与苯酚反应[3];利用木质素所含的醇羟基,可与异氰酸酯类进行缩合反应,制得木质素聚氨酯;木质素与烯类单体在催化剂作用下能发生接枝共聚反应,如丙烯酰胺、丙烯酸、苯乙烯、甲基丙烯酸甲酯、丙烯腈等。 木质素的应用 脲醛树脂 木质素作为一种洁净资源,可制备合成树脂和胶黏剂、补强剂、油田化学品和各种助剂,在轻工业及农业中有广泛的应用。 脲醛树脂是目前市场上多用作粘合剂,作为塑料使用的很少,而且都是闭孔泡沫塑料,但脲醛树脂泡沫塑料由于其硬而脆的缺点,在应用上受到了限制。 采用加入木质素磺酸钠改性脲醛树脂,以降低游离甲醛含量及充分利用木质素资源;同时加入三聚氰胺和聚乙烯醇,以改变树脂的柔韧性。通过碳酸氢铵发泡法发泡制得开孔改性脲醛树脂泡沫塑料。实验结果表明:改性后游离甲醛含量明显降低,韧性有了较大的提高。[4]

(完整word版)木质素磺酸钠

木质素磺酸钠 木质素磺酸的钠盐即为木质素磺酸钠(sodium ligninsulfonate)是一种天然高分子聚合物,阴离子型表面活性剂。具有很强的分散能力,适于将固体分散在水介质中。由于分子量和官能团的不同而具有不同程度的分散性,能吸附在各种固体质点的表面上,可进行金属离子交换作用,也因为其组织结构上存在各种活性基,因而能产生缩合作用或与其他化合物发生氢键作用。在工业上,木质素磺酸钠广泛地用作分散剂和润湿剂。印染工业中使用的分散剂-NNO 即是以木质素磺酸钠为主要原料复配的。 质素磺酸钠是一种阴离子表面活性剂,是木浆与二氯化硫水溶液和亚硫酸盐反应产物,是生产纸浆的副产物,一般为4-羟基-3-甲氧基苯的多聚物。由于木材种类不同,磺化反应的差异,木质素磺酸盐的分子量由200到10000不等,化学结构尚未确定。一般说低分子木素质磺酸盐,多为直链,在溶液中缔合在一起;高分子木质素磺酸盐多为支链,在水介质中显示出聚合电介的行为。粗制的木质素磺酸盐大量用于在动物饲料的粒化,精制木质素磺酸盐用于石油钻井泥浆的分散剂;矿石浮选剂,矿泥、染料、农药的分散剂;对重金属,尤其是铁、铜、亚锡离子有较好的螯合能力,是有效的螯合剂。 中文名木质素磺酸钠 外文名 Sodium Ligninsulfonate 分子式 C 20H 24 Na 2 O 10 S 2 分子量 534.5 Cas 8061-51-6 彩色分子结构图:CAS NO.8061-51-6 中文别名分散剂CMN;改性木质素磺酸钠;木素磺酸钠;木素磺酸钠盐;分散剂M-9;木质磺素钠;木质磺酸钠 英文别名ahr2438b;banirexn;betz402;dispergatorreax;dispergatorufoxane;lignosite458 一、理化性质 1、有良好的扩散性能,能溶于任何硬度的水中,水溶液化学稳定性好,可生物降解。 2、木质素磺酸盐又称亚硫酸盐木质素,是相对分子质量不同,结构也不尽相同,即具有多分散性的不均匀阴离子聚电解质。固体产品为黄棕色自由流动的粉末,具有吸湿性。易溶于水,并不受PH值变化的影响,但不溶于乙醇、丙酮及其他普通的有机溶剂。水溶液为棕色至

木质素检测

木质素检测 木质素又称作木素,是自然界唯一能够提供可再生芳基化合物的非石油资源,为第二大天然高分子材料。根据结构单元不同,可将木质素分为三种类型:愈创木基木质素(guaiacyl lignin,G-木质素)、紫丁香基木质素(syringyl lignin,S-木质素)和对羟基苯基木质素(hydroxy-phenyl lignin,H-木质素)。木质素主要源于工业纸浆的副废物,制浆工业每年产生5000万吨左右的木质素副产品。但迄今为止,超过95%的木质素扔直接排入江河或者浓缩后烧掉,很少得到高效利用。随着人类对环境污染和资源危机等问题的不断深入,木质素作为天然高分子所具有的可再生性、可降解性等性质日益受到重视。 中心以广泛应用于木质素研究的热解-气相色谱-质谱分析技术为基础,通过不断改良优化测试方法,发展了一种四甲基氢氧化铵-裂解-气相色谱-质谱分析技术(TMAH-Py-GC-MS)。科标化工分析检测中心通过了中国国家认证认可监督管理委员会(CMA)实验室认证认可,能出具权威的第三方检测报告。 木质素含量检测(甲基化裂解色谱质谱分析法) 一、实验原理 四甲基氢氧化铵-裂解-气相色谱-质谱分析技术通过对裂解产物中的羟基、氨基、羧基等基团原位甲基化,有效地克服常规裂解分析法因产生不稳定中间体、高沸点和强极性产物而难于进入色谱系统获得有效分离的缺点,拓宽了分析范围,降低了GC柱温,缩短了分析时间,进而对木质素及其结构单元进行定量分析。 二、仪器和试剂 ①裂解器(又称裂解色谱装置):管式炉裂解器。 ②台式色谱质谱联用仪(70eV,带数据库)。 ③毛细管色谱柱,色谱柱为DB-5MS,其长30m、内径0.25mm、膜厚0.25μm的石英毛细管柱。 ④甲基化试剂:四甲基氢氧化胺甲醇溶液(10g/100mL)。 三、试验方法 将样品和甲基化试剂(四甲基氢氧化铵甲醇溶液)混合,加热,用不锈钢小工具压磨试样,使试样能溶于四甲基氢氧化铵中,取析出的伴有四甲基氢氧化铵的细小颗粒,裂解温度550℃,进行裂解色谱质谱联用分析。

20140319木质素磺酸盐在肥料方面的应用研究综述

木质素磺酸盐在肥料方面的应用研究综述 张玉娟20140319 木质素作为地球上每年生长的数量仅次于纤维素的第二大天然高分子聚合物,仅国内制浆造纸工业每年大约就有5000吨左右的木质素副产品,制浆废液中除含有大量的木质素、半纤维素等有机物质外,还含有植物生长所必需的大量营养元素,如氮、磷、钾、硫等,若加以综合利用,则可变废为宝,带来可喜的环境效益和社会效益。目前(2012.7)仅有安徽天一纸业、山东泉林纸业等少数企业实现了综合利用,在众多中小型造纸企业成为污染环境的废物。实现制浆黑液的资源化利用,拓宽木质素的应用领域,推动中小型造纸企业资源化回收黑液中的木质素,由此中小型造纸厂可通过出售木质素或其它衍生产品,收回全部木质素分离投资成本,显著降低污水处理成本,从而改善生态环境。因此,制浆黑液中木质素资源化利用不论是从解决造纸工业污染的角度出发,还是从可再生资源综合利用的角度出发,都是一个重要课题。[1] 木质素及其衍生物木质素磺酸盐等是一种具有网状结构的天然高分子有机化合物,具有大量的活性基团和较强的吸附能力,能与作物生长所必须的氮、磷、钾等经特定的化学反应以及物理吸附合成有机-无机复混肥。肥料中的养分释放是随着木质素在自然界的腐解而进行的,而木质素在土壤中降解缓慢,因此这种肥料具有较强的缓释特性。我国是一个农业大国,农业市场广阔,若能将木质素产品开发与农业生态环境保护相结合起来,既可解决制浆造纸工业的污染问题,又能促进生态农业的发展,是一条极具特色且发展潜力巨大的有效途径。[2] 近年来,研究者们正致力于腐植质类缓释或控释氮肥的开发,目的是要提高肥料的利用率和减少对环境的影响。木质素是土壤中形成腐植质物质的重要先体,已经通过不同的方法广泛用于缓释或控释氮肥的制备研究。[3] 一、木质素磺酸盐作包膜剂类有机-无机复混缓释肥 中国农业科学院土壤肥料研究所张夫道等2005年发明了“有机-无机复混缓释肥料生产方法”,以干基40%发酵腐熟的规模化畜禽场粪便或风化煤(腐殖酸含量50%以上)与60%的化肥(氮、磷、钾可按不同作物需求进行不同配比)为原料,使用有机复混肥干基量0.5%-1%的造粒粘结剂CF2生产有机-无机复混肥,筛选要求粒径1-5mm。采用不同时段释放养分的包膜剂:磺化木质素胶结包膜剂、腐殖酸类混聚物胶结包膜剂、废弃塑料-淀粉混聚物胶结包膜剂、粘土-聚酯混聚物胶结包膜剂包膜,生产有机-无机复混缓释肥料,从而延长复混肥料中氮素的释放时间,适用于各种作物施用。包膜的生产方法:复混肥经皮带输送至旋转包膜圆筒的包膜室,一边在旋转圆筒内转动上扬,一边喷洒雾状包膜剂,至复混肥表面完全湿润为止(包膜剂母液使用量为复混肥干基质量的1%-3%),然后进入扑粉干燥室,湿润的肥料颗粒一边转动、上扬和滚动,一边沾上一层滑石粉(过200目筛孔),最后再干燥、筛选、装袋。[4] 为了评价各肥料氮素养分的缓释性能,采用土柱间歇淋洗法结果如下: 土柱中氮素累积淋出率(%)

木质素

转载: 国内改性木质素类降粘剂研究进展 1 前言 水基钻井液一般由水、粘土、化学处理剂组成。它在钻井过程中起着重要作用,是适应各种复杂地质条件、提高钻井质量的重要因素。随着温度升高,体系中的化学处理剂及有机物成分会越来越活跃,促进了体系中SiO2的溶胶化(指SiO2在pH值大于9的环境中形成硅溶胶或称硅酸钠),结果使钻井液随环境温度的升高而逐渐增稠。如果钻井液粘度和切力过大,则使钻井液流动阻力过大、能耗过高,严重影响钻速,此外还会引起钻头泥包、卡钻、钻屑在地面不易除去和钻井液脱气困难等问题。 因此,降粘剂是钻井过程中不可缺少的钻井液处理剂,它对调节钻井液流变性起着非常重要的作用。虽然固控设备能有效清除钻井液中的各种固相,起调节钻井液流变性、减少降粘剂使用量的作用。但在现场固控设备的使用不理想,降粘剂的作用就更加重要。 木质素是一种复杂的芳香族天然高分子,由苯丙烷基以醚键(C-O-C)或碳-碳键(C-C)键结合形成杂支链的三维网状结构。它是植物纤维的主要组成部分之一,在自然界的分布极广,蕴藏量仅次于纤维素。目前用于燃料以外的工业木质素主要是木质素磺酸盐。木质素磺酸盐是木浆法造纸的副产品,价廉易得,分子上含有各种官能团,在一定条件下能与多种物质发生多种改性反应(主要有氧化剂氧化、金属离子络合、磺化剂磺化、甲醛缩合或接枝等),其进行化学改性后,是

良好的降粘剂。自20世纪50年代以来,铁铬木质素磺酸盐一直被广泛应用于钻井液中。 2 改性木质素类降粘剂的国内研究概况 2.1 木质素磺酸盐的接枝改性 根据接枝方法的不同,木质素磺酸盐的接枝改性目前主要分为3类:化学接枝、 生物化学接枝 和电化学接枝。 在合成降粘剂时,通常使用化学接枝。化学接枝分为一步法和二步法。一步法:先将木质素磺酸盐溶于水中,将引发剂、不饱和单体及还原剂一并加入反应瓶中,然后升温反应。这种方法的优点是反应速度快,工艺简单,生产效率高,但由于不饱和单体的一次加入,会由于竞聚率的不同,可能导致单体的部分自聚,而少量与木质素接枝反应,得不到高接枝化的产物,而且产品的粘度会较大,不宜获得高固体含量的产物。 二步法:先将木质素磺酸盐溶于水中,并加入还原剂,搅拌均匀,升温后,将不饱和单体及过氧化物并流滴加,两个滴加口离开一段距离,让单体有足够的时间与木质素磺酸盐混合后引发。其优点是共聚物粘度低,发硬易于控制,可制备高固体含量的接枝共聚物,但生产效率较一步法低。 2.2 近年国内已研制或应用的木质素类降粘剂 2.2.1 AMPS/AA/DMDAAC-木质素磺酸盐接枝共聚物降粘剂

机制炭生产制造项目可行性分析报告 (1)

机制炭生产制造项目 可行性分析报告 规划设计 / 投资分析

机制炭生产制造项目可行性分析报告说明 因机制炭在燃烧值和燃烧时间等性能具有优势,逐渐替代木炭,已成 为冶金、化工、医药、环保等工业领域不可缺少的原料,也广泛应用于食 品烧烤、涮锅、取暖等民用领域。 该机制炭项目计划总投资17618.50万元,其中:固定资产投资 14040.14万元,占项目总投资的79.69%;流动资金3578.36万元,占项目 总投资的20.31%。 达产年营业收入31819.00万元,总成本费用25416.34万元,税金及 附加312.00万元,利润总额6402.66万元,利税总额7597.79万元,税后 净利润4801.99万元,达产年纳税总额2795.79万元;达产年投资利润率36.34%,投资利税率43.12%,投资回报率27.26%,全部投资回收期5.17年,提供就业职位454个。 提供初步了解项目建设区域范围、面积、工程地质状况、外围基础设 施等条件,对项目建设条件进行分析,提出项目工程建设方案,内容包括:场址选择、总图布置、土建工程、辅助工程、配套公用工程、环境保护工 程及安全卫生、消防工程等。 ......

报告主要内容:项目概况、项目背景及必要性、市场调研、产品规划、选址可行性分析、土建工程说明、工艺先进性分析、项目环境保护和绿色 生产分析、安全规范管理、项目风险情况、节能说明、项目计划安排、投 资可行性分析、项目经济效益分析、总结评价等。 机制木炭机是当前市场上人们非常青睐的节能环保设备,主要是因为 其对生物质废料的利用,并且节能环保的生产,同时为人们生产出高质量 的机制木炭,所以很多用户也都在投资机制木炭机来生产机制木炭,为自 己带来丰厚的收益。

木质素表面活性剂及木质素磺酸盐的化学改性方法

木质素表面活性剂及木质素磺酸盐的 化学改性方法 李凤起1 朱书全2 (1.太原理工大学矿业工程学院,030024; 2.中国矿业大学北京校区,100083) 摘要:介绍了利用造纸工业的主要副产品木质素制取表面活性剂以及对木质素磺酸盐的几种有效的化学改性方法与产品应用途径,给出了用木质素改性制备水煤浆添加剂的实例。 关键词:木质素 化学改性 表面活性剂 接枝共聚 应用 木质素(简称木素)是造纸工业的副产品,在化学制浆过程中,木素绝大部分溶解在废液中,是纸浆废液的主要成分。由于原料不同,制浆方法不同,所以木质素在纸浆废液中的存在形式也不同。 碱木素存在于碱法制浆废液中,是一种具有分散、粘合及表面活性等特殊性能的天然高分子化合物。目前对木质素的化学结构尚无统一认识,但公认木质素是以1丙烯基3甲氧基4氧苯为结构单元通过C—O键或C—C键连接而成的高分子化合物。碱木素上缺乏强亲水性官能团,同时可发生反应的位置较少,所以水溶性和化学反应性能都不好,特别是在中性及酸性条件下溶解度很低,这些缺陷大大限制了它的应用范围。木质素的化学改性是开拓产品利用价值的重要手段。 木质素磺酸盐是在亚硫酸盐制浆过程中产生的,也可以由木质素磺化制得。木质素磺酸盐因有磺酸基存在,具有较强的亲水性,所以它比碱木素的应用广泛得多。 作者在进行木质素改性制取水煤浆添加剂的研究过程中,分析了木质素的几种有效的改性方法和可能的利用途径,并对碱木素进行磺化改性和对木质素磺酸盐氧化改性制成水煤浆添加剂,分别用于义马、北宿和大同煤制浆,经Haake RV12型流变仪测定,浆的流变性好,且水煤浆的定粘浓度提高2%~3%[1]。 1 木质素表面活性剂 木质素具有含活泼氢的羟基和可以被加成的双键,可以引入各种亲水性基团,合成各种表面活性剂。1.1 合成阴离子表面活性剂 木质素的改性方法虽然很多,但最具实际应用价值的改性方法还是磺化改性。磺化改性包括高温磺化、氧化磺化和磺甲基化。 高温磺化是将碱木素与Na2SO3在180℃左右反应,在木素侧链上引进磺酸基,制得水溶性好的产品。 木质素为网状大分子结构,屏蔽效应比较明显,表面可以被磺化,但其网状内部由于磺酸基无法进入而不能磺化。可以先用氧化剂(如KM nO4, H2O2)等进行氧化,将其打断为小分子后再进行磺化,然后再用偶联剂进行偶联,这样就可以得到磺化度较高的木质素磺酸盐,相对分子质量可以控制,分散效果将会更好。 磺甲基化是将碱木素在碱性条件下于170℃与甲醛和Na2SO3反应,即一步法磺甲基化;或者是先羟甲基化,再在碱性条件下于170℃与Na2SO3反应,即两步法磺甲基化。据报道,磺甲基化反应主要发生在苯环上,也有少量发生在侧链上[2],见图1。 木质素经磺化和磺甲基化后,具有较好的分散性和表面活性,可降低界面张力,有广阔的应用前景。下面是作者利用碱木素磺化改性制备水煤浆添加剂的实例。 (a)原料来源。 工业碱木素,来源于某造纸厂的碱法草浆黑液,质量分数大于30%,未经提纯,直接进行磺 收稿日期:19991204修改稿收到日期:20001219。 作者简介:李凤起讲师,主要从事表面活性剂的合成与应用工作,已发表论文篇。 2001年3月 精 细 石 油 化 工 SPEC IALIT Y PET ROCHE M ICALS 第2期

木质素

木质素的应用研究进展 林化10-3班边少杰100524326 摘要:木质素与纤维素和半纤维素是构成植物骨架的主要成分,木质素是自然界中含量第二的天然高分子化合物,其含量仅次于纤维素。它是制浆造纸工业的主要副产物,也是木材水解工业中不可缺少的副产物,是重要的可再生资源之一。研究和发展应用木质素技术是化工领域和生物质应重视的热点和难点问题。木质素的利用面广,主要分为木质素的高分子利用和木质素的降解利用。本文主要阐述了木质素的高分子应用主要包括木质素在吸附剂,表面活性剂,水处理剂,粘合剂,橡胶复合材料,替代柴油及木质素在农业生产中的应用。木质素的降解利用主要体现在生产香草醛上。通过对木质素应用领域的研究,可以看出木质素的的应用面广泛,市场潜力巨大。同时,我们也发现在其生产中面临的问题。如何利用木质素,提高生产技术,增加产品产量,提高产品性能,减少化学污染使我们面临木质素研究主要面临的问题。相信在时代步伐的指引下,我们必将逐个击破这些问题,为更好,更广泛的应用木质素做出努力。 关键字:木质素背景高分子利用降解利用面临问题

目录 1.序言 (3) 2.概述 (3) 2.1 木质素的结构与特性 (3) 2.2 木质素的分类 (4) 3.木质素的综合利用 (4) 3.1 木质素的高分子利用 (4) 3.11 木质素在表面活性剂、活性炭的研究 (4) 3.12 在树脂粘合剂合成中的应用 (5) 3.13木质素在橡胶复合材料中的应用 (5) 3.14 木质素作水处理剂的应用 (6) 3.15 木质素替代柴油技术 (6) 3.16 木质素在农业生产中的应用 (6) 3.2 木质素的降解利用 (7) 3.21 木质素制备香草醛的研究 (7) 4. 结语 (7) 参考文献: (8)

木质素市场分析

1、木质素市场需求 我国木质素产品年产量约10万吨左右,主要是由广州、开山屯、石砚等纸厂生产的木质素磺酸盐,另有少量草类碱木质素产品,绝大部分为粗产品,品种少,性能差,由于应用范围有限,尚未形成规模市场。我国木质素磺酸盐制品主要用于普通混凝土减水剂(约4万吨)、石油钻井液稀释剂(约2万吨)、农药分散剂和矿粉粘合剂、耐火材料粘合剂等,只有少量经过精加工制成染料分散剂等高附加值产品。 随着我国国民经济的发展和木质素产品市场的不断形成,木质素产品在我国具有广阔的市场前景。估计木质素粗产品及其精加工产品年需求量为:混凝土添加剂达25万吨-40万吨、油田化学品的需求量达20万吨-30万吨、另外木质素也被广泛用于工业分散剂和粘合剂,其年需求量达15万吨-20万吨左右。此外,我国是农业大国,木质素制品在农业方面的应用潜力十分广阔,如复合缓释肥料、土壤改良剂、农药缓释剂等用量也很大。随着木质素产品性能的提高和市场的不断开发,木质素产品在我国的需要量将不断增加。 2、木质素市场分布 2019年上半年木质素行业消费特点与消费趋势分析国外很多木质素工厂是用比较好的木材做生产木质素的原料,主要木材有三洲桉木,寒带的针叶木,并且把木质素深加工,精细化处理,实现用途和利润最大化最低端的木质素产品可以用于建材行业作为混凝土添加剂,价格相对较低,每吨元不等,另外经过深加工的木质素可以用于蓄电池行业,染料,农药等行业作为分散剂,价格不等。 3、木质素的发展趋势 不过随着全球对木材砍伐的控制,用来生产木质素的木料来源趋于紧张,木质素价格一直在增加,尤其纯木料为主要原料的进口木质素价格,从1995年至今,价格每年呈现5%-10%的增长速度 目前,我国木质素产品的利用尚未受到重视,可利用资源有限,加工技术落后,品种少,产量低,市场尚未打开,远不能满足国民经济发展的需要。 4、竞争格局 木质素在市场中很少有竞争对手,很少有公司或企业单独生产木质素。 1、本公司生产的木质素在市场占有率很高。 2、本公司获得木质素渠道是通过秸秆处理获得,因此不用担心供应与原料的问题。 3、本公司通过多媒体和短视频的形式宣传公司的木质素产品。 4。本公司的原料非常便宜,故木质素的价格会低于市场价很多,在市场中有很强的竞争力。

木质素磺酸钠

木质素磺酸钠(木钠) 木质素磺酸钠sodium ligninsulfonate是一种天然高分子聚合物,具有很强的分散性,由于分子量和官能团的不同而具有不同程度的分散性,是一种表面活性物质,能吸附在各种固体质点的表面上,可进行金属离子交换作用,也因为其组织结构上存在各种活性基,因而能产生缩合作用或与其他化合物发生氢键作用。印染工业中使用的分散剂-NNO 即是以木质素磺酸钠为主要原料复配的。 阴离子表面活性剂。是木浆与二氯化硫水溶液和亚硫酸盐反应产物,是生产纸浆的副产物,一般为4-羟基-3-甲氧基苯的多聚物。由于木材种类不同,磺化反应的差异,木质素磺酸盐的分子量由200到10000不等,化学结构尚未确定。一般说低分子木质素磺酸盐,多为直链,在溶液中缔合在一起;高分子木质素磺酸盐多为支链,在水介质中显示出聚合电介的行为。粗制的木质素磺酸盐大量用于在动物饲料的粒化,精制木质素磺酸盐用于石油钻井泥浆的分散剂;矿石浮选剂,矿泥、染料、农药的分散剂;对重金属,尤其是铁、铜、亚锡离子有较好的螯合能力,是有效的螯合剂。 木质素磺酸钠是一种天然高分子聚合物,具有很强的分散性,由于分子量和官能团的不同而具有不同程度的分散性,是一种表面活性物质,能吸附在各种固体质点的表面上,可进行金属离子交换作用,也因为其组织结构上存在各种活性基,因而能产生缩合作用或与其他化合物发生氢键作用。 印染工业中使用的分散剂-NNO 即是以木质素磺酸钠为主要原料复配的。 木质素磺酸钠的用途: 木质素磺酸钠(木钠)是竹子制浆过程提取物,经过浓缩改性反应并喷雾干燥而成。产品为浅黄色(棕色)自由流动性粉末,易溶于水,化学性质稳定,长期密封储存不分解。木质素系列产品是一种表面活性剂,可以通过改性、加工、复配等方法生产多个产品,主要用于树脂、橡胶、染料、农药、陶瓷、水泥、沥青、饲料、水处理、水煤浆、混凝土、耐火材料、油田钻井、复合肥料、冶炼、铸造、粘合剂。通过实验证明,木质素磺酸盐防止沙土化土壤十分有效,还可以做沙漠固定沙剂。本产品系改性木质素磺酸钠,其质量标准如下:木质素磺酸钠含量45-50%还原物含量<8%水不溶物含量<1.5%PH值(1%水溶液)7-9含水量<5%细度120目筛余≤4%。主要性能有: 1、混凝土减水剂:系粉状低引气性缓凝减水剂,属于阴离子表面活性物质,对水泥有吸附及分散作用,能改善混凝土各种物理性能。减少用水13%以上,改善砼的和易性,并能大幅度降低水泥水化初期水化热,可复配成早强剂、缓凝剂、防冻剂、泵送剂等,与萘系高效减水剂复配后制成的液体外加剂基本没有沉淀产生。 2、水煤浆添加剂:在制备水煤浆过程中加入本产品,能提高高磨机产量、维持制浆系统状况正常、降低制浆电耗,使水煤浆提高浓度,在气化过程中,氧耗、煤耗下降,冷煤气效率提高,并能使水煤浆降低粘度且达到一定的稳定性和流动性。 3、耐火材料及陶瓷坯体增强剂:在大规格墙地砖及耐火砖制造过程中,可以使坯体原料微粒牢固粘结起来,可使干坯强度提高20%—60%以上。 4、染料工业和农药加工的填充剂和分散剂:在用作还原染料及分散染料的分散剂和填充剂时,可使染料色力增高,着色更均匀,缩短染料研磨的时间;在

中国酚醛树脂市场报告

中国市场调研在线

行业市场研究属于企业战略研究范畴,作为当前应用最为广泛的咨询服务,其研究成果以报 告形式呈现,通常包含以下内容: 一份专业的行业研究报告,注重指导企业或投资者了解该行业整体发展态势及经济运行状 况,旨在为企业或投资者提供方向性的思路和参考。 一份有价值的行业研究报告,可以完成对行业系统、完整的调研分析工作,使决策者在阅读 完行业研究报告后,能够清楚地了解该行业市场现状和发展前景趋势,确保了决策方向的正确性 和科学性。 中国市场调研在线 https://www.doczj.com/doc/8110430306.html, 基于多年来对客户需求的深入了解,全面系统地研究了该 行业市场现状及发展前景,注重信息的时效性,从而更好地把握市场变化和行业发展趋势。 2017-2023 年中国酚醛树脂市场深度监测与发展前景分析报告 报告编号: 615568 市场价: 纸介版 7800 元 电子版 8000 元 纸质+电子版 8200 元 优惠价: ¥7500 元 可开具增值税专用发票 在线阅读: https://www.doczj.com/doc/8110430306.html,/yjbg/hghy/yj/20170617/615568.html 温馨提示: 如需英文、日文、韩文等其他语言版本报告,请咨询客服。 [ 正文目录 ] 网上阅读: https://www.doczj.com/doc/8110430306.html,/

第1 章酚醛树脂产业相关概述第一节酚醛树脂的合成原理第二节酚醛树脂的重要性能 一、高温性能 二、粘结强度 三、高残碳率 四、低烟低毒 五、抗化学性 六、热处理第三节酚醛树脂的应用 一、粉状模塑料 二、短纤维或碎屑片增强酚醛模塑料 三、长纤维及长纤维织物增强酚醛塑料 四、酚醛层压塑料 五、酚醛造型材料 六、酚醛隔热、隔音材料 七、木制品黏结剂及其他专用型黏结剂 八、酚醛基涂料 九、耐火材料结合剂十、炭化功能性材料十一、电子封装材料十二、其他第 2 章2017 年世界酚醛树脂产业运行状况分析第一节2017 年世界酚醛树脂产业发展综述 一、国外酚醛树脂的研发进展及现状 二、全球酚醛树脂及塑料工业加快重组步伐 三、全世界酚醛树脂消费量分析第二节2017 年日本酚醛树脂产业发展分析 一、日酚醛树脂及塑料崭新发展 二、日本酚醛树脂新品层出 三、日本简化酚醛树脂制造工艺第三节2017 年其他国家酚醛树脂产业发展分析 一、美国 二、德国 节2017-2023 年全球酚醛树脂产业发展前景预测分析第3 章2017 年世界主要酚醛树脂产业运营情况分析第一节日本住友电木(SUMITOMO BAKELIT公E)司 一、公司基本情况 二、公司经营及市场销售分析 三、公司竞争优势分析 四、未来国际化发展战略第二节日本松下电工(MATSUSHITAEECTRICWORKL公TD司.) 一、公司基本情况 二、公司经营及市场销售分析 三、公司竞争优势分析 四、未来国际化发展战略第三节美国瀚森化工公司 一、公司基本情况 二、公司经营及市场销售分析 三、公司竞争优势分析

木质素的研究进展

Botanical Research 植物学研究, 2016, 5(1), 17-25 Published Online January 2016 in Hans. https://www.doczj.com/doc/8110430306.html,/journal/br https://www.doczj.com/doc/8110430306.html,/10.12677/br.2016.51004 Progress in Research on Lignin Yongbin Meng1*, Lei Xu1, Zidong Zhang1, Ying Liu2, Ying Zhang2, Qinghuan Meng2, Siming Nie2, Qi Lu1,2 1National Engineering Laboratory for Ecological Use of Biological Resources, Harbin Heilongjiang 2Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin Heilongjiang Email: 347576614@https://www.doczj.com/doc/8110430306.html,, luqi42700473@https://www.doczj.com/doc/8110430306.html, Received: Dec. 10th, 2015; accepted: Dec. 24th, 2015; published: Dec. 30th, 2015 Copyright ? 2016 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.doczj.com/doc/8110430306.html,/licenses/by/4.0/ Abstract Lignin is a renewable aromatic polymer in nature, and it can be used in the process of high added value. In addition, the oil and natural gas are facing the serious situation of increasingly exhausted. Lignin as a part of alternative fossil raw materials shows a good application prospect. In order to realize the use of lignin, firstly, we must understand the composition and structure of lignin. Stat-ing from the chemical composition of lignin, this paper analyzed and compared some methods and techniques for separation as well as extraction, and application of lignin extraction, focused on the latest progress in the structure of lignin, and forecasted the development direction of lignin ap-plication. Keywords Lignin, Structure, Separation, Application 木质素的研究进展 孟永斌1*,徐蕾1,张子东1,刘英2,张莹2,孟庆焕2,聂思铭2,路祺1,2 1生物资源生态利用国家地方联合工程实验室,黑龙江哈尔滨 2东北林业大学森林植物生态学教育部重点实验室,黑龙江哈尔滨 Email: 347576614@https://www.doczj.com/doc/8110430306.html,, luqi42700473@https://www.doczj.com/doc/8110430306.html, 收稿日期:2015年12月10日;录用日期:2015年12月24日;发布日期:2015年12月30日 *第一作者。

颗粒状木质素纤维比选分析报告

十白高速公路二期路面技术服务及 施工控制 (颗粒状木质素纤维比选分析报告) 报告编号:SHJG-030 检测人员:刘柏、张松 报告编写:孙马、胡澍 报告审定:焦扬 报告日期:2012年7月7日 湖北省高速公路实业开发有限公司 十白路面技术服务及施工控制项目部

颗粒状木质素纤维比选报告 6月至今项目部针对十白高速公路沥青路面上面层颗粒状木质素纤维(以下简称纤维)材料的选定,配合指挥部工程技术部、质量安全部对4家供应商提供的纤维进行了常规试验和掺加纤维后SMA沥青混合料性能试验,其目的是掌握和评价各供应商纤维的质量,并通过对不同品牌纤维的比对试验,为指挥部对纤维材料的选定提供指导意见。具体汇报如下: 一、纤维试验方案 (1)纤维的常规试验 采用JT/T 533-2004标准对纤维进行常规检测,对不同纤维的灰分含量、含水率进行比较。 (2)纤维的松密度比较 采用欧盟质量控制系统DIN 53468,检测不同纤维的松密度。如果颗粒状纤维的松密度太小,颗粒体积偏大,不够密实,容易出现碎料,且在投料和输送中时间偏长,和输送管道触碰会产生部分絮状,容易在投料机出料口出现堵塞,影响施工。如果颗粒状纤维松密度过大,纤维本身组成太细,纤维太短,会影响吸油率,且在生产过程中不容易分散均匀,影响施工和铺筑质量。欧盟标准为 450g/L~480g/L。 (3)纤维的吸油效果比较 JT/T 533-2004中规定纤维的吸油率试验,各供应商样品通常都能满足要求,我部通过纤维的拌和试验,通过目测观察不同纤维的拌和效果, 初步选用拌和效过好、吸油能力强的纤维。再采用析漏试验, 在同样条件下析漏损失小的纤维为优质纤维, 从中选出使用性能良好的纤维。 (4)纤维掺量的确定与比较 纤维掺量的确定。常用的SMA -13混合料中纤维掺量一般为0.2%~0.3% 。本方案重新确定最佳纤维掺量。同样采用析漏试验, 不以0.1%的析漏损失作为评价标准, 做不同纤维掺量下析漏损失关系图, 综合考虑析漏损失和经济角度,

相关主题
文本预览
相关文档 最新文档