当前位置:文档之家› 常用遥感大数据和波段用途

常用遥感大数据和波段用途

常用遥感大数据和波段用途
常用遥感大数据和波段用途

(一)NOAA/A VHRR

NOAA/A VHRR(National Oceanic and Atomospheric Administration)是低空间分辨率遥感卫星。它是美国国家海洋大气局的实用气象观测卫星,从1970年12月发射的第一颗到2002年6月24号发射的NOAA-M,30多年来共发射了17颗。NOAA卫星的轨道为太阳同步近极地圆形轨道,以确保同一时间、同一地方的上午、下午成像。轨道平均高度分别为833km和870km,轨道倾角98.7o和98.9o;是目前业务化运行最成熟的一种遥感卫星。NOAA卫星采用双星系统,即NOAA12和NOAA14在服役,它的总体参数:总重量:1421公斤;负载量:194公斤;保留余量:36.4公斤;卫星尺寸:3.71米(长)*1.88米(直径)。星载传感器有:①极精密高分辨率辐射计(A VHRR)以5个频道同时扫描大气,可获得可见光云图和红外云图,作为天气分析与预报之用。此外,红外频道的数据可用来决定若干云参数及海面温度。②泰洛斯业务垂直探测器(TOVS),这组仪器包括三个辐射计,各有不同的功能:A.高分辨率红外辐射探测器(HIRS/2)是具有20个可见光和红外频道的扫描辐射计,可以探测对流层气温和水汽垂直分布以及臭氧总含量。B.平流层探测单元(SSU)以3个红外频道观测平流层中的气温垂直分布。C.微波探测单元(MSU)以4个微波频道观测波长0.5厘米的氧吸收带,可以穿透云层探测云下的气温垂直分布。③太空环境监测器(SEM)负责侦测太空中太阳质子、α粒子及电子通量等资料。④地球辐射收支试验(ERBE)以狭角视场和广角视场观测地球大气,可以监测太阳常数、行星反照率以及射出长波辐射等参数。TIROS-N系列卫星具有数据汇集系统(DCS),可以接收来自两千多个固定及移动观测台的资料,加以处理储存,最后再传送到地面接收站。

A VHRR为TIROS-N系列卫星最主要的仪器,它由一个8英寸口径的卡塞格伦望远镜对准地面,用一个旋转镜对地面左右扫描,望远镜的瞬时视场角为

1.3*1.3平方毫弧度,相当于星下点1.1平方公里,扫描每分钟360行,扫描角为正负55度,相当于地面2800公里。它的成像方式是光学机械扫描成像,成像幅宽为16.5km*16.5km,空间分辨率在星下点处是1100m,在远离星下点处是4000m。A VHRR具有五个探测波段,每个波段特性见下表1:

表1 波段特性

NOAA卫星地面接收站每天两次在固定时间里接收某一轨道的卫星云图,几条轨道的图像拼接成区域云图,成为预报员制作预报的重要参考资料。

(二)TERRA/MODIS

MODIS(Moderate Resolution Imaging Spectrometer)于1999年12月18日在美国加洲的verndenberg空军基地发射成功,承载的卫星是Terra(EOS AM1) ,它是中空间分辨率遥感卫星,于2000年2月24日正式接收数据。MODIS采用与太阳同步的,近极地圆形轨道,轨道高705km,测绘带宽2330km*10km。具有36个光谱通道,分布在0.4-14um的电磁波谱围。MODIS仪器的空间分辨率分别为250m、500m、1000m,在对地观测过程中,每秒可同时获得6.1兆比特的来自大气、海洋和陆地表面信息,每日或每两日可获得一次全球观测数据。

MODIS是被动式成像分光辐射计,携带490个探测器,分布在36个光谱波段,覆盖从可见光到红外波段。由穿轨迹扫描反射镜、收集辐射的光具和带有光谱滤光片的线列阵探测器组件等部件构成。探测器组件共四组,分布在四个焦平面处。

MODIS仪器设置多种定标硬件,供空间操作时使用。包括:太阳漫射器、太阳漫射稳定度监视仪、分光辐射度定标组件、板状黑体、和天空视窗。仪器操作时定期地使用太阳漫射器、黑体和分光辐射度仪等三个定标装置进行定标。

MODIS仪器操作,在轨日夜连续操作。正常的获取科学数据,在白天,所有波段均操作运行。在轨道的夜间时段,只有热红外波段收集数据。

MODIS数据的特点如下表:

MODIS波段分布和主要应用

通道波长(微米)类型主要用途

1 0.58-0.68 可见光探测反射率

2 0.752-1.0 近红外探测反射率

3 3.55-3.93 中红外探测热辐率

4 10.3-11.3 远红外探测热辐率

5 11.4-12.4 远红外探测热辐率

MODIS数据的文件格式是HDF文件格式。HDF是美国国家高级计算应用中心(National Center Supercomputing Application)为了满足各种领域研究需求而研究的一种能高效存储和分发科学数据的新型数据格式。一个HDF文件中可以包含多种类型的数据,如栅格图像数据,科学数据集,信息说明数据。这种数据结构方便了我们对信息的提取。

MODIS观测数据的分析和研究将在以下几方面应用领域发挥重要作用:(1)地表覆盖变化和全球生产力,包括区域性地表覆盖变化的趋势和模式、作物种类,以及全球初级生产力。(2)自然灾害监测,包括洪涝、干旱、森林草原火灾、雪灾等。(3)短期气候预测,季、年的气候预测,以便改进对短期气候异常发生时间、地点的预报。(4)长期气候变化研究,帮助科学家识别长期气候变化及其趋势的机制和因子,包括人类影响。(5)大气臭氧监测,帮助科学家监测大气臭氧的变化,分析变化产生的原因及对地球系统的影响。

(三)Landsat/TM&ETM

Landsat5 Landsat7

Landsat(陆地卫星)是中空间分辨率卫星,它是由NASA(美国航空航天局)发射的。从1972年7月23日发射以来,已发射7颗(第6颗发射失败)。目前Landsat1-4相继失效,Landsat5仍在超期运行(从1984年3月1日至今)。Landsat7于1999年4月15日发射升空。

Landsat卫星采用与太阳同步的近极地圆形轨道,而且卫星以同一地方时、同一方向通过同一地点,保证了遥感观测条件的基本一致,有利于图像的对比。Landsat4,5轨道高度705km,轨道倾角98.2o每16天重复覆盖一次,穿过赤道的地方时为9点45分,覆盖地球围N81o-S81.5o。

Landsat5上装载了专题制图仪(TM),其空间、光谱、辐射性能均比MSS 有明显提高,因而数据质量提高、数据量增加。Landsat7在数据获取的地理围与分幅方法、空间分辨率、校正精度和光谱特性等方面足够一致,TM用户可以顺利过渡到ETM+。Landsat7上装载了ETM+,其在ETM的基础上,设置了太阳定标器和部灯定标,以改善辐射定标,且热红外谱段空间分辨率提高到60m。

Landsat数据的特点如下表:

波段类型波谱围(um)空间分辨率(m)

1 blue 0.45-0.5

2 30/30

2 green 0.52-0.60 30/30

3 red 0.63-0.69 30/30

4 NIR 0.76-0.90 30/30

5 SWIR 1.55-1.75 30/30

6 TIR 10.4-12.5 120/60

7 SWIR 2.08-2.35 30/30

8 Pan 0.52-0.90 —/15

在过去的日子里,Landsat数据的用很广泛,如全球变化的研究,,区域环境

的研究,国家安全以及一些其他的文化和经济目的。例如,Landsat数据已经被用于监测农业产量,城市增长以及陆地覆盖变化,并且Landsat数据在油、气和矿的开采方面有广泛的应用。其他的科学应用包括监测火山,冰河动力学,农业产量以及海岸情况。

可见光的波长大约在0.4-0.7m。波长最长的可见光是红光,最短的是紫光。通常可以感觉到的色彩的波长如下:紫光(0.4-0.446)、蓝光(0.446-0.5)、绿光(0.5-0.578)、黄光(0.578-0.592)、橙光(0.592-0.62)、红光(0.62-0.7)、红外(0.7-100),近红外(0.7-0.9)

(四)ASTER

ASTER(Advanced Spaceborne Thermal Emission and Reflection Rdiometer)叫做高级太空热辐射反射辐射计。它是由日本国际贸易工业部提供的一种便于探索的仪器。于1998年搭载NASA的地球观测系统上午星(EOS-AM1)平台升空。发射ASTER的目的是为了提高人们对发生在近地表和低大气层中局部或区域规模的过程的理解,其中也包括地表—大气界面的相互作用。ASTER的立体观测基高比为0.6,跨宽60km,总跨度232km,寿命为5年。

ASTER的数据特征如下表:

类型波段序号波谱围空间分辨率

VNIR

1

2

3N,3B

0.52-0.60

0.63-0.69

0.78-0.86

15m

SWIR 4

5

6

7

8

9

1.600-1.700

2.145-2.185

2.185-2.225

2.235-2.285

2.295-2.365

2.360-2.430

30m

TIR 10

11

12

13

14

8.125-8.475

8475—8.825

8.925-8.275

10.25-10.95

10.95-11.65

90m

其中,VNIR和美国陆地卫星TM以及日本地球资源卫星(JERS-1)光学传

测绘地理大数据在城乡规划中的应用研究

测绘地理大数据在城乡规划中的应用研究 摘要:目前,我们已经可以获取丰富自然地理、人文地理、经济地理等数据资源。这些数据既包含结构化的地理信息大数据类型,如遥感影像数据,基础地理 信息数据,大地基准数据,电子地图数据和与位置关联的各类地物的属性数据。 也包括非结构化的地理信息大数据类型,如与位置关联的社交与商务碎片化文字 描述数据,与位置相关的图片、视频、语音等数据和移动轨迹数据。全方位、多 时空的地理数据,为人类能更加透彻地感知、更加智慧地规划建设和管理我们的 生存生活环境提供可能。 关键词:城乡规划;测绘地理大数据;应用 引言 测绘是通过使用科学的技术、理念及方法获取和空间位置相关的各种图形及 数据资料,当前有数字信息技术为测绘提供保障,已经逐渐形成测绘地理大数据。将该技术应用到城乡规划中十分重要,利用测绘数据可以建模,进而科学、专业、合理、正确反映出城乡建设中的社会信息、经济信息等。因此,在城乡规划中, 科学使用测绘地理大数据,发挥出其价值,是当前需要重点关注的。 1城乡规划与测绘数据的关系 基础测绘具有公益性和基础性特点,其发展中主要以地方政府和国家投入为主,在测绘中人们主要强调的是数据采集和信息提取,同时对地理环境建设成果 有强有力的保障。在大数据时代随着移动位置服务位置服务采集各种数据媒体数 据增多,空间数据处理基础也得到较大的发展。测绘行业大量的大数据获取和处 理方法在城乡规划中的应用不断扩大。为了更加深入的挖掘价值对服务转型的思考,我们必须在大数据形成的各个环节转变和突破。近几年测绘数据在经济发展 中起着越来越重要的作用,首先测绘数据的实现在城乡规划中得到较好的应用, 我国城乡面貌正在朝着日新月异的方向发展,城市和乡村建设与发展需要加强规 划和指导,而做好城乡规划首先必须要足够多的数据做支撑,提供城市、村镇的 基本面貌和基本动态信息,能够很好的促进城乡协调发展。 2测绘大数据在城乡规划中的应用 2.1GPS测绘地理大数据测绘地理大数据在城乡规划中的应用 GPS技术以卫星定位原理为支撑,因其其环境适应性更强,不会受到时间、 地点以及气候等因素的影响,在城镇规划中得到了有效应用。GPS技术能够根据 事先确定的测量条件和需求进行测量工作。在测量的施工中GPS技术精确度非常高,不需要监测站之间通视,还能够实现远距离的测量定位计算。采用GPS技术 能够降低人力物力的投资,而且操作简单便捷,不受时间和地域的影响和干扰, 测量效率高,是其他测绘技术难以媲美的。 利用GPS技术并以城市地图为基础,定位城镇规划的具体位置以及规划范围,并根据所要规划区域中的建筑物分布以及基础设施分布,规划城乡道路线路。根 据城市的地形状况,合理布局服务设施建设,做到基础设施建设全方位、全范围 的覆盖。并利用GPS技术建立相关数据模型,将城乡规划中所涉及到的抽象的数 据转化为具体的对象,在模型设计中设定更多的评价因子,保证城乡规划的的科 学与合理性。 2.2遥感测绘地理大数据在城乡规划中的应用

常见国产卫星遥感影像数据的简介

北京揽宇方圆信息技术有限公司 常见国产卫星遥感影像数据的简介 本文介绍了常见国产卫星数据的简介、数据时间、传感器类型、分辨率等情况。 中国资源卫星应用中心产品级别说明 ◆1A级和1C级产品均为相对辐射校正产品,只是不同卫星选用的生产参数不同。 ◆2级,2A级和2C级产品均为系统几何校正产品,只是不同卫星选用的生产参数不同。 其中: ■GF-1卫星和ZY3卫星归档产品为1A级,ZY1-02C卫星数据归档产品级别为1C级,其他卫星归档级别为2级! ◆归档产品是指:该类产品已经存在于系统中,仅需要从存储系统中迁移出来.即可供用户下载的数据。 ◆生产产品是指:该类产品不是已经存在的产品,需要对原始数据产品进行生产,然后再提供给用户下载的数据。

■当用户需要的产品级别是上述归档的级别,直接选择相应的产品级别,然后查询即可! ■当用户需要的产品级别不是上述归档的级别,就需要进行生产.本系统提供GF-1卫星和ZY3卫星2A级的生产产品,ZY1-02C卫星2C级的生产产品,在选择需要的级别查询后,无论有没有数据,在查询结果页上方有一个“查询0级景”按钮,点击此按钮后,进行数据查询,如果有数据,选择需要的产品直接订购,即可选择需要的产品级别。 国产卫星 一、GF-3(高分3号) 1.简介 2016年8月10日6时55分,高分三号卫星在太原卫星发射中心用长征四号丙运载火箭成功发射升空。 高分三号卫星是中国高分专项工程的一颗遥感卫星,为1米分辨率雷达遥感卫星,也是中国首颗分辨率达到1米的C频段多极化合成孔径雷达(SAR)成像卫星,由中国航天科技集团公司研制。 2.数据时间 2016年8月10日-现在 3.传感器 SAR:1米 二、ZY3-02(资源三号02星) 1.简介 资源三号02星(ZY3-02)于2016年5月30日11时17分,在我国在太原卫星发射中心用长征四号乙运载火箭成功将资源三号02星发射升空。这将是我国首次实现自主民用立体测绘双星组网运行,形成业务观测星座,

遥感数据特征

常用遥感数据特征总结 按照遥感平台类型,遥感技术可以分为航宇遥感、航天遥感、航空遥感、地面遥感四类。其中航天遥感平台发展最快,应用最广。很据航天遥感平台的服务内容,可以将其分为气象卫星系列、陆地卫星系列和海洋卫星系列。不同的卫星系列所获得的遥感数据有着不同的特征,常常应用于不同的应用领域,在进行检测研究时,常常根据不同的卫星资料特点,选择不同的遥感数据。下文简单总结了几种常用的航天遥感数据特征。 1 气象卫星系列 气象卫星是最早发张起来的环境卫星。从1960年美国发射第一颗实验性气象卫星(TIROS)以来,已经有多种实验性或者业务性气象卫星进入不同轨道。气象卫星资料已经在气象预报、气象研究、资源调查海洋研究等方面显示出了强大的生命力。 气象卫星主要有以下几种系列:60年代——TIROS系列、ESSA系列、Nimus 系列;70年代——ITOS系列、NOAA系列、SMS系列、GOES系列、MeteopII、GMS、Meteosat;80年代后,主要以NOAA系列为代表。我国的气象卫星发展比较晚,FY-1是我国发射的第一颗1988年9月7日发射成功。气象卫星主要有以下特征。 (1)轨道。气象卫星轨道可以分为两种,低轨和高轨。低轨是近极低太阳同步轨道,简称极地轨道,轨道高度800~1600km,南北向绕地球运转。对东西宽约2800km的带状地域进行观测,由于与太阳同步,使卫星每天在固定的时间经过每个地方的上空,资料获得时具有相同的照明条件。高轨是指地球同步轨道,轨道高度36000km左右,相对于地球静止,能够观测地球1/4的面积,有3—4颗卫星形成观测网,对某一固定地区,每隔20~30min获取一次资料,由于它相对于地球静止,可以作为通讯中继站,用于传送各种天气资料。 (2)短周期重复观测。地球同步卫星观测周期为0.5小时一次,极轨卫星为约为0.5~1天/次,时间分辨率较高。有助于对地面快速变化的动态检测。 (3)成像面积大,有助于获得宏观同步信息,减少数据处理容量。 (4)资源来源连续、实时性强、成本低 NOAA系列。 NOAA-11卫星:发射日期1988年9月24日,正式运行日期1988年11月8日,轨道高度841公里,轨道倾角98.9度,轨道周期:101.8分。 NOAA-12卫星:发射日期1991年5月14日,正式运行日期1991年9月17日轨道高度804公里,轨道倾角98.6度,轨道周期101.1分。 NOAA-14卫星:发射日期1994年12月30日,正式运行日期1985年4月10日,轨道高度845公里,轨道倾角99.1度,轨道周期101.9分。 NOAA-15卫星:发射日期1998年5月13日,正式运行日期1998年12月15日轨道高度808公里,轨道倾角98.6度,轨道周期101.2分。 NOAA-16卫星:发射日期2000年9月12日,正式运行日期2001年3月20日,轨道高度850公里,轨道倾角98.9度,轨道周期102.1分。

SPOT卫星遥感影像数据基本参数

SPOT5遥感卫星基本参数 北京揽宇方圆信息技术有限公司 前言: 遥感传感器是获取遥感数据的关键设备,由于设计和获取数据的特点不同,传感器的种类也就繁多,就其基本结构原理来看,目前遥感中使用的传感器大体上可分为如下一些类型:(1)摄影类型的传感器; (2)扫描成像类型的传感器; (3)雷达成像类型的传感器; (4)非图像类型的传感器。 无论哪种类型遥感传感器,它们都由如下图所示的基本部分组成: 1、收集器:收集地物辐射来的能量。具体的元件如透镜组、反射镜组、天线等。 2、探测器:将收集的辐射能转变成化学能或电能。具体的无器件如感光胶片、光电管、光敏和热敏探测元件、共振腔谐振器等。 3、处理器:对收集的信号进行处理。如显影、定影、信号放大、变换、校正和编码等。具体的处理器类型有摄影处理装置和电子处理装置。 4、输出器:输出获取的数据。输出器类型有扫描晒像仪、阴极射线管、电视显像管、磁带记录仪、XY彩色喷笔记录仪等等。 虽然不同卫星的基本组成部分是相同的,但是由于,各个组成部分的具体构造的精细度又是不同的,的,所以不同的卫星具有不同的分辨率。 一、法国SPOT卫星 法国SPOT-4卫星轨道参数: 轨道高度:832公里 轨道倾角:98.721o 轨道周期:101.469分/圈 重复周期:369圈/26天 降交点时间:上午10:30分 扫描带宽度:60 公里 两侧侧视:+/-27o 扫描带宽:950公里 波谱范围: 多光谱XI B1 0.50 – 0.59um 20米分辨率B2 0.61 – 0.68um B3 0.78 – 0.89um SWIR 1.58 – 1.75um

常用的遥感卫星影像数据有哪些

北京揽宇方圆信息技术有限公司 常用的遥感卫星影像数据有哪些 公司拥有WorldView、QuickBird、IKONOS、GeoEye、SPOT、高分一号、资源三号等卫星的代理权,与国内多家遥感影像一级代理商长期合作,能够为客户提供全天候、全覆盖、多分辨率、多尺度的影像产品 WorldView,分辨率0.5米 WorldView卫星系统由两颗(WorldView-I和WorldView-II)卫星组成。WorldView-I全色成像系统每天能够拍摄多达50万平方公里的0.5米分辨率图像,并具备现代化的地理定位精度能力和极佳的响应能力,能够快速瞄准要拍摄的目标和有效地进行同轨立体成像。WorldView-II多光谱遥感器具有8个波段,平均重访周期为一天,每天采集能力达到97.5万平方公里。

QuickBird,分辨率0.61米 QuickBird具有较高的地理定位精度,每年能采集7500万平方公里的卫星影像数据,在中国境内每天至少有2至3个过境轨道,有存档数据约500万平方公里,重访周期为1-6天,每天采集能力达到21万平方公里。 IKONOS,分辨率0.8米 IKONOS卫星是世界上第一颗高分辨率卫星,开启了商业高分辨率卫星的新时代,同时也创立了全新的商业化卫星影像标准。全色影像分辨率达到了0.8米,多光谱影像分辨率4米,平均重访周期3天。

Geoeye,分辨率0.41米 GeoEye-1卫星具有分辨率最高、测图能力极强、重返周期极短的特点。全色影像分辨率达到了0.41米,多光谱影像分辨率1.65米,定位精度达到3米,重访周期2-3天,每天采集能力70万平方公里。

高分辨率遥感卫星介绍

北京揽宇方圆信息技术有限公司 高分辨率遥感卫星有哪些 高分辨率遥感可以以米级甚至亚米级空间分辨率精细观测地球,所获取的高空间分辨率遥感影像可以清楚地表达地物目标的空间结构与表层纹理特征,分辨出地物内部更为精细的组成,地物边缘信息也更加清晰,为有效的地学解译分析提供了条件和基础。随着高分辨率遥感影像资源日益丰富,高分辨率遥感在测绘制图、城市规划、交通、水利、农业、林业、环境资源监测等领域得到了飞速发展。 北京揽宇方圆信息技术有限公司是国内的领先遥感卫星数据机构,而且是整合全球的遥感卫星数据资源,分发不同性能、技术应用上可以互补的多种卫星影像,包括光学、雷达卫星影像、历史遥感影像等各种卫星数据服务,各种专业应用目的的图像处理、解译、顾问服务以及基于卫星影像的各种解决方案等。遥感卫星影像数据贯穿中国1960年至今的所有卫星影像数据,是中国遥感卫星数据资源最多的专业遥感卫星数据服务机构,提供多尺度、多分辨率、全覆盖的遥感卫星影像数据服务,最大限度的保证了遥感影像数据获取的及时性和完整性。 一、卫星类型 (1)光学卫星:worldview1、worldview2、worldview3、worldview4、quickbird、geoeye、ikonos、pleiades、deimos、spot1、kompsat系例、spot2、spot3、spot4、spot5、spot6、spot7、landsat5(tm)、Sentinel-卫星、landsat(etm)、rapideye、alos、kompsat系例卫星、planet卫星、北京二号、高景一号、资源三号、高分一号、高分二号、环境卫星。 (2)雷达卫星:terrasar-x、radarsat-2、alos雷达卫星、高分三号卫星、哨兵卫星 (3)侦查卫星:美国锁眼卫星全系例(1960-1980) 二、卫星分辨率 (1)0.3米:worldview3、worldview4 (2)0.4米:worldview3、worldview2、geoeye、kompsat-3A (3)0.5米:worldview3、worldview2、geoeye、worldview1、pleiades

遥感卫星图像处理方法

北京揽宇方圆信息技术有限公司 遥感卫星图像处理方法 随着遥感技术的快速发展,获得了大量的遥感影像数据,如何从这些影像中提取人们感兴趣的对象已成为人们越来越关注的问题。但是传统的方法不能满足人们已有获取手段的需要,另外GIS的快速发展为人们提供了强大的地理数据管理平台,GIS数据库包括了大量空间数据和属性数据,以及未被人们发现的存在于这些数据中的知识。将GIS技术引入遥感图像的分类过程,用来辅助进行遥感图像分类,可进一步提高了图像处理的精度和效率。如何从GIS数据库中挖掘这些数据并加以充分利用是人们最关心的问题。GIS支持下的遥感图像分析特别强调RS和GIS的集成,引进空间数据挖掘和知识发现(SDM&KDD)技术,支持遥感影像的分类,达到较好的结果,专家系统表明了该方法是高效的手段。 遥感图像的边缘特征提取观察一幅图像首先感受到的是图像的总体边缘特征,它是构成图像形状的基本要素,是图像性质的重要表现形式之一,是图像特征的重要组成部分。提取和检测边缘特征是图像特征提取的重要一环,也是解决图像处理中许多复杂问题的一条重要的途径。遥感图像的边缘特征提取是对遥感图像上的明显地物边缘特征进行提取与识别的处理过程。目前解决图像特征检测/定位问题的技术还不是很完善,从图像结构的观点来看,主要是要解决三个问题:①要找出重要的图像灰度特征;②要抑制不必要的细节和噪声;③要保证定位精度图。遥感图像的边缘特征提取的算子很多,最常用的算子如Sobel算子、Log算子、Canny算子等。 1)图像精校正 由于卫星成像时受采样角度、成像高度及卫星姿态等客观因素的影响,造成原始图像非线性变形,必须经过几何精校正,才能满足工作精度要求一般采用几何模型配合常规控制点法对进行几何校正。 在校正时利用地面控制点(GCP),通过坐标转换函数,把各控制点从地理空间投影到图像空间上去。几何校正的精度直接取决于地面控制点选取的精度、分布和数量。因此,地面控制点的选择必须满足一定的条件,即:地面控制点应当均匀地分布在图像内;地面控制点应当在图像上有明显的、精确的定位识别标志,如公路、铁路交叉点、河流叉口、农田界线等,以保证空间配准的精度;地面控制点要有一定的数量保证。地面控制点选好后,再选择不同的校正算子和插值法进行计算,同时,还对地面控制点(GCPS)进行误差分析,使得其精度满足要求为止。最后将校正好的图像与地形图进行对比,考察校正效果。 2)波段组合及融合 对卫星数据的全色及多光谱波段进行融合。包括选取最佳波段,从多种分辨率融合方法中选取最佳方法进行全色波段和多光谱波段融合,使得图像既有高的空间分辨率和纹理特性,又有丰富的光谱信息,从而达到影像地图信息丰富、视觉效果好、质量高的目的。 3)图像镶嵌

遥感数据的波段运算

遥感数据的波段运算 一、波段运算(Band Math) Band Math TM功能允许你处理导致单个波段输出的复杂表达式。这些数学表达式也可以 应用于一个多波段文件中的所有波段,providing “File Math”。 关于使用波段运算的更多信息,请参阅ENVI Programmer’s Guide 第 29 页的 “Band Math Basics”。 1.可利用的波段运算功能(Available Band Math Functions) Band Math 功能为用户提供一个灵活的图像处理工具,其中许多功能是无法在任何其它 的图像处理系统中获得的。该功能的能力与 IDL 语言的能力直接相关。可用的函数包括但 不仅限于表 4-2 中列出的数学表达式。 表 4-2: 一些可用的波段运算函数。 Series and Scalar 数学三角函数其它波段运算选项加(+)正弦(sin(x))关系运算符(EQ、NE、LE、LT、 GE、GT) 减(-)余弦(cos(x))逻辑运算符(AND、OR、XOR、 NOT) 乘(*)正切(tan(x))类型转换函数(byte, fix, long, float, double, complex)除(/)反正弦(asin(x))IDL 返回数组结果的函数最小运算符(<)反余弦(acos(x))IDL 返回数组结果的程序 最大运算符(>)反正切(atan(x))User IDL 函数和程序 绝对值(abs(x))双曲正弦(sinh(x))

平方根(sqrt(x))双曲余弦(cosh(x)) 指数(^)双曲正切(tanh(x)) 自然指数(exp(x)) 自然对数(alog(x)) 以10为底的对数(alog10 (x)) 注意 一些有效的 IDL 表达式要求整个输入数组存在于内存中,它可以不必与 ENVI tiling 操作相兼容。 2.Band Math 对话框 (1). 选择Basic Tools > Band Math. 将出现 Band Math 对话框。假如运算结果是一个二维数组,它将接受任何有效的 IDL 数学表达式、函数或程序。 (2). 在标签为 “Enter an expression:” 的文本框内,输入变量名(将被赋值到整个图像波段或可能应用到一个多波段文件中的每个波段)和所需要的数学运算符。 变量名必须以字符 “b” 或 “B” 开头,后面跟着 5 个以内的数字字符。 实例: 若你想计算三个波段的平均值,则在文本框“Enter an expression:”内输入数学方程式:(float(b1)+float(b2)+float(b3))/3.0 这时,变量b1、b2自动跳入”Previous band math expression”对话框中,可以输入到文本框中。该表达式中使用的三个变量,“b1” 是第一个变量,“b2” 是第二个变量,“b3” 是第三个变量。注意,在本例中,IDL 的浮点型函数用来防止计算时出现字节溢出错误。(3). 输入一个有效的表达式被输入,点击 “OK”处理。

常用遥感大数据和波段用途

(一)NOAA/AVHRR NOAA/AVHRR(National Oceanic and Atomospheric Administration)是低空间分辨率遥感卫星。它是美国国家海洋大气局的实用气象观测卫星,从1970年12月发射的第一颗到2002年6月24号发射的NOAA-M,30多年来共发射了17颗。NOAA卫星的轨道为太阳同步近极地圆形轨道,以确保同一时间、同一地方的上午、下午成像。轨道平均高度分别为833km和870km,轨道倾角98.7o和98.9o;是目前业务化运行最成熟的一种遥感卫星。NOAA卫星采用双星系统,即NOAA12和NOAA14在服役,它的总体参数:总重量:1421公斤;负载量:194公斤;保留余量:36.4公斤;卫星尺寸:3.71米(长)*1.88米(直径)。星载传感器有:①极精密高分辨率辐射计(AVHRR)以5个频道同时扫描大气,可获得可见光云图和红外云图,作为天气分析与预报之用。此外,红外频道的数据可用来决定若干云参数及海面温度。②泰洛斯业务垂直探测器(TOVS),这组仪器包括三个辐射计,各有不同的功能:A.高分辨率红外辐射探测器(HIRS/2)是具有20个可见光和红外频道的扫描辐射计,可以探测对流层内气温和水汽垂直分布以及臭氧总含量。B.平流层探测单元(SSU)以3个红外频道观测平流层中的气温垂直分布。C.微波探测单元(MSU)以4个微波频道观测波长0.5厘米的氧吸收带,可以穿透云层探测云下的气温垂直分布。③太空环境监测器(SEM)负责侦测太空中太阳质子、α粒子及电子通量等资料。④地球辐射收支试验(ERBE)以狭角视场和广角视场观测地球大气,可以监测太阳常数、行星反照率以及射出长波辐射等参数。TIROS-N系列卫星具有数据汇集系统(DCS),可以接收来自两千多个固定及移动观测台的资料,加以处理储存,最后再传送到地面接收站。 AVHRR为TIROS-N系列卫星最主要的仪器,它由一个8英寸口径的卡塞格伦望远镜对准地面,用一个旋转镜对地面左右扫描,望远镜的瞬时视场角为 1.3*1.3平方毫弧度,相当于星下点1.1平方公里,扫描每分钟360行,扫描角为正负55度,相当于地面2800公里。它的成像方式是光学机械扫描成像,成像幅宽为16.5km*16.5km,空间分辨率在星下点处是1100m,在远离星下点处是4000m。AVHRR具有五个探测波段,每个波段特性见下表1: 表1 波段特性

卫星遥感数据的正射影像图的制作

卫星遥感数据的正射影像图的制作 【摘要】卫星遥感是一种采用人们通过航空技术发射在地球外层空间的人造卫星对地球地面、地面以上的空间以及外层太空天体进行综合性观测的技术。而卫星遥感所得数据在正射影像图的制作上应用价值广泛,本文通过阐述卫星遥感数据以及卫星影响图的来源以及所具有的特征,并分析了卫星遥感数据用于制作正射影图过程中出现的纠错、配准以及最后统一融合的方法及原理,简要介绍了正射影像图的构型、调色以及去重叠等数据信息处理的方式和过程。 【关键词】卫星遥感技术;数据;信息;正射影像图;制作 引言 21世纪信息科技时代的到来,卫星遥感技术也在不断的更新、完善之中。目前的卫星遥感技术在用于制作正射影像图方面效果显著,并且成图的精准度越来越高,远远超过比例尺地形图的精准度。卫星遥感技术在城市建设、城市规划以及了解环境状况和资源状况方面具有强大的支撑作用。采用卫星遥感技术制作的城市影像图具有目标辨认难度小、内容清晰、比例尺大以及转释较容易的优势,这项技术已经广泛应用于社会生产和发展的各个层面。该项技术还有助于治理生态环境、搜集专业信息、监测工程项目以及防止各种自然灾害等工作的开展。 1.国内外普遍流行的卫星影像图收集方式 随着新科技革命的不断深入,卫星遥感技术日新月异,目前国际上较为早期出现的卫星遥感技术是来自美国的Earth watch 卫星数据资源库的QuickBird卫星影像,这款卫星影像的地面全色分辨率达到0.61m,成像款幅度达到16.5×16.5/km2,随后美国相继推出了Space imaging Ikonos和Land sat TM卫星遥感影像,这宽两款卫星遥感较Earth watch的QuickBird的影像效果以及成像款幅度都有所提升。俄罗斯生产了一款Spin-2卫星影像,这款卫星影像在地面分辨率方面虽然不及美国的Land sat TM卫星遥感,但是其成像款幅度可以达到200×300/km2却与美国的三种卫星影响有明显的优势。 2.卫星影像图的纠错、配准以及统一融合 2.1 数字纠错 光学纠错仪是一款用于将航拍模拟摄影片转化为平面图的工具,主要适用于传统的框架模幅式的航拍摄像画面的数字影像[1]。现阶段出现了许多新鲜的卫星数字遥感技术,这些技术的影响数据采用传统的光学纠错仪就不能很好地转化。因此,数字微分纠错技术由此诞生。这是一项通过地面的有效参数以及数字地面的基本雏形,在设置适当的构想公式,并依据适当的数学模型控制范围和控制点将航拍摄像画面的数字影像转化为正射影像图的。这种技术不仅简单、方便,而且适用范围较广,已经成为国内外普遍使用的数字纠错技术。

基于信息量遥感图像最佳波段选择

《基于信息量遥感图像最佳波段选择研究》简介开始:基于信息量遥感图像最佳波段选择研究摘要:本文介绍基于信息量最佳波段选择中的单波段信息特征量、相关性系数、熵和联合熵、最佳指数、协方差矩阵特征值、波段指数的计算方法及特点,以石家庄市的TM影像为例,分析单波段信息特征量,相关性,最佳指数法,找出了最佳波段组合为1、4、5。关键词:信息量,最佳指数,波段指数,最佳波段组合。1引言随着空间技术,数字图像处理技。。此内容文章属于《工业论文→ 电子论文》栏目,以上内容为《基于信息量遥感图像最佳波段选择研究2011-6-8 4:25:20》简单介绍,正文正式开始》》》 基于信息量遥感图像最佳波段选择研究 摘要:本文介绍基于信息量最佳波段选择中的单波段信息特征量、相关性系数、熵和联合熵、最佳指数、协方差矩阵特征值、波段指数的计算方法及特点,以石家庄市的TM影像为例,分析单波段信息特征量,相关性,最佳指数法,找出了最佳波段组合为1、4、5。 关键词:信息量,最佳指数,波段指数,最佳波段组合。 1 引言随着空间技术,数字图像处理技术和计算机技术的不断发展,遥感技术得到突飞猛进的发展多光谱和高光谱技术的出现,是21世纪遥感技术的发展前沿和当今世界遥感关注的焦点之一,多光谱遥感数据的最佳波段选取是遥感图像增强处理的关键部分,直接影响到目视解译和研究对象的信息提取。目前遥感图像解译在相当的程度上仍依赖于目视解译.由于人眼对彩色比较敏感且分辨能力强,故应充分利用信息丰富的彩色合成图像进行目标判读.一般的数字图像处理系统都采用三色合成原理形成彩色图像,即在3个通道上安置3个波段图像,然后分别赋以红、绿、蓝色,叠合在一起形成彩色图像[1]。因此,如何从遥感提供的多光谱数据中快速、准确选取最佳波段,以便于图像的目视解译和信息的有效提取,是遥感数字图像处理的关键问题之一。本文是基于TM图像信息量的最佳波段选择。 通常选择最佳波段的原则有3点[2]:(1)所选的波段信息量要大;(2)波段间的相关性要小;(3)波段组合对所研究地物类型的光谱差异要大。那些信息含量多、相关性小、地物光谱差异大、可分性好的波段组合就是最佳组合,据此,可以认为相关性较强的波段组合在一起不会是最佳组合,高光谱遥感数据波段间的存在着不同程度的信息量重复和冗余。 一般选择波段的主要依据是:波段辐射量的方差应尽可能大,因为方差的大小体现了所含信息的多少,但由于地物在各波段的辐射特性之间存在相关性,用3个方差最大的波段合成的效果并不一定能获得更多的信息。当三者相关性很强时,各波段所包含的信息之间有可能出现大量的重复和冗余。因此,选择三个波段进行组合时,必须同时考虑方差要大而相关性要小这样两个条件[3]。 2 最佳波段选择的理论模型[4] 目前应用比较广泛的选取方法有各波段信息量的比较、波段间相关性比较、最佳指数法(OIF)、各波段数据的信息熵和联合熵、协方差矩阵特征值法、波段指数法。 2.1单波段信息量的比较根据遥感图像各波段包含的信息量进行数值评价来选择波段是进行波段组合的第一步[5]。通过分析,可以确定哪几部分或哪几个波段(即波段子集)包含信息量的多少。各波段的标准差反映了图像各像元灰度值与平均值总的离散度,一定程度上反映了各波段的信息量,其值越大,所包含的信息量越大。TM 图像各波段所包含的地物信息量,一般采用该波段图像覆盖的辐

资源三号卫星卫星数据参数遥感影像官方报价

北京揽宇方圆中国领先遥感影像数据服务. 资源三号卫星,简称ZY3,是中国第一颗民用高分辨率光学卫星,卫星2012年1月9日发射,它搭载了四台光学相机,包括一台地面分辨率2.1m的正视全色TDI CCD相机、两台地面分辨率3.6m的前视和后视全色TDI CCD相机、一台地面分辨率5.8m的正视多光谱相机,数据主要用于地形图制图、高程建模以及资源调查等。卫星设置寿命5年,可长期、连续、稳定地获取立体全色影像、多光谱影像以及辅助数据,可对地球南北纬84度以内的地区实现无缝影像覆盖。 主要功能 1、资源三号卫星主要用于1:5万比例尺立体测图和数字影像制作,又可用于1:2.5万等更大比例尺地形图部分要素的更新,还可为农业、灾害、资源环境、公共安全等领域或部门提供服务。

2、卫星应用系统将用于处理2.5米、4米和10米分辨率的卫星影像及其构成的立体测绘影像,测制1:5万地形图及相应测绘产品,开展1:2.5万等更大比例尺地形图的修测与更新,建立基于资源三号卫星的基础地理信息生产与更新的技术应用体系。 3、应用系统建设目标是最终实现业务化运行,长期、稳定、高效地将高分辨率立体影像转化为高质量的基础地理信息产品,并为其他用户部门提供高分辨率遥感影像应用服务。 4、利用资源三号卫星获取的立体影像,在构成的立体视野里,会出现高耸的山体、陡峭的河谷、矗立的灯塔,栩栩如生的公路、房屋、桥梁,通过立体观测,能够完成数字高程模型制作、立体测图等作业,生产现势性强、精度高的基础地理信息产品,结合资源三号卫星多光谱影像及各种专题信息,还可以生产各种融合影像产品、专题产品等,满足各行业部门的应用需求。

遥感影像成图步骤—以ETM为例

理塘-德巫断裂卫星影像地图制作(1:10万) ——以ETM数据为例 一、主流处理软件对比介绍 ENVI,ERDAS,PCI 软件功能不作具体说明,ENVI和ERDAS较为主流,各个软件各有自己的优缺点,比如ENVI中提供的数据融合方法就没有ERDAS中的多,ERDAS(破解版)中无法做DEM提取工作;ENVI的影像波段显示和数据操作较为简便,菜单功能有很多重复;PCI破解版本较低。另外,每个软件对不同类型的卫星遥感影像可能有各自的处理模块,所以也不能绝对就以某一类软件为主,如果遇到一些问题,一类软件解决不了,可以尝试用另一类软件。如在中科院网站下载的EOS原始卫星数据打不开,用PCI就能打开,然后转换成ENVI STANDSRD格式或者ERDAS IMAGINE格式,即可处理了。最后,哪种能免费下载,哪种版本功能多,就用哪种吧,没的讲究。 二、数据准备(建议查看百度文库:《遥感影像的获取及处理sky》) (1)介绍 (2)来源 A https://www.doczj.com/doc/8019049929.html,/cs_cn/ https://www.doczj.com/doc/8019049929.html,/cs_cn/中科院对地中心 B https://www.doczj.com/doc/8019049929.html,/EarthExplorer/ USGS网站 C Ftp://https://www.doczj.com/doc/8019049929.html,马里兰大学FTP(Landsat 4-7数据存放于WRS2下,建议用360浏览器浏览,) 说明:A, B注册后,方可下载。USGS上的数据比对地中心要新一些,格式种类要多,有许多是经过正射矫正(Orthorectified)的数据,做图可以直接拿来用,另外,landsat 7在2003年以后的数据(SLC-off)由于卫星故障,有条带,虽然修复过,最好不用,具体说明见中科院对地中心数据下载网站。C里面数据类型丰富,包括ASTER,QUICKBIRD,EOS等等,可以作为练习数据使用。 D 下载前准备:查询数据行列号(Path/Row)以下是Landsat 7 影像行列号

遥感影像的波段组合及用途

高光谱遥感数据最佳波段的选择根据自己对具体影像解译的要求进行波段的选择,以提高解译的速度和精度。 若要获得丰富的地质信息和地表环境信息,可以选择TM(7、4、1)波段的组合,TM(7、4、1)波段组合后的影像清晰度高,干扰信息少,地质可解译程度高,各种构造形迹(褶皱及断裂)显示清楚; 若要获得监测火灾前后变化分析的影像,可以选择TM(7、4、3)波段的组合,它们组合后的影像接近自然彩色,所以可通过TM(7、4、3)彩色合成图的分析来掌握林火蔓延与控制及灾后林木的恢复状况; 若要获得砂石矿遥感调查情况,可以选择TM(5、4、1)波段组合;用TM影像编制洲地芦苇资源图时,宜用TM(3、4、5)波段组合的影像,分辨率最高,信息最丰富;用MSS图像编制土地利用地图,通常采用MSS(4、5、7)波段的合成影像; 若要再区分林、灌、草,则需要选用MSS(5、6、7)波段的组合影像。 遥感影像时相的选择 : 遥感影像的成像季节直接影响专题内容的解译质量。对其时相的选择,既要根据地物本身的属性特征,又要考虑同一地物不同地域间的差异。例如解译农作物的种植面积最好选在8、9月份,因为这时作物成熟了,但还没有收割,方便各种作物的区别;解译海滨地区的芦苇地及其面积宜用5、6月份的影像;解译黄淮海地区盐碱土分布图宜用3、4月份的影像。 高分辨率影像的选择 : 分辨率的选择要符合自己的实际需要,分辨率高对解译速度和精度都有很大帮助。随着科技的不断发展,已经有了15~30m分辨率的ETM/TM影像、2.5~5.0m分辨率的SPORT 影像、2m分辨率的福卫二号、lm分辨率的ORBVIEW一3/IKONOS、0.6m分辨率的QUICK BIRD 等。法国SPOT-5卫星影像分辨率可达到2.5m,并可获得立体像对,进行立体观测。SPOT 一5卫星上的主要遥感设备是2台高分辨率几何成像仪(HRVIR),其工作谱段有4个,主要任务是监测自然资源分布,特别是监测农业、林业和矿产资源,观测植被生长状态与农田含水量等项,对农作物进行估产,了解城市建设与城市土地利用状况等。卫星遥感传感器和遥感数据处理技术发展很快,一些传感器的立体观测,各类遥感数据分辨率的提高,为遥感影像解译标志和遥感影像信息模型的开发、研究提供了有利条件,为快速和精确地进行解译提供了便利。 ETM+遥感不同波段的用途 741 741波段组合图像具有兼容中红外、近红外及可见光波段信息的优势,图面色彩丰富,层次感好,具有极为丰富的地质信息和地表环境信息;而且清晰度高,干扰信息少,地质可解译程度高,各种构造形迹(褶皱及断裂)显示清楚,不同类型的岩石区边界清晰,岩石地层单元的边界、特殊岩性的展布以及火山机构也显示清楚。 742 1992年,完成了桂东南金银矿成矿区遥感地质综合解译,利用1:10万TM7、4、2假彩色

遥感卫星影像图查询购买流程介绍

北京揽宇方圆信息技术有限公司 遥感卫星影像图查询购买流程介绍 丰富的数据源 北京揽宇方圆拥有先进的国产业务卫星与商业卫星、国际业务卫星与商业卫星、灵活机动的低空飞行等遥感数据,可实现多空间、时间分辨率的不同数据的整合,向客户提供满足个性化需求的影像数据服务。 先进的生产技术 北京揽宇方圆遥感卫星数据处理严格质量控制的半自动高性能集群计算,数据迭代更新的系统级海量处理,有效无云的光学影像处理体系。 科学的生产流程 A、原始卫星影像数据:整合国内外遥感卫星数据源; B、自主产权遥感数据软件:高效、稳定的影像数据生产线; C、有效数据像元:全色、多光谱影像;无云有效数据碎片; D、合成卫星影像:多源卫星合成镶嵌影像 系列化影像产品 北京揽宇方圆在科学、严格的标准化生产管理和质量控制体系基础上,已构建多条成熟的影像数据生产线,可满足规模化海量影像数据生产,可提供融合影像、镶嵌影像产品,形成高质量规格的DEM与影像地图服务,同时可实现影像资源的持续、快速、稳定更新。 北京揽宇方圆信息技术有限公司是国内的领先遥感卫星数据机构,而且 是整合全球的遥感卫星数据资源,分发不同性能、技术应用上可以互补的多

种卫星影像,包括光学、雷达卫星影像、历史遥感影像等各种卫星数据服务,各种专业应用目的的图像处理、解译、顾问服务以及基于卫星影像的各种解决方案等。遥感卫星影像数据贯穿中国1960年至今的所有卫星影像数据,是中国遥感卫星数据资源最多的专业遥感卫星数据服务机构,提供多尺度、多分辨率、全覆盖的遥感卫星影像数据服务,最大限度的保证了遥感影像数据获取的及时性和完整性。 优势: 1:北京揽宇方圆国内老牌卫星数据公司,经营时间久,行业口碑相传,1800个行业用户选择的实力见证。 2:北京揽宇方圆遥感数据购买专人数据查询一对一服务,数据查询网址是卫星公司网。 3:北京揽宇方圆拥有大型正版遥感处理软件,遥感数据处理工程师有10年以上遥感处理工作经验,并有国家大型项目工作经验自主卫星数据处理软件著作权,最大限度保持遥感卫星影像处理的真实度。 4:北京揽宇方圆国家高新技术企业,通过ISO900认证的国际质量管理操作体系,无论是遥感卫星品质和遥感数据处理质量,都能得到保障。 5:影像数据官方渠道:所有的卫星数据都是卫星公司授权的原始数据,全球公众数据查询网址公开查询,影像数据质量一目了然,数据反应客观公正实事求是,数据处理技术团队国标规范操作,提供的是行业优质的专业化服务。 6:签定正规合同:影像数据服务付款前,买卖双方须签订服务合同,提供合同相应的正规发票,发票国家税网可以详细查询,有增值税普通发票和增值税专用发票两种发票类型可供选择。以最有效的法律手段来保障您的权益。 7:对公帐号转款:合同约定的对公帐号,与合同主体名发票上面的帐号名称一致,是由工商行政管理部门核准的公司银行账户,所有交易记录均能查询,保障资金安全。

遥感数据

4.6 航空摄影测量与遥感数据的录入 航空象片以及其他遥感影象,除了自身可以作为GIS原始数据被用于一般性参考和粗略判读和量算之外,还可以通过各种进一步的处理、解释和计算机辅助信息提取而获得大量的第二手空间数据。 图4-3列出了航空象片的获取、处理和一些常用的应用。 图4-3航空象片的获取、处理和一些常见的应用 航空摄影一般采用专门航测飞机,如需要特定波段的光谱影象,可结合使用滤色片和具有特定光谱敏感范围的胶片,这样可以获得光谱分辨率高于20nm的航空影象。这对某些专题信息的提取很有意义。例如植物叶绿素在680nm到700nm 波段内对光线的吸收最强,利用这一波段的影象可以估算不同植物或植物在不同健康程度下的叶绿素含量。 航空象片是一种应用最广泛的遥感数据。卫星遥感可以覆盖全球每一个角落,对任何国家和地区都不存在由于自然或社会因素所造成的信息获取的空白地区,卫星遥感资料可以及时地提供广大地区的同一时相、同一波段、同一比例尺、同一精度的空间信息;航空遥感可以快速获取小范围地区的详细资料,也就是说,遥感技术在空间信息获取的现势性方面有很大的优势 遥感数据有以下优点1.增大了观测范围。 2.能够提供大范围的瞬间静态图象。这一点对动态变化的现象非常重要。例如可根据一系列在不同时间获得的洪泛区图象,研究洪水在大面积范围内的变化,这一点靠野外测量的方法很难做到,因为当我们从一点到达另一点的时候所观测的洪水趋势已与上一点的观测时间不同了,所以得不到一个大范围的瞬间静态图象。 3.能够进行大面积重复性观测,即使是人类难以到达的偏远地区也能够做到这一点。特别是在卫星平台上可以周期性地获取某地区的遥感数据。

测绘地理大数据在城乡规划中的应用研究

测绘地理大数据在城乡规划中的应用研究 发表时间:2018-12-05T10:50:09.203Z 来源:《建筑学研究前沿》2018年第24期作者:李书强 [导读] 全方位、多时空的地理数据,为人类能更加透彻地感知、更加智慧地规划建设和管理我们的生存生活环境提供可能。 天津市滨海新区规划和国土资源地理信息中心天津市 300450 摘要:目前,我们已经可以获取丰富自然地理、人文地理、经济地理等数据资源。这些数据既包含结构化的地理信息大数据类型,如遥感影像数据,基础地理信息数据,大地基准数据,电子地图数据和与位置关联的各类地物的属性数据。也包括非结构化的地理信息大数据类型,如与位置关联的社交与商务碎片化文字描述数据,与位置相关的图片、视频、语音等数据和移动轨迹数据。全方位、多时空的地理数据,为人类能更加透彻地感知、更加智慧地规划建设和管理我们的生存生活环境提供可能。 关键词:城乡规划;测绘地理大数据;应用 引言 测绘是通过使用科学的技术、理念及方法获取和空间位置相关的各种图形及数据资料,当前有数字信息技术为测绘提供保障,已经逐渐形成测绘地理大数据。将该技术应用到城乡规划中十分重要,利用测绘数据可以建模,进而科学、专业、合理、正确反映出城乡建设中的社会信息、经济信息等。因此,在城乡规划中,科学使用测绘地理大数据,发挥出其价值,是当前需要重点关注的。 1城乡规划与测绘数据的关系 基础测绘具有公益性和基础性特点,其发展中主要以地方政府和国家投入为主,在测绘中人们主要强调的是数据采集和信息提取,同时对地理环境建设成果有强有力的保障。在大数据时代随着移动位置服务位置服务采集各种数据媒体数据增多,空间数据处理基础也得到较大的发展。测绘行业大量的大数据获取和处理方法在城乡规划中的应用不断扩大。为了更加深入的挖掘价值对服务转型的思考,我们必须在大数据形成的各个环节转变和突破。近几年测绘数据在经济发展中起着越来越重要的作用,首先测绘数据的实现在城乡规划中得到较好的应用,我国城乡面貌正在朝着日新月异的方向发展,城市和乡村建设与发展需要加强规划和指导,而做好城乡规划首先必须要足够多的数据做支撑,提供城市、村镇的基本面貌和基本动态信息,能够很好的促进城乡协调发展。 2测绘大数据在城乡规划中的应用 2.1GPS测绘地理大数据测绘地理大数据在城乡规划中的应用 GPS技术以卫星定位原理为支撑,因其其环境适应性更强,不会受到时间、地点以及气候等因素的影响,在城镇规划中得到了有效应用。GPS技术能够根据事先确定的测量条件和需求进行测量工作。在测量的施工中GPS技术精确度非常高,不需要监测站之间通视,还能够实现远距离的测量定位计算。采用GPS技术能够降低人力物力的投资,而且操作简单便捷,不受时间和地域的影响和干扰,测量效率高,是其他测绘技术难以媲美的。 利用GPS技术并以城市地图为基础,定位城镇规划的具体位置以及规划范围,并根据所要规划区域中的建筑物分布以及基础设施分布,规划城乡道路线路。根据城市的地形状况,合理布局服务设施建设,做到基础设施建设全方位、全范围的覆盖。并利用GPS技术建立相关数据模型,将城乡规划中所涉及到的抽象的数据转化为具体的对象,在模型设计中设定更多的评价因子,保证城乡规划的的科学与合理性。 2.2遥感测绘地理大数据在城乡规划中的应用 在实际的测量工作中普遍存在的问题是土地会随时的发生动态变化,在这种情况下,GPS测绘技术就很难发挥作用,因此需要利用遥感技术进行地籍测量,以为城乡规划提供更为准确的数据。遥感技术能够迅速获得土地变更数据,从而保证了测绘结果的时效性。不仅如此,因为有些开发整理项目位置比较偏远,而遥感技术不受地域和昼夜的限制,可以对偏远地区的土地情况进行远程监测和分析,并且在晚上进行测量也不会影响测量效果,对瞬间的地籍变化情况能够迅速敏捷的捕捉,从而实现偏远地区的动态测量。 利用遥感技术监测城市发展的状况,能够及时获取需要规划区域中的基础设施建设和完善情况,对规划区域的建设格局做到详细的了解。此外,还可以通过对遥感测绘数据的整理和分析,根据遥感大数据集合内部之间趋势和相关性,绘制城镇道路网络、建设布局等图像,提升地理测绘信息和数据的可视化,为城市规划的衔接以及后续的城镇规划项目的实施提供参照,并且还可以对规划后的城镇进行实时追求监测,随时了解城乡建设的现状,为后期城乡建设以及发展提供科学的数据支持。 2.3摄影测绘地理大数据 遥感技术虽然具有其独特优势,但是在图像精度上还是有一定不足,无法满足高精度的图像要求,因此,其在大面积覆盖区域内的地基测量不适合使用这一技术。这时可以采取摄影测量技术,该技术不会受气候条件影响,和遥感测绘技术进行比较,其要比遥感测绘技术拥有更快的速度,在结果上也要更准确,具有很高的图像分辨率,对于环境复杂和地形构造复杂的农村来说,非常适合使用这一技术。该技术通常分成两种:①航空摄影;②地面摄影。因为有时会存在地面建筑物遮挡的情况,会给地面摄影的效果造成影响,无法获取建筑物后面的景,就会让测量工作遇到困难。这种情况下,就可以使用航空摄影,其就可以有效解决这一问题,可以将内容直观的展示出来、信息丰富,具有很高的精度,其可以给城市分区规划、专项规划、控制性规划提供有效的背景参考资料,通过航空技术捕捉某一区域,可以从影响中直接看到城市建设的情况和成就。 3城乡规划中测绘地理大数据的应用 3.1测绘大数据支持下的城乡规划实施评估 城乡规划评估节点,要利用社交网络、移动终端以及公交刷卡激励等方式开展交通规划研究和评估,同时利用卫星遥感信息覆盖城乡大范围据点,开展多种专题研究,全面的认识城市总体规划实施的执行情况,包括城市用地规划、城市发展方向以及城市占地规模等等情况。综合人文数据、综合经济等对城市产业聚集和资源配置效率实施分析。利用新技术和新形式采用统计年年鉴和用户调查的方式分散、静态规划评估复发,使城乡规划评估更加公正、客观,促进城乡规划高效发展。 3.2基于测绘大数据的规划编制和设计创新 城市用地规划是城乡规划编制的重要内容之一,这个方面主要指的是为了满足道路交通、城市景观、建筑布置以及城市排水等方面的

相关主题
文本预览
相关文档 最新文档