当前位置:文档之家› 反渗透海水淡化的能量回收装置

反渗透海水淡化的能量回收装置

反渗透海水淡化的能量回收装置
反渗透海水淡化的能量回收装置

反渗透海水淡化的能量回收装置

闫红梅

中国核电工程有限公司

摘要:反渗透海水淡化在能耗方面占有很大的优势,能量回收是降低海水淡化成本的重要措施。本文简要介绍了目前几种常用的能量回收方式,对其进行比较,并说明采用能量回收的重要性。

关键词:反渗透

海水淡化能量回收

中图分类号:P747文献标识码:A

文章编号:

1概述

当今社会,能源需求和环境压力的急剧上升决定了发展核电等清洁能源成为必然选择。按照既定规划,“十二五”期间,我国将迎来新一轮核电站建设高峰期。日本福岛核事故后,我国暂停审批核电项目,但我国能源消耗的增长较快,发展非化石能源是大势所趋,随着核电技术水平的不断提高以及核安全保证能力的提升,以及适宜大规模建设发电等特点,核电依然是清洁能源的重要选择。我国大部分核电站建在沿海,沿海地区可利用的淡水资源非常紧张,海水淡化技术的采用在很大程度上缓解了淡水需求。

在海水淡化技术的应用过程中,降低能耗、节省能源、减少制水成本的处理方式是最为人们所关注的。反渗透海水淡化(SWRO )具有设备投资省、能耗低、建设期短、占地面积少、对设备材质要求低等特点。其在能耗方面占有很大的优势,无能量回收装置的反渗透海水淡化的能量消耗约为8~10kW·h/m 3,采用能量回收装置能耗可降到3~4.5kW·h/m 3。

图1-1为反渗透海水淡化的操作成本分

项,图1-2为电力消耗成本分项。

由此可见,能耗在运行成本中占有很重要的份额,大约占制水总成本的30%左右。

下表为反渗透海水淡化能耗的基本发展情况:年代

能耗能量回收方式

1980年8kW·h/m 3无1990年

4.8kW·h/m 3

透平式

图1-1反渗透海水淡化操作成本分项

图1-2反渗透海水淡化电力消耗成本分项

2000年 3.7kW·h/m3涡轮式

2005年 2.2~2.5kW·h/m3PX压力式

可见,想要有效的降低能耗,采用合适的能量回收装置是十分必要的。

2能量回收方式

由于海水的含盐量高,渗透压大,反渗透淡化海水需要提供较高的工作压力(约5.8~8.0MPa)。如标准海水的含盐量约为35000mg/L,反渗透装置的给水压力约需要6.0MPa。反渗透淡化海水时,一级反渗透装置水的回收率一般为35~55%,即高压浓盐水的排放量可占进水流量的45~65%,这部分浓盐水排出反渗透装置时尚有约5.6~5.8MPa的压力。如果直接排放,一方面比较浪费,另一方面也较危险。在浓盐水的排放管线上安装能量回收装置,把占55%左右的高压浓水的能量加以回收,大大降低了能源的浪费,同时降压后的浓盐水排放更安全。

能量回收装置有不同的应用方式:

1回收的能量可直接用于提高海水给水的压力;

2可用于提高第二段给水的升压,以提高或均衡第二段膜组件的产水量;

3制备含盐量更低的淡水,用于第二级反渗透的给水升压。

不同的能量回收装置回收效率不同,回收效率低的约为35%~70%,回收效率高的可达90%~95%。

纵观海水淡化能量回收装置技术的发展,由最初的反转透平(reverse running turbines)和皮尔顿装置(Pelton wheel devices),到20世纪80年代末期的水力透平式能量回收装置(hydraulic turbo charger),1997年美国能量回收公司(ERI)推出采用正位移原理转换能量的压力交换式能量回收装置(Pressure Exchanger)。能量回收装置主要采用透平式原理和正位移原理来回收能量。

2.1能量回收的原理

能量回收装置按照工作原理主要可分为透平式和正位移式两种类型。透平式能量回收装置主要有水力透平式,通常需要经过“压能-机械能-压能”两步转换过程,能量回收效率一般在50~70%之间。正位移式能量回收装置利用反渗透系统排出的高压浓水直接增压进料海水的方式来回收能量,能量回收效率一般都在92~95%之间。

目前,国际常用的透平式能量回收装置主要代表为美国Pump Engineering(PEI)公司和Fluid Equipment Development Company(FEDCO)的水力透平(TurboCharger);正位移式能量回收装置主要代表为美国ERI公司的PX。

2.1.1水力透平式能量回收装置

水力(涡轮)透平式能量回收装置采用离心式原理,由安装叶轮的水泵侧和安装透平转子的透平侧组成,叶轮和透平转子间通过一根中心轴相连接。反渗透装置排出的高压浓水直接冲击涡轮驱动透平转子把压力能转换为机械能(轴功),通过中心轴把机械能传递水泵侧的叶轮,叶轮再把机械能转换为压力能,对进入反渗透系统的海水实施增压。因此,水力透平式能量回收装置完全由浓水提供能量,

不需要外加电能。

水力透平式出现最早,技术成熟,流程简易,组装方

便,产品已形成系列化,但由于其在能量回收过程中存在

2次能量转换,在转化过程中存在能量损失,所以能量回收效率较低。其能量回收效率曲线和离心水泵的效率曲线相似,随着进水流量的增加而提高,因此,适宜在大容量海水淡化系统中应用。

1999年4月我国大连长海县建成的1000m 3/d SWRO 系统采用了具有水力透平结构的能量回收装置,可回收RO 浓水能量的32%。2005年大唐王滩发电厂的10000m 3/d SWRO 系统采用了PEI 公司的HTC ,能量回收装置效率为70%。2.1.2压力交换式能量回收装置

压力交换式能量回收装置采用正位移原理,低压海水从一端进入PX 设备,来自反渗透膜的高压浓盐水从另一端进入PX 设备。压力能量在设备内进行交换后,低压海水转变成高压海水流出,而高压浓盐水转变成低压浓盐水流出。这种能量转换效率非常高可达95%以上,比涡轮机

的转换效率高1/3。经PX 加压后的高压海水使进入反渗透装置的海水得到分流,通过高压泵的海水流量大幅度降低,从而降低了对高压水泵的能耗要求,因此安装此装置后可使海水淡化的运行费用大为降低。由于PX 的使用,反渗透装置的比能耗最低可以小于2.0kW·h/m 3。

福建宁德核电厂的10872m 3/d SWRO 系统和辽宁红沿河核电厂的15000m 3/d SWRO 中均采用了美国ERI 公司的PX 压力交换式能量回收装置,可回收浓水中近95%的能量,系统能耗低于2.5kW·h/m 3。2.2能量回收装置的比较

上述两种能量回收装置的技术经济比较见表2-1:

表2-1

能量回收装置对比

类型水力(涡轮)透平式

压力交换式

能量回收原理在回收高压浓盐水中的压能时通过减少高压泵的输出压力来降低系统能耗。在相同系统产量的情况下通过减少高压泵增压海水的流量的方式降低系统能耗。能量转换过程压能-机械能-压能压能-压能回收效率50~70%92~95%

设备投资较低高,需另配增压泵

安装简单

因系统内配套设备较多而略复杂

运行、控制简便

较复杂,需联动调试

高压泵配置根据反渗透进水流量和反渗透部分进水压力设置

根据淡水产水流量和反渗透进水全部压力主要部件材质双相不锈钢陶瓷和玻璃钢耐腐蚀性中等高冗余性无有安全性差好占地面积小大模块化设计不可以可以质保

2年

5年

3能量回收应用

以某核电厂海水淡化工程为例,假设需设置n 套海水膜反渗透装置,每套装置的产水量按150m 3/h ,

图2-2PX

能量回收装置

反渗透回收率为45%,则能量回收装置分别按PX 和Turbo 两种方式设计的反渗透海水淡化系统水量平衡图如下:

上述两套系统的计算数据如下:

3.1PX 的回收效率为96.7%,Turbo 的回收效率为68.4%左右。3.2系统配置:

采用PX 能量回收装置的系统,需要配置二台泵,一台高压泵,一台增压泵;采用Turbo 能量回收装置的系统,需要配置一台高压泵。3.3

水泵参数:PX :

高压泵流量152m 3/h ,扬程710m ,增压泵流量181m 3/h ,扬程30m ;

Turbo :高压泵流量333m 3/h ,扬程450m 。

3.4单吨水的电耗:

经计算,PX 系统的单吨水的电耗是2.666kWhr/m 3,Turbo 系统的单吨水的电耗是3.367kWhr/m 3。PX 系统会比Turbo 系统在单吨水的能耗少0.701kWhr/m 3。

图3-1反渗透海水淡化系统水量平衡图(能量回收PX)

图3-2反渗透海水淡化系统水量平衡图(能量回收TURBO)

3.5初期投资:

PX系统投资较高,Turbo系统投资较低。本项目Turbo系统比PX系统在投资成本上预计节约人民币2925000元(含高压泵及电机、变频器、能量回收装置、增压泵和辅助系统)。

3.6运行成本

PX系统的运行成本会很低,根据本项目的电费0.49元/度电,由于PX系统运行成本的低廉,在1年多的时间内就能收回这部分的初期投资成本。长期运行可以节约大量的运行费用。初步估算,20年以后PX系统能为该核电厂节约人民币64519790元。

3.7国内业绩:PX系统在国内使用40余家,市场占有率为90%以上,包括辽宁红沿河核电厂、福建宁德核电厂、天津大港海水淡化厂等;Turbo系统用户较少,有大唐王滩电厂、平海电厂。

综合考虑海水淡化能量回收装置在我国海水淡化工程的应用,同时吸取各方面的经验,某核电厂海水淡化拟采用PX压力交换式能量回收装置。

4结论

随着反渗透海水淡化技术的发展,对能量回收技术和装置的研究与开发也引起高度关注和重视。透平式能量回收装置在设计、维护、运行等各方面都比正位移式能量回收装置简单,不需要增压泵和自动阀门,但其能量回收效率较低。PX压力交换式能量回收装置需要控制系统,运行较复杂,但能耗低,投资回报率高。对于不同的海水淡化工程,我们要根据项目本身的特点合理选择合适的能量回收装置。对于透平式能量回收装置适合于大的系统设计采用,回收效率明显、经济效益良好、淡化成本显著降低。对于PX压力交换式能量回收装置大、小系统都适用,但大的系统需并联的PX较多,接口较多,占地较大。小系统在短期内就可收回投资成本,从节能的角度出发,采用PX压力交换式能量回收装置更好。

目前国内反渗透海水淡化采用的能量回收装置主要为美国的TurboCharger和PX,国内在能量回收的技术有待进一步开发和研究,研究和开发新型的能量回收技术,对反渗透海水淡化技术的发展和推广具有重要的意义。

参考文献

1.王世昌主编.海水淡化工程.北京:化学工业出版社,2003.2

2.潘献辉,王生辉等.反渗透海水淡化能量回收技术的发展及应用.中国给水排水,2010.8

反渗透海水淡化的能量回收装置

作者:闫红梅

作者单位:中国核电工程有限公司

刊名:

城市建设理论研究(电子版)

英文刊名:ChengShi Jianshe LiLun Yan Jiu

年,卷(期):2012(33)

本文链接:https://www.doczj.com/doc/809121440.html,/Periodical_csjsllyj2012332840.aspx

反渗透海水淡化工程方案

反渗透海水淡化工程设计方案

目录 1、设计基础 2、工艺流程及说明 3、控制系统说明 4、设备技术规范 5、技术服务内容 6、技术保证 7、供配电和原材料供应 8、环境处理 9、投资方式与运行管理 10、建设内容与施工期 11、投资估算 12、经济效益及社会效益评价 前言

蚂蚁岛位于舟山本岛东南部,北临沈家门和普陀山,距沈家门8海里,常住人口在4300人左右,是一个以渔业为主,有著名的虾皮加工市场的岛屿。岛上风景秀丽,民风淳朴。近几年来随着旅游业的兴起,已发展成为旅游景区。 蚂蚁岛是舟山市13个严重缺水的岛屿之一,且受地理、地形的制约,淡水资源开发难度很大。平常年全岛可供淡水13万m3,需水量为19万m3,缺水约5万m3,缺水量比较大。鉴于水源不能满足岛内生活水平的提高和各产业的发展,所以需新增水源,开拓稳定可靠的淡水资源,是缓解蚂蚁岛淡水资源缺乏的根本措施。在政府和有关技术部门于2005年5月对本地区虾峙镇的“300吨/日的反渗透海水淡化工程”进行调研的基础上,对蚂蚁岛建设总制水能力为“200吨/日的反渗透海水淡化工程”正式立项。 据本公司提供的信息,对蚂蚁岛筹建“200吨/日的反渗透海水淡化工程”进行工程投资并参与建设,现就“200吨/日的反渗透海水淡化工程”进行方案设计,提供以下设计方案,以供负责项目部门参考。 1.0 设计基础 1.1 本方案涉及的流程及设备是能满足制备生活饮用水,有如

下要求; 1.1.1 产水用途:生活饮用水。 1.1.2 系统出力:200m3/d(25℃)。 1.1.3 系统回收率:35%~40%。 1.1.4 系统配置:取水、预处理、一级反渗透(RO)除盐装置及相关辅助设备。 1.2 本方案主要依据如下: 1.2.1 海水水源:用户提供。 1.2.2 原水水质分析:水质报告。 1.2.3 设计界限:从取水点至终端水箱。 1.2.4 其它涉及的设计基础条件将在技术联络中讨论确定。 1.3 设备制造及设计参考标准: 1.3.1 JB2932-86《水处理设备制造条件》。 1.3.2 HGJ34-90《化工设备管道外防腐设计规定》。 1.4 出水水质:达到生活饮用水水质卫生规范(2001) 1.5 系统对外要求:

能量回收器原理

反渗透海水淡化系统中的能量回收装置 按照工作原理,流体能量回收技术主要分为流体非直接接触式和流体直接接触式两大类。 一、流体非直接接触式技术 在非直接接触式流体能量回收装置中,高低压流体对需要借助叶轮和轴来传递能量,即以机械能作为流体能量传递的中间环节,故又称为机械能中介式技术。能量转换过程为压力能——机械能——压力能。 采用流体非直接接触式技术的典型装置类型有逆转泵型、佩尔顿型叶轮和水力透平等。这种技术的节能机理是在回收高压流体中的压力能的同时减少高压泵的提升压力差来降低 系统的能耗。 1.逆转泵和佩尔顿叶轮型 逆转泵和佩尔顿叶轮型装置的原理类似,属于外力驱动泵式装置,即其加压泵由外电机驱动,通过轴传递的能量为辅助形式。高压废流体驱动透平中的叶轮,通过传动轴与泵连接,为新鲜低压流体加压,做功后的高压废流体丧失能量后排出。下图为此类装置的能量传递示意图 2.水力透平装置与逆转泵及佩尔顿叶轮机型最大的区别在于其透平叶轮和泵体叶轮安 装在同一壳体中,用高压浓盐水直接冲击透平叶片,通过轴功直接驱动加压泵工作,并尽可能减少中间传动轴的机械能损失,从高压流体回收后的能量作为唯一驱动力驱动泵的工作。下图为此装置的示意图 二、流体直接接触正位移技术 这种技术的节能机理是在产量不变的情况下减少通过高压泵的流量的方式来降低系统

的能耗。它是高低压流体直接交换压力能,而不需要机械辅助装置,又称正位移技术,能量的转换过程为压力能——压力能。按照运动部件的类型,这类装置可分为活塞式功交换器和旋转式压力交换器两种。 1.活塞式功交换器 活塞式功交换器自身结构简单,高压流体通过活塞为低压流体加压,同时活塞还可有效防止高低压流体的混流,而且活塞本山阻力非常小,传递效率接近100%。下图为其结构示意图 2.旋转式压力交换器 旋转式压力交换器主要部件是一个无轴的转子,沿轴向开有数个孔道,高低压流体在孔道中交换能量,并依靠转子的连续转动实现系统的连续运行。

海水淡化技术介绍

海水淡化技术及建设投资运行成本介绍 1.海水淡化技术发展现状 海水淡化又被称为海水脱盐,也就是从海水中获取淡水的技术和过程。从海水中取出淡水或者除去海水中的盐分,都可以达到淡化的目的。从这两条路线出发,海水淡化分为两类。采用从海水中分离出淡水的方法又可以细分为蒸馏法、冷冻法、反渗透法、水合物法和溶剂萃取法;而第二类则包括电渗析法和离子交换法。其中目前得到大规模商业应用是反渗透法和蒸馏法。 (1)反渗透海水淡化技术 对透过的物质具有选择性的薄膜称为半透膜,一般将只能透过溶剂而不能透过溶液的薄膜称之为理想的半透膜。当半透膜把不同浓度的溶液隔开后,在自然情况下,水流是从低浓度盐水侧往高浓度盐水侧流动;当在高浓度盐水侧加上一个适当的压力后,也会将水从高浓度侧压到低浓度侧,见图1。反渗透海水淡化就是利用该原理,用高压泵将海水增压后,借助半透膜的选择截留作用来除去水中的无机离子得到淡水。由于反渗透膜的截留粒度小于10×10-10 m,所以反渗透海水淡化同时能滤除各种细菌、病毒,获得高质量的纯水。 图1. 反渗透海水淡化技术原理 一般说来,反渗透海水淡化工艺包括四部分:预处理、反渗透、后处理及清洗系统,图2是一种反渗透海水淡化系统的典型工艺流程。

图2. 反渗透系统典型工艺流程图 预处理系统的目的是为了充分发挥反渗透淡化系统的技术优越性,保障良好的设计性能和长时间的安全运行,特别是为了保证膜的使用寿命(一般情况下,自来水和苦咸水反渗透膜的使用寿命为5年,而海水膜的使用寿命为3年)而设置。由于供给的源水不同,其水质组成与杂质成分千差万别,预处理系统也有很大的区别,在决定预处理系统时需要丰富的基础理论知识和工程实际经验。 反渗透装置的主体由反渗透膜堆和高压泵两部分组成,反渗透组件是整个系统的心脏部分,而高压泵是系统的关键部件。高压泵把进水升压至不同的压力进入膜堆,透过膜的水作为产品水,而未透过膜的作为浓盐水排放。其设计的核心在于根据不同的原水水质安排不同的回收率,以及通过流程及设备的选用使系统尽可能的节能。一般情况下自来水及苦咸水回收率可以做到45%~75%,有些系

海水淡化工艺设计的方案

1 前言 1.1 概况 我国淡水资源极为匮乏,全国660多个城市中,有400多个城市缺水,其中100多个城市严重缺水。淡水资源短缺乃至水危机是我国经济社会可持续发展过程中的最大制约之一。电厂在生产电能的同时,可利用其廉价的热和电,进行海水淡化,不仅可满足其工业用水的需要,而且还可为周边地区提供淡水水源。在推动和利用海水淡化技术方面,电厂有着其得天独厚的有利条件。因此滨海电厂配套建设海水淡化装置已成发展趋势。 1.2 水源及水质特点 某电厂取水具有海域辽阔、水量充沛、海水较清、悬浮物及有害微生物少等特点,可大大节省海水取水成本及原料海水预处理成本。 海水水质分析报告如下: 分析报告

1.3 海水淡化规模

根据建厂地区的缺水状况,电厂可针对性地提出水电联产的方案,目前可解决电厂的淡水用水,以后可根据需要适时配套建设大规模的海水淡化厂,为地方经济发展提供淡水资源保障。本项目结合2×1000MW发电机组的建设规模,暂按配套建设2×104m3/d规模的海水淡化装置设计;并对总规模为40×104m3/d海水淡化厂作出展望。 本专题报告按本期工程厂内自用的2×104m3/d规模和规划容量的40×104m3/d的海水淡化站分别进行比较论述。 2 海水淡化技术概述 海水淡化技术的种类很多,但适于产业化的主要有蒸馏法(俗称热法)和反渗透法(俗称膜法)。蒸馏法主要有多级闪蒸(MSF)、低温多效蒸馏(LT-MED)技术。 2.1 蒸馏法淡化技术 2.1.1 多级闪蒸(MSF) MSF是蒸馏法海水淡化最常用的一种方法,在20世纪80年代以前,较大型的海水淡化装置多数采用MSF技术。大港电厂二期工程引进了美国的多级闪蒸(MSF)海水淡化装置,是我国第一套大型的海水淡化装置。 MSF的典型流程示意图见图2-1。 图2-1 盐水再循环式多级闪蒸(MSF)原理流程 多级闪蒸过程原理如下;将原料海水加热到一定温度后引入闪蒸室,由于该

能量回收装置

Recuperator能量回收装置 毋庸置疑,阿科凌与业内竞争对手相比的最大优势在于我们的专利设备— Recuperator能量回收装置。它是阿科凌专有的能量回收装置/工作转换机,阿科凌也因此成为全球唯一一家拥有专有能量回收装置的海水淡化水供应商。回流机属于等压能量回收装置,具体而言,它是一种活塞式工作转换机。 回流机结构紧凑,呈塔状结构,经过不断的改良, 如今已是第三个版本。阿科凌研发实验室不遗余力 地致力于回流机新功能的开发,并将于近期推出升 级版新产品。回流机目前仅应用于阿科凌的交钥匙 解决方案和自建自营的项目中,但计划不久将作为 第三方产品进行销售。回流机能实现高达98.5% 的废弃能量回收率,可大幅节省运营成本。 背景介绍 膜组件是反渗透海水淡化过程的核心部分,从一开 始,反渗透法海水淡化技术便致力于膜组件的开发 与改良。 阿科凌专功膜法脱盐项目,反渗透海水淡化过程的终极目标是获取材质与结构均符合脱盐市场需求(如高产出率、高脱盐率、抗高压、抗化学性和低给水污染物排放)的膜组件。 随着阿科凌系统设计技术的不断进步,加之阿科凌多年的反渗透系统运营经验、优化的预处理解决方案以及更高效设备和更优材质的采用,将成功节省运营成本并大幅降低系统的生命周期成本。 工作原理 回流机通过反渗透膜滤过的盐水给预处理海水加 压,加压过程由反渗透膜的盐水流量进行调节。 该装置包含两个直立的双向不锈钢塔,分别进行加 压转移和解压释放处理。预处理海水来自加压给水 箱,而给水箱为系统提供恒定的水流量和水压。 回流机能够将加压盐水的能量回收至反渗透膜及 增压泵—只需把加压盐水替换成相同流速的预处 理海水。

海水淡化PX能量回收装置维护说明书

PX-260能量回收装置 一、PX能量回收装置介绍 海水淡化反渗透系统中能量回收装置选用EnergyRecovery,Inc.(ERI)公司生产的PX-260型能量回收装置 1、设计原理 每台PX装置都要经过效率、噪声级别、工作压力和流量的测试。每台装置的测试记录都予以保存,并可根据其序列号查询。PX产品采用装配合适的聚苯乙烯泡沫包装以保护装置在运输时免受损伤。PX产品已用稀释的除菌剂溶液进行了清洗,以防止在装箱和存放期间的细菌孽生。PX产品在存放或工作的环境温度不得低于33℉[1℃],且不得高于120℉[49℃]。 PX能量回收装置将高压浓盐水水流的压力传递给低压新鲜海水水流,这两股水流在转子的内通道中直接接触,从而完成压力交换。转子装在一个间隙尺寸精确的陶瓷套中,该陶瓷套位于两个陶瓷端盖之间。当高压水注入时,可形成一个几乎无摩擦的水力轴承。在水力轴承里旋转的转子是PX装置中唯一的运动部件。 在任意时刻,转子内通道的一半处于高压水流中,而另一半则处于低压水流中。转子转动时,通道会通过一个将高压和低压隔离的密封区。这些含有高压水的通道与相邻的含有低压水的通道被转子通道间的隔断和

陶瓷端盖形成的密封区隔离。 PX能量回收装置的陶瓷部件示意图如下图所示。由海水供水泵供应的海水流进低压区左侧的通道,该水流将浓盐水从通道的右侧排出。在转子转过密封区后,高压盐水从右侧流入通道,给海水增加压力,受压后的海水然后再流入循环泵。转子每旋转一圈,这个压力交换过程就在每个通道内重复,从而不断有水流注入和排出。转子公称转速为l,200rpm,即转子每秒钟转20转。 2、SWRO系统中的能量回收装置 PX能量回收装置从根本上改变了SWRO系统的工艺流程。图4.2显示PX 能量回收装置在SWRO系统中的典型流程。来自SWRO系统的浓盐水[G]通过PX装置,其压力直接传递给进入的新鲜海水,效率高达98%。与浓盐水的压力和流量接近的加压海水流[D] 进入循环泵。循环泵采用变频控制,通过改变电机的频率来调整高压循环管路[E-G-D]的流量。被循环泵完全加压的海水与高压泵出水混合,进入反渗透膜。

反渗透法海水淡化工艺设计方案

海水淡化 工艺设计方案 姓名:董福林 所在班级:海化13-1 学号:201338042113 二○一四年十二月

目录 1.方案方法选择 2.原理介绍 3取水方式 4 海水预处理 5加药装置的选择 6反渗析主机介绍 7管道选择

8工艺流程图 9结语 方案方法选择 海水淡化技术种类很多,有蒸馏法(多级闪蒸、多效蒸馏、压汽蒸馏等)、膜法(反渗透、电渗析、膜蒸发等)、离子交换法、冷冻法等,但适用于大规模淡化海水的方法只有多级闪蒸、多效蒸溜和反渗透法 反渗透法与现有其他分离方法(如蒸发、冷冻等)相比,具有相态不变、无需加热、设备简单、效率高、占地小、操作方便、能量消耗少、适应性强等显著特点。而且采用反渗透技术不会造成环境的二次污染,排污费用较低,容易达到环保要求,制水成本可大幅度降低,易于大规模工业化生产。 原理介绍 当向浓溶液一侧施加一个大于渗透压的外压时,浓溶液中

的水就会通过半透膜流向稀溶液,使浓溶液的浓度更大,这一过程就是渗透的相反过程,称为反渗透渗。反渗透是非自发过程 取水方式的确定 在海水淡化系统中,取水方式对海水的预处理有较大的影响。如果考虑因素不全面,会严重影响反渗透的效果,给保安过滤器及反渗透膜堆增大工作负荷。 取水方式应考虑如下因素:取水位置的选择;台风对取水设施的影响;从取水处输送至预处理系统的方式方法;取水泵的选择(潜水泵或端吸泵等);海潮对取水水位的影响;海水温度的变化;海水的腐蚀性;海水中微生物、细菌、藻类等。 考虑以上因素后,一般有如下四种取水方式:海滩井取水;表层海水取水;海床过滤取水;海滩水平暗渠取水。具体采用何种取水方式,要在综合考虑各种因素后才可确 海水预处理 微滤和纳滤技术用于海水预处理海水不仅硬度高,且水中的悬浮物、胶体物质、微生物、细菌等会使膜受到污染、侵蚀,水的温度、pH值、余氯含量、压力等参数的变化也会影响膜的性能,所以给水预处理对反渗透安全运行是至关重要的。传统的常规海水预处理包括:灭菌沉降、过滤、软化、脱气等,需要多

反渗透技术在海水淡化中应用.

作者:Abao005 浅析反渗透在海水淡化中的应用 摘要:海水淡化自古以来就是人们梦寐以求的,现在已经变为现实,尤其是近几年来,反渗透技术由于其投资少、能耗低、成本便宜、建设周期短等优点。已多次在国际海水淡化会化招标中胜出。本文主要介绍反渗透技术的发展,介绍了膜、组器、设备以及应用工艺的创新性开拓,其中包括不对称膜、复合膜。 关键词:海水淡化,渗透,反渗透,膜分离

引言 海水的组成很复杂,已知海水中含有80 多种化学元素,主要以离子形式存在。在海水浓缩、结晶过程中,则以盐的形式析出。其中Cl -,Na +,Mg 2+等11 种含量超过1 ×10 - 6的元素是海水的主要成份,占海水总含盐量的99.58% 。此外,海水中还存在某些同位素,重要的有氢的同位素氘等。海水中也溶解有多种气体,含量最多的为二氧化碳、氮和氧。空气中的稀有气体氩、氦和氖,在海水中也有微量存在。溶解在海水中的二氧化碳,与淡水中的情况不同,淡水中的二氧化碳主要是以游离状态存在,可用煮沸或减压等方法驱除。海水中的二氧化碳除少量是游离状态外,主要是以碳酸根及碳酸氢根形式存在,需加入强酸方可逐出,用一般的方法难以驱逐。海水中还含有各种数量不等的无机和有机悬浮物,因此要从海水中提取淡水并不是一件很容易的事。 世界上淡水资源不足,已成为人们日益关切的问题。作为水资源的开源增量技术,海水淡化已经成为解决全球水资源危机的重要途径。反渗透法于20世纪70年代起用于海水净化,经过几十年的发展,随着反渗透膜性能提高、预处理技术进步、能量回收率的提高等,已成为投资最省、成本最低、应用范围广泛的海水淡化技术,也是目前最清洁的方法。 一、反渗透简介 反渗透又称逆渗透,一种以压力差为推动力,从溶液中分离出溶剂的膜分离操作。对膜一侧的料液施加压力,当压力超过它的渗透压时,溶剂会逆着自然渗透的方向作反向渗透。从而在膜的低压侧得到透过的溶剂,即渗透液;高压侧得到浓缩的溶液,即浓缩液。若用反渗透处理海水,在膜的低压侧得到淡水,在高压侧得到卤水。 反渗透时,溶剂的渗透速率即液流能量N为: N=Kh(Δp-Δπ) 式中Kh为水力渗透系数,它随温度升高稍有增大;Δp为膜两侧的静压差;Δπ为膜两侧溶液的渗透压差。稀溶液的渗透压π为:

海水淡化工艺设计方案

1刖占1.1概况 我国淡水资源极为匮乏,全国660多个城市中,有400多个城市缺水,其中100多个城市严重缺水。淡水资源短缺乃至水危机是我国经济社会可持续发展过程中的最大制约之一。电厂在生产电能的同时,可利用其廉价的热和电,进行海水淡化,不仅可满足其工业用水的需要,而且还可为周边地区提供淡水水源。在推动和利用海水淡化技术方面,电厂有着其得天独厚的有利条件。因此滨海电厂配套建设海水淡化装置已成发展趋势。 1.2水源及水质特点 某电厂取水具有海域辽阔、水量充沛、海水较清、悬浮物及有害微生物少等特点,可大大节省海水取水成本及原料海水预处理成本。 海水水质分析报告如下: 分析报告

1.3海水淡化规模

根据建厂地区的缺水状况,电厂可针对性地提出水电联产的方案,目前可解决电厂的淡水用水,以后可根据需要适时配套建设大规模的海水淡化厂,为地方经济发展提供淡水资源保障。本项目结合 2x1000MW发电机组的建设规模,暂按配套建设2x104m3/d规模的海水淡化装置设计;并对总规模为40x1。伽%海水淡化厂作出展望。 本专题报告按本期工程厂内自用的 2 x104m3/d规模和规划容量的40x 104m3/d的海水淡化站分别进行比较论述。 2海水淡化技术概述 海水淡化技术的种类很多,但适于产业化的主要有蒸镭法(俗称热法)和反渗透法(俗 称膜法)。蒸镭法主要有多级闪蒸(MSF)、低温多效蒸镭(LT-MED)技术。 2.1蒸镭法淡化技术 2.1.1多级闪蒸(MSF) MSF是蒸馆法海水淡化最常用的一种方法,在20世纪80年代以前,较大型的海水淡化装置多数采用MSF技术。大港电厂二期工程引进了美国的多级闪蒸(MSF)海水淡化装置,是我国第一套大型的海水淡化装置。 MSF的典型流程示意图见图2-1 。 图2-1盐水再循环式多级闪蒸(MSF)原理流程 多级闪蒸过程原理如下;将原料海水加热到一定温度后引入闪蒸室,由于该闪蒸室中的压力控制在低于热盐水温度所对应的饱和蒸汽压的条件下,故热盐水进入闪蒸室后即成为过热水而急速地部分气化,从而使热盐水自身的温度降低,所产生的蒸汽冷凝后即为所需的淡水。 MSF装置具有设备单机容量大、使用寿命长、出水品质好、造水比高、热

反渗透海水淡化技术的发展

反渗透海水淡化技术的发展 海水淡化是从海水中获取淡水的技术和过程。早在50年代,为解决“水的危机”,美国从52年起专设盐水局,74年后转为资源技术局,不断推进水资源和脱盐的技术进步,其中反渗透法海水淡化(SWRO)就是1953年据膜和海水界面有一纯水层而提出的。 l、前言 水是生命的源泉,是社会和经济发展的命脉,是人类宝贵的不可替代的自然资源。当前缺水已成为世界性问题,成为制约社会进步和经济发展的瓶颈,解决水资源的供需矛盾,对我国的可持续发展是非常迫切的和重要的。我国沿海地区仅占全国土地面积的15%,人口的40%,但创造着60%以上的社会总产值,和全国一样,沿海,特别是北方地区以及岛屿的供水严重不足,形势严峻。沿海地区有丰富的海水资源,用海水淡化技术向大海要淡水,满足沿海城镇和岛屿对淡水的需求或紧缺需求,是自古以来人们所梦寐以求的,现在已变为现实。反渗透海水淡化不仅技术上完全可行,而且在许分情况下是经济的。 2、反渗透的发展概况 海水淡化是从海水中获取淡水的技术和过程。早在50年代,为解决“水的危机”,美国从52年起专设盐水局,74年后转为资源技术局,

不断推进水资源和脱盐的技术进步,其中反渗透法海水淡化(SWRO)就是1953年据膜和海水界面有一纯水层而提出的;73年日本通产省下设造水促进中心,专门研究的脱盐技术,欧洲则在尤里卡等计划下推动海水淡化的发展,它们也都以膜法为重点。经过近50年的研究、开发和产业化,SWRO自70年代进入海水淡化市场之后,发展十分迅速。RO用膜和组件已相当成熟,组件脱盐率可高达99.5%以上,有约20年的经验积累,SWRO工艺过程也逐渐成熟,近年来,功交换器和压力交换器的开发成功使能量效率都高达90%以上,从而使SWRO的本体能耗在3kWh/m3淡水以下,成为从海水制取引用水最廉价的方法,进一步增强了SWRO的竞争力。 近几年来,在国际海水淡化中,SWRO以投资最低,能耗最省,成本最低,建造周期短等优势而屡屡中标。SWRO所以能如此成功,与其在膜、组器、设备和工艺等方面的创新性开拓是分不开的。下面是着几方面的简要的发展概况: 3、反渗透的一些重大的创新进展 3.1反渗透膜的进步 在反渗透膜发展的历史中,不对称膜和复合股的研发是创新的两个范例。

海水淡化工艺方案

海水淡化工艺方案

1 前言 1.1 概况 中国淡水资源极为匮乏,全国660多个城市中,有400多个城市缺水,其中100多个城市严重缺水。淡水资源短缺乃至水危机是中国经济社会可持续发展过程中的最大制约之一。电厂在生产电能的同时,可利用其廉价的热和电,进行海水淡化,不但可满足其工业用水的需要,而且还可为周边地区提供淡水水源。在推动和利用海水淡化技术方面,电厂有着其得天独厚的有利条件。因此滨海电厂配套建设海水淡化装置已成发展趋势。 1.2 水源及水质特点 某电厂取水具有海域辽阔、水量充沛、海水较清、悬浮物及有害微生物少等特点,可大大节省海水取水成本及原料海水预处理成本。 海水水质分析报告如下:

1.3 海水淡化规模 根据建厂地区的缺水状况,电厂可针对性地提出水电联产的方案,当前可解决电厂的淡水用水,以后可根据需要适时配套建设大规模的海水淡化厂,为地方经济发展提供淡水资源保障。本项目结合2×1000MW发电机组的建设规模,暂按配套建设2×104m3/d规模的海水淡化装置设计;并对总规模为40×104m3/d海水淡化厂作出展望。 本专题报告按本期工程厂内自用的2×104m3/d规模和规划容量的40×104m3/d的海水淡化站分别进行比较论述。

2 海水淡化技术概述 海水淡化技术的种类很多,但适于产业化的主要有蒸馏法(俗称热法)和反渗透法(俗称膜法)。蒸馏法主要有多级闪蒸(MSF)、低温多效蒸馏(LT-MED)技术。 2.1 蒸馏法淡化技术 2.1.1 多级闪蒸(MSF) MSF是蒸馏法海水淡化最常见的一种方法,在20世纪80年代以前,较大型的海水淡化装置多数采用MSF技术。大港电厂二期工程引进了美国的多级闪蒸(MSF)海水淡化装置,是中国第一套大型的海水淡化装置。 MSF的典型流程示意图见图2-1。 图2-1 盐水再循环式多级闪蒸(MSF)原理流程多级闪蒸过程原理如下;将原料海水加热到一定温度后引入闪蒸室,由于该闪蒸室中的压力控制在低于热盐水温度所对应的饱和蒸汽压的条件下,故热盐水进入闪蒸室后即成为过热水而急速地部分气化,从而使热盐水自身的温度降低,所产生的蒸汽冷

丹佛斯能量回收装置模拟

Seal Zone PX High Pressure Outlet PX Low Pressure inlet Seal Zone Start PX Booster Pump Main High Pressure Pump 0 flow 0 bar 0 flow 0 bar 0 flow 0 bar 0 flow 0 bar 0 flow 0 bar 0 flow 0 bar PX High Pressure Inlet PX Low pressure Outlet V F D FM FM PX Rotor Step 1: Start seawater supply or fresh water flush. SW Pump Start Flush Seal zone Air Vent Permeate 0 flow

Seal Zone PX Rotor Seal zone LP PX High Pressure Outlet PX Low Pressure inlet PX Booster Pump Main High Pressure Pump --flow 2 bar 0 flow 2 bar --flow 2 bar 58.8 flow 2 bar 58.8 flow 1 bar PX High Pressure Inlet PX Low pressure Outlet V F D FM FM Seawater Pump Start Booster Stop SW Pump Air Vent 0 flow 2 bar Permeate 0 flow Seal Zone

推荐-20吨日反渗透海水淡化工程项目建议书 精品

2000吨/日反渗透海水淡化工程 项 目 建 议 书 杭州水处理技术研究开发中心

目录

第一节概述1.1项目背景 1.2水资源现状 1.3建设海水淡化项目的必要性和意义

第二节工艺技术初步方案 2000m3 /d反渗透海水淡化工程分为四部分,即海水取水、海水一级预处理、海水二级预处理、反渗透海水淡化及产品水后处理供水。整体工程的技术路线如下: 海水冷却水池—→海水取水—→水力澄清池—→重力无阀滤池—→中间海水池—→海水增压泵—→多介质过滤器—→保安过滤—→高压泵+能量回收装置+压力提升泵—→反渗透海水淡化装置—→产品水后处理—→产品水池—→供水泵—→自来水管网。 2.1海水取水 取水量为240 m3/h,取得的海水通过管道送到位于工程现场的水力循环澄清池。 2.2海水一级预处理 海水一级预处理部分由水力循环澄清池、重力式无阀滤池及液氯、混凝剂和助凝剂自动投加设备及中间海水池组成,设计处理量为240m3/h。 由于海水水源为表层海水,海水中存在大量微生物、藻类和细菌,细菌、藻类繁殖和微生物的生长会直接影响反渗透海水淡化系统及工艺管道件的正常运行。因此,本设计采用投加液氯杀菌灭藻方案。投加量为2-3mg/l,投加点设在水力澄清池前的海水输水管上。 由于海域周期性涨潮、退潮的影响,海水中夹带大量的泥沙,浊度高,设计中采用两级预处理方案,海水一级预处理由水力澄清池、重力无阀滤池组成。目前国内外海水淡化工程多采用铁盐作为海水预处理系统中的混凝剂。由于海水比重较大、铁盐生成的矾花比重大在海水中易于沉降,本设计选用三氯化铁作为混凝剂,预计投加量视海水浊度变化在40-80mg/l之间:骨胶为助凝剂,投加量为2-3mg/l。经海水一级预处理,要求海水浊度降到3-5度以下,进入中间海水池。中间海水池系过渡性水池,要求有30分钟的储水量,初步确定中

反渗透海水淡化系统改善措施探究

反渗透海水淡化系统改善措施探究 发表时间:2019-10-23T15:01:21.600Z 来源:《基层建设》2019年第21期作者:宗磊[导读] 摘要:海水淡化能够为现有的水资源提供补充措施,在一定程度上缓解一些地区缺水的状况。 天津大港新泉海水淡化有限公司天津市 300270摘要:海水淡化能够为现有的水资源提供补充措施,在一定程度上缓解一些地区缺水的状况。特别是在很多岛屿以及中东地区,海洋淡化水已经成为基本的水源。因此,在这样的情况下,反渗透海水淡化系统改善显得非常重要。 关键词:反渗透;海水淡化系统;改善措施引言 随着中国社会经济的快速发展,虽然我国反渗透海水淡化系统各项功能已经有了明显改善,但是现阶段依然存在很多问题亟待解决。海水淡化工程水资源系统是系统性和综合性的系统,与多方面因素都有紧密联系。 1、反渗透海水淡化技术概述 所谓海水淡化技术,主要是把海水中的盐分出去,提取其中的淡水的一种技术。在经过了半个多世纪的研究和不断发展,这项技术已经显得比较成熟,把海水淡化已经在世界的各个地方都基本实现。特别是在一些海湾比较缺水的地区,更是需要这项技术。在当前的海水淡化技术中,有反渗透、多级闪蒸、多效蒸发和压汽蒸馏等。就反渗透技术来说,虽然出现的相对比较晚,但是有一个最大的特点就是采用膜处理技术,与其他海水淡化技术相比,能耗比较低,也比较节能环保。所以,在未来一段时间,海水淡化处理技术的核心将会是反渗透海水技术,这种技术将发挥关键性的作用。 反渗透技术,英文名称是“REVERSE OSMOSIS”缩写为“RO”。是在20世纪60年代发展起来的一项技术,属于目前比较先进和节能环保的技术,主要是采用反渗透膜在外界压力作用下使溶液中的溶剂与溶质进行分离,从而很好的去处水中的杂质和盐分,净化海水,提取淡水。 1.1优点 ①海水淡化使用的反渗透技术属于一种膜处理技术,基本上具有膜应具有的优点,比如能耗比较低,环保性能好,对于热敏感物质的分离效果比较明显等,应用的范围也是比较广的,而且应用设备相对比较简单,维修起来也比较方便。运营的费用相对其他技术是比较低的,设备还比较容易定型,具有比较强的自控能力,在经营管理的时候比较方便,这样更加有利于产业化经营。 ②反渗透膜的孔径不大,一些细微的生物病菌都没有办法通过反渗透膜,而且,这个膜还可以更好的处理一些有机物和一些微粒。所以,利用反渗透技术进行海水淡化,淡化出来的水质是比较好的,完全可以达到饮用水的标准。 ③反渗透技术的原动力是压力的分离,其设备构造比较紧凑,设备的体积也不大,单位体积内产水的量也比较高,占地面积不大,而且在操作起来比较简单,属于自动化程度比较高的技术。 1.2缺点 ①对于反渗透膜来说,对于水质的要求是比较严格的,所以,在进液淡化水之前要对原有的水质进行一个相对比较严格的处理,比如,采用微虑超滤膜等一些过滤方法。尽可能的不要污染透膜,避免微孔的堵塞。 ②在反渗透运行中,过滤器R.O.膜元件更换频率相对比较高,这样就在无形中增加了处理费用,而且运行的时候噪音是比较大的。 ③海水中有一些难以溶解的盐分和一些悬浮物以及化合物等杂质,所以,反渗透装置在长时间使用之后,就会有裇污垢堵塞住。所以,需要在一定时间内用特定的清洁剂对其进行清洗,从而把膜组件的性能恢复到原有状态。为了避免反渗透透膜上产生细菌,需要定期对其进行消毒处理。 ④当前我国海水淡化的产业规模还不是特别大,一天的产量之占据世界的1%左右,海水作为冷去水的用量也只占据世界的6%左右。对于沿海地区来说,自来水的价格是偏高的。由于大规模的海水淡化技术还不太成熟,没有任何法律法规可以遵循也是其中的原因,那些有条件利用海水但是却没有利用的情况时有发生。 2、反渗透海水淡化系统优化措施 2.1优化反渗透海水淡化系统 反渗透海水淡化系统根据工序的不同可分为四个部分:预处理系统、高压给水系统、膜组件、后处理系统。 2.1.1预处理系统 在实践中,海水中存在大量硫酸盐、硅酸盐等难溶于水的盐、泥沙,真菌、霉菌、藻类等微生物以及其他杂质。如果未经预处理的海水直接通过膜组件,这些污染物将会直接被半透膜膜体截留,致使膜体短时间内受到严重污染,甚至产生损害,破坏膜系统的长期稳定运行,将导致频换更换膜组件,造成经济成本过高。因此,考虑到系统的长期稳定运行,防止膜组件系统被快速污染甚至被破坏,造成膜组件更换频繁,使经济成本过高,在海水在进入在膜组件前,相关人员必须进行相应严格有效的预处理工艺,以保护膜组件及整个系统安全有效的运行。比如,工程预处理系统按工序及作用的不同可分为二级和一级预处理系统。其中,一级系统主要包括预处理斜管沉淀池、清水池、絮凝沉淀池、加药系统、无阀过滤池等。一级系统的作用是除去伤害膜组件的、对膜组件产生严重污染的有害物质,比如海水中的悬浮有机物、细菌、微生物、泥沙、胶体等。 2.1.2高压给水系统 在实践中,高压给水系统主要由三个部分组成:增压泵、高压泵、能量回收装置,是反渗透海水淡化工程的主要能耗模块。高压泵是反渗透海水淡化系统的主要能耗部件,反渗透过程的水分子通过渗透膜的驱动力是由高压泵来提供,高压泵是反渗透海水淡化工程高压給水系统的心脏。高压泵的电耗占高压给水系统能耗的90%以上,占制水成本的70%以上,因此当反渗透海水淡化系统中膜组件已经选定的情况下,海水淡化高压泵的效率、运行方式将直接决定反渗透海水淡化系统的能耗指标。能量回收系统是高压给水系统的另一重要组成部分。在实践中,海水经过膜系统后所得的浓水仍然具有很高的压力,如果系统不能将这部分浓海水中的能量加以回收利用的话,将造成极大的能量浪费。使用能量回系统将这部分浓海水中的能量加以回收利用,可有效的降低系统的总能耗,从而极大降低单位产水能耗。另外,能量回收装置采用ERI的PX能量回收装置,该装置在膜组件因老化、污染,海水温度波动和盐度波动等外部因素影响系统回收率的情况下,该装置的回收效率也能基本保持不变。

海水淡化装置

海水淡化装置 (1)真空沸腾式海水淡化装置 真空沸腾式海水淡化装置本体主要由蒸发器和冷凝器组成,海水的加热和沸腾汽化都在蒸发器内进行,而(二次)蒸汽的凝结则在冷凝器内完成。此外,还有抽真空系统、给水系统、加热系统、冷却系统、淡水(凝水)系统及排污系统等辅助系统。图所示为真空沸腾式海水淡化装置的工作原理图。加热介质(热水或低压蒸汽)流过加热器,通过加热管将蒸发器中的海水加热,并使其沸腾汽化(又称二次蒸汽,以区别与加热用蒸汽)。二次蒸汽经蒸发器上部的汽水分离器除去其

所携带的水滴后,被引人冷凝器1。由海水泵5所供给的舷外海水在冷凝器中使水蒸气冷却、凝结,凝结成的淡水积聚在冷凝器下部并由淡水泵7抽至淡水柜。蒸发器中海水的蒸发以及蒸汽在冷凝器中的凝结都是在高真空状态下进行的。其真空度由真空喷射泵3建立和保持。为了使结构更紧凑,通常沸腾式海水淡化装置都将冷凝器放置在蒸发器的上方,并组装成一整体。 目前,在柴油机船上,海水淡化装置一般都使用主机缸套冷却水作为加热介质,只有在主机停车而又需淡化装置工作时,才采用辅助锅炉的减压蒸汽来加热。对某些淡水耗量较大的船舶,当其动力装置的余热不足以满足装置的需要时,则也可使用低压蒸汽作为补充热源。竖管加热式单效应真空表面式海水淡化装置,其结构简单,设备管系紧凑,操作管理方便,是目前船舶应用最多的装置类型。这类海水淡化装置通常为整体安装,即将冷凝器置于蒸发器上部,两者组装在一个壳体内,形成一个蒸发一冷凝器整体,以利于装置的密封。而一些泵浦、管路附件及其控制仪表等辅助设备,均安装在壳体及基座上。 (2)真空闪发式海水淡化装置

真空闪发式海水淡化装置的特点是海水的加热与汽化彼此分开。海水在加热器中加热后即被引到压力比海水相应温度下饱和压力更低的容器(闪发室)中,以使部分海水骤然汽化,然后再将其汽化的蒸汽引入冷凝器中凝结成淡水。 海水在加热器5中被加热后,经喷雾器6喷入闪发室1中,由于闪发室中的压力低于海水温度相应的饱和压力,因此从加热器来的海水一经喷入闪发室时,就在该压力下处于过热状态立即汽化,其汽化过程所需要的汽化潜热则取自其余未汽化的海水。闪发而成的蒸汽,经汽水分离器2进入冷凝器3,并由海水泵 9供给的舷外海水冷却而凝结,然后由淡水泵8送往淡水柜。剩余下来的部分未能汽化而浓缩了的海水,其温度已降到与闪发室压力相对应的饱和温度下,则全部滴落到闪发室底部,由盐水循环泵(浓海水泵) 4抽出。为了充分利用由盐水泵抽出的浓海水的热量,缩小加热器5的尺寸,大部分浓海水再重新进入加热器,而其余部分则经排盐调节阀10排至舷外。至于因蒸发和排盐所减少的水量,则由冷凝器出来的海水通过给水调节阀7加以补充,并以此控制加热器中的海水含盐度,从而保证装置的淡化质量。 真空闪发式淡化装置由于在加热器中海水并不沸腾汽化,海水不致浓缩,且加热温度又比较低,而在闪发室中又不存在加热面,因此减少了海水的结垢问题。然而,因海水闪发汽化时所需的汽化潜热,完全取自其余未汽化温度下降至饱和温度时的海水所放出湿热,这就是说,闪发室内实际上绝大部分海水不能闪发汽化。例如,当海水的过热度为5~8℃,在93%的真空度下,汽化部分仅占循环海水的0.8%~1.4%。因此,这种装置的海水循环量较大,这就使加热面积和泵的排量都必须相应增加,因而在产量相同的情况下,闪发式海水淡化装置的造价约比表面式高35%~50%。此外,闪发式汽化所产生的二次蒸汽携带的水珠较多,为保证淡水质量,必须加大排污量降以低盐水浓度,因此随排污所带走的热量也多,热利用率低。而单效的真空沸腾式淡化装置由于蒸发温度低,结垢问题并不严重,每年需要清洗的次数也不超过1~2次。因此,在产量小于20t/d的船用淡化装置中,真空沸腾式的应用远比闪发式普遍。

汽车减震器能量回收装置设计概要

目录 1 绪论 (1) 1.1 能量回收装置简介 (1) 1.2 研究的背景及意义 (1) 1.3 国内外发展现状及趋势 (2) 1.3.1国外发展现状 (2) 1.3.2国内发展趋势 (2) 2 理论基础 (3) 2.1 减震器 (3) 2.2 电磁发电技术 (4) 2.2.1法拉第电磁感应定律 (4) 2.2.2电磁感应发电装置结构 (4) 2.3 压电发电技术 (5) 2.3.1压电材料 (5) 2.3.2压电效应 (5) 3 基于压电叠堆储能的新式能量回收装置的结构及工作原理 (7) 3.1 压电叠堆发电装置的结构 (7) 3.2 能量回收装置的工作原理 (7) 4 能量回收装置的等效模型分析 (8) 4.1 模型假设 (8) 4.2 等效模型 (8) 4.3 发电装置的性能分析 (8) 4.4油压频率f对回收装置输出特性的影响 (9) 4.5 压电叠堆长度对输出特性的影响 (9) 4.6 压电叠堆截面面积S对输出特性的影响 (10) 4.7 本章小结 (11) 5 能量回收装置输出电路 (11) 6 结论与展望 (12) 参考文献 (13)

汽车减震器能量回收装置设计 摘要:传统的被动悬架以及半主动悬架只能起到加速车架和车身震动的衰减作用,而起不到对振动能量回收的作用。当汽车对减震器施加力时,减震器孔壁与油液间的摩擦及液体分子内的摩擦便形成对振动的阻尼力,使车身和车架的振动能量转化为热能,被油液和减振器壳体所吸收,并散到大气中,这一部分能量被白白浪费掉。设计一种能量回收装置,能量回收装备将减震器内部的部分压力能转化为电能储存起来。通过查阅大量关于能源转化的资料,并对各种能量回收方案进行比较,最终确定用压电叠堆能量回收的装置对减震器内部的压力能进行回收。本文主要对压电能量回收装置的工作原理、理论设计、及数学模型的分析进行概述。 关键词:能量回收;储存;压电叠堆 1绪论 1.1能量回收装置简介 目前,大多数的混合动力车和电动车都配有制动能量回收装置,该装置有推广到非混合动力车的趋势,国际汽联也希望通过KERS系统在F1中的推广,树立环保先锋的形象。制动能量的回收通常有两种途径,一是以高速旋转的飞轮储存能量,二是车轮在制动时带动发电机,产生的电能储存于电池组中。制动产生的额外能量可以回收,那么汽车行驶中产生的其它能量也可以回收。减震器是悬架的重要组成部分,悬架的好坏关系到汽车的舒适性。在能源短缺的今天,节能减排越来越受到人们的重视。消费者在选择汽车时,在考虑动力性、舒适性、美观的同时,经济性也是一个重要的原因。减震器能量回收装置,能够回收减震器在伸张、压缩行程产生的能量,通过压电能量回收原理将机械能转变为电能储存于蓄电池之中,为其他用电设备供电。1.2研究的背景及意义 从汽车发明以来,汽车工业带动了各个国家经济的发展,但在其发展过程中,一系列的问题不断出现。能源短缺、环境污染、气候变暖成为各个国家面临的共同挑战。如何采用新的技术创造出一种新型的汽车成为各国企业不断攻克的难题。 当前内燃机汽车普遍采用的是普通的液力减震器。由于传统的减震器只起到缓解汽车振动的作用,并不能回收汽车在振动过程中的能量,这就造成了能量的浪费。 众所周知,在经过不平的路面时,汽车车身会发生振动,并且路面越不平稳,汽车振动的越厉害。通常情况下,振动的能量会以减震器内部机油摩擦生热而损耗,如果能将汽车振动作用在减震器上的能量加以回收再利用,为汽车的其他电器提供能量,已达到节能的目的。

海水淡化余压能量回收装置的设计毕业论文设计

(此文档为word格式,下载后您可任意编辑修改!) 1 引言 1.1 反渗透海水淡化技术的发展及现状 海水淡化是科学家们多年来不断进行研究的技术课题。随着水资源危机的加剧,海水淡化技术得到迅速发展。在已经开发的二十多种淡化技术中,蒸馏法、电渗析法、反渗透法都已经达到工业规模化生产的水平。最早的淡化方法有两种:冷冻法和蒸馏法。 冷冻法,即冷冻海水使之结冰,在液态淡水变成固态冰的同时盐被分离出去。这两种方法都有难以克服的弊端,其中蒸馏法会消耗大量的能源并在仪器里产生大量的锅垢,而所得到的淡水却并不多;而冷冻法同样要消耗许多能源,但得到的淡水味道却不佳,难以使用。 蒸馏法,即将水蒸发而盐留下,再将水蒸气冷凝为液态淡水。这个过程与海水制盐的过程相似,其相异的地方是人类要攫取的是淡水。蒸馏法海水淡化技术利用热能将海水转化为优质淡水,它又分为低温多效、多级闪蒸和压汽蒸馏三种技术。蒸馏法海水淡化技术是最早投入工业化应用的淡化技术。蒸馏法具有可利用电厂和其他工厂的低品位热、对原料海水水质要求低、装置的生产能力大等优点,是当前海水淡化的主流技术,占海水淡化技术总市场份额的57%以上。 反渗透海水淡化法是二十世纪六十年代后期发展起来的一项新技术。渗透是一种物理现象,当两种含有不同浓度盐类的水,如用一张只让淡水通过而不让盐分通过的“半透膜”隔开,就会发现含盐量少的一边的水分会透过膜渗到含盐量高的水中,而所含的盐分并不渗透,这样,直到两边含盐浓度相等为止。然而,要完成这一过程需要很长时间,这一过程也称为自然渗透。但如果在含盐量高的水侧,试加一定压力,其结果可以使上述渗透停止,这时的压力称为渗透压力。如果压力再加大,可以使水向相反方向渗透,而盐分剩下。因此,反渗透淡化法,就是在有盐分的水中(如原水),施以比自然渗透压力更大的压力,使渗透向相反方向进行,把原水中的水分子压到膜的另一边,变成洁净的水,从而达到除去水中盐分的目的,这就是反渗透淡化法的原理。反渗透主体设备主要由高压泵、反渗透膜、能量回收三部分组成。在足够高压力的情况下,除水分

2018年TI杯大学生电子设计竞赛题E-能量回收装置

2018年TI杯大学生电子设计竞赛 E题:变流器负载试验中的能量回馈装置(本科及高职高专) 1.任务 设计并制作一个变流器及负载试验时的能量回馈装置,其结构如图1所示。 变流器进行负载试验时,需在其输出端接负载。通常情况下,输出电能消耗在该负载上。为了节能,应进行能量回馈。负载试验时,变流器1(逆变器)将直流电变为交流电,其输出通过连接单元与变流器2(整流器)相连,变流器2将交流电转换成直流电,并回馈至变流器1的输入端,与直流电源一起共同给变流器1供电,从而实现了节能。 + _U1 图1 变流器负载试验中的能量回馈装置 2.要求 (1)变流器1输出端c、d仅连接电阻性负载,变流器1能输出50Hz、25V 0.25V、2A的单相正弦交流电。(20分)(2)在要求(1)的条件下,变流器1输出交流电的频率范围可设定为20Hz~100H,步进1Hz。(15分)(3)变流器1与能量回馈装置按图1所示连接,系统能实现能量回馈,变流器1输出电流I1 = 1A。(20分)(4)变流器1与能量回馈装置按图1所示连接,变流器1输出电流I1 = 2A,要求直流电源输出功率P d越小越好。(35分)(5)其他。(10分)(6)设计报告(20分)项目主要内容满分方案论证比较与选择,方案描述 3 理论分析与计算系统相关参数设计 5 电路与程序设计系统原理框图与各部分的电路图,系统软件流程图 5 测试方案与测试结果测试方案合理,测试结果完整性,测试结果分析 5 设计报告结构及规范性摘要,正文结构规范,图表的完整与准确性。 2 总分20 3.说明

(1)图1所示的变流器1及能量回馈装置仅由直流电源供电,直流电源可采用实验室的直流稳压电源。 (2)图1中的“连接单元”可根据变流器2的实际情况自行确定。 (3)电路制作时应考虑测试方便,合理设置测试点。 (4)能量回馈装置中不得另加耗能器件。 (5)图1中,a、b与c、d端应能够测试,a、c端应能够测量电流;c、d端应能够断开,另接其他阻性负载。

相关主题
文本预览
相关文档 最新文档