当前位置:文档之家› 2-1 Lagrange插值

2-1 Lagrange插值

2-1  Lagrange插值
2-1  Lagrange插值

三次样条插值代码

2 三次样条插值程序 三次样条插值利用方案二(求解固支样条或压紧样条) 按照要求要起点和终点的一阶导数值已知, 可得关于01,,.....,n M M M 的严格对角占优势的三对角方程组 然后利用三对角法(追赶法)解此线性方程组。 (1)编写M 文件,并保存文件名scfit.m % x,y 分别为n 个节点的横坐标和纵坐标值组成的向量 % dx0和dxn 分别为S 的导数在x0和xn 处的值,即m 0和m n n=length(x)-1; h=diff(x); d=diff(y)./h; a=h(2:n-1); b=2*(h(1:n-1)+h(2:n)); c=h(2:n); u=6*diff(d); b(1)=b(1)-h(1)/2; u(1)=u(1)-3*(d(1)-dx0); b(n-1)=b(n-1)-h(n)/2; u(n-1)=u(n-1)-3*(dxn-d(n)); %追赶法部分 for k=2:n-1 temp=a(k-1)/b(k-1); b(k)=b(k)-temp*c(k-1); u(k)=u(k)-temp*u(k-1); end m(n)=u(n-1)/b(n-1); for k=n-2:-1:1 m(k+1)=(u(k)-c(k)*m(k+2))/b(k); end %求S K1,S K2,S K3,S K4 m(1)=3*(d(1)-dx0)/h(1)-m(2)/2; m(n+1)=3*(dxn-d(n))/h(n)-m(n)/2; for k=0:n-1 00 ()S x m '=()n n S x m '=0011111111212212n n n n n n M d M d M d M d μλμλ----??????????????????????=??????????????????????????

《计算方法》

插值法 引言 许多实际问题都有用函数来表示某种内在规律的数量关系,其中相当一部分函数是通过实验或观测得到的.虽然某个区间上是存在的,有的 还是连续的,但却只能给出上一系列点的函数值, 这只是一张函数表.有的函数虽有解析表达式,但由于计算复杂,使用不方便,通常也造一个函数表,如大家熟悉的三角函数表、对数表、平方根和立方根表等等.为了研究函数的变化规律,往往需要求出不在表上的函数值.因此,我们希 望根据给定的函数表做一个既能反映函数的特性,又便于计算的简单函数 ,用近似.通常选一类较简单的函数(如代数多项式或分段代数 多项式)作为,并使对成立.这样确定的就是我们希望得到的插值函数.例如,在现代机械工业中用计算机等程序控制加工机 械零件,根据设计可给出零件个形曲线的某些型值点(,)(), 加工时为近年第步走刀方向步数,就要算出零件外形曲线其他点的函数值,才能加工出外表光滑的零件,这就是求插值函数的问题。下面我们给出有关插值法的定义。 设函数在区间上有定义,且已知在点上的值,若存在一简单函数,使 () (1.1) 成立,就称为的插值函数,点称为插值节点,包含插值节 点的区间称为插值区间,求插值函数的方法称为插值法。若是次数不超过的代数多项式,即

, (1.2) 其中为实数,就称为插值多项式,相应的插值法称为多项式插值,若 为分段的多项多,就称为分段插值。若为三角多项式,就称为三角插值。本章只讨论多项式插值与分段插值。 从几何上看,插值法就是求曲线,使其通过给定的+1个点, ,并用它近似已知曲线,见图2-1。 由已知的离散因变量的值来估计未知的中间插值的方法。 插值法又称“内插法”。 利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值,这里的方法称为插值法。如果这特定函数是多项式,就称它为插值多项式。

三次样条插值函数

沈阳航空航天大学 数学软件课程设计 (设计程序) 题目三次样条插值函数 班级 / 学号 学生姓名 指导教师

沈阳航空航天大学 课程设计任务书 课程名称数学软件课程设计 院(系)理学院专业信息与计算科学 班级学号姓名 课程设计题目三次样条插值函数 课程设计时间: 2010 年12月20日至2010 年12月31日 课程设计的内容及要求: 1.三次样条插值函数 给出函数在互异点处的值分别为。 (1)掌握求三次样条插值函数的基本原理; (2)编写程序求在第一边界条件下函数的三次样条插值函数; (3)在区间上取n=10,20,分别用等距节点对函数 作三次样条插值函数,利用(1)的结果画出插值函数的图形,并在该图形界面中同时画出的图形。 [要求] 1.学习态度要认真,要积极参与课程设计,锻炼独立思考能力; 2.严格遵守上机时间安排; 3.按照MATLAB编程训练的任务要求来编写程序; 4.根据任务书来完成课程设计论文; 5.报告书写格式要求按照沈阳航空航天大学“课程设计报告撰写规范”; 6.报告上交时间:课程设计结束时上交报告;

7.严谨抄袭行为。 指导教师年月日负责教师年月日学生签字年月日

沈阳航空航天大学 课程设计成绩评定单 课程名称数学软件课程设计 院(系)理学院专业信息与计算科学课程设计题目三次样条插值函数 学号姓名 指导教师评语: 课程设计成绩 指导教师签字 年月日

目录 一正文 (1) 1问题分析 (1) 1.1 题目 (1) 1.2 分析 (1) 2 研究方法原理 (1) 2.1 求三次样条插值多项式,算法组织 (1) 3 算例结果 (3) 二总结 (7) 参考文献 (8) 附录 (9) 源程序: (9) 程序1 (9) 程序2 (10) 程序3 (12) 程序 4 (12)

克里金插值法

克里金插值法 克里金插值法又称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一,由南非矿产工程师D. Matheron 于1951年在寻找金矿时首次提出,法国著名统计学家G. Matheron 随后将该方法理论化、系统化,并命名为Kriging ,即克里金插值法。 1 克里金插值法原理 克里金插值法的适用范围为区域化变量存在空间相关性,即如果变异函数和结构分析的结果表明区域化变量存在空间相关性,则可以利用克里金插值法进行内插或外推。其实质是利用区域化变量的原始数据和变异函数的结构特点,对未知样点进行线性无偏、最优估计,无偏是指偏差的数学期望为0,最优是指估计值与实际值之差的平方和最小[1]。因此,克里金插值法是根据未知样点有限领域内的若干已知样本点数据,在考虑了样本点的形状、大小和空间方位,与未知样点的相互空间关系,以及变异函数提供的结构信息之后,对未知样点进行的一种线性无偏最优估计。 假设研究区域a 上研究变量Z (x ),在点x i ∈A (i=1,2,……,n )处属性值为Z (x i ),则待插点x 0∈A 处的属性值Z (x 0)的克里金插值结果Z*(x 0)是已知采样点属性值Z (x i )(i=1,2,……,n )的加权和,即: )()(10* i n i i x Z x Z ∑==λ (1) 式中i λ是待定权重系数。 其中Z(x i )之间存在一定的相关关系,这种相关性除与距离有关外,还与其相对方向变化有关,克里金插值方法将研究的对象称“区域化变量” 针对克里金方法无偏、最小方差条件可得到无偏条件可得待定权系数 i λ (i=1,2,……, n)满足关系式: 11=∑=n i i λ (2) 以无偏为前提,kriging 方差为最小可得到求解待定权系数i λ的方程组:

克里金插值法

克里金插值法及其适用范围 克里金插值法又称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一,由南非矿产工程师D. Matheron 于1951年在寻找金矿时首次提出,法国着名统计学家G . Matheron 随后将该方法理论化、系统化,并命名为Kriging ,即克里金插值法。 1 克里金插值法原理 克里金插值法的适用范围为区域化变量存在空间相关性,即如果变异函数和结构分析的结果表明区域化变量存在空间相关性,则可以利用克里金插值法进行内插或外推。其实质是利用区域化变量的原始数据和变异函数的结构特点,对未知样点进行线性无偏、最优估计,无偏是指偏差的数学期望为0,最优是指估计值与实际值之差的平方和最小[1]。因此,克里金插值法是根据未知样点有限领域内的若干已知样本点数据,在考虑了样本点的形状、大小和空间方位,与未知样点的相互空间关系,以及变异函数提供的结构信息之后,对未知样点进行的一种线性无偏最优估计。 假设研究区域a 上研究变量Z (x ),在点xi ∈A (i=1,2,……,n )处属性值为Z (xi ),则待插点x0∈A 处的属性值Z (x0)的克里金插值结果Z*(x0)是已知采样点属性值Z (xi )(i=1,2,……,n )的加权和,即: )()(10* i n i i x Z x Z ∑==λ (1) 式中i λ是待定权重系数。 其中Z(xi)之间存在一定的相关关系,这种相关性除与距离有关外,还与其相对方向变化有关,克里金插值方法将研究的对象称“区域化变量” 针对克里金方法无偏、最小方差条件可得到无偏条件可得待定权系数i λ (i=1,2,……,n)满足关系式: 11=∑=n i i λ (2) 以无偏为前提,kriging 方差为最小可得到求解待定权系数i λ的方程组:

数值分析作业-三次样条插值

数值计算方法作业 实验4.3 三次样条差值函数 实验目的: 掌握三次样条插值函数的三弯矩方法。 实验函数: dt e x f x t ? ∞ -- = 2 221)(π 实验内容: (1) 编程实现求三次样条插值函数的算法,分别考虑不同的边界条件; (2) 计算各插值节点的弯矩值; (3) 在同一坐标系中绘制函数f(x),插值多项式,三次样条插值多项式的曲线 比较插值结果。 实验4.5 三次样条差值函数的收敛性 实验目的: 多项式插值不一定是收敛的,即插值的节点多,效果不一定好。对三次样条插值函数如何呢?理论上证明三次样条插值函数的收敛性是比较困难的,通过本实验可以证明这一理论结果。 实验内容: 按照一定的规则分别选择等距或非等距的插值节点,并不断增加插值节点的个数。 实验要求: (1) 随着节点个数的增加,比较被逼近函数和三样条插值函数的误差变化情 况,分析所得结果并与拉格朗日插值多项式比较; (2) 三次样条插值函数的思想最早产生于工业部门。作为工业应用的例子,考

虑如下例子:某汽车制造商根据三次样条插值函数设计车门曲线,其中一 算法描述: 拉格朗日插值: 错误!未找到引用源。 其中错误!未找到引用源。是拉格朗日基函数,其表达式为:() ∏ ≠=--=n i j j j i j i x x x x x l 0) ()( 牛顿插值: ) )...()(](,...,,[.... ))(0](,,[)0](,[)()(1102101210100----++--+-+=n n n x x x x x x x x x x f x x x x x x x f x x x x f x f x N 其中????? ?? ?? ?????? --=--= --= -)/(]),...,[],...,[(]...,[..],[],[],,[)()(],[01102110x x x x x f x x x f x x x f x x x x f x x f x x x f x x x f x f x x f n n n n i k j i k j k j i j i j i j i 三样条插值: 所谓三次样条插值多项式Sn(x)是一种分段函数,它在节点Xi(a

克里金插值法

克里金插值法及其适用范围 29 巴任若测绘学院 克里金插值法又称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一,由南非矿产工程师D. Matheron于1951年在寻找金矿时首次提出,法国著名统计学家G. Matheron随后将该方法理论化、系统化,并命名为Kriging,即克里金插值法。 1 克里金插值法原理 克里金插值法的适用范围为区域化变量存在空间相关性,即如果变异函数和结构分析的结果表明区域化变量存在空间相关性,则可以利用克里金插值法进行内插或外推。其实质是利用区域化变量的原始数据和变异函数的结构特点,对未知样点进行线性无偏、最优估计,无偏是指偏差的数学期望为0,最优是指估计值与实际值之差的平方和最小[1]。因此,克里金插值法是根据未知样点有限领域内的若干已知样本点数据,在考虑了样本点的形状、大小和空间方位,与未知样点的相互空间关系,以及变异函数提供的结构信息之后,对未知样点进行的一种线性无偏最优估计。 假设研究区域a上研究变量Z(x),在点xi∈A(i=1,2,……,n)处属性值为Z(xi),则待插点x0∈A处的属性值Z(x0)的克里金插值结果Z*(x0)是已知采样点属性值Z(xi)(i=1,2,……,n)的加权和,即:

)()(10* i n i i x Z x Z ∑==λ (1) 式中i λ是待定权重系数。 其中Z(xi)之间存在一定的相关关系,这种相关性除与距离有关外,还与其相对方向变化有关,克里金插值方法将研究的对象称“区域化变量” 针对克里金方法无偏、最小方差条件可得到无偏条件可得待定权系数i λ (i=1,2,……,n)满足关系式: 11=∑=n i i λ (2) 以无偏为前提,kriging 方差为最小可得到求解待定权系数i λ的方程组: ???????=??==+∑∑==1)n ,2,1)(,(),(101n i i j j i n i i j x x C x x C λμλ, (3) 式中,C (xi ,xj )是Z(xi)和Z(xj)的协方差函数。 2 国内外研究进展 从克里金方法被提出到现在已有完善的理论,并在很多领域得到了实际的应用,在某些领域的应用又推动了克里金理论的发展[3]。它的发展可归纳为四个时期,每个时期都是以每一届地质统计学大会的召开为标志。第一时期,初次提出了地质统计学理论,将地质统计学与传统的统计学分开,且提出了区域化变量、简单克里金、普通克

几种插值法的应用和比较

插值法的应用与比较 信科1302 万贤浩 13271038 1格朗日插值法 在数值分析中,拉格朗日插值法是以法国十八世纪数学家约瑟夫·路易斯·拉格朗日命名的一种多项式插值方法.许多实际问题中都用函数来表示某种内在联系或规律,而不少函数都只能通过实验和观测来了解.如对实践中的某个物理量进行观测,在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值.这样的多项式称为拉格朗日(插值)多项式.数学上来说,拉格朗日插值法可以给出一个恰好穿过二维平面上若干个已知点的多项式函数.拉格朗日插值法最早被英国数学家爱德华·华林于1779年发现,不久后由莱昂哈德·欧拉再次发现.1795年,拉格朗日在其著作《师范学校数学基础教程》中发表了这个插值方法,从此他的名字就和这个方法联系在一起. 1.1拉格朗日插值多项式 图1 已知平面上四个点:(?9, 5), (?4, 2), (?1, ?2), (7, 9),拉格朗日多项式:)(x L (黑色)穿过所有点.而每个基本多项式:)(00x l y ,)(11x l y , )(22x l y 以及)(x l y ??各穿过对应的一点,并在其它的三个点的x 值上取零. 对于给定的若1+n 个点),(00y x ,),(11y x ,………),(n n y x ,对应于它们的次数不超过n 的拉格朗日多项式L 只有一个.如果计入次数更高的多项式,则有无穷个,因为所有与L 相差 ))((10x x x x --λ……)(n x x -的多项式都满足条件. 对某个多项式函数,已知有给定的1+k 个取值点: ),(00y x ,……,),(k k y x ,

(精选)三次样条插值的MATLAB实现

MATLAB 程序设计期中考查 在许多问题中,通常根据实验、观测或经验得到的函数表或离散点上的信息,去研究分析函数的有关特性。其中插值法是一种最基本的方法,以下给出最基本的插值问题——三次样条插值的基本提法: 对插值区间[]b a ,进行划分:b x x x a n ≤

常见插值法

常见插值法 【摘 要】插值方法在数值分析中起着非常重要的作用。在此介绍一些常见的插值方法及 其应用范例。 【关键字】数值分析;插值方法;应用; 1. 插值法定义 插值法又称“内插法”,是利用函数f (x)在某区间中 插入若干点的函数值,作出适当的特定函数,在这些 表(1) 插值点 点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值,这种方法称为插值法。如果这特定函数是多项式,就称它为插值多项式。 2.常见的插值法及其构造 Lagrange 插值法 (a).公式推导: 表(1)的Lagrange 插值的插值多项式 ∑==n i i i x l x f x 0 n )()()(L ,(j=0,1,2....n)。 其中插值基函数是 ∏ ≠=--=n j i i j i j x x x x x l 0 n ) ()()(,(i,j=0,1 2...n) 。 其插值余项为 其中),b a (∈ ξ,∏≠=+--=n j i i j i j x x x x x 0 1n )() ()(ω (b).matlab 实现方法: Matlab 没有直接求解的相关函数,现编译如下: function yi = Lagarange_chazhi(x,y,xi) % 求拉格朗日插值,并返回一个输入为xi 时的函数值 % x 为插值点向量,至少有三项 % y 为插值点值的向量,项数与x 相同 m = length(x); %求插值个数 m1 = length(y); if m<=2 error('项数不足!'); end if m~=m1 error('!!!y 的项数应与x 相同!!!'); end %对参数的判断 lag_hanshu = 0; syms X ; for (l = 1:m) %构造插值基函数 la = y(l); for a = (1:l-1) la = la*(X-x(a))/(x(l)-x(a)); end for a = (l+1:m) la = la*(X-x(a))/(x(l)-x(a)); end format long lag_hanshu = lag_hanshu+la; %求解出插值函数 end yi = subs( lag_hanshu,'X',xi); %返回插值函数输入为xi 时的值 End (c).方法缺陷:当插值点个数7n ≥时,将产生 龙格现象: 经典例子,对) 251(1 )(2x x f += 进行拉格朗日插 0x 1x 2x ....... 1-n x n x 0y 1y 2y ....... 1-n y n y ), (!)1() ()()()(1)1(x n f x L x f x R n n n n +++=-=ωξ

克里金算法

Kriging插值法 (2012-04-19 13:48:09) 转载▼ 标签: 杂谈 克里金法是通过一组具有z 值的分散点生成估计表面的高级地统计过程。与插值工具集中的其他插值方法不同,选择用于生成输出表面的最佳估算方法之前,有效使用克里金法工具涉及z 值表示的现象的空间行为的交互研究。 什么是克里金法? IDW(反距离加权法)和样条函数法插值工具被称为确定性插值方法,因为这些方法直接基于周围的测量值或确定生成表面的平滑度的指定数学公式。第二类插值方法由地统计方法(如克里金法)组成,该方法基于包含自相关(即,测量点之间的统计关系)的统计模型。因此,地统计方法不仅具有产生预测表面的功能,而且能够对预测的确定性或准确性提供某种度量。 克里金法假定采样点之间的距离或方向可以反映可用于说明表面变化的空间相关性。克里金法工具可将数学函数与指定数量的点或指定半径内的所有点进行拟合以确定每个位置的输出值。克里金法是一个多步过程;它包括数据的探索性统计分析、变异函数建模和创建表面,还包括研究方差表面。当您了解数据中存在空间相关距离或方向偏差后,便会认为克里金法是最适合的方法。该方法通常用在土壤科学和地质中。 克里金法公式 由于克里金法可对周围的测量值进行加权以得出未测量位置的预测,因此它与反距离权重法类似。这两种插值器的常用公式均由数据的加权总和组成:

?其中: Z(s i) = 第i个位置处的测量值 λi = 第i个位置处的测量值的未知权重 s0 = 预测位置 N = 测量值数 在反距离权重法中,权重λi仅取决于预测位置的距离。但是,使用克里金方法时,权重不仅取决于测量点之间的距离、预测位置,还取决于基于测量点的整体空间排列。要在权重中使用空间排列,必须量化空间自相关。因此,在普通克里金法中,权重λi取决于测量点、预测位置的距离和预测位置周围的测量值之间空间关系的拟合模型。以下部分将讨论如何使用常用克里金法公式创建预测表面地图和预测准确性地图。 使用克里金法创建预测表面地图 要使用克里金法插值方法进行预测,有两个任务是必需的: ?找到依存规则。 ?进行预测。 要实现这两个任务,克里金法需要经历一个两步过程: 1.创建变异函数和协方差函数以估算取决于自相关模型(拟合模型)的统计相关性(称 为空间自相关)值。 2.预测未知值(进行预测)。 由于这两个任务是不同的,因此可以确定克里金法使用了两次数据:第一次是估算数据的空间自相关,第二次是进行预测。 变异分析

三次样条插值方法的应用

CENTRAL SOUTH UNIVERSITY 数值分析实验报告

三次样条插值方法的应用 一、问题背景 分段低次插值函数往往具有很好的收敛性,计算过程简单,稳定性好,并且易于在在电子计算机上实现,但其光滑性较差,对于像高速飞机的机翼形线船体放样等型值线往往要求具有二阶光滑度,即有二阶连续导数,早期工程师制图时,把富有弹性的细长木条(即所谓的样条)用压铁固定在样点上,在其他地方让他自由弯曲,然后沿木条画下曲线,称为样条曲线。样条曲线实际上是由分段三次曲线并接而成,在连接点即样点上要求二阶导数连续,从数学上加以概括就得到数学样条这一概念。下面我们讨论最常用的三次样条函数及其应用。 二、数学模型 样条函数可以给出光滑的插值曲线(面),因此在数值逼近、常微分方程和偏微分方程的数值解及科学和工程的计算中起着重要的作用。 设区间[]b ,a 上给定有关划分b x x n =<<<=Λ10x a ,S 为[]b ,a 上满足下面条件的函数。 ● )(b a C S ,2∈; ● S 在每个子区间[]1,+i i x x 上是三次多项式。 则称S 为关于划分的三次样条函数。常用的三次样条函数的边界条件有三种类型: ● Ⅰ型 ()()n n n f x S f x S ''0'',==。 ● Ⅱ型 ()()n n n f x S f x S ''''0'''',==,其特殊情况为()()0''''==n n x S x S 。 ● Ⅲ型 ()()Λ3,2,1,0,0==j x S x S n j j ,此条件称为周期样条函数。

鉴于Ⅱ型三次样条插值函数在实际应用中的重要地位,在此主要对它进行详细介绍。 三、算法及流程 按照传统的编程方法,可将公式直接转换为MATLAB可是别的语言即可;另一种是运用矩阵运算,发挥MATLAB在矩阵运算上的优势。两种方法都可以方便地得到结果。方法二更直观,但计算系数时要特别注意。这里计算的是方法一的程序,采用的是Ⅱ型边界条件,取名为spline2.m。 Matlab代码如下: function s=spline2(x0,y0,y21,y2n,x) %s=spline2(x0,y0,y21,y2n,x) %x0,y0 are existed points,x are insert points,y21,y2n are the second %dirivitive numbers given. n=length(x0); km=length(x); a(1)=-0.5; b(1)=3*(y0(2)-y0(1))/(2*(x0(2)-x0(1))); for j=1:(n-1) h(j)=x0(j+1)-x0(j); end for j=2:(n-1) alpha(j)=h(j-1)/(h(j-1)+h(j)); beta(j)=3*((1-alpha(j))*(y0(j)-y0(j-1))/h(j-1)+alpha(j)*(y0(j+1)-y0(j))/h(j));

几种插值法的应用和比较论文(数学类)

几种插值法的应用与比较 作者:*** 指导老师:*** 摘要本文主要介绍了几种常用插值法的应用和比较,针对每个插值法,经过详细的论证和讨论,给出了每个插值法的优点和缺点.通过对数学插值法的研究、比较及应用的讨论及总结,从而得出所讨论插值方法的各自优势,以方便用户选择合适的插值法. 关键词拉格朗日插值重心拉格朗日插值分段线性插值 1 引言 在许多实际问题及科学研究中,因素之间往往存在着函数关系,但是这些关系的显示表达式不一定都知道,通常只是由观察或测试得到一些离散数值,所以只能从这些数据构造函数的近似表达式,有时虽然给出了解析表达式,但由于解析表达式过于复杂,计算起来十分麻烦.这就需要建立函数的某种近似表达,而插值法就是构造函数的近似表达式的方法. 由于代数多项式是最简单而又便于计算的函数,所以经常采用多项式作为插值函数,称为多项式插值.多项式插值法有拉格朗日插值法,牛顿插值法、埃尔米特插值法,分段插值法和样条插值法等.其基本思想都是用高次代数多项式或分段的低次多项式作为被插值函数的近似解析表达式. 2拉格朗日插值法 在数值分析中,拉格朗日插值法是以法国十八世纪数学家约瑟夫·路易斯·拉格朗日命名的一种多项式插值方法.许多实际问题中都用函数来表示某种内在联系或规律,而不少函数都只能通过实验和观测来了解.如对实践中的某个物理量进行观测,在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值.这样的多项式称为拉格朗日(插值)多项式.数学上来说,拉格朗日插值法可以给出一个恰好穿过二维平面上若干个已知点的多项式函数.拉格朗日插值法最早被英国数学家爱德华·华林于1779年发现,不久后由莱昂哈德·欧拉再次发现.1795年,拉格朗日在其著作《师范学校数学基础教程》中发表了这个插值方法,从此他的名字就和这个方法联系在一起. 2.1 拉格朗日插值多项式

MATLAB三次样条插值之三弯矩法

MATLAB三次样条插值之三弯矩法 首先说这个程序并不完善,为了实现通用(1,2,…,n)格式解题,以及为调用追赶法程序,没有针对节点数在三个以下的情况进行分类讨论。希望能有朋友给出更好的方法。 首先,通过函数sanwanj得到方程的系数矩阵,即追赶法方程的四个向量参数,接下来调 用追赶法(在intersanwj函数中),得到三次样条分段函数系数因子,然后进行多项式合并 得到分段函数的解析式,程序最后部分通过判断输入值的区间自动选择对应的分段函数并计算 改点的值。附:追赶法程序chase %%%%%%%%%%%%%% function [newv,w,newu,newd]=sanwj(x,y,x0,y0,y1a,y1b)?%三弯矩样 条插值?%将插值点分两次输入,x0y0单独输入?% 边值条件a的二阶导数 y1a 和b 的二阶导数y1b,这里建议将y1a和y1b换成y2a和y2b,以便于和三转角代码相区别 ?n=length(x);m=length(y); if m~=n?error('x or y 输入有误,再来'); end?v=ones(n-1,1);u=ones(n-1,1);d=zeros(n-1,1);?w=2*o nes(n+1);?h0=x(1)-x0;?h=zeros(n-1,1); for k=1:n-1?h(k)=x(k+1)-x(k);?end v(1)=h0/(h0+h(1)); u(1)=1-v(1); d(1)=6*((y(2)-y(1))/h(1)-(y(1)-y0)/h0)/(h0+h(1));?% for k=2:n-1?v(k)=h(k-1)/(h(k-1)+h(k));?u(k)=1-v(k);?d(k)= 6*((y(k+1)-y(k))/h(k)-(y(k)-y(k-1))/h(k-1))/(h(k-1)+h(k)); end newv=[v;1];?newu=[1;u]; d0=6*((y(1)-y0)/h0-y1a)/h0; d(n)=6*(y1b-(y(n)-y(n-1))/h(n-1))/h(n-1); newd=[d0;d]; %%%%%%%%%%%% function intersanwj(x,y,x0,y0,y1a,y1b) %三弯矩样条插值?%第一部分?n=length(x);m=length(y); if m~=n?error('xory 输入有误,再来'); end?%重新定义h?h=zeros(n,1); h(1)=x(1)-x0; for k=2:n h(k)=x(k)-x(k-1);?end %sptep1调用三弯矩函数?[a,b,c,d]=sanwj(x,y,x0,y0,y1a,y1b);

基于插值的非均匀信号的傅里叶变换算法研究

目录 一、 A/D卡设计 (1) 1.1 基于PCI总线的A/D卡 (1) 1.2 基于USB总线的A/D卡 (2) 二、非均匀离散傅立叶变换 (4) 三、不同的插值算法 (6) 1. 拉格朗日多项式插值 (6) 2. 三次样条插值 (7) 3. 牛顿插值 (8) 四、主要算法及程序 (10) 1. 拉格朗日算法 (10) 2. 三次样条插值 (10) 3. Newton算法 (12) 五、算法结果及比较分析 (14) 六、心得体会 (19) 七、参考文献 (20)

一、A/D卡设计 1.1 基于PCI总线的A/D卡 1、PCI总线的含义 PCI是由Intel公司1991年推出的一种局部总线。从结构上看,PCI是在CPU和原来的系统总线之间插入的一级总线,具体由一个桥接电路实现对这一层的管理,并实现上下之间的接口以协调数据的传送。管理器提供了信号缓冲,使之能支持10种外设,并能在高时钟频率下保持高性能,它为显卡、声卡、网卡、MODEM等设备提供了连接接口,它的工作频率为33MHz/66MHz。 PCI是Peripheral Component Interconnect(外设部件互连标准)的缩写,它是目前个人电脑中使用最为广泛的接口,几乎所有的主板产品上都带有这种插槽。PCI插槽也是主板带有最多数量的插槽类型,在目前流行的台式机主板上,ATX结构的主板一般带有5~6个PCI插槽,而小一点的MATX主板也都带有2~3个PCI插槽,可见其应用的广泛性。 PCI总线是一种不依附于某个具体处理器的局部总线。管理器提供了信号缓冲,使之能支持10种外设,并能在高时钟频率下保持高性能。PCI总线也支持总线主控技术,允许智能设备在需要时取得总线控制权,以加速数据传送。 图1.1 典型的PCI系统总线构成 2、PCI总线的基本含义 不同于ISA总线,PCI总线的地址总线与数据总线是分时复用的。这样做的好处是,

克里金插值法的详细介绍。kriging。

kriging 插值作为地统计学中的一种插值方法由南非采矿工程师D.G.Krige于1951年首次提出,是一种求最优、线形、无偏的空间内插方法。在充分考虑观测资料之间的相互关系后,对每一个观测资料赋 予一定的权重系数,加权平均得到估计值。 这里介绍普通Kriging插值方法的基本步骤:1.该方法中衡量各点之间空间相关程度的测度是半方 差,其计算公式为: h为各点之间距离,n 是由h 分开的成对样本点的数量,z 是点的属性值。 2.在不同距离的半方差值都计算出来后,绘制半方差图,横轴代表距离,纵轴代表半方差。半方差图中有三个参数nugget(表示距离为零时的半方差),sill(表示基本达到恒定的半方差值),range(表示一个值域范围,在该范围内半方差随距离增加,超过该范围,半方差值趋于恒定)。利用做出的半方差图找出与之拟合的最好的理论变异函数模型(这是关键所在),可用于拟合的模型包括高斯模型、线性模型、球状 模型、指数模型、圆形模型。 ----球状模型,球面模型空间相关随距离的增长逐渐衰减,当距离大于球面半径后,空间相关消失。 3.用拟合的模型计算出三个参数。例如球状模型中nugget为c0,range为a,sill为c。 4.利用拟合的模型估算未知点的属性值,方程为: ,z0为估计值,zx是已知点的值,wx为权重,s是用来估算未知点的 已知点的数目。 假如用三个点来估算,则有

这样权重就可以求出,然后估算未知点。 (上述内容根据《地理信息系统导论》(Kang-tsung Chang著;陈健飞等译,科学出版社,2003)第十三章内容进行总结,除球状模型公式外其余公式皆来自此书) 下面是本人自己编写的利用海洋中断面上观测站点的实测温度值来估算未观测处的温度的Fortran程序,利用距离未知点最近的五个观测点来估算未知点的温度,选用模型为球状模型。 do ii=1,nx if(tgrid(ii,1)==0.)then do i=1,dsite(ii) !首先寻找距离最近的五个已知点位置 do j=1,nh if(d(mm(ii),j).ne.0.or.j==1)then hmie(j)=d(mm(ii),j)-dgrid(i) else hmie(j)=9999 end if hmid(j)=abs(hmie(j)) end do do j=1,nh do k=j,nh if(hmid(j)

几种插值法的应用和比较教学提纲

几种插值法的应用和 比较

插值法的应用与比较 信科1302 万贤浩 13271038 1格朗日插值法 在数值分析中,拉格朗日插值法是以法国十八世纪数学家约瑟夫·路易斯·拉格朗日命名的一种多项式插值方法.许多实际问题中都用函数来表示某种内在联系或规律,而不少函数都只能通过实验和观测来了解.如对实践中的某个物理量进行观测,在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值.这样的多项式称为拉格朗日(插值)多项式.数学上来说,拉格朗日插值法可以给出一个恰好穿过二维平面上若干个已知点的多项式函数.拉格朗日插值法最早被英国数学家爱德华·华林于1779年发现,不久后由莱昂哈德·欧拉再次发现.1795年,拉格朗日在其著作《师范学校数学基础教程》中发表了这个插值方法,从此他的名字就和这个方法联系在一起. 1.1拉格朗日插值多项式 图1

已知平面上四个点:(?9, 5), (?4, 2), (?1, ?2), (7, 9),拉格朗日多项式:)(x L (黑色)穿过所有点.而每个基本多项式:)(00x l y ,)(11x l y , )(22x l y 以及)(x l y ??各穿过对应的一点,并在其它的三个点的x 值上取零. 对于给定的若1+n 个点),(00y x ,),(11y x ,………),(n n y x ,对应于它们的次数不超过n 的拉格朗日多项式L 只有一个.如果计入次数更高的多项式,则有无穷个,因为所有与L 相差))((10x x x x --λ……)(n x x -的多项式都满足条件. 对某个多项式函数,已知有给定的1+k 个取值点: ),(00y x ,……,),(k k y x , 其中i x 对应着自变量的位置,而i y 对应着函数在这个位置的取值. 假设任意两个不同的i x 都互不相同,那么应用拉格朗日插值公式所得到的拉格朗日插值多项式为: )()(0x l y x L j k j j ∑==, 其中每个)(x l j 为拉格朗日基本多项式(或称插值基函数),其表达式为: )()()()()()()()()(111100,0k j k j j j j j j j k j i i i j i j x x x x x x x x x x x x x x x x x x x x x l --------=--=++--≠=∏ΛΛ, 拉格朗日基本多项式()x l i 的特点是在j x 上取值为1,在其它的点i x ,j i ≠ 上取值为0. 例:设有某个多项式函数f ,已知它在三个点上的取值为: ? 10)4(=f , ? 25.5)5(=f , ? 1)6(=f , 要求)18(f 的值. 首先写出每个拉格朗日基本多项式:

实验四三次样条插值Word版

实验四三次样条插值的应用 一、问题描述 The upper portion of this noble beast is to be approximated using clamped cubic spline interpolants. The curve is drawn on a grid from which the table is constructed. Use Algorithm 3.5 to construct the three clamped cubic splines. 二、模型建立 三次样条插值 给定一个列表显示的函数 yi=y(xi),i=0,1,2,...,N-1。特别注意在xj和xj+1之间的一个特殊的区间。该区间的线性插值公式为:

(3.3.1)式和(3.3.2)式是拉格朗日插值公式(3.1.1)的特殊情况。 因为它是(分段)线性的,(3.3.1)式在每一区间内的二阶导数为零,在横坐标为xj处的二阶导数不定义或无限。三次样条插值的目的就是要得到一个内插公式,不论在区间内亦或其边界上,其一阶导数平滑,二阶导数连续。 做一个与事实相反的个假设,除yi的列表值之外,我们还有函数二阶导数y"的列表值,即一系列的yi"值,则在每个区间内,可以在(3.3.1)式的右边加上一个三次多项式,其二阶导数从左边的yj"值线性变化到右边的yj+1"值,这么做便得到了所需的连续二阶导数。如果还将三次多项式构造在xj和xj+1处为零,则不会破坏在终点xj和xj+1处与列表函数值yj和yj+1的一致性。 进行一些辅助计算便可知,仅有一种办法才能进行这种构造,即用 注意,(3.3.3)式和(3.3.4)式对自变量x的依赖,是完全通过A和B对x的线性依赖,以及C和D(通过A和B)对x的三次依赖而实现。可以很容易地验证,y"事实上是该插值多项式的二阶导数。使用ABCD的定义对x求(3.3.3)式的导数,计算dA/dx dB/dx dC/dx dD/dx,结果为一阶导数

重心插值配点法及其应用

重心插值配点法及其应用 摘要:重心Lagrange插值具有数值稳定性好、计算精度高的优点。采用重心Lagrange插值近似未知函数,建立未知函数各阶导数的微分矩阵。采用微分矩阵近似未知函数的导数,利用配点法将控制方程和边界条件离散为代数方程组,通过求解代数方程组,从而可求解偏微分方程。数值算例表明,重心插值配点法具有原理简单,易于程序实现和数值计算精度高的优点。 关键词:重心Lagrange插值;微分矩阵;配点法 Barycentric Lagrange interpolation collocation Method and its Application Abstract:Barycentric Lagrange interpolation collocation method has excellent numerical stability and high accuracy. this paper presents the Barycentric Lagrange interpolation collocation method to get the differentiation Matrix of unknown function. So the control equation can be expressed as linear systems by the collocation method. According to those formulas, differential equations can be soluted. The principle of this method is simple and easy to programming. The accuracy and the numerical stability are very excellent. Key words: Barycentric Lagrange interpolation, differentiation Matrix, collocation method, 0 引言 具有初、边值条件的常、偏微分方程的解析解常无法通过理论推导获得,一种有效的途径是采用数值求解方法获得具有一定数值精度的近似解,这些数值方法包括:有限差分法、有限单元法、边界单元法、无网格法及一些杂交使用的方法等数值求解方法。其中,有限差分法、有限单元法这两种方法要对求解区域划分单元,计算精度依赖于单元的大小。采用配点法求解边值问题不需要划分单元,公式简单,不需要积分,易于编程。目前用于求解工程中的常微分方程边值问题的配点法主要有拟谱法和微分求积法。拟谱法是根据谱方法发展出来的一种方法,虽然这种方法的理论研究已经有进一步的发展,但是工程技术人员对这种方法不是很了解。微分求积法的基本原理是将未知函数在区间上所有离散点的函数值的加权和来逼近该函数在某一离散点的偏导数或者积分,这种方 法中的权系数的确定通常是根据Lagrange多项式在网点处的导数值给出。但是这种方法的局限性是离散点不能取得太多,否则Lagrange多项式表示的曲线随多项式次数的升高而出现Runge现象,从而产生计算的不稳定性。重心Lagrange插值具有极好的数值稳定性和极高的近似精度,同时重心Lagrange插值公式具有紧凑的各阶导数的计算公式。 本文所采用的重心插值配点法就是用重心Lagrange插值多项式求出某一函

相关主题
文本预览
相关文档 最新文档