当前位置:文档之家› 线性规划练习习题

线性规划练习习题

线性规划练习习题
线性规划练习习题

欢迎阅读

1.已知实数y x ,满足???

??

≤-+≥>0

620y x x y x ,则x y x 22++的最小值为( )

A .1

B .3

C .4

D .6

2.设关于x ,y 的不等式组21000x y x m y m -+>??

+?

表示的平面区域内存在点00(,)P x y ,满足0022x y -=,则

m 的取值范围是( )

A .

(-∞3

A .

144.设,x a b +的

A .9

2

5.

67.设,x y 满足约束条件0,0,0,

x y x y ?-≥?

?≥≥?

,若目标函数()0,0z ax by a b =+>>的最大值为1,则14

a b +的最小值为_________.

8.已知方程2

20x ax b ++=(,)a R b R ∈∈,其一根在区间(0,1)内,另一根在区间(1,2)内,则

3

1

b a --的取值范围为 .

9.已知实数x ,y 满足条件0,0,1,x y x y x -??

+???

≥≥≤

则x y -的最小值为 .

欢迎阅读

10.若,x y 满足条件y 2||1

1x y x ≥-??≤+?

,则z = x+3y 的最大值为 .

11.如图,直三棱柱111ABC A B C -的底面是边长为4正三角形,1AA =M 为11A B 的中点. (Ⅰ)求证:AB MC ⊥;

(Ⅱ)在棱1CC 上是否存在点P ,使得MC ⊥平面ABP ?若存在,确定点P 的位置;若不存在,说明理由.

12.如图,在三棱锥P -ABC 中,PA =PB =AB =2,BC =3,∠ABC =90°,平面PAB ⊥平面ABC ,D 、E 分别为AB 、AC 中点.

(1

(2(313.,E ,F (1(2)若14.PD 交于点 15N 均为

中点.

(1(2)若1N

参考答案

1.C 【解析】

试题分析:

2222x y y x x +++=+

,显然2

y x

+表示点(,)P x y 与点(0,2)M -连线的斜率.作出题设不等式表示的平面区域,如图OAB ?内部(含边界),P 是OAB

?内任意一点,显然当P 与(2,2)A 重合时,PM k 最小,2(2)220MA k --==-,

即22

x y x

++的最小值为224+=.故选C .

考点:简单线性规划的非线性应用.

0???+-<<220m

y m 系进行求解.

3.C 【解析】

试题分析:根据题意作出,x y 满足约束条件下的平面区域,如图所示,由图知,当目标函数2z x y =+经过点23(

,)11a a A a a +++时取得最大值

11

2

,所以

2311

2112

a a a a +?

+=++,解得1a =,故选C . 考点:简单的线性规划问题. 4.A 【解析】 试题分析:作出可行域如图, ()220

1,4840x y A x y -+=???--=?

,当目标函数

11

(0,0)z x y a b a b =

+>>过点()

1,4A 时纵截距最大,此时z 最大.即

32??

【解析】

试题分析:作出可行域,令x y t =

,则由x y

的几何意义可知取点P 时,t 取得最大值2,取点Q 时,t 取得最小值31,则]2,31[∈t ,又t t z 1-=,由t y =及t

y 1

-=单

调递增,可知t t t f 1)(-=单调递增,故38331min -=-=z ,2

3

212max =-=z ,所以

y x z x y =

-的取值范围是83,32??-????

. 考点:1、线性规划;2、函数单调性求最值.

【思路点睛】本题主要考查目标函数求取最值(范围)问题,属困难题.由题给

不等式组作出相应可行域,取目标函数中t x y =,由x y

的几何意义:可行域中的

点与原点的连线斜率,可知,t 取得最大值和最小值的最优解分别为点P 和点Q ,

试题分析:设()22f x x ax b =++,因为其一根在区间(0,1)内,另一根在区间(1,2)

内,所以(0)0(1)0(2)0f f f >???,即20

1204220

b a b a b >??

++?

,设31b k a -=-,即表示过定点(1,3)的

斜率,所以答案应填:13

22

(,)

. 考点:1、函数的零点;2、二次函数的性质;3、线性规划.

【思路点睛】本题主要考查的是函数的零点二次函数的性质利用线性规划的方法来解决,属于中档稍难题,分析问题结合图象利用斜率知识点解决问题. 9.-1. 【解析】

试题分析:由题意作出其平面区域,当|y|最小,x 最大,即过(1,0)时,最小.

由题意作出其平面区域,由图可知,|y|﹣x 的最小值为0﹣1=﹣1. 故答案为:﹣1.

考点:简单线性规划. 10.11

平面ABP . 试题解析:(I )取AB 中点O ,连接OM ,OC , ∵M 为11A B 中点,∴11////MO AA CC ,又1AA ⊥平面ABC , ∴MO ⊥平面ABC , ∴MO ⊥AB .

∵△ABC 为正三角形,∴AB ⊥CO 又MO ∩OC O =, ∴AB ⊥平面OMC

又∵MC ?平面OMC ∴AB MC ⊥.

(II )当P 为棱1CC 中点时,MC ⊥平面ABP .证明如下: 连接1C M ,OP .因为1CC ⊥平面ABC ,OC ?平面ABC , 所以1CC OC ⊥,又1//MO CC ,1MO CC =, 四边形1MOCC 是矩形,

1OC C M ==

,1OM CC == OP O =,即当P 为棱、柱体的结构特征;2、线面垂直角,可以,,DB DE DP 为坐标轴建立空间直角坐标系后,写出各点坐标,求出平面APB 和平面EPB 的法向量,由法向量的夹角可得二面角大小(它们相等或互

补,注意判别二面角的大小). 试题解析:(1) D 、E 分别为AB 、AC 中点, ∴ DE ∥BC . DE ?平面PBC ,BC ?平面PBC , ∴DE ∥平面PBC

(2)连结PD , PA=PB ,∴ PD ⊥ AB .

DE ∥BC ,BC ⊥ AB , ∴ DE ⊥ AB .

又∵PD DE D = ,∴AB ⊥平面PDE . ∵PE ?平面PDE , ∴AB ⊥PE .

(3)∵平面PAB ⊥平面ABC ,平面PAB

平面ABC=AB ,PD ⊥ AB ,

设平面PBE 1(,,x y z =, PAB ,∴的法向量为n = (0,1,0),由图知,121cos ,2

n n n n n n θ?=<>=

=

?,考点:线面平行的判定,线面垂直的判定与性质,二面角. = <,AB CD > .

如图②③,1n ,2n 分别是二面角α-l-β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ= cos<1n ,2n >或-cos<1n ,2n > 13.(1)垂直,理由见解析;(2)所求二面角的余弦值为

【解析】 试题分析:(1)判断垂直.证明AE ⊥BC .PA ⊥AE .推出AE ⊥平面PAD ,然后证明AE ⊥PD .

(2)由(1)知AE ,AD ,AP 两两垂直,以A 为坐标原点,建立如图所示的空间直角坐标系,求出相关点的坐标,求出平面AEF 的一个法向量,平面AFC 的一个法向量.通过向量的数量积求解二面角的余弦值. 解:(1)垂直.

证明:由四边形ABCD 为菱形,∠ABC=60°, 可得△ABC 为正三角形.

因为E 为BC 的中点,所以AE ⊥BC . 又BC ∥AD ,因此AE ⊥AD .

因为PA ⊥平面ABCD ,AE ?平面ABCD , 所以PA ⊥AE .

),

.的一个法向量为

,则

,因此

,取.,故为平面又

,所以

因为二面角E ﹣AF ﹣C 为锐角,所以所求二面角的余弦值为

考点:二面角的平面角及求法;直线与平面垂直的性质. 14.(I )证明见解析;(II )证明见解析;(III )线段PB 上不存在点M ,使得EM ⊥平面PCD . 【解析】 试题分析:(I )先证明//AB 平面PCD ,即可证明//AB EF ;(II )利用平面PAD ⊥平面ABCD ,证明,CD AF PA AD ⊥=,所以AF PD ⊥,即可证明AF ⊥平面PCD ;(III )在(II )的条件下,线段PB 上存在点M ,使得EM ⊥平面PCD .

试题解析:(Ⅰ)证明:因为底面ABCD 是正方形, 所以AB ∥CD .

又因为AB ?平面PCD ,CD ?平面PCD , 所以AB ∥平面PCD .

又因为,,,A B E F 四点共面,且平面ABEF 平面PCD EF =,

所以AB ∥EF .

(Ⅱ)在正方形ABCD 中,CD AD ⊥. 又因为平面PAD ⊥平面ABCD ,

CD D =(Ⅲ)不存在.假设线段N,连接NE,又因为

11

AA CC ∥,且

11

AA CC =,所以AN CM ∥,且AN CM =,

所以四边形ACMN 为平行四边形,所以AN MN ∥, 又因为MN ?面

1,BMD N AC ?面1BMD N

,所以AC ∥面

1BMD N

(2)当点F 满足13D F BF

=时,面ACF ⊥面1BD E

,证明如下:

连接BD 交AC 于O ,则BD 经过点O ,取

1

BD 中点G ,连接,OF DG ,

则OF 为三角形BDG 边DG 上的中位线,所以OF DG ∥,

因为11BD DD ==,且G 为1BD 的中点,所以1BD DG ⊥,所以1BD OF

⊥,

因为底面ABCD 为正方形,所以AC BD ⊥,又

1DD ⊥

底面A B C D ,所以

1A C D D ⊥,

1BD

DD D

=,所以AC ⊥面

1

BDD ,又OF ?面

1

BDD ,所以AC OF ⊥,

由第(1)问知AC MN ∥,所以MN OF ⊥, ,MN BD BMD N

线性规划解决实际问题专项练习

学科:数学 教学内容:研究性课题与实习作业:线性规划的实际应用【自学导引】 1.线性规划问题的数学模型是已知(这里“≤”也可以是“≥”或“=”号),其中a ij(i=1,2,…,n,j=1,2,…,m),b i(i=1,2,…,m)都是常量,x j(j=1,2,…,m)是非负变量,求z=c1x1+c2x2+…+c m x m的最大值或最小值,这里c j(j=1,2,…,m)是常量. 2.线性规划常见的具体问题有物质调运问题、产品安排问题、下料问题. 【思考导学】 1.应用线性规划解决实际问题的一般步骤是什么? 答:一般步骤是①设出变量,列出线性约束条件和线性目标函数;②利用图解法求出最优解,进而求得目标函数的最大(或最小)值. 2.线性规划的理论和方法主要在哪两类问题中得到应用? 答:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务. 【典例剖析】 [例1]已知甲、乙两煤矿每年的产量分别为200万吨和260万吨,需经过东车站和西车站两个车站运往外地.东车站每年最多能运280万吨煤,西车站每年最多能运360万吨煤,甲煤矿运往东车站和西车站的运费价格分别为1元/吨和1.5元/吨,乙煤矿运往东车站和西车站的运费价格分别为0.8元/吨和1.6元/吨.煤矿应怎样编制调运方案,能使总运费最少? 解:设甲煤矿向东车站运x万吨煤,乙煤矿向东车站运y万吨煤,那么总运费z=x+1.5(200-x)+0.8y+1.6(260-y)(万元) 即z=716-0.5x-0.8y.

x、y应满足 作出上面的不等式组所表示的平面区域,如图7—22. 设直线x+y=280与y=260的交点为M,则M(20,260). 把直线l:0.5x+0.8y=0向上平移至经过平面区域上的点M时,z的值最小. ∵点M的坐标为(20,260), ∴甲煤矿生产的煤向东车站运20万吨,向西车站运180万吨,乙煤矿生产的煤全部运往东车站时,总运费最少. [例2]制造甲、乙两种烟花,甲种烟花每枚含A药品3g、B药品4g、C药品4g,乙种烟花每枚含A药品2g、B药品11g、C药品6g.已知每天原料的使用限额为A药品120g、B药品400g、C药品240g.甲烟花每枚可获利2美元,乙种烟花每枚可获利1美元,问每天应生产甲、乙两种烟花各多少枚才能获利最大. 解:设每天生产甲种烟花x枚,乙种烟花y枚,获利为z元,则 作出可行域,如图7—23所示.

实例matlab-非线性规划-作业

实例matlab-非线性规划-作业

现代设计方法-工程优化理论、方法与设计 姓名 学号 班级 研 问题 : 某厂向用户提供发动机,合同规定,第一、二、三季度末分别交货40台、60台、80台。每季度的生产费用为 (元),其中x 是该季生产的台数。若交货后有剩余,可用于下季度交货,但需支付存储费,每台每季度c 元。已知工厂每季度最大生产能力为100台,第一季度开始时无存货,设a=50、b=0.2、c=4,问工厂应如何安排生产计划,才能既满足合同又使总费用最低。讨论a 、b 、c 变化对计划的影响,并作出合理的解释。 问题的分析和假设: 问题分析:本题是一个有约束条件的二次规划问题。决策变量是工厂每季度生产的台数,目标函数是总费用(包括生产费用和存储费)。约束条件是生产合同,生产能力的限制。在这些条件下需要如何安排生产计划,才能既满足合同又使总费用最低。 问题假设: 1、工厂最大生产能力不会发生变化; 2、合同不会发生变更; 3、第一季度开始时工厂无存货; 4、生产总量达到180台时,不在进行生产; 5、工厂生产处的发动机质量有保证,不考虑退货等因素; 6、不考虑产品运输费用是否有厂家承担等和生产无关的因素。 符号规定: x1——第一季度生产的台数; x2——第二季度生产的台数; 180-x1-x2——第三季度生产的台数; y1——第一季度总费用; y2——第二季度总费用; y3——第三季度总费用; y ——总费用(包括生产费用和存储费)。 ()2bx ax x f +=

建模: 1、第一、二、三季度末分别交货40台、60台、80台; 2、每季度的生产费用为 (元); 3、每季度生产数量满足40 ≤x1≤100,0≤x2≤100,100≤x1+x2 ≤180; 4、要求总费用最低,这是一个目标规划模型。 目标函数: y1 2111x b x a Z ?+?= y2()4012222-?+?+?=x c x b x a Z y3()()()10018018021221213 -+?+--?+--?=x x c x x b x x a Z y x x x x x x Z Z Z Z 68644.04.04.0149201 212221321--+++=++= 40≤x1≤100 0≤x2≤100 100≤x1+x2≤180 ()2 bx ax x f +=

线性规划习题附答案模板

习题 2-1 判断下列说法是否正确: (1)任何线性规划问题存在并具有惟一的对偶问题; (2)对偶问题的对偶问题一定是原问题; (3)根据对偶问题的性质, 当原问题为无界解时, 其对偶问题无可行解, 反之, 当对偶问题无可行解时, 其原问题具有无界解; (4)若线性规划的原问题有无穷多最优解, 则其对偶问题也一定具有无穷多最优解; (5)若线性规划问题中的b i, c j值同时发生变化, 反映到最终单纯形表中, 不会出现原问题与对偶问题均为非可行解的情况; (6)应用对偶单纯形法计算时, 若单纯形表中某一基变量x i<0, 又x i所在行的元素全部大于或等于零, 则能够判断其对偶问题具有无界解。 (7)若某种资源的影子价格等于k, 在其它条件不变的情况下, 当该种资源增加5个单位时, 相应的目标函数值将增大5k;

(8) 已知y i 为线性规划的对偶问题的最优解, 若y i >0, 说明在最优生产计划中第i 种资源已经完全耗尽; 若y i =0, 说明在最优生产计划中的第i 种资源一定有剩余。 2-2将下述线性规划问题化成标准形式。 ????? ? ?≥≥-++-≤+-+-=-+-+-+-=无约束 43 214321432143214321,0,,232142224.5243max )1(x x x x x x x x x x x x x x x x st x x x x z ()??? ??≥≤≤-+-=++-+-=无约束 321 3213213 21,0,06 24 .322min 2x x x x x x x x x st x x x z 解: (1)令'''444x x x =-, 增加松弛变量5x , 剩余变量6x , 则该问题的标准形式如下所示: ''' 12344''' 12344''' 123445''' 123446'''1234456max 342554222214..232 ,,,,,,0 z x x x x x x x x x x x x x x x x s t x x x x x x x x x x x x x =-+-+-?-+-+-=?+-+-+=??-++-+-=??≥? (2)令'z z =-, '11x x =-, '''333x x x =-, 增加松弛变量4x , 则该问题的标准形式如下所示: ''''' 1233'''' 1233'''' 12334''''12334 max 22334 ..26,,,,0z x x x x x x x x s t x x x x x x x x x x =+-+?++-=?+-++=??≥? 2-3分别用图解法和单纯形法求解下述线性规划问题, 并对照

线性规划的对偶问习题.doc

第二章线性规划的对偶问题第二章线性规划的对偶问题 习题 2.1 写出下列线性规划问题的对偶问题 (1) max z =10x1+x2+2x3 (2) max z =2x1+x2+3x3+x4 st. x1+x2+2 x3≤10 st. x1+x2+x3 +x4 ≤5 4x1+x2+x3≤20 2x1-x2+3x3 =-4 x j ≥0 (j=1,2,3)x1 -x3+x4≥1 x1,x3≥0,x2,x4 无约束 (3) min z =3x1+2 x2-3x3+4x4 (4) min z =-5 x1-6x2-7x3 st. x1-2x2+3x3+4x4≤3 st. -x1+5x2-3x3 ≥15 x2+3x3+4x4≥-5 -5x1-6x2+10x3 ≤20 2x1-3x2-7x3 -4x4=2=x1-x2-x3=-5 x1≥0,x4≤0,x2,,x3 无约束x1≤0,x2≥0,x3 无约束 2.2 已知线性规划问题max z=CX,AX=b ,X≥0。分别说明发生下列情况时, 其对偶问题的解的变化: (1)问题的第k 个约束条件乘上常数λ(λ≠0); (2)将第k 个约束条件乘上常数λ(λ≠0)后加到第r 个约束条件上; (3)目标函数改变为max z=λCX(λ≠0); (4)模型中全部x1用3 x' 代换。 1 2.3 已知线性规划问题min z=8x1+6x2+3x3+6x4 st. x1+2x2 +x4≥3 3x1+x2+x3+x4≥6 x3 +x4=2 x1 +x3 ≥2 x j≥0(j=1,2,3,4) (1) 写出其对偶问题; (2) 已知原问题最优解为x*=(1,1,2,0),试根据对偶理论,直接求出对 偶问题的最优解。 2.4 已知线性规划问题min z=2x1+x2+5x3+6x4对偶变量 st. 2x1 +x3+x4≤8 y1 2x1+2x2+x3+2x4≤12 y2 x j≥0(j=1,2,3,4) *=4;y2* =1,试根据对偶问题的性质,求出原问题的最 其对偶问题的最优解y1 优解。

简单的线性规划 习题含答案

线性规划教案 1.若x、y满足约束条件 2 2 2 x y x y ≤ ? ? ≤ ? ?+≥ ? ,则z=x+2y的取值范围是() A、[2,6] B、[2,5] C、[3,6] D、(3,5] 解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选 A 2.不等式组 260 30 2 x y x y y +-≥ ? ? +-≤ ? ?≤ ? 表示的平面区域的面积为 () A、4 B、1 C、5 D、无穷大解:如图,作出可行域,△ABC的面 积即为所求,由梯形OMBC的面积减去梯形OMAC的面积即可,选 B 3.满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有() A、9个 B、10个 C、13个 D、14个 解:|x|+|y|≤2等价于 2(0,0) 2(0,0) 2(0,0) 2(0,0) x y x y x y x y x y x y x y x y +≤≥≥ ? ?-≤≥ ? ? -+≤≥ ? ?--≤ ? 作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D 四、求线性目标函数中参数的取值范围 4.已知x、y满足以下约束条件 5 50 3 x y x y x +≥ ? ? -+≤ ? ?≤ ? ,使 z=x+ay(a>0)取得最小值的最优解有无数个,则a的值 为() A、-3 B、3 C、-1 D、1 解:如图,作出可行域,作直线l:x+ay=0,要使目标函 数z=x+ay(a>0)取得最小值的最优解有无数个,则将 l向右上方平移后与直线x+y=5重合,故a=1,选 D 5.某木器厂生产圆桌和衣柜两种产品,现有两种木料,第一种有72m3,第二种有56m3,假设生产每种产品都需要用两种木料,生产一只圆桌和一个衣柜分别所需木料如下表所示.每生产一只圆桌可获利6元,生产

《运筹学》习题线性规划部分练习题及答案

《运筹学》线性规划部分练习题 一、思考题 1.什么是线性规划模型,在模型中各系数的经济意义是什么? 2.线性规划问题的一般形式有何特征? 3.建立一个实际问题的数学模型一般要几步? 4.两个变量的线性规划问题的图解法的一般步骤是什么? 5.求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误? 6.什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。 7.试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。 8.试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。 9.在什么样的情况下采用人工变量法,人工变量法包括哪两种解法? 10.大M 法中,M 的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问题呢? 11.什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继续第二阶段? 二、判断下列说法是否正确。 1.线性规划问题的最优解一定在可行域的顶点达到。 2.线性规划的可行解集是凸集。 3.如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。 4.线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大。 5.线性规划问题的每一个基本解对应可行域的一个顶点。 6.如果一个线性规划问题有可行解,那么它必有最优解。 7.用单纯形法求解标准形式(求最小值)的线性规划问题时,与 > j σ 对应的变量都 可以被选作换入变量。 8.单纯形法计算中,如不按最小非负比值原则选出换出变量,则在下一个解中至少有一个基变量的值是负的。 9.单纯形法计算中,选取最大正检验数k σ对应的变量k x作为换入变量,可使目标函数值得到最快的减少。 10.一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。 三、建立下面问题的数学模型 1.某公司计划在三年的计划期内,有四个建设项目可以投资:项目Ⅰ从第一年到 第三年年初都可以投资。预计每年年初投资,年末可收回本利120% ,每年又可以重新将所获本利纳入投资计划;项目Ⅱ需要在第一年初投资,经过两年可收回本利150% ,又可以重新将所获本利纳入投资计划,但用于该项目的最大投资额不得超过20万元;项目Ⅲ需要在第二年年初投资,经过两年可收回本利160% ,但用于该项目的最大投资额不得超过15万元;项目Ⅳ需要在第三年年初投资,年末可收回本利140% ,但用于该项目的最大投资额不得超过10万元。在这个计划期内,该公司第一年可供投资的资金有30万元。问怎样的投资方案,才能使该公司在这个计划期获得最大利润? 2.某饲养场饲养动物,设每头动物每天至少需要700克蛋白质、30克矿物质、100克维生素。现有五种饲料可供选用,各种饲料每公斤营养成分含量及单 价如下表2—1所示:

线性规划作业

线性规划作业 (数学规划作业一) 1、用两种编程方式求解下列问题 2、将下述问题化成标准线性规划问题 3、奶制品的生产销售计划 一奶制品加工厂用牛奶生产A 1、A 2两种奶制品,1桶牛奶可以在甲类生产设备上用12h 加工成3kg A 1种奶制品,或在在乙类生产设备上用8h 加工成4kg A 2种奶制品.若A 1、A 2两种奶制品全部能售出,且甲种奶制品售价24元/kg, 乙种奶制品售价16元/kg 。现在工厂每天能得到50桶牛奶,每天正式工人总的劳动时间为480h,且甲类生产设备每天至多加工100kg 甲种奶制品, 乙类生产设备每天加工乙种奶制品没有限制.为了增加工厂的获利,开发了奶制品的深加工技术,用2h 和3元加工费,可将1kg A 1加工成0.8kg 高级奶制品B 1;也可将1kg A 2加工成0.75kg 高级奶制品B 2,B 1与B 2售价分别为44元与32元,试为该工厂制订一个生产计划,使每天获利最大.并进一步讨论以下3 个问题: (1)、若用30元买一桶牛奶,投资3元可以增加1h 劳动时间,是否投资?若每天投资150元,可获利多少? (2)、每kg 高级奶制品B 1与B 2的获利经常有10%的波动,对制订生产销售计划有影响?若B 2的获利下降10%,计划是否变化? (3)、若工厂已签订了每天销售10kg A 1的合同并且必须满足,该合同对工厂的获利有什么影响? 4、供水问题 某市从A 、B 、C 三个水库向甲、乙、丙、丁四个生活区供应自来水,C 不能向丁区供水. 四个生活区每天的基本生活用水分别为30,70,10,10(单位103 t ),并且每天申请了额外 的用水量分别为50,70,20,40(单位103t );三个水库每天最多只能供应50,60,50(单位103 t ). 由于地理位置不同,向各区送水所需的引水管理费不同(表1),其他管理费每单位(103 t)450 元,但向各区都统一收取每单位(103 t)900元.问怎样制定供水方案,才能使获利最大? 为了增加供水量,拟对水库进行改造,使各水库的最大供水量增加1倍,问怎样制定供水方案,才能使获利最大? 表1 引水管理费(元/103 t) ??? ??-≤+---≤-+--≤+--2 1432143214321321 32..x x x x x x x x x x x x t s 4 321432min x x x x z +++=) ,,,{min(max 1 1 21 1i m i im i m i i i m i i x x a x a x a i ∑∑∑=== ???=≥=+++m i x x x x t s i m ,,2,1,01.21

《运筹学》习题线性规划部分练习题及答案.doc

《运筹学》线性规划部分练习题 一、思考题 1. 什么是线性规划模型,在模型中各系数的经济意义是什么? 2. 线性规划问题的一般形式有何特征? 3. 建立一个实际问题的数学模型一般要几步? 4. 两个变量的线性规划问题的图解法的一般步骤是什么? 5. 求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误? 6. 什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。 7. 试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。 8. 试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。 9. 在什么样的情况下采用人工变量法,人工变量法包括哪两种解法? 10.大M 法中,M 的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问题呢? 11.什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继续第二阶段? 二、判断下列说法是否正确。 1. 线性规划问题的最优解一定在可行域的顶点达到。 2. 线性规划的可行解集是凸集。 3. 如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。 4. 线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大。 5. 线性规划问题的每一个基本解对应可行域的一个顶点。 6. 如果一个线性规划问题有可行解,那么它必有最优解。 7. 用单纯形法求解标准形式(求最小值)的线性规划问题时,与0 >j σ对应的变量都可以被选作换入变量。 8. 单纯形法计算中,如不按最小非负比值原则选出换出变量,则在下一个解中至少有一个基变量的值是负的。 9. 单纯形法计算中,选取最大正检验数k σ对应的变量k x 作为换入变量,可使目 标函数值得到最快的减少。 10. 一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。 三、建立下面问题的数学模型 1. 某公司计划在三年的计划期内,有四个建设项目可以投资:项目Ⅰ从第一年到 第三年年初都可以投资。预计每年年初投资,年末可收回本利120% ,每年又可以重新将所获本利纳入投资计划;项目Ⅱ需要在第一年初投资,经过两年可收回本利150% ,又可以重新将所获本利纳入投资计划,但用于该项目的最大投资额不得超过20万元;项目Ⅲ需要在第二年年初投资,经过两年可收回本利160% ,但用于该项目的最大投资额不得超过15万元;项目Ⅳ需要在第三年年初投资,年末可收回本利140% ,但用于该项目的最大投资额不得超过10万元。在这个计划期内,该公司第一年可供投资的资金有30万元。问怎样的投资方案,才能使该公司在这个计划期获得最大利润? 2.某饲养场饲养动物,设每头动物每天至少需要700克蛋白质、30克矿物质、 100克维生素。现有五种饲料可供选用,各种饲料每公斤营养成分含量及单 价如下表2—1所示:

(完整版)运筹学》习题答案运筹学答案

《运筹学》习题答案 一、单选题 1.用动态规划求解工程线路问题时,什么样的网络问题可以转化为定步数问题求解()B A.任意网络 B.无回路有向网络 C.混合网络 D.容量网络 2.通过什么方法或者技巧可以把工程线路问题转化为动态规划问题?()B A.非线性问题的线性化技巧 B.静态问题的动态处理 C.引入虚拟产地或者销地 D.引入人工变量 3.静态问题的动态处理最常用的方法是?B A.非线性问题的线性化技巧 B.人为的引入时段 C.引入虚拟产地或者销地 D.网络建模 4.串联系统可靠性问题动态规划模型的特点是()D A.状态变量的选取 B.决策变量的选取 C.有虚拟产地或者销地 D.目标函数取乘积形式 5.在网络计划技术中,进行时间与成本优化时,一般地说,随着施工周期的缩短,直接费用是( )。C A.降低的 B.不增不减的 C.增加的 D.难以估计的 6.最小枝权树算法是从已接接点出发,把( )的接点连接上C A.最远 B.较远 C.最近 D.较近 7.在箭线式网络固中,( )的说法是错误的。D A.结点不占用时间也不消耗资源 B.结点表示前接活动的完成和后续活动的开始 C.箭线代表活动 D.结点的最早出现时间和最迟出现时间是同一个时间 8.如图所示,在锅炉房与各车间之间铺设暖气管最小的管道总长度是( )。C A.1200 B.1400 C.1300 D.1700 9.在求最短路线问题中,已知起点到A,B,C三相邻结点的距离分别为15km,20km,25km,则()。D A.最短路线—定通过A点 B.最短路线一定通过B点 C.最短路线一定通过C点 D.不能判断最短路线通过哪一点 10.在一棵树中,如果在某两点间加上条边,则图一定( )A A.存在一个圈 B.存在两个圈 C.存在三个圈 D.不含圈 11.网络图关键线路的长度( )工程完工期。C A.大于 B.小于 C.等于 D.不一定等于

线性规划练习题含答案

线性规划练习题含答案 一、选择题 A .4 5 - B .1 C . 2 D .无法确定【答案】B 【解析】解:如图所示 要是目标函数取得最小值的最优解有无穷多个,则令ax+y=0,并平移过点C 24 (,)33 ,(可行域最 左侧的点)的边界重合即可。注意到a>0,只能与AC 重合,所以a=18.已知点集{}2 2 (,)48160A x y x y x y =+--+≤, {} (,)4,B x y y x m m 是常数=≥-+,点集A 所表示的平面区域与点集B 所表示的平面区域的边界的交点为,M N . 若点(,4)D m 在点集A 所表示的平面区域内(不在边界上),则△DMN 的面积的最大值是 A. 1 B. 2 C. 22 D. 4【答案】B 【解析】解:因为点集A 表示的为圆心为(2,4),半径为2的圆,而点集B 表示为绝对值函数表示的区域则利用数形结合思想,我们可以求解得到。【题型】选择题 9.在平面直角坐标系中,若不等式组101010x y x ax y +-≥??-≤??-+≥? (α为常数)所表示的平面区域内的面积等于2,则a 的值为( )A . -5 B .1 C . 2 D . 3 【答案】D 【解析】解:当a<0时,不等式表示的平满区域如图中的M ,一个无限的角形区域,面积不可能为2,故只能a 0≥,此时不等式表示的区域为如图中的N ,区域为三 角形区域,若这个三角形的面积为2,则AB=4,即点B (1,4),代入y=ax+1,得a=310.已知方程:2 20x ax b ++= (,)a R b R ∈∈,其一根在区间(0,1)内,另一根在区间(1,2)内,则22 (3)z a b =++的取值范围为 A. B. 1(,4)2 C. (1,2) D. (1,4)【答案】B 【解析】解: 2( ,2)2222f (x)x ax 2b,f (0)0 f (1)0,f (3)0b 0,a 2b 10,2a 2b 40a b z (a 3)b -1z 2解:设由图像可知,三者同时成立,求解得到由线性规划知识画出可行域,以为横轴,为纵轴,再以为目标,几何意义为区域内的点到(3,0)的距离的平方,当a=-1,b=0时,z 最大为4,当点到直线 a+2b+1=02的距离为,最小为,由题目,不能去边界2=++><>>++<++>=++11.的取值范围是则满足约束条件变量122,012430 ,++=≤-+≥≥?????x y s y x x y x y x ( )A .[1,4] B .[2,8] C .[2,10] D .[3,9]【答案】B 【解析】约束条件034120x y x x y ≥≥+-≤?????表示的区域如图,221112y y s x x ++=++=?,11y x ++表示点(x ,y )与点(-1,-1)的斜率,PB 的斜率为最小值,PA 的斜率为最大值,斜率的取值范围是[1,4],112y x ++?的取值范围是[2,8]。 12.若变量x,y 满足约束条件1 325x y x x y ≥-?? ≥??+≤? 则z=2x+y 的最大值为 (A )1 (B)2 (C)3 (D)4【答案】C 【解析】:∵ 作出可行域,作出目标函数线,可得直线与 y x = 与325x y +=的交点为最优解点,∴即为(1,1),当1,1x y ==时max 3z =13.在集合 }4,1,1|),{(≤+≥≥=y x y x y x A 中,y x 2+的最大值是

运筹学中线性规划实例汇总

实验报告 课程名称:运筹学导论 实验名称:线性规划问题实例分析专业名称:信息管理与信息系统 指导教师:刘珊 团队成员:邓欣(20112111 蒋青青(20114298 吴婷婷(20112124 邱子群(20112102 熊游(20112110 余文媛(20112125 日期:2013-10-25 成绩:___________

1.案例描述 南部联盟农场是由以色列三个农场组成的联合组织。该组织做出了一个关于农场农作物的种植计划,如下: 每一个农场的农业产出受限于两个量,即可使用的灌溉土地量和用于灌溉的水量。数据见下表: 适合本地区种植的农作物包括糖用甜菜、棉花和高粱。这三种作物的差异在于它们每亩的期望净收益和水的消耗量不同。另外农业部门已经制定了南部联盟农场作物总亩数的最大配额,见下表: 作物的任何组合可以在任何农场种植,技术部门的任务是找出一个种植方案使南部联盟农场的净收益最大化。 2.建立模型 决策变量为Xi(i=1,2,……,9,表示每个农场每种作物的种植量。 MAX Z=1000(X1+X2+X3+750(X4+X5+X6+250(X7+X8+X9 约束条件: (1)每一个农场使用的土地 X1+X4+X7≤400

X2+X5+X8≤600 X3+X6+X9≤300 (2每一个农场的水量分布 3X1+2X4+X7≤600 3X2+2X5+X8≤800 3X3+2X6+X9≤375 (3每一种作物的总种植量 X1+X2+X3≤600 X4+X5+X6≤500 X7+X8+X9≤325 非负约束Xi≥0 , i=1,2, (9) 3.计算机求解过程 步骤1.生成表格 步骤2.输入数据

运筹学大作业(线性规划问题)

线性规划法在救援物资调运问题中的应用 【摘要】线性规划法是物资调运问题中最常用的一种方法,本文通过建立线性规划模型,用LINGO数学软件求出了最优解,得到了一个最佳的物资调运方案。【关键词】:线性规划法;LINGO;调运 一、引言 由于近几年来地壳运动剧烈,各种自然灾害频频发生,其中各地的地震灾害尤其严重。汶川地震发生后,为了尽可能的减小国家和人民的损失,各级政府对灾区进行物资救助。为了解决大规模物资调运的实际问题(通常要处理的实际问题都是大规模的物资调运问题)以及物流管理中的类似问题,我们必须先建立这类问题的数学模型,而后选择合适的计算方法并利用计算机工具求解。这种数学模型称为规划问题,规划问题中涉及的线性函数关系,我们就称为线性规划问题。本文将在物资调运中的实际问题建立数学模型,用LINGO数学软件求出物资调用的最优方案。一下是LINGO软件的简介。 LINGO是LINGO是Linear Interactive and General Optimizer的缩写,即“交互式的线性和通用优化求解器”,由美国LINDO系统公司(Lindo System Inc.)推出的,可以用于求解非线性规划,也可以用于一些线性和非线性方程组的求解等,功能十分强大,是求解优化模型的最佳选择。其特色在于内置建模语言几个内部函数,可以允许决策变量是整数(即整数规划,包括 0-1 整数规划),方便灵活,而且执行速度非常快。能方便与EXCEL,数据库等其他软件交换数据。 二、一个物资调运问题 现有三家企业捐献物资调运到四个受灾点。企业A,B,C捐赠物资量分别为100吨、60吨、90吨四个受灾点I, Il,III,Ⅳ,需求量分别为60吨、70吨、50吨、70吨。企业A往受灾点I,II,III,Ⅳ每吨的运价分别为l0元、15元、20元、25元;企业 B到受灾点I,II,III,Ⅳ每吨的运价分别为2O元、10元、l5

2020年运筹学考试复习题及答案

2020年运筹学考试复习题及答案 5、线性规划数学模型具备哪几个要素?答:(1).求一组决策变量x i或x ij的值(i =1,2,…m j=1,2…n)使目标函数达到极大或极小;(2).表示约束条件的数学式都是线性等式或不等式;(3).表示问题最优化指标的目标函数都是决策变量的线性函数 第二章线性规划的基本概念 一、填空题 1.线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。 2.图解法适用于含有两个变量的线性规划问题。 3.线性规划问题的可行解是指满足所有约束条件的解。4.在线性规划问题的基本解中,所有的非基变量等于零。5.在线性规划问题中,基可行解的非零分量所对应的列向量线性无关 6.若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。 7.线性规划问题有可行解,则必有基可行解。 8.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解。9.满足非负条件的基本解称为基本可行解。 10.在将线性规划问题的一般形式转化为标准形式时,引入的

松驰数量在目标函数中的系数为零。 11.将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入松弛变量。12.线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。 13.线性规划问题可分为目标函数求极大值和极小_值两类。14.线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。 15.线性规划问题的基可行解与可行域顶点的关系是顶点多于基可行解 16.在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解。17.求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。 18.如果某个约束条件是“≤”情形,若化为标准形式,需要引入一松弛变量。 19.如果某个变量X j为自由变量,则应引进两个非负变量X j′,X j〞,同时令X j=X j′-X j。 20.表达线性规划的简式中目标函数为max(min)Z=∑c ij x ij。 21..(2.1 P5))线性规划一般表达式中,a ij表示该元素位置在i 行j列。 二、单选题 1.如果一个线性规划问题有n个变量,m个约束方程(m

西安交通大学MBA运筹学作业,关于线性规划的作业题

《运筹学》书上有关线性规划的作业题目 一、将给出的线性规划问题化为标准型和对偶型两种类型: Min Z = X 1 + 3X 2 + 2X 3 + 4X 4 2X 1 + 3X 2 - X 3 + X 4 = 10 S.t. 3X 1 - 2X 2 + 2X 3 - X 4 ≥ -5 X 1 - X 2 + X 3 - X 4 ≤ -3 X 1≥0 , X 2≤ 0, X 3 ≥0 ,X 4符号不限 解:(1)令4 4 4x x x '''=-,其中440,0x x '''≥≥, 在第二个约束不等式左边加上松弛变量5x , 在第三个约束不等式左边减去松弛变量6x , 令 z z '=-,化m i n z 为max z ',则标准型为: 1234 4max 3244z x x x x x ''''=+++- 1234 41234451234461234 456231032215..30,0,,,,,0x x x x x x x x x x x s t x x x x x x x x x x x x x '''+-+-=??'''-+-++=?? '''-+-+-=-??'''≥≤≥? (2)设对偶变量为 123,,y y y ,对偶问题模型为:

Max 1231053w y y y =-- 123123123123 123231323..224 0,0,0 y y y y y y s t y y y y y y y y y ++=??--≤??-++≤??--≤??≥≤≥? 二、已知某线性规划问题的约束条件为: 2X 1 + X 2 - X 3 = 30 -X 1 + 2X 2 + X 3 - X 4 = 5 5X 2 + X 3 - 2X 4 - X 5 = 60 X j ≥0 , j = 1, 2, … ,5 判断下列各点是否为该线性规划问题可行域的顶点。 ① X = (5,20,0,20,0) ② X = (9,12,0,0,8) ③ X = (15,10,10,0,0) ④ X = (0,30,0,45,0) 解:该线性规划问题中 1215p ?? ?=- ? ??? 2120p ?? ?= ? ??? 3111p -?? ?= ? ??? 4012p ?? ?=- ? ?-?? 5001p ?? ? = ? ? -?? 分别将各点带入上述约束条件: ① 不满足约束条件,故不是可行域的顶点; ② 满足约束条件,为可行域的顶点;

线性规划简单练习题

线性规划简单练习题文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

线性规划练习 1. 已知变量,x y满足约束条件 2 4 1 y x y x y ≤ ? ? +≥ ? ?-≤ ? ,则3 z x y =+的最大值为。 2. 设变量,x y满足 -10 0+20 015 x y x y y ≤ ? ? ≤≤ ? ?≤≤ ? ,则2+3 x y的最大值为。 3. 若,x y满足约束条件 10 30 330 x y x y x y -+≥ ? ?? +-≤ ? ? +-≥ ?? ,则3 z x y =-的最小值 为。 4. 设函数 ln,0 () 21,0 x x f x x x > ? =? --≤ ? ,D是由x轴和曲线() y f x =及该曲线在点(1,0)处的 切线所围成的封闭区域,则2 z x y =-在D上的最大值为. 5. 某农户计划种植黄瓜和韭菜,种植面积不超过50计,投入资金不超过54万 元,假设种植黄瓜和韭菜的产量、成本和售价如下表 为使一年的种植总利润(总利润=总销售收入总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为。 6. 某公司生产甲、乙两种桶装产品. 已知生产甲产品1桶需耗A原料1千克、B 原料2千克;生产乙产品1桶需耗A原料2千克,B原料1千克. 每桶甲产品的利润是300元,每桶乙产品的利润是400元. 公司在生产这两种产品的计划中,要求每天消耗A、B原料都不超过12千克. 通过合理安排生产计划,从每

天生产的甲、乙两种产品中,公司共可获得的最大利润是。 7. 若,x y满足约束条件: 23 23 x x y x y ≥ ? ? +≥ ? ?+≤ ? ;则x y -的取值范围为_____. 8.若,x y满足约束条件 24 41 x y x y +≤ ? ? -≥- ? ,则目标函数z=3x-y的取值范围 是。 9.设,x y满足约束条件: ,0 1 3 x y x y x y ≥ ? ? -≥- ? ?+≤ ? ;则2 z x y =-的取值范围为 .

(完整word版)第二章运筹学 线性规划

第二章 线性规划 主要内容:1、线性规划问题及数学模型 2、线性规划问题的解及其性质 3、图解法 4、单纯形法 5、大M 法和两阶段法 重点与难点:线性规划数学模型的建立:一般形成转化为标准型的方法:单纯形法的求解步骤。 要 求:理解本章内容,掌握本章重点与难点问题;深刻理解线性规划问题的基本概念、基本性质,熟练掌握 其求解技巧;培养解决实际问题的能力。 §1 线性规划的数学模型及解的性质 一、数学模型(一般形式) 例 1 已知某市有三种不同体系的建筑应予修建,其耗用资源数量及可用的资源限量如下表,问不同体系的面积应各建多少,才能使提供的住宅面积总数达到最大? 解:设三种体系的建筑面积依次为1x ,2x ,3x 万平方米, 则目标函数为 321max x x x z ++= 约束条件为 ?? ?? ???????=≥≤++≤≤++≤++≤++3,2,10 4005.335.41470021015000 180190110200025301211000 122137105 3211321321321j x x x x x x x x x x x x x x j 例2 某工厂要安排生产甲、乙两种产品。已知:

问:如何安排两种产品的生产数量,才能使总产值最高? 解:设 21,x x 分别为甲、乙两种产品的生产量: 则目标函数为 21127m ax x x z += 约束条件为??? ??? ?=≥≤+≤+≤+2,1,03001032005436049112121j x x x x x x x j 从以上两例可以看出,它们都属于一类优化问题。它们的共同特征: ①每一个问题都有一组决策变量(n x x x 21,)表示某一方案;这组决策变量的值就代表一个具体方案。一般这 些变量的取值是非负的。 ②存在一定的约束条件,这些约束条件可以用一组线性等式或不等式来表示。 ③都有一个要求达到的目标,它可用决策变量的线性函数(称为目标函数)来表示;按问题的不同,要求目标函数实现最大化或最小化。 满足以上三个条件的数学模型称为线性规划的数学模型。其一般形式为: 目标函数 n n x c x c x c z +++= 2211m ax (m in) 约束条件 ()()()????? ????=≥=≥≤+++=≥≤+++=≥≤+++n j x b x a x a x a b x a x a x a b x a x a x a j m n mn m m n n n n ,,2,1,0,,,22112222212111212111 可行解:满足约束条件的一组决策变量,称为可行解。 最优解:使目标函数取得最大(小)值的可行解,称为最优解。 最优值:目标函数的最大(小)值,称为最优值。 二、标准型 (一)问题的标准形式: n n x c x c x c z +++= 2211ma x ????? ?? ??=≥=+++=+++=+++n j x b x a x a x a b x a x a x a b x a x a x a j m n mn m m n n n n ,,2,1,022112222212111212111

线性规划上机作业

线性规划上机作业题 控制大气污染问题 N&L公司是一家全球著名的钢铁制造商,位于钢铁之城。该公司目前雇用了50,000名员工,是当地的主要劳动力雇用者,因此整个城市都因这家公司而繁荣与发展起来,这里人们也一直都认为凡是对公司有利的必然对整个城市有利。但是现在人们的观点发生了一定的变化:公司锅炉中排放出的气体因未加治理,正破坏着城市的风貌并日益危及着城市居民的身体健康。 最近的一次股民选举产生了一个较为英明的新董事会,其中的董事成员正与城市官员和居民讨论如何处理空气污染的问题,他们一起制定出了很严格的大气排放质量标准。 所排放的污染气体中,三种主要的成分是:大气微尘、氧化硫和碳氢化合物。新制定的 董事会已经指示公司的管理人员召集工程人员,用最经济的方法降低污染气体的排放量。 公司的污染气体主要来自于两个方面,一是铸生铁的鼓风炉,一是炼钢的敞口式反射炉。在这两方面,工程师都认为最有效的降低污染的方法是(1)增加烟囱的高度①,(2)在烟囱中加入过滤装置,(3)在燃料中加入清洁的高级燃料。三种方法都有其技术限制(例如,烟囱可增加的高度是有限的),但可以考虑在各自的技术限制内,采取一定程度的措施。 下表显示了在技术允许的范围内,最大限度的使用各种方法可以降低两个炉子污染气体的排放量。 运用各种降污方法最大限度可减少的每种污染气体的年排放量 为了方便分析,假设各种方法也可以在技术允许的范围内,采取一部分程度的实施,从而达到一定程度的减少污染气体的效果。此外,各种方法在两个炉子上的实施比例可以不同,且在效果上也是互不影响的。 在分析了上面的数据之后,可以发现,没有一种方法可以实现全部的降污要求,而另一方面,在两个炉子上都同时最大限度的使用各种方法的组合,会超额完成降污任务,但这样做的费用是昂贵的,不利于公司的产品保持竞争力。因此,工程师认为,应该在考虑各种方法的成本与效益的基础上,合理的组合各种方法。此外,因为两个炉子的情况并不相同,所以针对两个炉子的治理方法也将不同。 实施分析每种方法的一年总成本,该成本包括运营和维护费用,以及因为使用降污方法而致使生产效率降低,进而减少了的收入。此外,最大的成本是安装设备的启动成本。为了使一开始的启动成本与今后的年成本可以相互比较,必须考虑货币的时间价值,.将年成本折现。 这样可以生成下面的数据表,该表表示的是最大限度的使用各种方法估计的年成本。并且,各种方法的使用成本与可获得的降污能力是成比例的,也就是说,要取得一定比例的降

最新管理运筹学(第二版)课后习题参考答案

最新管理运筹学(第二版)课后习题参考答案 第1章 线性规划(复习思考题) 1.什么是线性规划?线性规划的三要素是什么? 答:线性规划(Linear Programming ,LP )是运筹学中最成熟的一个分支,并且是应用最广泛的一个运筹学分支。线性规划属于规划论中的静态规划,是一种重要的优化工具,能够解决有限资源的最佳分配问题。 建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。决策变量是决策问题待定的量值,取值一般为非负;约束条件是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。 2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误? 答:(1)唯一最优解:只有一个最优点; (2)多重最优解:无穷多个最优解; (3)无界解:可行域无界,目标值无限增大; (4)没有可行解:线性规划问题的可行域是空集。 当无界解和没有可行解时,可能是建模时有错。 3.什么是线性规划的标准型?松弛变量和剩余变量的管理含义是什么? 答:线性规划的标准型是:目标函数极大化,约束条件为等式,右端常数项0≥i b ,决策变量满足非负性。 如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。 4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。 答:可行解:满足约束条件0≥=X b AX ,的解,称为可行解。 基可行解:满足非负性约束的基解,称为基可行解。 可行基:对应于基可行解的基,称为可行基。 最优解:使目标函数最优的可行解,称为最优解。 最优基:最优解对应的基矩阵,称为最优基。 它们的相互关系如右图所示: 5.用表格单纯形法求解如下线性规划。

相关主题
文本预览
相关文档 最新文档