当前位置:文档之家› 矩阵相乘的算法设计

矩阵相乘的算法设计

矩阵相乘的算法设计
矩阵相乘的算法设计

数据结构与算法设计课程实验报告

课题矩阵相乘的算法设计

专业班级网工专业1405班

学号14144501352

姓名陈晓露

指导教师陶跃进

目录

一、问题描述

二、问题分析

1、分析最优解的结构

2、建立递归关系

3、递归实现的复杂性

4、算法迭代实现

三、结果输出

四、实验总结

一、问题描述

给定n个矩阵{A1,A2,... ,An},其中这n个矩阵是可相乘的,i=1,2,...,n-1。算出这n个矩阵的相乘积A1A2 。。。An。

补充:如果两个矩阵A和B是可相乘的,那么A的列数要和B的行数是相同的,否则,这两个矩阵是不可相乘的。它们的相乘结果矩阵C的行数是A的行数,而列数是B的列数。

设A1,A2,…,An为矩阵序列,Ai为Pi-1×Pi阶矩阵,i = 1,2,…,n. 确定乘法顺序使得元素相乘的总次数最少.

输入:向量P =

实例:

P = <10, 100, 5, 50> A1: 10 × 100, A2: 100 × 5, A3: 5 × 50

乘法次序:

(A1 A2)A3: 10 × 100 × 5 + 10 ×5 × 50 = 7500

A1(A2 A3): 10 × 100 × 50 + 100 × 5 × 50 = 75000

搜索空间的规模

先将矩阵链加括号分为两部分,即P=A1*A2*...*An=(A1*A2...*Ak)*(Ak+1*...An),则有f(n)=f(1)*f(n-1)+f(2)*f(n-2)+...+f(n-1)*f(1)种方法。

动态规划算法

输入P=< P0, P1, …, Pn>,Ai..j 表示乘积 AiAi+1…Aj 的结果,其最后一次

相乘是:

m[i,j] 表示得到Ai..j的最少的相乘次数。

递推方程:

为了确定加括号的次序,设计表s[i,j],记录求得最优时最一位置。

二、问题分析

由于矩阵乘法满足结合律,故连乘积的计算可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序已完全确定,也就是说该连乘积已完全加括号,则我们可以通过反复调用两个矩阵相乘的标准算法计算出矩阵连乘积。

1.分析最优解的结构

为了方便起见,我们将矩阵连乘AiAi+1 。。。Aj记为A[i:j]。经分析,计算A[1:n]的一个最优次序所包含的计算矩阵子链A[1:k]和A[k:n]的次序也是最优的。因此,矩阵连乘计算次序问题的最优解包含着子问题的最优解。

2.建立递归关系

用矩阵m[n][n]来存放A[i:j]相乘的计算次数,用p[n+1]用来存放矩阵的行数和列数。

const int N=5;

int m[N][N]; //m[i][j]存储Ai到Aj的最小乘法次数

int s[N][N];//s[i][j]存储Ai到Aj之间加括号的位置

int RecurMatrixChain(int P[],int i,int j)

{

m[i][j]=100000;

s[i][j]=i;

if(i==j)

m[i][j]=0;

else{

for(int k=i;k

int q=RecurMatrixChain(P,i,k)+RecurMatrixCha in(P,k+1,j)+P[i]*P[k+1]*P[j+1];

if(q

m[i][j]=q;

s[i][j]=k;

}

}

}

return m[i][j];

}

int main()

{

int P[N+1]={30,35,15,5,10,20};

for(int i=0;i

m[i][i]=0;

m[0][N-1]=RecurMatrixChain(P,0,N-1);

return 0;

}

3.递归实现的复杂性

复杂性满足递推关系:

可见递归实现的复杂性虽然较一般算法有改进,但还是较高。分析原因,主要是子问题重复程度高。如下图所示:

1..4表示计算Ai..j中i=1,j=4的子问题,其子问题包括A1..1,而A1..2,A1..3中都包括子问题A1..1,所以很多子问题被重复计算了多次。

于是,我们想到用自底向上的迭代实现。

4.算法迭代实现

迭代实现主要思想是子问题由小到大,每个子问题只计算一次,并且把结果保存起来,后来用到这个子问题时,直接代入。

void MatrixChain(int P[],int n)

{

int r,i,j,k,t;

for(i=0;i

for(j=0;j

m[i][j]=0;

//r为当前计算的链长(子问题规模)

for(r=2;r<=n;r++){

//n-r+1为最后一个r链的前边界

for(i=0;i

//计算前边界为r,链长为r的链的后边界

j=i+r-1;

//将链ij划分为A(i) * ( (A(i+1) ... A(j) )

m[i][j]=m[i+1][j]+P[i]*P[i+1]*P[j+1];

//记录分割位置

s[i][j]=i;

for( k=i+1;k

//将链ij划分为( A(i)...A(k) )* ( (A(k+1) ... A(j) )

t=m[i][k]+m[k+1][j]+P[i]*P[i+1]*P[j+1];

if(t

m[i][j]=t;

s[i][j]=k;

}

}

}

}

}

int main()

{

int P[N+1]={30,35,15,5,10,20};

MatrixChain(P,N);

}

三、结果输出

再写一个打印结果,以及打印优化函数备忘录m和标记函数的s的函数:

void PrintMatrixChain(int s[][N],int i,int j)

{

if (i==j)

{

cout<<"A"<

}

else

{

cout<<"(";

PrintMatrixChain(s, i, s[i][j]);

PrintMatrixChain(s, s[i][j]+1, j);

cout<<")";

}

}

void PrintMS(int m[][N],int s[][N],int N)

{

for(int r=0;r

for(int i=0;i

int j=i+r;

cout<<"m["<

}

cout<

}

for(int r=1;r<5;r++){

for(int i=0;i

int j=i+r;

cout<<"s["<

}

cout<

}

}

*一个简单的测试实例

用一个N=5,P=<30,35,15,5,10,20>的简单实例,运行上述代码:

四、实验总结

对于此次算法设计:翻阅了大量的资料,通过和同学老师的讨论设计了这次算法,用学过的c++语言写成。一个比较简单的例子做起来超乎想象的复杂,但是这个课程设计帮助我更好地理解了所学知识,让我在以后的生活当中能够更好地从多个方面分析问题。

【线性代数】之矩阵的乘法运算

Born T o Win 考研数学线性代数之矩阵的乘法运算 任意两个矩阵不一定能够相乘,即两个矩阵要相乘必须满足的条件是:只有当第一个矩阵A 的列数与第二个矩阵B 的行数相等时A ×B 才有意义。一个m ×n 的矩阵A 左乘一个n ×p 的矩阵B ,会得到一个m ×p 的矩阵C 。左乘:又称前乘,就是乘在左边(即乘号前),比如说,A 左乘E 即AE 。 一个m 行n 列的矩阵与一个n 行p 列的矩阵可以相乘,得到的结果是一个m 行p 列的矩阵,其中的第i 行第j 列位置上的数为第一个矩阵第i 行上的n 个数与第二个矩阵第j 列上的n 个数对应相乘后所得的n 个乘积之和。比如,下面的算式表示一个2行2列的矩阵乘以2行3列的矩阵,其结果是一个2行3列的矩阵。其中,结果矩阵的那个4(结果矩阵中第二(i )行第二(j)列)= 2(第一个矩阵第二(i)行第一列)*2(第二个矩阵中第一行第二(j)列) + 0(第一个矩阵第二(i)行第二列)*1(第二个矩阵中第二行第二(j)列): 矩阵乘法的两个重要性质:一,矩阵乘法满足结合律; 二,矩阵乘法不满足交换律。为什么矩阵乘法不满足交换律呢?这是由矩阵乘法定义决定的。因为矩阵AB=C ,C 的结果是由A 的行与B 的列相乘和的结果;而BA=D ,D 的结果是由B 的行与A 的列相乘和的结果。显然,得到的结果C 和D 不一定相等。同时,交换后两个矩阵有可能不能相乘。 因为矩阵乘法不满足交换律,所以矩阵乘法也不满足消去律。即由AB=AC 是得不到B=C 的,这是因为()AB AC A B C O =?-=是得不到A=O 或B-C=O 即B=C.例 111000010A B ????=≠=≠ ? ?-????0, 但0000AB O ??== ??? 那么由AB=O 一定得不到A=O 或B=O 吗?回答是否定的。比如A 是m ×n 阶矩阵,B 是n ×s 阶矩阵,若A 的秩为n ,则AB=O ,得B=O ;若B 的秩为m ,则AO ,得A=O.为什么吗?原因会在有关齐次线性方程组的文章里进行讲解.

矩阵的运算及其运算规则

矩阵基本运算及应用 牛晨晖 在数学中,矩阵是一个按照长方阵列排列的或集合。矩阵是高等代中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、、光学和中都有应用;中,制作也需要用到矩阵。矩阵的运算是领域的重要问题。将为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。 1矩阵的运算及其运算规则 1.1矩阵的加法与减法 1.1.1运算规则 设矩阵,, 则 简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的.

1.1.2运算性质 满足交换律和结合律 交换律; 结合律. 1.2矩阵与数的乘法 1.2.1运算规则 数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或.特别地,称称为的负矩阵. 1.2.2运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB. 1.2.3典型举例 已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知

? 1.3矩阵与矩阵的乘法 1.3.1运算规则 设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即. (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和. 1.3.2典型例题 设矩阵 计算 解是的矩阵.设它为

GPU上的矩阵乘法的设计与实现

计 算 机 系 统 应 用 https://www.doczj.com/doc/804756379.html, 2011 年 第20卷 第 1期 178 经验交流 Experiences Exchange GPU 上的矩阵乘法的设计与实现① 梁娟娟,任开新,郭利财,刘燕君 (中国科学技术大学 计算机科学与技术学院,合肥 230027) 摘 要: 矩阵乘法是科学计算中最基本的操作,高效实现矩阵乘法可以加速许多应用。本文使用NVIDIA 的CUDA 在GPU 上实现了一个高效的矩阵乘法。测试结果表明,在Geforce GTX 260上,本文提出的矩阵乘法的速度是理论峰值的97%,跟CUBLAS 库中的矩阵乘法相当。 关键词: 矩阵乘法;GPU ;CUDA Design and Implementation of Matrix Multiplication on GPU LIANG Juan-Juan, REN Kai-Xin, GUO Li-Cai, LIU Yan-Jun (School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China) Abstract: Matrix multiplication is a basic operation in scientific computing. Efficient implementation of matrix multiplication can speed up many applications. In this paper, we implement an efficient matrix multiplication on GPU using NVIDIA’s CUDA. The experiment shows that our implementation is as fast as the implementation in CUBLAS, and the speed of our implementation can reach the peak speed’s 97%, on Geforce GTX260. Keywords: matrix multiplication; GPU; CUDA GPU 是一种高性能的众核处理器,可以用来加速许多应用。CUDA 是NVIDIA 公司为NVIDIA 的GPU 开发的一个并行计算架构和一门基于C 的编程语言。在CUDA 中程序可以直接操作数据而无需借助于图形系统的API 。现在已经有许多应用和典型算法使用CUDA 在GPU 上实现出来。 1 引言 矩阵乘法是科学计算中的最基本的操作,在许多领域中有广泛的应用。对于矩阵乘法的研究有几个方向。一个是研究矩阵乘法的计算复杂度,研究矩阵乘法的时间复杂度的下界,这方面的工作有strassen 算法[1]等。另外一个方向是根据不同的处理器体系结构,将经典的矩阵乘法高效的实现出来,这方面的结果体现在许多高效的BLAS 库。许多高效的BLAS 库都根据体系结构的特点高效的实现了矩阵乘法,比如GotoBLAS [2], ATLAS [3]等。Fatahalian [4]等人使 用着色语言设计了在GPU 上的矩阵乘法。CUBLAS 库是使用CUDA 实现的BLAS 库,里面包含了高性能的矩阵乘法。 本文剩下的部分组织如下,第2节介绍了CUDA 的编程模型,简单描述了CUDA 上编程的特点。第3节讨论了数据已经拷贝到显存上的矩阵乘法,首先根据矩阵分块的公式给出了一个朴素的矩阵乘法实现,分析朴素的矩阵乘法的资源利用情况,然后提出了一种新的高效的矩阵乘法。第4节讨论了大规模的矩阵乘法的设计和实现,着重讨论了数据在显存中的调度。第5节是实验结果。第6节是总结和展望。 2 CUDA 编程模型和矩阵乘法回顾 2.1 CUDA 编程模型 NVIDIA 的GPU 是由N 个多核处理器和一块显存构成的。每个多核处理器由M 个处理器核,1个指令部件,一个非常大的寄存器堆,一小块片上的共享内 ① 基金项目:国家自然科学基金(60833004);国家高技术研究发展计划(863)(2008AA010902) 收稿时间:2010-04-26;收到修改稿时间:2010-05-21

矩阵相乘的快速算法

矩阵相乘的快速算法 算法介绍 矩阵相乘在进行3D变换的时候是经常用到的。在应用中常用矩阵相乘的定义算法对其进行计算。这个算法用到了大量的循环和相乘运算,这使得算法效率不高。而矩阵相乘的计算效率很大程度上的影响了整个程序的运行速度,所以对矩阵相乘算法进行一些改进是必要的。 这里要介绍的矩阵算法称为斯特拉森方法,它是由v.斯特拉森在1969年提出的一个方法。 我们先讨论二阶矩阵的计算方法。 对于二阶矩阵 A= a11a12 B= b11b12 a21a22b21 b22 先计算下面7个量(1) x1 = (a11 + a22) * (b11 + b22); x2 = (a21 + a22) * b11; x3 = a11 * (b12 - b22); x4 = a22 * (b21 - b11); x5 = (a11 + a12) * b22; x6 = (a21 - a11) * (b11 + b12); x7 = (a12 - a22) * (b21 + b22); 再设C = AB。根据矩阵相乘的规则,C的各元素为(2) c11 = a11 * b11 + a12 * b21 c12 = a11 * b12 + a12 * b22 c21 = a21 * b11 + a22 * b21 c22 = a21 * b12 + a22 * b22 比较(1)(2),C的各元素可以表示为(3) c11 = x1 + x4 - x5 + x7 c12 = x3 + x5 c21 = x2 + x4 c22 = x1 + x3 - x2 + x6 根据以上的方法,我们就可以计算4阶矩阵了,先将4阶矩阵A和B划分成四块 2阶矩阵,分别利用公式计算它们的乘积,再使用(1)(3)来计算出最后结果。

矩阵的运算及其运算规则

矩阵基本运算及应用 201700060牛晨晖 在数学中,矩阵是一个按照长方阵列排列的复数或实数集合。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。 1矩阵的运算及其运算规则 1.1矩阵的加法与减法 1.1.1运算规则 设矩阵,, 则

简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的. 1.1.2运算性质 满足交换律和结合律 交换律; 结合律. 1.2矩阵与数的乘法 1.2.1运算规则 数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或. 特别地,称称为的负矩阵. 1.2.2运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB.

已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知 1.3矩阵与矩阵的乘法 1.3.1运算规则 设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即 . (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和.

C语言程序设计报告 矩阵运算

C程序设计报告 矩 阵 运 算 学院:地质与环境学院 专业:资源勘查工程0901 姓名:王甲 学号:0909030119

目录1.设计任务书 1.1题目 1.2设计要求 1.3程序涉及的知识点 2.功能设计 2.1算法设计 2.2部分模块流程图 3.程序代码设计 3.1源代码 3.2运行结果 4.运行结果 5.程序设计总结 6.致谢 7.参考文献

1设计任务书 1.1 题目 矩阵运算 1.2 设计要求 此程序为矩阵运算的相关程序,用来计算包括两矩阵的加、减、乘运算,求矩阵的转置矩阵、最大值元素、最小值元素及对角线元素之和等运算。 1.2 本系统涉及的知识点 此程序涉及了老师讲授的多个知识点,包括:for、if、printf及scanf 等语句,顺序、选择、循环等结构。 2功能设计 2.1 算法设计 此程序需要实现的功能要求: 利用for、if、printf及scanf 等语句来实现所需功能。 输入矩阵a和b的元素之后,依次计算: 程序一:计算a+b矩阵; 程序二:计算a-b矩阵; 程序三:计算a*b矩阵; 程序四:计算a的转置矩阵; 程序五:计算a矩阵的最小值元素;

程序六:计算a 矩阵的最大值元素; 程序七:计算a 矩阵的主对角线元素之和; 程序八:计算a 矩阵的副对角线元素之和; 程序九:计算a 矩阵的上三角元素之和; 程序九:计算a 矩阵的下三角元素之和; 2.2 部分模块流程图 3 程序源代码 3.1源代码 #include"stdio.h" void main() { int a[3][3],b[3][3],c[3][3], int i,j,k,s,max,min,sum1=0,sum2=0,sum3=0,sum4=0; printf("计算a+b 矩阵:\n"); for(i=0;i<3;i++) for(j=0;j<3;j++) c[i][j]=a[i][j]+b[i][j]; printf("%6d"); printf("\n"); printf(" 请输入a 矩阵元素:\n"); for(i=0;i<3;i++); for(j=0;j<3;j++); scanf("%4d",&a[i][j]); printf("a 矩阵:\n");

c语言实现矩阵的相关操作

算法分析与设计课程论文 —通过C语言实现矩阵的相关操作

一.摘要 本文在Microsoft Visual Studio 2010的编译环境下,通过C语言进行一些矩阵的基本操作,包括矩阵的设置,加减乘除,数乘运算。求矩阵的逆等操作。 关键词 矩阵 C语言逆矩阵 二.正文 1.引言 矩阵的相关知识只是是高等数学的基础,但是其庞大的运算量和纷繁的步骤让人却步。虽然有Matlab等软件可以实现矩阵的相关操作,但是我校一些专业并不学习数学实验,故通过C语言实现矩阵的操作也是一种可行的方法,本文列举的了一些矩阵的加减乘除等基本运算规则,还有对矩阵进行转置,也有矩阵求逆的相关操作。 同时,还介绍了行列式的计算,通过运行该程序,可以大大简化行列式的计算量。 2.算法分析

矩阵的初始化 相关概念 在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。 矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。 理论分析 在C语言中,可以使用二维数组来描绘一个矩阵。值得注意的是,在二维数组中,必须标明列数,否则编译器就会报错。故二维极其多维数组使用时要注意数组下标。 代码实现

#include int main() { int juzheng [100][100]; int i , j , a , b ; printf("请输入矩阵的行数a 列数b \n") ; scanf ("%d %d",&a,&b); for (i = 0;i < a ;i++) { for (j = 0;j < b ;j++) { scanf ("%d",&juzheng[i][j]); } } printf ("你所输入的矩阵是:\n"); for (i = 0;i < a ;i++) { for (j = 0;j < b ;j++) { printf("%d ",juzheng[i][j]); } printf ("\n"); } return 0; } 矩阵的相加 相关概念

用QR算法求矩阵的特征值

一、实验名称:用QR 算法求矩阵的特征值 二、实验目的:1、通过实验进一步熟悉掌握求矩阵特征值的QR 方法及原理。 2、理解QR 方法的计算流程。 3、能够编程实现QR 方法。 三、实验内容:给定矩阵 ??? ? ? ??=111132126A , ?? ??? ?? ? ? ?=0100098 20 087630 7654465432H ,采用QR 方法计算A 和H 矩阵的全部特征值。 四、实验要求: (1) 根据QR 算法原理编写程序求矩阵A 及矩阵H 的全部特征值(要求误差<10 5 -)。 (2) 直接用MATLAB 的内部函数eig 求矩阵A 及矩阵H 的全部特征值,并与(1)的结果比较。 五、QR 方法计算矩阵特征值的程序: function [namda,time,data_na]=qr_tz(A,tol) if nargin==1; tol=1e-5; end wucha=1; time=0; while (wucha>tol)&(time<500) [q,r]=qr(A); A1=r*q; tz0=diag(A1); tz1=diag(A); wucha=norm(tz0-tz1); A=A1; time=time+1; data_na(time,:)=tz1; end namda=tz1; disp(‘特征值为’) namda disp(‘第一个特征在值’) time n1=length(data_na); n2=(1:n1)’; temp1=[n2,data_na]; subplot(2,2,1:2)

plot(date_na(:,1)) title(‘迭代次数为’) grid subplot(2,2,3) plot(data-na(:,2)) title(‘第二个特征值’)grid subplot(2,2,4) plot(data-na(:,3)) title(‘第三个特征值’) grid 六、实验结果: >> A=[6,2,1;2,3,1;1,1,1];[namda,time,data_na]=qr_tz(A,1e-5);特征值为 namda = 迭代次数为 time = 6 图 1

strassen矩阵相乘算法C++代码

Strassen 矩阵相乘算法代码 #include #include #include #include usingnamespace std; template class Strassen_class { public: void ADD(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize); void SUB(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize); void MUL(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize);//朴素算法实现void FillMatrix(T** MatrixA, T** MatrixB, int length);//A,B矩阵赋值 void PrintMatrix(T **MatrixA, int MatrixSize);//打印矩阵 void Strassen(int N, T **MatrixA, T **MatrixB, T **MatrixC);//Strassen算法实现 }; template void Strassen_class::ADD(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize) { for (int i = 0; i void Strassen_class::SUB(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize) { for (int i = 0; i void Strassen_class::MUL(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize) {

音频交换混合矩阵设计与实现.

音频交换混合矩阵设计与实现 音频交换混合矩阵是各种会议、演播、指挥系统的核心设备,连接不同的音频输入、输出设备,实现音频的交换及混合功能,并实现音频信号的控制与调度。 传统的音频矩阵通常基于模拟开关电路设计,设计复杂,实现难度较大,不适合构建中大规模交换矩阵。而且,大多数矩阵不具备音量调节及信号混合功能,需要配合调音台、信号混合器设备使用。 本文提出一种基于FPGA ( Field ProgrammableGate Array)的音频交换混合矩阵的设计方案。该方案以交换技术原理为基础,采用数字音频信号采样及处理技术,构建交换混合矩阵,实现了16 ×16路音频信号的交换、混合;设计及实现难度小,且可根据系统需求裁减或增加系统交换容量、设置音频信号采样精度及采样速率;每路输入、输出信号的音量可以独立进行控制;还具有输入输出延时低、信道间隔离度高、音质好的特点。 1 音频交换混合矩阵的数学模型 1. 1 交换系统原理 交换技术源于电话通信,其基本任务就是在大规模网络中实现各用户之间信息的端到端的有效传递。交换技术的原理就是通过设置好的路径,将源端的数据可控地发往目的端。 对于音频系统,交换即指将音频信号从输入端经过一系列节点转发到输出端。 1. 2 交换混合矩阵数学模型 基于2. 1所述交换技术原理,可构建交换系统的一般数学模型。将多输入输出的交换系统抽象为一个矩阵P,其输入和输出信号抽象为两个向量( x,y) ,交换系统实现的功能就是将输入向量通过矩阵的运算转换为输出向量: 其中pij ∈[0, 1 ],代表输入与输出的对应关系。n和m 分别代表输入和输出信号个数。当n = 1时,该系统为单输入系统;当n > 1时,该系统为多输入系统。 当m = 1时,该系统为单输出系统;当m > 1时,该系统为多输出系统。 对于一个音频交换混合系统, pij即代表了某路输入与某路输出的对应关系,以及音量信息。最终,单独的某路输出信号yj 可以表示为:

矩阵连乘最佳加括号方式动态规划算法

矩阵连乘最佳加括号方式-动态规划算法 一、问题描述 给定n个矩阵{A1,A2,…,A n},其中A i与A i+1是可乘的,i=1,2,…,n-1。要算出这n个矩阵的连乘积A1A2…A n。由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则可以依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。完全加括号的矩阵连乘积可递归地定义为: (1)单个矩阵是完全加括号的; (2)矩阵连乘积A是完全加括号的,则A可表示为2个完全加括号的矩阵连乘积B和C 的乘积并加括号,即A=(BC)。 例如,矩阵连乘积A1A2A3A4有5种不同的完全加括号的方式:(A1(A2(A3A4))),(A1((A2A3)A4)),((A1A2)(A3A4)),((A1(A2A3))A4),(((A1A2)A3)A4)。每一种完全加括号的方式对应于一个矩阵连乘积的计算次序,这决定着作乘积所需要的计算量。若A是一个p×q矩阵,B是一个q×r矩阵,则计算其乘积C=AB的标准算法中,需要进行pqr次数乘。 为了说明在计算矩阵连乘积时,加括号方式对整个计算量的影响,先考察3个矩阵 {A1,A2,A3}连乘的情况。设这三个矩阵的维数分别为10×100,100×5,5×50。加括号的方式只有两种:((A1A2)A3),(A1(A2A3)),第一种方式需要的数乘次数为10×100×5+10×5×50=7500,第二种方式需要的数乘次数为100×5×50+10×100×50=75000。第二种加括号方式的计算量时第一种方式计算量的10倍。由此可见,在计算矩阵连乘积时,加括号方式,即计算次序对计算量有很大的影响。于是,自然提出矩阵连乘积的最优计算次序问题,即对于给定的相继n个矩阵{A1,A2,…,A n}(其中矩阵A i的维数为p i-1×p i,i=1,2,…,n),如何确定计算矩阵连乘积A1A2…A n的计算次序(完全加括号方式),使得依此次序计算矩阵连乘积需要的数乘次数最少。 穷举搜索法的计算量太大,它不是一个有效的算法,本实验采用动态规划算法解矩阵连乘积的最优计算次序问题。 二、算法思路

课程设计矩阵运算系统

wen 滨江学院 windows 程序设计综合实验 课程设计 题目矩阵综合运算系统 学生姓名晏文涛 学号20102309060 院系电子工程系 专业信息工程 指导教师方忠进

二O一二年12 月16 日 摘要 设计了一个矩阵运算系统,该矩阵运算系统具有普通矩阵相加、相减、相乘及稀疏矩阵转置等功能。本运算系统以Microsoft Visual C++ 6.0 作为系统开发工具,采用算数表达式处理算法来实现了矩阵的加、减、乘等混合运算和稀疏矩阵的转置矩阵运算。系统操作简单,界面清晰,便于用户使用。 关键词:普通矩阵; 运算; VC6.0

目录 1 课题描述 (1) 2 设计过程 (1) 3 程序编码 (3) 4 测试 (10) 总结 (12) 参考文献 (13)

1 课题描述 矩阵运算系统是一个非常重要的运算,很多软件开发公司都开发了这个运算系统。现在我们用C 语言编出这个运算系统。它的原理是对于输入的矩阵,进行相加、相乘以及相减。另外一个是稀疏矩阵的转置运算系统,按提示输入数值即可得到所要求的稀疏矩阵的转置矩阵。 运行环境:Visual C++ 6.0 2 设计过程 经过对程序设计题目的分析可知,整个程序的设计实现大致分为四个模块,其中每一个模块对应一

个函数,他们的功能分别是:1)矩阵相加运算函数(ADD),主要实现将两矩阵相加的功能;2)矩阵相乘运算函数(MUL),主要实现将两矩阵相乘的功能;3)矩阵相减函数(SNB);实现的功能是矩阵之间的减法4)稀疏矩阵矩阵转置函数(TRANPOSE) 实现的功能是将稀疏矩阵进行转置。在这些函数当中,第1、2、4个函数的实现严格按照题目的要求,而第3个函数为自行设计的函数。程序的一次运行当中可以循环执行所有的功能,并根据需要终止程序的执行。在这个程序中,将各个功能以子程序模块的形式编写。这样使所编写的程序简单明了,逻辑性思维表达明确,具有很强的可读性。流程图如下: 1)矩阵相乘流程图如图2.1所示: 图2.1 2)矩阵相加流程图如图2.2所示 图2.2 3)矩阵相减流程图如图2.3所示

一些特殊矩阵特征值得求法与应用 (2)

本科毕业设计题目:一些特殊矩阵特征值的求法与应用 作者:高英 学号: 2010012491 所属学院:金融与数学书院 专业班级:应数1002班 指导教师:赵建中职称:院长 完成时间: 2014 年 4月 10日 皖西学院教务处制

独创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 学生签名:日期:年月日 论文版权使用授权书 本人完全了解皖西学院有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件和磁盘,允许论文被查阅和借阅,可以采用影印、缩印或扫描等复制手段保存、汇编学位论文。同意皖西学院可以用不同方式在不同媒体上发表、传播学位论文的全部或部分内容。 (保密的学位论文在解密后应遵守此协议) 学生签名:日期:年月日 导师签名:日期:年月

目录 摘要 .......................................................... 错误!未定义书签。Abstract ...................................................... 错误!未定义书签。第1章绪论 .................................................. 错误!未定义书签。 1.1 课题研究背景及目的................................... 错误!未定义书签。 1.2 研究现状 (1) 1.3研究方法 (2) 1.4研究内容 (2) 第2章几类特殊矩阵的概念及主要性质............................ 错误!未定义书签。 2.1 正交矩阵............................................. 错误!未定义书签。 2.2 幂零矩阵 (2) 2.3 对称矩阵 (3) 2.4 三对角矩阵 (4) 第3章矩阵特征值的求法与应用 (4) 3.1 一般矩阵的求法与应用 (4) 3.2 特殊矩阵的求法与应用 (7) 结语 (20) 致谢 (20) 参考文献 (21)

c++课程设计-矩阵的转置与乘法计算

c++课程设计-矩阵的转置与乘法计算

C++课程设计实验报告 姓名学号班级 任课教师时间 9月 教师指定题目4-4 矩阵的转置与乘法计算评定难易级别 A 实验报告成绩 1.实验内容: 1.1 程序功能介绍 该程序定义了一个向量类,里面的元素是模板形式,定义了有关向量了类的各种属性、方法及运算符重载函数。 1.2 程序设计要求 (1)利用已知的向量类对象定义一个矩阵类,矩阵类的数据是向量子对象,同样定义矩阵类的各种属性、方法及运算符重载函数。 (2)完善成员函数,使矩阵可以由文件输入,具体的输入格式自己规定。 (3)完成矩阵的赋值、转置、乘法等运算,要求用整形矩阵和浮点型矩阵分别演算。 (4)更改main函数结构,可由用户选择输入矩阵数据的方法,程序可以连续运行,直到选择退出为止。

2. 源程序结构流程框图与说明(含新增子函数的结构框图)

作者:喻皓学号:0511590125

3. 基本数据结构 定义的类模板,将函数用链表将一些功能函数连接起来。其中定义了构造函数,析构函数,重载赋值、乘法、数乘、输入、输出,矩阵转置等函数,实现矩阵的矩阵的赋值、转置、乘法等运算。 template class CMatrix { struct node { Vector **f;//**************************************组成矩阵的向量指针 int refcnt;//*************************************************被引用次数 int length;//*************************************************矩阵的行数 T **tmppointer;//*******************************************头指针类型} *p; public: // Vector ** begin() const {return p->f;}; CMatrix();//****************************************************默认的构造 CMatrix(int xsize,int ysize,T init=0);//***************************构造函数 CMatrix(int xlength,const Vector *vec);//************************构造函

C语言矩阵的运算

C语言课程设计题目矩阵的运算 西安科技大学 二0 一一年十一月

一、设计目的 1. 综合C语言相关知识制作简单的应用程序 2. 灵活对程序代码进行利用,修改和编写; 3. 熟练将C语言所学知识和其它知识相结合 二、功能描述 编写一个矩阵运算程序,能够进行矩阵加、减、乘、转置,求矩阵的最大值,最小值,对角线元素的和等 三、流程图

定义及预处理m1=0,m2=0,m3=0,m4=0,l=0;i,j,k,d,max,min; a[M][N],b[M][N],c[N][P] 输出“输入a矩阵” j++,输入a矩阵元素 直到j>=N,i++ 直到i>=M 输出“a矩阵” j++,输出a矩阵 直到j>=N,i++,输出换行 直到i>=M 输出“输入b矩阵” j++,输入b矩阵元素 直到j>=N,i++ 直到i>=M 输出“b矩阵” j++,输出b矩阵 直到j>=N,i++,输出换行 直到i>=M 输出“输入c矩阵” j++,输入c矩阵元素 直到j>=P,i++ 直到i>=N

输出“c 矩阵” 直到i>=N 直到j>=P,i++,输出换行 j++,输出c 矩阵 输出“输入a,b 矩阵之和” 直到i>=M 直到j>=N,i++,输出换行 j++,输出a 矩阵与b 矩阵对应元素 输出“输入a,b 矩阵之差” 直到i>=M 直到j>=N,i++,输出换行 j++,输出a 矩阵与b 矩阵对应元素 输出“输入a,c 矩阵之积” 直到i>=N 直到j>=P,i++ j++,输出换行,直到k 〉=M k++,输出 a[i][k]*c[k][j]; 输出“a 矩阵的转置” 直到j>=N 直到i>=M,j++,输出换行 i++,输出a[i][j] 输出“a 矩阵的最大值” max=a[0][0] 直到i>=M 直到i>=M 直到j>=N,i++ max

幂法求矩阵最大特征值

幂法求矩阵最大特征值 摘要 在物理、力学和工程技术中的很多问题在数学上都归结为求矩阵特征值的问题,而在某些工程、物理问题中,通常只需要求出矩阵的最大的特征值(即主特征值)和相应的特征向量,对于解这种特征值问题,运用幂法则可以有效的解决这个问题。 幂法是一种计算实矩阵A的最大特征值的一种迭代法,它最大的优点是方法简单。对于稀疏矩阵较合适,但有时收敛速度很慢。 用java来编写算法。这个程序主要分成了三个大部分:第一部分为将矩阵转化为线性方程组;第二部分为求特征向量的极大值;第三部分为求幂法函数块。其基本流程为幂法函数块通过调用将矩阵转化为线性方程组的方法,再经过一系列的验证和迭代得到结果。 关键词:幂法;矩阵最大特征值;j ava;迭代

POWER METHOD TO CALCULATE THE MAXIMUM EIGENV ALUE MATRIX ABSTRACT In physics, mechanics and engineering technology of a lot of problems in math boil down to matrix eigenvalue problem, and in some engineering, physical problems, usually only the largest eigenvalue of the matrix (i.e., the main characteristics of the value) and the corresponding eigenvectors, the eigenvalue problem for solution, using the power law can effectively solve the problem. Power method is A kind of computing the largest eigenvalue of real matrix A of an iterative method, its biggest advantage is simple.For sparse matrix is right, but sometimes very slow convergence speed. Using Java to write algorithms.This program is mainly divided into three most: the first part for matrix can be converted to linear equations;The second part is the eigenvector of the maximum;The third part is the exponentiation method of function block.Its basic process as a power law function block by calling the method of matrix can be converted to linear equations, then after a series of validation and iteration to get the results. Key words: Power method; Matrix eigenvalue; Java; The iteration

矩阵运算程序设计

目录 1 课题分析 (1) 2 模块化分析 (1) 2.1 输入模块 (1) 2.1.1 输入模块要求 (1) 2.1.2 输入模块程序说明 (1) 2.2 判断模块 (3) 2.3 求和求差模块 (3) 2.4 乘法模块 (5) 2.4.1 求乘积模块概要 (5) 2.4.2 子程序段说明 (5) 2.4.3 乘法模块流程图 (8) 3 运行分析 (9) 4 心得体会 (11) 参考文献 (13)

矩阵运算程序设计 1 课题分析 根据给定的任务:能用键盘输入矩阵的参数(行、列及元素值),在进行运算前,先判断两个矩阵是否符合运算规则实现这两个矩阵的加,实现这两个矩阵的减,实现这两个矩阵的乘。进行模块化分析,所以程序中应该包括输入模块,保存需要处理的数据。判断模块,根据矩阵运算规则判断输入的数据能否进行矩阵加法,减法或者乘法运算,并调用相应的计算程序。计算模块,包括矩阵的加法,矩阵的减法和矩阵的乘法运算。输出模块,显示运算的结果。 2 模块化分析 2.1 输入模块 2.1.1 输入模块要求 先能用键盘输入矩阵的参数,行数和列数,然后根据输入各元素值,在输入数据之前有明显的提示信息,输入完后要保持各数据。运算完后要将各类计算的结果显示在屏幕上,并且要有明显的提示信息。 2.1.2 输入模块程序说明 输入的行列数保存到N和M中,为后来的比较和输入做准备,本程序段只是针对矩阵1的行和列,矩阵2则在此基础上经行替换即可以得到。 LEA DX,INFORMATION1 ;取信息提示地址偏移量 MOV AH,09h ;9号功能调用显示提示信息 INT 21H LEA DX,input1 ;提示输入矩阵1 的行数 MOV AH,09h ;9号功能调用显示提示信息 INT 21H

矩阵运算实验报告

实验报告 --矩阵运算 一.实验目的。 1.通过实践加强对程序设计语言课程知识点的理解和掌握,培养对课程知识综合运用能力、实际分析问题能力及编程能力,养成良好的编程习惯。 2.通过实践进一步领会程序设计的特点和应用,提高运用C++ 语言以及面向对象知识解决实际问题的能力。 3.通过实践掌握用C++ 语言编写面向对象的实用程序的设计方法,对面向对象方法和思想增加感性的认识; 4.学会利用C++程序设计语言编写出一些短小、可靠的Windows实用程序,切实提高面向对象的程序设计能力。为后续的相关课程的学习打下基础。 二.实验要求。 1.学会建立模板类; 2.实现矩阵的“加”、“减”、“乘”、“数乘”、“转置”; 3.动态存分配并用随机数填充; 4.注意“加”、“减”、“乘”要进行条件的判断; 三.设计思路。

3.1算法基本流程 1)获取用户输入的矩阵1的行数和列数,动态生成一个一维数组 2)利用随机数生成数组成员,并利用两个循环输出数组,使其符合矩阵的格式 3)矩阵2同矩阵1的处理方法 4)通过两个矩阵的行数和列数比较来判断能否进行加减乘等运算,如不能,输出相关信息 5)如能够进行计算,则利用数组进行相应运算,并按照正确格式输出 6)通过改变一维数组中元素的顺序来实现转置并输出 3.2算法流程图

四.基本界面。

五.关键代码。 5.1关键类的声明 class CMatrixclass { public: CMatrixclass() { int m_Row = 0; //行 int m_Col = 0; //列 m_pElements = NULL; //一维数组

产品形态简要论述

浅谈产品形态 形态学又名造型论,工业设计专业的全称为工业产品造型设计专业,形态学课程之于工业设计专业的重要性,勿庸多言。所谓产品造型设计,指用特定的物质材料,依据产品的功能而在结构、形态、色彩及外表加工等方面进行的制造活动。作为艺术与技术的结合,不管外观依旧完全意义的产品设计或其它相关设计,都必须解决包括形态、色彩、空间等要素在内的差不多造型问题。从那个角度来看,形态学是一切造型设计的基础,贯穿于造型活动的始终。 现代造型艺术体系始于德国的包豪斯运动,它是以在科学而非个人感情基础上培养起来的视觉经验,将形式、色彩、肌理、材质等方面的训练及研究分离出来。这类造型训练作为包豪斯的重要基础课程,一直为后来的设计专业所采纳,并不断取得突破。一方面更加紧密地与色彩、素描、构成等教学紧密衔接;另一方面更深入产品设计的各个角落,成为工业设计专业教学的一条内在主线,是产品造型设计的核心课程。越来越多国内外的专家、学者认为,应该把基础造型训练及相关理论在工业设计专业教学领域进行整合,并列为“形态学”课程予以讲授,以利学生更系统全面地掌握造型艺术的相关理论及手法。 “形”通常指物体外在的形状,“态”则是物体蕴涵的“神态”。因此,形态确实是物体“外形”与“神态”的结合。

在我国古代便有“内心之动,形状于外”,“形者神之质,神者形之用”等论述,指出了形与神之间相辅相成的关系。形离不开神的补充,神离不开形的阐释;无形而神则失,无神而形则晦,形与神之间不可分割。只有将形与神二者结合在一起,才能构成对事物完整而科学的认知。可见,形态要获得美感,除了要有美的外形外,还需具备与之相匹配的“精神势态”,犹如历代中国画家在创作时所追求的那种境地-形神兼备。 形态作为形式要素之一,是形式的基础。形态学重点是通过外形把握其表现,即通过特点对观者所产生的心理效益去研究形态的“态势”或“生命态”表现,以设计上对形态注入感人的魅力为切入点。 形态是造型艺术即设计借以表达思想感情、传递信息及满足人的视觉评价、使用需求的重要媒介之一。一个人、一个物件、一个色块、一个点、一条线,乃至一部分空间和空间中的一组物象,都具有形态性。 产品的形态是信息的载体,工业设计师通常利用特有的造型语言(如形体的分割与组合,材料的选择与开发,及构造的创新与利用等)进行产品的形态设计。借助产品的特有形态能够向外界传达设计师的思想与理念。消费者在选购产品时,也往往通过产品形态所表达出的某种信息来推断和衡量与其内心所希望的是否一致,并最终做出购买的决策。

相关主题
文本预览
相关文档 最新文档