当前位置:文档之家› 高压缸胀差及低压缸胀差探头接线问题

高压缸胀差及低压缸胀差探头接线问题

高压缸胀差及低压缸胀差探头接线问题
高压缸胀差及低压缸胀差探头接线问题

高压缸胀差及低压缸胀差探头接线问题

高压缸胀差及低压缸胀差的前置器

厂家为:PROVIBTECH

型号为:TM0122。

前置器与TM0120探头连接接线无问题,但前置器与TSI机柜连接存在问题:

前置器输出接线端子为SIG与COM端;电源输入接线端子为24V+与GND端。见下图:

而TSI机柜机柜内接线图如下:(南汽厂图Z784.36.91-1)

机柜内接收端子为PWR、COM、SIG、SHD四个端子,其中SHD端子为电缆的屏蔽层,只能在机柜内接线。

这样的话,实际从机柜到前置器只有3根线芯连接:机柜内SIG、COM端子与前置器的SIG、COM端子对接;机柜内PWR端子与前置器的24V+对接。但是这样一来,前置器需要的GND端空余没有接线,24V电源无法构成回路。

机组启动时胀差的分析与控制

机组启动时胀差的分析与控制 汽轮机胀差就是指汽轮机转子与汽缸膨胀的差值。它是反映汽轮机动静部分之间的间隙,是汽轮机启动、运行及变工况运行时的最重要监视和控制的参数之一。如果胀差控制的好,机组就能按规定启动时间顺利启动,我厂两台N-100-535/8.81汽轮机的胀差控制经历了一个摸索、探讨阶段,目前已基本上得到解决。汽轮机胀差的出现,发生在以下几个阶段。 一、冷态启动时的成因和控制 机组冷态启动时,汽缸、转子及其附件温度与环境温度相同,冲转时,高温蒸汽进入汽轮机冲动转子做功,大量的热能大部分消耗在汽轮机的高压转子上,使汽轮机转子温升较快,在冲转过程中,为了控制其升速,汽轮机进汽量较少,汽缸基本得不到加热,导致汽轮机高压正胀差出现。在定速成后,为了维持汽轮机空转,低压转子也有部分蒸汽进入做功,3000rpm转速下,低压转子鼓风摩擦发热,而排汽温度较低,低压正胀差也同时出现,控制不好往往会造成启动失败。 2000年5月9日,在#1机冷态启动过程中,由于启动控制参数控制不当和启动方式存在问题,在并网后导致低压胀差+3.02mm,后经采取措施得以顺利启动。具体地说,在冷态启动过程中,应采取以下措施。

1.严格控制启动初参数,汽温控制在230℃左右,汽压控制在 1.0—1.2Mpa,初参数控制低,有利于增加进入汽轮机的蒸汽流量,便于汽轮机暖缸,同时,主蒸汽温度控制低,也会限制汽轮机转子的温升速度,减小正胀差的出现。 2.冲转至低负荷(10MW以下)时,凝汽器真空控制在70Kpa左右,低真空下,在相同转速和负荷情况时,蒸汽流量增加,有利于暖缸,使高压缸绝对热膨胀加快,高胀得以控制。同时低真空时,低压缸排汽温度上升,有利于减小低胀的发生。大量蒸汽带走低压转子因鼓风摩擦而产生的热量,使低压转子温升减小,更进一步减小了低压胀差。 3.低加随机启动。胀差产生的主要原因就是因为转子温升快,而汽缸温升慢,采用低加随机启动时,使下汽缸分汽流动充分,疏水彻底,加快了下缸均匀受热,提高了汽缸绝对膨胀上升速度,从而减小了正胀差。 4.在冲转过程中提前在1200rpm时暖法加,根据上、下法兰、螺栓温差情况,分步投入法加装置,使法兰、螺栓温度均匀上升。 5.严格控制锅炉升温速度,在冲转初期,控制主汽温度在230℃--280℃之间缓慢上升,当汽缸温度上升到100℃时,严格控制主汽温度上升速度与汽缸温度上升速度之差在80--100℃范围内。 6.并列后,全开调速汽门,采用全圆周进汽,充分暖

低压缸差胀大的原因分析

低压缸差胀大的原因分析 皖马发电有限公司“上大压小”两台机组1、2号660MW超临界机组主汽轮机由上海汽轮机有限公司生产,型式为超临界、一次中间再热、单轴、三缸四排汽、凝汽式,型号为N600-24.2/566/566,其中2号机组于2012年5月8日完成168小时试运转。2号机组自投产以后,低压缸差胀(测点安装在6号与7号瓦之间)一直正向偏大,特别是每年入冬以后,低压缸差胀长期在+15.0 mm 左右,曾有冬季开机因低压缸差胀大而跳机事件,而同等情况下同型号的1号机组低压缸差胀值只有+13.0 mm左右,尤其在夜间低负荷情况下2号汽轮机的低压缸差胀值有时会超过报警值+15 mm,曾一度接近跳闸限值16mm,严重影响了机组的安全运行。所谓的差胀,即转子与汽缸的膨差胀值。当汽轮机启动加热或停止运行冷却时以及负荷发生变化时,汽缸和转子都会产生受热膨胀或冷却收缩。由于转子受热表面积比汽缸大,且转子的质量比相对应的汽缸小,蒸汽对转子表面的放热系数较大。因此,在相同条件下,转子的温度变化比汽缸快,转子与汽缸之间存在膨差胀,转子的膨胀值大于汽缸,其相对膨差胀值称为正差胀,反之,则为负差胀。该厂2号机组低压缸差胀的保护定值是+16mm 和-1.02mm。差胀正向限值大于负向限值,主要是因为汽轮机同一级的静叶和动叶的间距小于该级动叶与下一级静叶之间的距离,如果差胀正向增长则说明该级动叶与下一级静叶间的距离在减小,负向增长说明本级内动静间隙在减小,因此,差胀的正向限值要大于负向限值。我们知道如汽轮机差胀过大,易引起动静部分碰磨,从而导致机组振动上升,危及转子及其叶片的安全,严重影响汽轮机组的安全运行。所以当发生低压缸差胀过大时要谨慎对待,及时分析查找原因并出台《低压缸差胀大的执行措施》。 原因分析我们知道影响汽轮机差胀的因素通常有以下: (1)启动时暖机时间太短,升速太快或升负荷太快。 (2)汽缸夹层、法兰加热装置的加热汽温太低或流量较低,引起汽加热的作用较弱。 (3)滑销系统或轴承台板的滑动性能差,滑销系统发生了卡涩。(4)轴封

示波器测交流220V(差分探头)

一、前言 我们都知道使用示波器,就必须使用探针 由于半导体组件的速度愈来愈快,受测电路的讯号自然愈来愈高速化。今天要正确地从受测电路检出讯号,并传送到示波器的输入端。而又不影响受测电路的正常运转,绝对不是一件容易的事情。使用正确的探棒是一个关键。若探针选用不当,即使购买再昂贵的示波器,也无济于事。现在市面上有许多种类的探棒可以帮助使用者在各种不同条件下完成电路检测的工作,差动探棒就是其中一类。 差动探针早期主要是用来量测电力系统,电力转换器及转换式电源供应器。所量测的讯号通常都是相当大的浮动讯号,从数十伏到数仟伏。近年来由于数字电路的高速化,数字设计及数字传输中大量使用差动讯号,因而出现新型的低压高速差动探针。它的量测范围很小。只有几伏甚至零点几伏,但频宽很宽,可高达数 GHz 。在现代的示波器量测中,不管是高压型差动探针,或是高速型差动探针,在他们各自的领域中,都是不可或缺的。 二、示波器探棒的选择 - 电力差动讯号在电力电子电路中,通常有许多相当大的浮动讯号,图二是一个典型的交换式电源供应器 (Switching Power) 的电力电路,我们可以将它以Vd( 差动讯号 ) , VCM( 共模讯号 ) 及 VLINE ( 电源讯号 ) 来表示。

当我们用示波器观测电力电子电路讯号时,如果使用单端探棒,将造成短路,损坏待测物及测试设备,甚至造成测量人员触电等 ( 图三 ) 。 电路与示波器的接地端形成短路回路,所以有些量测人员便将示波器的电源接地拆掉,浮接示波器,来避免短路回路的形成 ( 图四 ) ,但是,这样就可以解决我们在电力电子电路的量测问题了吗让我们就这样的方式来讨论:

汽轮机轴向位移与胀差增大原因及处理

汽轮机轴向位移与胀差 汽轮机轴向位移与胀差 (1) 一、汽轮机轴向位移增大的原因 (1) 二、汽轮机轴向位移增大的处理 (1) 三、汽机轴向位移测量失灵的运行对策 (1) 汽轮机的热膨胀和胀差 (2) 相關提問: (2) 1、轴向位移和胀差的概念 (3) 2、轴向位移和胀差产生的原因(影响机组胀差的因素) (3) 使胀差向正值增大的主要因素简述如下: (3) 使胀差向负值增大的主要原因: (4) 正胀差 - 影响因素主要有: (4) 3、轴向位移和胀差的危害 (6) 4、机组启动时胀差变化的分析与控制 (6) 1、汽封供汽抽真空阶段。 (7) 2、暖机升速阶段。 (7) 3、定速和并列带负荷阶段。 (7) 5、汽轮机推力瓦温度的防控热转贴 (9) 1 润滑油系统异常 (9) 2 轴向位移增大 (9) 3 汽轮机单缸进汽 (10) 4 推力轴承损坏 (10) 5 任意调速汽门门头脱落 (10) 6 旁路系统误动作 (10) 7 结束语 (10)

汽轮机轴向位移与胀差 轴向位移增大原因及处理 一、汽轮机轴向位移增大的原因 1)负荷或蒸汽流量突变; 2)叶片严重结垢; 3)叶片断裂; 4)主、再热蒸汽温度和压力急剧下降; 5)轴封磨损严重,漏汽量增加; 6)发电机转子串动; 7)系统周波变化幅度大; 8)凝汽器真空下降; 9)汽轮机发生水冲击; 10)推力轴承磨损或断油。 二、汽轮机轴向位移增大的处理 1)当轴向位移增大时,应严密监视推力轴承的进、出口油温、推力瓦金属温度、胀差及机组振动情况; 2)当轴向位移增大至报警值时,应报告值长、运行经理,要求降低机组负荷; 3)若主、再热蒸汽参数异常,应恢复正常; 4)若系统周波变化大、发电机转子串动,应与PLN调度联系,以便尽快恢复正常; 5)当轴向位移达-1.0mm或+1.2mm时保护动作机组自动停机。否则手动打闸紧急停机; 6)轴向位移增大虽未达跳机值,但机组有明显的摩擦声及振动增加或轴承回油温度明显升高应紧急停机; 7)若轴向位移增大而停机后,必须立即检查推力轴承金属温度及轴承进、回油温度,并手动盘车检查无卡涩,方可投入连续盘车,否则进行定期盘车。必须经检查推力轴承、汽轮机通流部分无损坏后方可重新启动。 三、汽机轴向位移测量失灵的运行对策 1)严密监视推力轴承的进、出口油温、推力瓦金属温度,当有超过两块推力瓦金属温度均异常升高,应立即汇报值长,按规程要求采取相应的措施。 2)当判定汽机轴向位移确实增大时,应按上述汽轮机轴向位移增大的处理措施进行处理。

浅谈汽轮机的热膨胀和胀差

浅谈汽轮机的热膨胀和胀差 一、轴向位移和胀差的概念 轴位移指的是轴的位移量而胀差则指的是轴相对于汽缸的相对膨胀量,一般轴向位移变化时其数值较小。轴向位移为正值时,大轴向发电机方向移,若此时汽缸膨胀远小于轴的膨胀,胀差不一定向正值方向变化;如果机组参数不变,负荷稳定,胀差与轴向位移不发生变化。机组启停过程中及蒸汽参数变化时,胀差将会发生变化,由于负荷的变化而轴向位移也一定发生变化。运行中轴向位移变化,必然引起胀差的变化。 汽轮机的转子膨胀大于汽缸膨胀的胀差值称为正胀差,当汽缸膨胀大于转子膨胀时的胀差值称为负胀差。 胀差数值是很重要的运行参数,若胀差超限,则热工保护动作使主机脱扣,避免动静部分发生碰撞,损坏设备。启动时,一般应用加热装置来控制汽缸的膨胀量,而转子主要依靠汽轮机的进汽温度和流量以及轴封汽的汽温和流量来控制转子的膨胀量。启动时胀差一般向正方向发展。汽轮机在停用时,随着负荷、转速的降低,转子冷却比汽缸快,所以胀差一般向负方向发展,特别是滑参数停机时尤其严重,必须采用汽加热装置向汽缸夹层和法兰通以冷却蒸汽,以免胀差保护动作。 汽轮发电机中,由于蒸汽在动叶中做功,以及隔板汽封间隙中的漏汽等原因,使动叶前后的蒸汽压力有一个压降。这个压降使汽轮机转子顺着蒸汽流动方向形成一个轴向的推力,从而产生轴向位移。如

果轴向位移大于汽轮机动静部分的最小间隙就会使汽轮机静、转子相碰而损坏。轴向位移增大,会使推力瓦温度开高,乌金烧毁,机组还会出现剧烈振动,故必须紧急停机,否则将带来严重后果。 差胀保护是指汽轮机转子和汽缺之间的相对膨胀差。在机组启、停过程中,由于转子相对汽缸来说很小,热容量小,温度变化快,膨胀速度快。若不采取措施加以控制升温速度,将使机组转子与汽缸摩擦造成损坏。故运行中差胀不能超过允许值。 汽轮机转子停止转动后,负胀差有可能会更加发展,因此应当维持一定温度的轴封蒸汽,以免造成恶果。 二、轴向位移和胀差产生的原因(影响机组胀差的因素) 使胀差向正值增大的主要因素简述如下: 1)启动时暖机时间太短,升速太快或升负荷太快。 2)汽缸夹层、法兰加热装置的加热汽温太低或流量较低,引起汽加热的作用较弱。 3)滑销系统或轴承台板的滑动性能差,易卡涩,汽缸胀不出。4)轴封汽温度过高或轴封供汽量过大,引起轴颈过份伸长。 5)机组启动时,进汽压力、温度、流量等参数过高。 6)推力轴承工作面、非工作面受力增大并磨损,轴向位移增大。7)汽缸保温层的保温效果不佳或保温层脱落,在严禁季节里,汽机房室温太低或有穿堂冷风。 8)双层缸的夹层中流入冷汽(或冷水)。 9)胀差指示器零点不准或触点磨损,引起数字偏差。

DP6020 低压差分探头说明书(20180803)

低压差分探头说明书 DP6020 (20V/ 200MHz)

前 言 首先,感谢您购买该产品,这份产品使用说明书,是关于该产品的功能、使用方法、操作注意事项等方面的介绍。使用前,请仔细阅读说明书,正确使用。阅读完后请好好保存。 说明书中,注释将用以下的符号进行区分。 为安全使用本机器,必须严格遵守以下安全注意事项。如果不按照该说明书使用的话,有可能会损害机器的保护功能。此外,违反注意事项进行操作产生的人身安全问题,本公司概不负责。 ● 请小心注意触电危险,注意最高输入电压。 ● 请勿在潮湿的环境下或者易爆的风险下使用。 ● 被测电路接入探头之前,确保先关闭被测电路。 ● 测量结束后,先关闭电路,再取走探头。 ● 探头BNC 输出线连接示波器或者其它设备时,确保BNC 端子可靠接地。 ● 使用之前,请检查探头外皮是否有破损,若出现破损情况,请停止使用! ● 选择本产品标配的适配器供电。 DP6020简要说明 在错误操作的情况下,用户有受伤的威胁,为避免此类危险,记载了相关的注意事项。 错误操作时,用户有受轻伤和物质损害的可能,为避免此类情况,记载的注意事项。 该符号表示对人体和机器有危害,必须参照说明书操作。 记载着使用该机器时的重要说明。

目录 前言 (1) DP6020简要说明 (1) 概述 (3) 应用 (3) 产品及附件说明 (3) 探头主体说明 (3) 附件说明 (4) 电气规格 (5) 机械规格 (6) 环境特性 (6) 操作步骤 (6) 保养及维护 (7) 保修 (7) 装箱单 (7)

1. 概述 DP6020探头是具有浮地测量功能的低压差分探头。测量电压±20V(DC+Pk),其带宽最高达200MHz,提供 10:1 的衰减设置,具有 1 MΩ的输入阻抗,以及 3.5 pF 的低输入电容,可以最大程度地降低电路负载,具有过压报警功能,可以兼容任何具有 50 Ω BNC 输入的示波器,并可以通过示波器或计算机上的 USB 端口供电。在各种应用中得到广泛使用,可以为当今的高速功率测量、车载总线测量和数字系统设计提供出色的通用差分信号测量。 2. 应用 ◆浮地差分信号测量 ◆高速功率测量 ◆数字差分总线 ◆汽车串行总线(CAN、LIN、FlexRay) 3.产品及附件说明 ■探头主体说明 详细说明: ?①输入线:长度约15cm,连接探夹后测量电压信号。 ?②偏置调节:调节该可调电阻,实现输出偏置调节。 ?③连接线:探头前端和后端连接线,长度70cm ?④电源接口:标准的USB B型接口,通过标配的USB适配器供电;也可以通过示波器供 电,使用方便。 ?⑤过载报警指示灯(Overload):测量范围超过量程时,过载指示灯亮,且发出报警声。 ?⑥输出接口:标配标准的BNC输出接口,可接任何厂家示波器,要求示波器输入阻抗设 置为50Ω,或者接标配的贯通式50Ω负载,示波器输入阻抗设置成1MΩ。

汽轮机差胀过大的原因分析及改进措施

汽轮机差胀过大的原因分析及改进措施 摘要: 从相对膨胀产生的理论出发, 针对焦作韩电发电有限公司1 号机的实际情况, 分启动和运行 2 个过程, 对汽轮机相对 膨胀值大的原因进行了分析, 并介绍了所采取的相应控制 措施或注意事项, 以及在实际生产中起到的作用作出了举 例证明。 关键词: 相对膨胀; 滑销; 温升率 1前言 我公司1 号汽轮机型号是C C50-8.83/4。22/1。57, 系哈尔宾汽轮机厂生产的双缸、单轴、双抽汽凝汽式汽轮机, 进汽温度535℃, 额定进汽量为224t, 中压额定抽汽量为30吨, 最大抽汽量为60吨。低压抽汽量为50吨,最大抽汽量为50吨。该机组投运后, 相对膨胀值及机组转动产生的噪声明显偏大, 特别是在启动过程中, 相对膨胀值超过规定值, 影响开机升速和升负荷时间, 是制约顺利开机的主要因素。投运初期, 开机时间在10h以上, 开机时间明显偏长。 2控制相对膨胀的重要性 金属物件在受热后, 向各个方向膨胀, 高温高压汽轮机从冷态启动到带额定负荷运行, 金属温度的变化很大400~500℃。因此, 汽缸及汽轮机各部件的轴向、垂直、水平各个方向的尺寸都会因受

热明显增大。汽轮机各部件膨胀量不同, 使得各部件的相对位置发生变化, 其变化量超过汽轮机动静部分的允许间隙后, 动静部件将会发生磨擦, 导致汽轮机损坏, 甚至报废等严重后果。为了控制汽轮机的动静部分不摩擦, 汽缸的轴向膨胀和汽缸与转子的相对膨胀就成为开机过程中重要的控制指标。汽轮机在启动暖机过程, 转子以推力轴承机头,1号瓦处为死点向后膨胀, 汽缸以后轴承座中点2 号瓦处为死点向前膨胀, 二者的膨胀差值即为相对膨胀习惯称为胀差。当转子膨胀值大于汽缸膨胀值时, 相对膨胀为正值, 该值过大时可造成动叶片出口处与下级喷嘴摩擦。当转子膨胀值小于汽缸膨胀值时, 相对膨胀为负值, 该值过大时可造成动叶片进口处与喷嘴摩擦。因此, 汽轮机的相对膨胀值的控制相当重要。1号汽轮机的相对膨胀测量装置安装在2 号瓦附近, 即汽缸死点处。 3 1 号汽轮机的相对膨胀大的原因 3. 1理论分析 金属受热膨胀值有如下关系: ΔL=Lσ(t i-t0) (1) 式中ΔL 为金属的绝对膨胀值; L 为金属的长度; σ为该金属的线膨胀系数; t i为金属材料的平均温度; t o为冷态温度, 通常取20℃。

汽轮机发生水冲击原因分析及事故处理

汽轮机发生水冲击原因分析及事故处理(1) 北极星电力网技术频道作者: 2012-12-10 10:07:19 (阅501次) 所属频道: 火力发电关键词: 汽轮机水冲击 汽轮机发生水冲击危害:进入汽轮机的蒸汽必须保持足够的过热度:(当湿蒸汽中的水全部汽化即成为饱和蒸汽,此时蒸汽温度仍为沸点温度。如果对于饱和蒸汽继续加热,使蒸汽温度升高并超过沸点温度,此时得到的蒸汽称为过热蒸汽,过热度指的是蒸汽温度高于对应压力下的饱和温度的程度。)正常运行中蒸汽应保持在额定参数允许范围内。如果蒸汽带水进入汽轮机,将使推力急剧增大,将转子向后推移,导致推力瓦烧损和动静碰磨。同时汽轮机运行中汽缸、转子、阀门等都处于高温状态,低温蒸汽或水突然进入汽轮机的某一部位,将造成部件急剧收缩,除本身金属产生大的热应力影响寿命外,局部收缩变形可能导致动静碰磨、大轴弯曲、部件裂纹、接合面变形泄漏等等。近年来汽轮机进水事故时有发生,有的甚至造成设备损坏。 现象: 1.主蒸汽温度和汽缸温度急剧下降,汽缸上、下壁温差升高(发生水冲击此现象最为明显和直观,我曾经在运行中遇到过汽包满水事故,最为直接的现象就是主汽温度快速下降,此时机侧能做的就是快速降负荷,并开启机侧的疏水门优先开启主汽管道和高压内缸等疏水,及时联系锅炉调整,同时对机组的本体画面加强监视,如本体个参数发生异常现象无法挽回,必要时打闸停机并破坏真空处理。) 2.主汽门、调速汽门门杆法兰,汽缸结合面,轴封处冒白汽或溅出水滴(此现象说明已经是发生严重水冲击必须立即打闸停机加强放水,并根据情况采取连续盘车或定期盘车。)。 3.蒸汽管道有强烈的水冲击声和振动。(此现象较为严重) 4.机组声音异常,机组振动增加。 5.轴向位移增大:定义:又叫串轴,就是沿着轴的方向上的位移。总位移可能不在这一个轴线上,我们可以将位移按平行、垂直轴两个方向正交分解,在平行轴方向上的位移就是轴向位移。轴向位移反映的是汽轮机转动部分和静止部分的相对位置,轴向位移变化,也是静子和转子轴向相对位置发生了变化。全冷状态下一般以转子推力盘紧贴推力瓦为零为.向发电机为正,反之为负,汽轮机转子沿轴向向后移动的距离就叫轴向位移。发生水冲击(蒸汽带水):水珠冲击叶片使轴向推力增大,同时水珠在汽轮机内流动速度慢,堵塞蒸汽通路,在叶轮前后造成很大压力差,说的通俗一点就是说水比起蒸汽来走的太慢,而力量又很大,不能像蒸汽一样从动叶片之间钻过去,而是打在了叶片上,就像水枪冲击其他东西似的,所以轴向推力才会加大,推力瓦块温度升高(轴向推力过大会使推力轴承超载,而推力瓦主要是起平衡轴向推力的作用,所以会导致瓦块温度升高而乌金烧毁),胀差(汽轮机转子与汽缸

汽轮机汽缸、胀差、汽缸的死点、怎么控制胀差

汽轮机在启停和运行工况下——胀差讲义 周国强 关键词:汽轮机汽缸、胀差、汽缸的死点、怎么控制胀差、可谓汽轮机的泊桑效应。 汽轮机在启停和工况变化时,转子和汽缸分别以各自的死点为基准膨胀或收缩。由于汽缸质量大,而接触蒸汽的面积小。转子的质量小而接触蒸汽的面积大,因而各自的受热面不一样,使得汽缸和转子之间热膨胀的数值各不一样,其二者之间的差值称为相对膨胀,即转子和汽缸的胀差。 一般来说,冷态开机过程中是胀差是正值,稳定状态下胀差接近于零,降负荷和停机惰走时胀差向负向发展,单缸机组尤其明显。 但是对于多缸机组,即中间再热机组,其胀差较单缸机组更为复杂。 汽轮机转子与汽缸的相对膨胀,称为胀差。 1 习惯上规定 1.1 转子膨胀大于汽缸膨胀时的胀差值为正胀差; 1.2 汽缸膨胀大于转子膨胀时的胀差值为负胀差; 1.3 根据汽缸分类又可分为:高差、中差、低I差、低II差。 1.4 胀差数值是很重要的运行参数,若胀差超限,则热工保护动作使主机脱扣。 1.5 汽缸是向后膨胀而转子是向前膨胀的。 释:单缸汽轮机的汽缸膨胀,它的死点是在低压缸排气口的中心线,即从低压缸向机头方向膨胀。转子的膨胀是以机头推力瓦为死点,向发电机方向膨胀。也就是说,汽缸的膨胀方向和转子的膨胀方向是反向的。 2 使胀差向正值增大的主要原因有 2.1 启动时暖机时间太短,升速太快或升负荷太快; 2.2 汽缸夹层、法兰加热装置的加热汽温太低或流量较低,引起汽加热的作用较弱; 2.3 滑销系统或轴承台板的滑动性能差,易卡涩; 2.4 轴封汽温度过高或轴封供汽量过大,引起轴颈过份伸长; 2.5 机组启动时,进汽压力、温度、流量等参数过高; 2.6 推力轴承磨损,轴向位移增大; 2.7汽缸保温层的保温效果不佳或保温层脱落,在严禁季节里,汽机房室温太低或有穿 堂冷风;

给水温度原因分析

连城电厂#2机组给水温度低的原因分析 及高压加热器改造 乔万谋 甘肃电力公司连城电厂邮编:730332 【摘要】文章介绍了连城电厂#2汽轮机组高压加热器在制造、安装、检修和运行维护中存在的缺陷,分析了这些缺陷对高压加热器运行特性的影响和对给水温度的影响。并结合高加结构特点,在原有设备基础上进行了改造,改造后高压加热器端差减小,给水焓升增大,给水温度提高,效果明显。 【关键词】汽轮机高压加热器给水温度技术改造 1.概述 连城电厂安装两台北京重型电机厂生产的N100-90/535型凝汽式汽轮机,配套两台哈尔滨锅炉厂生产的HG410/100-10型锅炉,高压加热器为哈锅配套的GJ350-5、GJ350-6型高加,自82年投运以来,两台机组给水温度一直偏低,影响着全厂的经济运行。特别是随着运行小时数的增加,给水温度呈连年下降趋势,虽在历次设备大修中发现和处理了一些影响给水温度的重要缺陷,使给水温度有所好转,但都不能保证给水温度处比较稳定的状况。2000年#2机组大修前,我们对#2机#5、6高加进行全面的热力试验,并进行了认真分析,在大修中对高加各部分进行了仔细的检查,发现并处理了几处影响高加运行特性的缺陷,同时对高加结构进行了改进,使#5、6高加端差减小,给水焓升增大,给水温度提高,效果明显。 2.影响高加运行特性的因素及原因分析 额定负荷下设计工况和实测工况#5、6高加各运行参数如表所示。从额定负荷下设计工况 表:额定负荷设计工况和实测工况加热器运行参数 和实测工况的各主要参数可以看出,#5、6高加偏离设计工况的主要问题是端差较大,#5高加上端差10.4℃,下端差16.1℃,#6高加上端差8.5℃,下端差13.8℃,而加热器设计时一般选择其上端差为0℃,下端差为8℃。由于#6高加上端差的影响,造成给水温度降低8℃,下端差大于设计值5.8℃,其疏水进入#5高加,排挤二段抽汽,造成二段抽汽量减少。#5高加上端差使其出口的给水温度降低,势必导致加热不足的部分将在#6高加内部被加热,造成#6高加热负荷增大,#6高加用汽量增大,本可以用低压抽汽加热的部分给水焓升,而使用高压抽汽加热,降低了回热系统的经济性。 造成#5、6高加上、下端差增大的原因,经分析有以下几种因素: (1)、由于汽轮机相对内效率低于设计值,导致汽轮机的汽耗量增大,相应的给水流量也增大,从而引起高压加热器的热负荷增加。汽轮机制造厂保证给水温度达到设计温度的条件之一就是“汽轮机按制造厂设计热力系统运行,通过高压加热器的水量等于汽轮机的主蒸汽流量”。汽

汽轮机的胀差控制

汽轮机的胀差控制 电厂汽轮机2009-07-13 17:10:51 阅读459 评论0 字号:大中小订阅 汽轮机在启停过程中,转子与汽缸的热交换条件不同。因此,造成它们在轴向的膨胀也不一致,即出现相对膨胀。汽轮机转子与汽缸的相对膨胀通常也称为胀差。胀差的大小表明了汽轮机轴向动静间隙的 变化情况。 习惯上规定转子膨胀大于汽缸膨胀时的胀差值为正胀差,汽缸膨胀大于转子膨胀时的胀差值为负胀差。胀差数值是很重要的运行参数,若胀差超限,则热工保护动作使主机脱扣。转子的相对胀差过大,会使动、静轴向间隙消失而产生摩擦,造成转子弯曲,引起机组振动,甚至出现重大事故。 一、分析胀差时,需考虑的因素: 1]轴封供汽温度和供汽时间的影响:在汽轮机冲转前向轴封供汽时,由于冷态启动时轴封供汽温度高于转子温度,转子局部受热而伸长,出现正胀差,可能出现轴封摩擦现象。在热态启动时,为防止轴封供汽后出现负值,轴封供汽应选用高温汽源,并且一定要先向轴封供汽,后抽真空。应尽量缩短冲转前轴封 供汽时间。 2]真空的影响:在升速暖机的过程中,真空变化会引起涨差值改变。当真空降低时,为了保持机组转速不变,必须增加进汽量,摩擦鼓风损失增大,使高压转子受热膨胀,其涨差值随之增加。当真空提高时,则反之。使高压转子胀差减少。但真空高低对中、低压缸通流部分的胀差影响与高压转子相反。 3]进汽参数影响:当进汽参数发生变化时,首先对转子受热状态发生影响,而对汽缸的影响要滞后一段时间,这样也会引起胀差变化,而且参数变化速度越快,影响越大。因此,在汽轮机启停过程中,控制蒸汽温度和流量变化速度,就可以达到控制差胀的目的。 4]汽缸和法兰加热的影响:汽缸水平法兰在升速过程中温度比汽缸要低,阻碍汽缸膨胀,引起胀差 增加。 5]转速影响:泊桑效应也就是汽轮机的轴在转速增加的时候,受到离心力的作用,而变粗,变短.转速减 小的时候,而变细,变长 6]滑销系统影响:在运行中,必须加强对汽缸绝对膨胀的监视,防止左右侧膨胀不均以及卡涩造成的 动静部分摩擦事故。 7]汽缸保温和疏水的影响:汽缸保温不好,会造成汽缸温度分布不均且偏低,从而影响汽缸的充分膨胀,使汽机膨胀差增大;疏水不畅可能造成下缸温度偏低,影响汽缸膨胀,并容易引起汽缸变形,从而导 致相对差胀的改变。 二、正胀差过大的原因: 1]暖机时间不够,升速过快。 2]加负荷速度过快。 三、负胀差过大的原因: 1]减负荷速度太快或由满负荷突然甩到零。 2]空负荷或低负荷运行时间太长

汽轮机故障案例分析[上汽]

目录 1.阀门支架 (3) 2.延伸轴及调速体晃动大 (4) 3.低压缸差胀大 (5) 4.K值变化 (6) 5.转子弯曲 (7) 6.调节级热电偶套管断裂 (8) 7.再热进汽管道焊接 (9) 8.压力密封环的安装方向 (10) 9.大修时高中压外缸无法顶开 (11) 10.铸焊件气孔、裂纹常规处理 (12) 11.低压缸隔热罩脱落 (13) 12.汽缸中分面间隙 (14) 13.喷油电磁阀问题 (16) 14.盘车突然损坏 (16) 15.轴联轴器盖板的正确安装 (19) 16.叶片的腐蚀 (20) 17.调门阀碟上紧定螺钉脱落 (22) 18.弹簧座注油孔 (23) 19.中压主汽门轴端漏汽接管(即油动遮断阀蒸汽接管)问题 (23) 20.中压主汽门门杆漏汽 (25) 21.阀杆连接 (26) 22.中压主汽门、中压调节汽阀打不开问题分析: (27) 23.高中压缸上下半温差 (28) 24.盘车脱扣 (31)

1.阀门支架 案例描述:在机组启动过程中,再热主汽温度达到450°C时,发现再热主汽门弹簧支架存在严重偏差,此图以机组右侧靠近前轴承箱的支架作为示例。 根据我厂图纸安装位置要求,热态阀门支撑位置应由管道设计者对锅炉与汽缸之间的主蒸汽管道及再热蒸汽管道进行挠性分析计算后得到,冷态情况下连接杆的位置应根据计算结果作一定偏置,保证支架在运行状态下垂直偏差在±4°以内。现场机组启动过程中发现在再热主汽温度达到450°C时,此连接杆向调阀端偏移了75mm,向左侧偏移了40mm,处于图中的fc位置,偏移量超出预订范围,存在安全隐患,因此现场对此问题进行了专题讨论。分析原因主要是当初设计院与我方设计部门在设计此处时,对此机组的热态偏移量计算出现问题,造成我方在设计图纸上并未对此处的弹簧支架进行预偏。 处理方案:现场与安装单位以及业主协调,认为可以在热态的情况将弹簧支架整体进行平移,

高加疏水端差大原因分析

#2机#1高加疏水端差大原因分析 一、#2机通流部分改造前后#1高加疏水温度对比 由附表可知,#2机通流部分改造前,负荷580MW时,#1高加疏水温度为253℃,进水温度为241℃,则改造前#1高加疏水端差为12℃;#2机通流部分改造后相同负荷下#1高加疏水温度约258℃,进水温度为236℃,则改造后#1高加疏水端差约22℃,同比#1高加疏水端差上升约10℃。 二、加热器疏水端差大理论原因 1、加热器运行水位低,导致疏水中带汽,疏水温度上升,疏水端差增大。 2、加热器运行中事故疏水动作,导致加热器水位下降,疏水温度及疏水端差上 升。 3、加热器进水温度降低,本级加热器吸热量自行增大(抽汽量增加),疏水温度 上升,疏水端差自行增大。 4、加热器内部汽流隔板损坏,影响蒸汽凝结,疏水段带汽,疏水温度上升,疏 水端差增大。 5、疏水温度测量有误,温度指示高。 三、目前#2机#1高加疏水端差大原因分析 1、#2机通流部分改造后,经与仪控就地核对#1高加水位,正常疏水定值定为700mm,就地实际水位约440mm,在正常水位线运行,说明#1高加正常运行水位控制正常。为再次验证定值是否偏低,本月19日进行了#1高加水位试验,相关数据如下: 试验中发现当水位上升至773mm 时,#1高加水位高“光字牌”报警发出,说明此时液位高开关已动作,实际水位已高,因此目前水位定值700mm比较合理。 2、#2机通流部分改造后,相同负荷下主汽压力下降约1.2MPa,三台高加的抽

汽压力必然下降,抽汽量必然相应增加。由附表可知,改造前、后#1高加抽汽压力下降约0.6MPa(改造前#2机超压运行,#1高加超压约0.4MPa),进水温度下降约5℃,温升下降约5℃,根据加热器自平衡原则,改造后#1高加的抽汽量必然增加,从而引起疏水温度上升、疏水端差增大,这也是#1高加疏水端差增大的主要原因。同理#2 四、结论及有关建议 1、#2机通流部分改造后相同负荷下#2/#1高加温升分别下降2℃/5℃,给水温度下降约5℃,#3高加大修中已更换,温升未变化(因为大修前#3高加已堵管约15%)。目前#2机满负荷时如#1高加抽汽门不节流,给水温度基本能达到额定值(小于设计值约2℃),但夏季因真空的下降、抽汽量的增加,#3高加事故疏水频繁动作,#1高加抽汽电动门将被迫节流,给水温度下降约7~8℃,影响经济性。 2、经试验及就地核实,目前#1高加的实际水位定值700mm正常,疏水端差约20℃,但目前水位能保证加热器的安全运行。此外仪控部已检查#1高加疏水温度测量、显示正常。 1、建议利用检修机会,对#1高加内部汽流隔板及疏水段进行检查,消除可疑 点,同时也可确认加热器的安全状况。 五、附#2机通流部分改造前后高加运行参数

选用单端探头还是差分探头

选用单端探头还是差分探头 作者:Mike McTigue 新的有源探头体系结构使GHz级以上的千兆信号的完整性测量变得更加容易、精度也更高,但这只对于了解探头的工作原理和探头的两种拓扑结构之间优劣的用户而言的。  宽带宽示波器和有源探头的用户历来可以在单端探头和差分探头之间作出选择。测量单端信号(对地参考电压),你使用的是单端探头,而测量差分信号(正电压对负电压),你使用的是差分探头。那么,为什么你不能只买差分探头来测量差分信号和单端信号呢?实际情况是,你可以这样做,但又存在实实在在的理由使你不能这么做。与单端探头相比,差分探头价格较贵,使用不大方便,带宽也较窄。  新的探头体系结构,如Agilent 113X 系列的体系结构可以探测差分信号,也可以探测单端信号,而且基本上使人们不反对使用差分探头。这些探头是通过可互换的端头来提供这种能力的,而各种可互换的头经过优化,可以点测、插入插座和焊入探头。这种结构给有源探头的用户提出了新问题:测量单端信号,到底该用差分探头还是该用单端探头?答案是应由性能和可用性两个方面的权衡结果来定夺。  只要使用Agilent 1134A型7 GHz 探头放大器的简化模型(图1) 和已测数据以及焊入的差分和单端探头端头(图2),你就可以比较它们的带宽、保真度、可用性、共模抑制特性、可重复性和尺寸大小等方面的差别。这些探头端头的物理连线几何形状相同,所以它们之间的主要性能差别是由差分拓扑结构和单端拓扑结构引起的。探头性能测量是采用Agilent E2655A 纠偏/性能验证夹具和Agilent 8720A 20 GHz 向量网络分析仪或者Agilent Infiniium DCA (数字通信分析仪)采样示波器进行的。 图1 差分探头和单端探头的简化模型的主要区别在于,差分探头的地线电感是与放大器输入端串联的,而不

泰克高压差分探头P52XXA

High-voltage Differential Probes P5200A?P5202A?P5205A?P5210A Data Sheet Features&Bene?ts Bandwidths up to100MHz Up to5,600V Differential(DC+pk AC) Up to2,300V Common(RMS) Overrange Indicator Safety Certi?ed Switchable Attenuation Switchable Bandwidth Limit Applications Floating Measurements Switching Power Supply Design Motor Drive Design Electronic Ballast Design CRT Display Design Power Converter Design and Service Power Device Evaluation The P5200A can be used with any oscilloscope and enables users to safely make measurements of?oating circuits with their oscilloscope grounded.The P5200A Active Differential Probe converts?oating signals to low-voltage ground-referenced signals that can be displayed safely and easily on any ground-referenced oscilloscope. WARNING:For safe operation,do not use the P5200A High-voltage Differential Probe with oscilloscopes that have?oating inputs(isolated inputs),such as the Tektronix TPS2000Series oscilloscopes.The P5200A High-voltage Differential Probe requires an oscilloscope or other measurement instrument with grounded inputs. The P5210A is a Differential Probe that is capable of measuring?oating voltages up to5,600V safely and has a bandwidth up to50MHz.It is supplied with two sizes of hook tips and has an overrange visual and audible indicator which warns the user when they are exceeding the linear range of the probe.It can be used with Tektronix TEKPROBE?interface oscilloscopes directly or with any oscilloscope with the use of the1103 TEKPROBE?Power Supply. The P5205A is a100MHz Active Differential Probe capable of measuring fast rise times of signals in?oating circuits.This1,300V differential probe can safely measure voltages in IGBT circuits such as motor drives or power converters.It is speci?cally designed to operate on Tektronix oscilloscopes with TEKPROBE?interface.The P5202A is similar to the P5205A,but this probe has approximately half the attenuation and half the dynamic range of the P5205A and better signal-to-noise ratio.

关于汽轮机胀差大处理方案的建议

关于汽轮机胀差大处理方案的建议针对目前#1机启动过程中高压缸胀差大,需中断启动暖机的异常现象,我项目部组织有关人员通过#1机几次启动过程的数据和现象,几次启动过程中工况变化,查阅厂家、设计单位相关资料,对造成启动过程中高压缸胀差大的原因进行了分析,供业主及有关单位参考 一、选取7月9 日与9月19 日#1机两次启动机组高压缸膨胀、高压缸胀差、低压缸胀差变情况对照见下表: 通过上表数据对照可以明显看出,后一次启动过程中高压缸膨胀明显变小,高压外缸未得到充分加热。 二、高压缸胀差大前后系统变化 1、高压缸胀差大前主蒸汽母管疏水通过临时管道直接排至主厂房外,第一次高压缸胀差大前主蒸汽母管疏水按设计要求恢复至高压

扩容器,高压缸胀差大后即9月19 日启动前主蒸汽母管疏水除甲乙自动主汽门前两路外,其余改至锅炉大气扩容器。 2、汽轮机本体及抽汽管道疏水电动门更换型号; 三、高压缸外缸加热原理分析 1、由高压缸纵剖图(见附图)可以看出,高压缸 2、3级喷嘴,4、5、6级喷嘴,7、8级喷嘴,9、10级喷嘴,11、12级喷嘴,1 3、14级喷嘴安装在六个隔板套上,这些隔板套构成高压缸的内缸,高压缸外缸的加热主要依靠内外缸夹层蒸汽来进行,而夹层蒸汽流量、温度由疏水、疏汽量决定。 2、各阶段调节级、一、二段抽汽压力变化 由上表可以看出,在机组并网前内外缸夹层蒸汽压力较低,外缸加热蒸汽只能通过疏水管径提高。 四、高压缸胀差大原因分析 1、主蒸汽管道疏水与高压缸前段疏水同进高压扩容器一根疏水 母管,因排挤造成高压缸前段疏水、疏汽量减少。 2、新更换的高压缸前、中段疏水电动门通流量小。 3、高压缸前、中段疏水管道堵塞,通流量受限。 4、各段抽汽逆止门前疏水逐级自流且安装有节流孔板,疏水、

某超临界机组整套启动期间发生的主要问题及处理方法

某超临界机组整套启动期间发生的主要问题 及处理方法 01 机组冷态启动时,主蒸汽参数不匹配,主要表现是:主、再热蒸汽温度高于启动参数达50℃,而主汽压力达不到厂家规定值,锅炉的这种特性在同类型机组中普遍存在。主要原因是由于启动期间,减温水无法投入,并且,随时间的延长温升越高。 解决方法:采取开大高旁,增大蒸汽。 02 主机低压缸变形,碰磨引起轴振大,主机进行机械超速试验,动作转速(机头)3319rpm,当汽机转速下降至3287rpm时,振动急剧上升,3瓦水平振动:237微米,3瓦垂直振动:332微米;4瓦水平振动:237微米,4瓦垂直振动:312微米,紧急停机,揭#1低压缸进行检查,确定是碰磨引起轴振大,共处理20天。#1低压缸在处理后开机升负荷过程中再次发生碰磨,主机振动值上涨很快,5瓦水平振动最高188um,6瓦垂直振动最203um,7瓦垂直振动最高206um1小时后恢复正常。在后来的开机及带负荷过程中再未发生此类情况。 03 361阀卡涩、管道振动问题,361阀为锅炉储水罐水位控制阀,共两个,调试期间,361 阀A阀共发生两次卡涩,均发生在停机过程中,阀门在自动强开后就无法关闭,其主要原因是汽水中含杂质和厂家未设计行程限位,而且361阀快开时容易引起管道振动并导致动静部分卡死。 解决方法:调试期间更换阀门备件。 04 在制粉系统初始运行期间,煤斗堵煤严重,主要原因是煤差、煤湿,新煤斗内壁不够光滑,通过调整燃煤掺烧、现场敲打,到168运行期间,煤斗堵煤现象减少。 解决方法:在煤斗上增加捅煤孔及振打、疏通装置。 05

启动过程中,凝结水、给水系统滤网经常堵塞,导致启动初期,清理凝泵入口滤网、水泵入口滤网工作很频繁,特别是高、低加投运初始期间。 解决方法:由于该部分管道是无法进行酸洗的,目前还没有更好的办法解决,只有安装调试过程中把好关。 06 汽动给水泵问题,主要表现是给水泵振动大、漏汽,给水泵振动大原因是由于汽机厂与给水泵厂在联轴器的配套图纸上出现错误,两者在键槽的加工上不一致,经过多次进行加平衡块试验,给水泵水平方向上振动运行中稳定在50微米。两台给水泵168期间均出现不同程度的漏汽,位置为中抽端盖抽头腔室焊接处,调试期间,将#32汽泵停运,进行补焊,但运行一段时间后,仍漏汽。 解决方法:由厂家负责在机组停运后进行处理。 07 机组在启动过程中,低压负胀差大,当转速从2000rpm往上升时,低压胀差负方向变化明显,变化最大可达5mm,转速至2600,出现了低压缸负胀差到-1mm,胀差大保护跳机,在后来的开机过程中,都发生过不同程度的涨差大现象。 解决方法:鉴于机组这种特性,在机组2000rpm时,进行较长时间的暖机,等低压胀差达到较大正值时,才开始升速。 08 空预器运行中发生碰磨,调试期间,#31空预器在首次升负荷至100MW时,空预器电流由17A上升至29A,就地有明显的摩擦声,后停炉检查发现径向密封片磨损且部分脱落。 解决方法:经冷态、热态调整间隙,问题得以解决。 09 EH油漏油问题,调试过程中 EH油发生三次泄漏,原因为高、中压调门伺服阀O型密封圈质量差导致EH油泄漏。 解决方法:经厂家核实,更换伺服阀O型密封圈后,EH油再未发生漏油问题。 10 省煤器入口流量低引起MFT。在试运期间,曾多次发生多次省煤器入口流量低保护动作引起MFT,主要原因有两种情况,一是由于设计储水箱水容积非常小,抗扰动能力差,再加上调试初期运行人员经验不足,对储水箱水位控制缺乏经验,造成储水箱水位低引起炉水循环泵跳闸,进而使得省煤器入口流量低保护动;二是在两台汽泵

相关主题
文本预览
相关文档 最新文档