当前位置:文档之家› 有限元平面问题

有限元平面问题

有限元平面问题
有限元平面问题

[]

()1

,2

1

1112

1

=∴---++==

i i i j

k i j k i i k k j j i k

k

j j i i y x N y x y x y x y x y x y x y x y x y x A

即:()()()1,,,===k k k j j j i i i y x N y x N y x N (由i,j,k 轮换性知) 同理可证:()()0,,==k k i j j i y x N y x N (作业:证明:()()k j i j i y x N j j i ,,0,=≠=)

因此

()()()()()()()()()()??

???

??===???≠===?======1

,,0,,0,,1,00,,1,,0,0

,,0,,1,k k k j j k i

i k j

i

i k k j j j j i i j k k i j j i i i i y x N y x N y x N j i j i j N y x N y x N y x N y x N y x N y x N δ (2-12)

即形函数在自己节点上为1,在其余节点上为0。

2. 在单元上任意一点,三个形函数之和为1,即

()()()1,,,=++y x N y x N y x N k j i 。

证明:

()()()()()()()[]

y c c c x b b b a a a A

y c x b a y c x b a y c x b a A

y x N y x N y x N k j i k j i k j i k k k j j j i i i k j i ++++++++=

++++++++=++21

21

,,,

?

??

??-=-=-=j i k i k j k j i y y b y y b y y b ?

??

??-=-=-=i

j k k i j j k i x x c x x c x x c ()()()()()()()()()()()()1

,,,0

02=++∴=-+-+-=++=-+-+-=++=-+-+-=++y x N y x N y x N x x x x x x c c c y y y y y y b b b A y x y x y x y x y x y x a a a k j i i j k i j k k j i j i i k k j k j i i j j i k i j k j k k j k j i (2-13)

由此可见,三个形函数中只有2个是独立的,即第三个可由其余两个表示。

3. ij 边上的形函数()k j i i N i ,,=与节点k 的坐标无关(i ,j, k 轮换),即在ij 边上有:

()()()????

?

?

?????

=--=---=0,,1,y x N x x x x y x N x x x x y x N k i

j i j

i

j i i

(i ,j, k 轮换) (2-14)

证明:设 节点i 坐标:()i i y x ,,节点j 坐标:()j j y x ,。 求:ij

边的直

线方程。

i j i i j i x x x x y y y y --=

--

()i j i

j i

i y y x x x x y y ---+=∴ ()

()()()

()()(){}()()()()()k

k j j k i i k j k i j i k j k i j i j i j j i j i j i j j j i k k i j j j j j j k j i i k

k k i j k i j c c b c b x x A x x c c b x x b A x x c c b x x b y c x b a A x b x b y c x b a A x x c b y c x b a A y c x b a A y x N N ij N y x x x c b

b y y

c x x +--=

??????

--

-=??????---+++=-+++=?

?????

??????--++=++--=∴-=-=-222222,N ,:,,N y y ,j j i 1

111

11=计算边上的值在得到代入直线方程为:

()()0,==++i i j i j i j j

y x N y c x b a

k

k

j j i i y x y x y x A 1112

1

=

()()()()A

y x y x y x y x y x y x x x y y x x y y c b c b j k i j k i i k k j j i k i j i i j i k j k k j 2=---++=-----=- ()k

i

j c x x y x N -=

∴, i j k x x c -=∴ ()i

j i

j x x x x y x N ij --=

∴,边上有:在

在j i 边上:

()()()(){}[]()0,2222,==++=-+++=????????????--++=++=

i i k i k k k k i k i k k k i k k i k k k k k k k y x N y c x b a A x x b y c x b a A x x c b y c x b a A y c x b a A y x N 11

11

由性质2 :

()()()i

j i

k j i x x x x y x N y x N y x N ---

=--=∴1,,1,

即在i ,j 边上有:

()()()????

?

?

?????

=--=---=0,,1,y x N x x x x y x N x x x x y x N k i

j i j

i

j i i

(2-15) 证毕。 同理知:(轮换)

在jk 边上有: 在ki 边上有:

()()()????

?

?

???

??--=

---==i j i k i j i j

i x x x x y x N x x x x y x N y x N ,1,0, ()()()???

?

?

????---==--=i j i k j i

j i

i

x x x x y x N y x N x x x x y x N 1,0

,, 几何表示:

五、三角形单元位移函数的收敛性

(要点提示:单元位移函数的三条收敛准则及意义)

下面我们来验证所设的位移函数??

?++=++=y

x v y

x u 654321αααααα 满足收敛准则(三条)。

1、 单元的位移函数解反映单元的刚体位移(包含有)

由几何方程:????

???????+??=??=??=

x v y u y v

x u xy

y x γεε 寻找物体发生刚体位移的条件。

若物体发生刚体位移,则有:

()()x f v y f u x v y u y v

x u

xy

y

x 21,000==?????

?????=??+??==??==??=γεε ()的任意函数为y u 由0=xy γ得:

()()021=??+??x x f y y f ()()dx

x df dy y df 21=-∴

等式两侧分别为x 和y 的函数,要使其相等只有:

()()const dx

x df dy y df ===-

∴ω21

积分:()()??

?+=-=x

v x f y

u y f ωω0201 式中00,v u 为积分常数

故位移:()()00201===??

??-==-==xy y x x v x f v y

u y f u γεεωω

即:(不难证明)以上两项是发生刚体位移的充要条件。 因为这是xy y x γεε==的情形。故:

刚体转动的转角

方向的刚体位移方向的刚体位移---ωy x u 00v

事实上,将位移函数改变形式为:

???

???

?

+-+++=-++++=y

x x v y y x 635534535321222

2u αααααααααααα

显然可看出:

????

???

----转的刚体转动体现绕无关)方向的刚体位移(与体现无关)方向的刚体位移(与体现z y x y y x x 2,,3

541α

ααα (其它系数意义后述)

2、

单元位移函数解反映单元的常应变

由:???????????+??=??=

??=

x v

y u y v

x u

xy y x γεε 可以得到:

????

?????+=??+??==??=

=??=5362ααγαεαεx v

y u y v

x u

xy y x ()()53532

1

21ααααβαγ+++=+=xy

显然:???

??-+--常量

体现了单元的剪应变为方向的常应变体现了单元沿方向的常应变体现了单元沿53

62ααααy x

由此看出,但单元的各应变均为常量。故三角形单元在位移函数:]

?

?

?++=++=y x v y x u 654321αααααα 下个典的各个应变量均为常量。故称ε为常应变单元。

3、 单元的位移函数在单元内部连续,在边界与相邻单元协调。

显然,设?

??++=++=y x v y x u 654321αααααα 是单元内部的连续函数。下面考察下边界上协调(一致)

的问题。

由形函数的第3条性质,我们证明: 对于相邻的两个单元j i e e ,,21为公共边界。

ij 边上的N:

()()()????

?

?

?????

=--=

---=0,,1,y x N x x x x y x N x x x x y x N k i

j i j i

j i i

分别写出两个单元在公共边上的位移表达

式。

对于单元1e ,其位移函数为:???

??++=++=k

k j j i i e k k j j i i e v N v N v N v u N u N u N u 1

1

(*)

对于单元2e ,其位移函数为:???

??++=++=m

m j j i i e m m j j i i e v N v N v N v

u N u N u N u 2

2 (**) Ij 为单元1e ,2e 的公共边界。由形函数的性质3我们知道:

????

?

?

?????

==--=

---=0

1m

k i

j i j i

j i i N N x x x x N x

x x x N 仅与节点 i 有关。

因此,对于1e :???

???

?--+???? ??---=--+???

? ??---=j i j i i i j i e j i j i i i j i e v x x x x v x x x x v u x x x x u x x x x u 1111

对于2e :???

????--+??

?? ??---=--+???

? ??---=j

i j i i i j i e j i j i i i j i e v x x x x v x x x x v u x x x x u x x x x u 1122 与节点k,m 无关,仅与i, j 节点坐

标及i i v u ,有关。

j i x x ,-- 已知常数

i i v u ,-- 节点位移唯一

边界上x 唯一确定u,v

由1e

u 和2e

u 比较及1e

v 和2e

v 比较知:在公共边界上各点,ij 上位移u,v 是唯一的。

由上知:三角形单元的位移函数?

??++=++=y x v y

x u 654321αααααα 满足收敛性条件。 Note: 用三角形单元计算则位移是连续的。而应力、应变是阶梯的。位移法(假

设位移)的结果位移要好(比应力准确)。

2-5 三角形单元的刚度矩阵(单刚)

提示:我们已经建立了三角形单元的位移函数;导出了三角形单元的形函数;并用形函数来表示其位移函数;最后,我们证明了三角形单元位移函数的收敛性。

下面我们要推导三角形单元的单元刚度矩阵。在推导单刚前我们还有些准备工作要做。

一、 三角形单元的应变矩阵[B]

将位移函数写出来:?????++=++=k

k j j i i k

k j j i i v N v N v N v u N u N u N u

其中:

()y c x b a A

N j j j i ++=21

),,(k j i i = 把位移函数u,v 代入几何方程:

()()()()()()[]

???

???????

??

?

+++++=+++++=??+??=++=??=++=??=k k k k j j j j i i i i k

k j j i i k k j j i i xy k k j j i i y k k j j i i x v b u c v b u c v b u c A

v b v b v b u c u c u c A x v y u v c v c v c A y v u b u b u b A x u 21212121γεε

写成矩阵的形式就是:(单元上任一点的应变)

{}?????

?????

??????????????????????=??

????????=k k j j i i k k

j j i i k j i k j i

z y x v u v u v u b c b c b c

c c c b b b A 000

000

21εεεε (2-16) 或{}[]{}e

B ?=ε (2-17)

式中:[]??

??

?????

?=k k

j

j

i

i k j i k j i

b c b c b c c c c b b b A

B 00000021 (2-18) 或分块:

[][][][][]k j i B B B B = (2-19)

式(2-16)表示单元节点位移{}e

A 与单元应变{}ε的关系。矩阵[]

B 称为应变矩阵。 式(2-18)表示应变矩阵为常数矩阵()

j k i k i i x x c y y b -=-=,,再次证明三节点三角

形单元为常应变单元。

二、 三角形单元的应力矩阵[]S

由物理方程知:()()??

?

?

?

?

???

-?-=+-=+-=xy xy y x y y x x u E u E u E γμτεμεσμεεσ2111122

2 ()xy xy E γμτ+=12 用矩阵表示:?

????

??????????

?

??????--=??

????????xy y x xy y x u E γεεμμμτσσ210

0010112 (2-20)

或缩写为:{

}[]{}εσD =(2-21) 其中:[]???

??

?

???

???

--=210

0010112μμμu

E D (2-22) 称为弹性矩阵(仅与弹性常数有关)。

把{}[]{}?=B ε代入物理方程{

}[]{}εσD =,得到:{}[]{}[][]{}?==B D D εσ 令[][][]B D S = (2-23)

则有:{

}[]{}?=S σ (2-24) 式(2-24)表示应力与节点位移的关系。

[]S 由式(2-23)给出,称为三角形单元的应力矩阵。

显然,弹性矩阵[]D 及应变矩阵[]B 都是常量矩阵。故应力矩阵[]S 也是一个常量矩阵。因此三节点三角形单元的应变和应力都是常量。

三、三角形单元的单刚

建立了应力与节点位移的关系式(2-24),我们就可以推导单刚了。我们用虚功原理来推导。一般来说,有限元的单刚最普通的方法是用变分原理来推导。求泛函的变分(functional 泛函的函数)。(在力学上就是最小泛解的变分原理)。由于我们尚未解除变分原理且对于弹

力问题,用虚功原理推导就可以了。

有人证明了用虚功原理推导和用最小泛解的变分原理来推导单刚,对于弹性力学的问题结果是一致的。

??

?接受;偏于使用概念直观、清楚;容易虚功原理来推导:力学

偏于纯理论研究严密;数学基础扎实;变分原理来推导:推理

下面我们用虚功原理来推导三节点三角形单元的单刚。

1. 单刚的推导(单元是平衡的:对其应用虚功原理)

如图所示,三角形单元的节点位移和节点力为:

节点位移:

{}{

}

T

k

k

j j i i k j i e

v u v u v u =??

?

??

????????=?

节点力:

{}{

}

T

yk

xk

yj xj yi xi k j i e F F F F F F F F F F =??

?

??

?????=

给定一组虚位移:(每个单元都可能有虚位移)(虚位移是人为假设的任意位移,其唯一的条件就是约束所允许)

{}{

}

T

k

k

j j i i k j i e

v u v u v u δδδδδδδδδδ=??

?

??????????=?

产生虚应变:

{}e

xy y x e

??

????????=δγδεδεδε

则单元的外虚功为:(节点力)

{}

{}

e

e k yk k xk j yj j xj i yi i xi F v F u F v F u F v F u F T

?=+++++δδδδδδδ

单元的内力虚功为:

(){}{}tdxdy

tdxdy e

eT

A

xy xy y y x x

A

??

??=++σδεδγτδεσδεσ

由虚功原理知:

{}{}

{}{}tdxdy

F eT

A

e

eT

??

=?σδεδ

我们设法把等式右侧的应力和虚应变换成位移和虚位移表示:

{}[]{}

εσD = {}[]{}

?=B ε

{}[][]{}

e

e

B D ?=∴σ

{}

[]{}

e

e

B ??=δδε

代入虚功方程右侧:

{}{}[]{}()[][]{}{}[][][]{}tdxdy B D B tdxdy B D B tdxdy e

T

eT A e T

e A e

eT A ??

??????=??=δδσδε{}eT ?δ及{}e ?都与

x,y 无关。在有限元中当我们研究一个单元时单元内的任一点位移可由

节点位移表示,是x,y 及节点位移的函数节点位移我们认为是已知量。故有:

{}{}{}[][][](){}e T A eT e eT tdxdy B D B F ??=???δδ [][][]B D B T 可能是x,y 的函数

令:[][][][]??=

tdxdy B D B k T

A e (2-25)

则:{}[]{}e

e

e

k F ?= (2-26)

式(2-25)为三角形单元的单刚。

式(2-26)为三角形单元的单元刚度方程。

由于[][]D B ,均为常数矩阵。故有:[][][][]B D B t A k T

e

??= (2-27)

书上P72已将[]e

k 各项展开。(把k m →)大家可看一下。

2. 单刚[]e k 的物理意义

把单刚分块,则单元刚度方程可写成:

e

k j i e kk

e kj

e ki

e jk e jj e ji e ik e ij e

ii e

k j i k

k

k k k k k k k F F F ??

?????????????????????=??

?????????66 (2-28)

展开得:{}e

k e ik e j e ij e i e ii e

i k k k F ?+?+?=

{}

k jk j jj i ji e

j

k k k F ?+?+?=

{}k kk j kj i ki e

k k k k F ?+?+?=

显然:e ii k 表示当0,1=?=?=?k j i 时在i 节点产生的节点力e i F e

ij k 表示当0,1=?=?=?k i j 时在i 节点产生的节点力e i F

3. 单元[]e k 的性质(与外力无关)

1)[]e

k 是66?的对称矩阵,即e ji e

ij k k = (互等定理)且主元非负,且e ii k >0

2)[]e

k 是奇异矩阵:(最简单的想法,最笨的做法是证明|[]e

k |=0)

[]e k 是66?方阵,我们这样做: 把1)、3)、5)三个加在一起。(见P123)

()()k j i i k j i i i k i k i j i j i i c c c c b b b b c c b b c c b b c b ++-+++=-++-++-+

=∑2

12

12121221μ

μ

μμ

?

??

??-=-=-=j

i k i k j k j i y y b y y b y y b ?

??

??-=-=-=i

j k k i j j

k i x x c x x c x x c

∑=∴=++=++∴0

0,01k j i k j i c c c b b b

同理可证:

=0i

()6,5,4,3,2=i

∴[]e

k 是奇异的。

3)[]e

k 的影响因素

A. 单元的几何参数:大小A(平缓过渡问题),厚度t,方位(节点坐标差)()i i y x ,

B. 单元的材料特性:[]0,?μE

()21A A =

至此,我们已经推出了单刚,并对[]u 进行了讨论。有了单刚后我们就可以利用平衡条件建立总刚了。

3—6 结构刚度矩阵—总刚

提示:推导出单元的刚度矩阵,就意味着我们有了单元上节点力与节点位移的关系。与一维的问题相同,我们下一步工作就是要找到结构的总刚度矩阵。建立以结构节点位移为未知数的结构刚度方程。

一、节点的平衡方程(内力与外力的平衡)

我们仍然用一个简单的直观的例子来推导总刚度方程,然后不失一般性的推广到一般的结构。

结构离散如图所示,取出节点3来研究节点的平衡。 首先写出各单元的单元刚度方程。

单元(1))

1(431)

1(4443

41

3433311413

11

)

1(431??

???

????????????

??????=?

?

????????k k k k k k k k k F F F

单元(2))

2(321)

2(3332

31

232221131211)2(321??

???????????????

??????=??

????????k k k k k k k k k F F F

单元(3))

3(352)

3(3335325355522325

22)

3(352?????

??????????????????=??????????k k k k k k k k k F F F

单元(4))

4(453)4(4445

43

545553343533)4(453??

???????????????

??????=?

?

???

?????k k k k k k k k k F F F

对节点3列出平衡方程

外力:{}?

?????=333y x P P P 内力:{}?

?

???

?????=??????=∑∑e y e x y x F F F F F 33333

由平衡条件:{}{}33F P = ——平衡方程

二、总刚的形成(先写方程,再定义总刚)

结构的总刚度矩阵可由结构全部节点的平衡方程写出。我们仅以例中的结构,第3 节点

的平衡方程说明如何建立该结构的第三个方程(子块)

按节点形式展开节点3 的平衡方程:

{}{}{}()

()()

()

)

4(434535333)

3(333535232)

2(333232131)1(5)1(35)1(3)1(33)1(1)1(31333?+?+?+?+?+?+?+?+?+?+?+?===∑k k k k k k k k k k k k F F P e

e

注意到:i e

i ?=? ()5,1-=i 则(按节点重排):

{}()()()()()5)4(35

)3(354)4(34)1(343)4(33)3(33)2(33)1(332)3(32)2(321)2(31)1(313?++?++?++++?++?+=k k k k k k k k k k k k P

把该结构的总刚中第3个子块写出:

????

?????

????????????????????????

?????

?=??????????????????∑∑∑∑∑-543214

,3354

,1344

1333

,2322,13154321e e

e

e

e k k k k k P P P P P

在总刚度方程中,总刚矩阵的第3行(子块)的元素为第3 个节点全部相关单元的单刚中对应下标的元素(子块)之和。(相关节点—若i,j 同属于e 则i ,j 为相关节点;相关单元—与节点i 相连的单元为i 的相关单元)

同理,由结构其余节点的平衡方程,可以得到总刚的全部内容:

???????

??

????????????????????????

?

????

????????

?=??????????????????∑∑∑∑∑∑∑∑∑∑∑∑∑-543214,355)

4(54

4

,353

)

3(52

)4(454

,144

4,143

)1(414

,3354,134

4133

3

,232

2,131253,223

3,222

21

142,11312

2

,11154321000

0k k k

k k k

k k k k k k

k k k k

k k k k k P P P P P 杆系结构的总刚中

ij k 只解来自某一单刚。

而平面问题ij k 可能来自两个单

刚。

更一般地,对于一个结构,若将其离散为m 个单元,n 节点则有:

??????

?

?

?

??

??

????????????????????

???

????????????????????

?=??????????????????????????n j i nn nj

ni

n n jn jj ji j j in ij

ii i i n j i n j i n j i k k k k k k k k k k k k k k k k k k k k k k k k k P P P P P

212

121212222221111121121

其22?为ij k 子块 [

]

T

yi xi

i p P P = ; {}{}T

i i

i v u =?

或者写为:

{}[]{}

?=k P

总刚形成方法:

1.对角线子块ii k 为:节点i 相关单元(e)的单刚中)(e ii k 求和。即

ii k =∑)

(e ii

k

2.非对角线子块ij k :

()

()?????==∑0

,2,ij e ij ij k j i k k j i 为非相关节点时:若—对平面问题—个单元求和至多为相关节点时:若因此,通俗一点就是:???副子块看线主子块看点

实际上,程序是按单刚中对应下标求和进行的。

三、总刚度矩阵的性质

1. 总刚[k]为对称矩阵。

[][]

T

ji

ij

k k =(子块)

可由单刚对称性及总刚形成的方法看

ex.)2(13)1(1313k k k += )

2(31)1(3131k k k += T

k k 3113= ()2,1=e

2.总刚是一个奇异矩阵

明确的物理解释

3.总刚是一个稀疏矩阵?必然的有许多非相关节点 0=ij k

有条件的:带状稀疏(节点编号满足螺旋法则)

{}[]{}?=k P

总刚度矩阵是奇异的,要进行约束处理(代入已知的边界条件) 荷载是节点载荷,不具一般性

3-7约束处理

结构总刚度方程中,[]k 是奇异的,无法直接求解{}[]{}?=k P ,需要进行约束处理 处理方法与一维问题相同

??

?

??划零置一法置大数法消行消列法 3-8载荷处理(载荷移置)-等效节点载荷

一、问题的提出

在有限元法中,结构离散后,单元之间的联系及单元间力的传递都是通过节点实现的。在我们推导单元刚度方程及结构总刚方程时,我们也都隐含了一个假设,那就是:作用于单元上及结构上的载荷为节点载荷。那么到目前为止,对于一个弹性力学的平面问题,如果作用于结构上的所有荷载都是节点载荷(集中力),我们已经可以用有限元法求解问题了。

但是,在实际的工程问题中,作用一个结构上的载荷是多种

多样的,也是比较复杂的。我们只有对任何种类的荷载都能用节点荷载来表示,有限元法才有生命力。对于一维杆系结构,它只是非常简单的一种情况,我们用求解单跨超静定梁的杆端力的办法,就可以进行荷载处理了。但二维以上的问题(弹力)就不能作类似的简单处理。例子如下(图)

二、荷载移置的原则

对于弹性力学问题而言,在处理荷载的移置时,必须满足如下的条件,才能保证计算结果达到较高的精度。

1.圣维南原理

()

()?

?

?

尺寸

单一尺寸远远小于结构

小范围移置

由虚功等效来保证

静力等效

2.载荷移置的唯一性(由位移函数唯一来保证)

三、载荷移置的一般公式

在进行荷载移置之前,我们首先对结构上各种的载荷进行分类载荷的种类:

有限元2-弹性力学平面问题有限单元法(2.1三角形单元,2.2几个问题的讨论)综述

第2章 弹性力学平面问题有限单元法 2.1 三角形单元(triangular Element) 三角形单元是有限元分析中的常见单元形式之一,它的优点是: ①对边界形状的适应性较好,②单刚形式及其推导比较简单,故首先介绍之。 一、结点位移和结点力列阵 设右图为从某一结构中取出的一典型三角形单元。 在平面应力问题中,单元的每个结点上有沿x 、y 两个方向的力和位移,单元的结点位移列阵规定为: 相应结点力列阵为: (式2-1-1) 二、单元位移函数和形状函数 前已述及,有限单元法是一种近似方法,在单元分析中,首先要求假定(构 造)一组在单元内有定义的位移函数作为近似计算的基础。即以结点位移为已知量,假定一个能表示单元内部(包括边界)任意点位移变化规律的函数。 构造位移函数的方法是:以结点(i,j,m)为定点。以位移(u i ,v i ,…u m v m )为定点上的函数值,利用普通的函数插值法构造出一个单元位移函数。 在平面应力问题中,有u,v 两个方向的位移,若假定单元位移函数是线性的,则可表示成: (,)123 u u x y x y ααα==++ 546(,)v v x y x y ααα==++ (2-1-2)a 式中的6个待定常数α1 ,…, α6 可由已知的6个结点位移分量(3个结点的坐标) {}??? ?? ?????=????? ???? ?????????????=m j i m e d d d d m j j i v u v u v u i {} i i j j m X Y X (2-1-1)Y X Y i e j m m F F F F ?? ?? ???? ???? ??==??????????????????

第三章平面问题的有限元法作业及答案

第三章 平面问题的有限元法作业 1. 图示一个等腰三角形单元及其节点编码情况,设μ=0,单元厚度为t 。求 1)形函数矩阵[]N ;2)应变矩阵[]B ;3)应力矩阵[]S 。 4 第1题图 第2题图 2. 如题图所示,结构为边长等于a 的正方形,已知其节点位移分别为:11(,)u v 、 22(,)u v 、33(,)u v 、44(,)u v 。试求A 、B 、C 三点的位移。其中A 为正方形形心,B 为三角形形心。 3.直角边边长为l 的三角形单元,如题图所示。试计算单元等效节点载荷列阵(单元厚度为t ,不计自重)。 第3题图 第4题图 4. 如题图所示,各单元均为直角边边长等于l 的直角三角形。试计算(1)单元等效节点载荷列阵;(2)整体等效节点载荷列阵。已知单元厚度为t ,不计自重。

5.下列3个有限元模型网格,哪种节点编号更合理?为什么? 9 34 6 7912 11 34 6 12142 (a) (b) (c) 第5题图 6.将图示结构画出有限元模型;标出单元号和节点号;给出位移边界条件;并计算半带宽(结构厚度为t )。 2a (a) (b) 无限长圆筒 (c) 第6题图 7. 结构如图所示,已知结构材料常数E 和 ,单元厚度为t 。利用结构的对称性,采用一个单元,分别计算节点位移和单元应力。 第7题图

答案: 1. 1)形函数 i x N a = , j y N a = , 1m x y N a a =-- 2)应变矩阵 []1000101 000101011011B a -????=-??--???? 3)应力矩阵 []100010100 01 0111 110022 2 2S a ? ???-? ?=-????- -? ?? ? 2. A 点的位移为 ()2312A u u u = + , ()231 2A v v v =+ B 点的位移为 ()24313B u u u u = ++ , ()2431 3B v v v v =++ C 点的位移为 ()1223C a u u u = + , ()C 1223 a v v v =+ 3. 单元等效节点载荷列阵为 {}11 11 00003 663 T e i j i j R q q q q ?? =++?? ?? 4. (2)整体等效节点载荷向量为 {}111100006 322T R qlt P qlt P P qlt qlt ?? =-???? 7. (1) 减缩后的整体刚度方程 22 12 2 1222 22221110222021102(1)2 2102x x b b ab R b ab b P v Et ab a b ab ab R v b a μμμ μμμμμμ---??- - ??????????--?????? -??? ?=????---+ +? ???? ?????????-????+?? ? ? 节点位移

平面问题的有限元法-Read

3 弹性力学平面问题的有限元法 本章包括以下的内容: 3.1弹性力学平面问题的基本方程 3.2单元位移函数 3.3单元载荷移置 3.4单元刚度矩阵 3.5单元刚度矩阵的性质与物理意义 3.6整体分析 3.7约束条件的处理 3.8整体刚度矩阵的特点与存储方法 3.9方程组解法 3.1弹性力学平面问题的基本方程 弹性力学是研究弹性体在约束和外载荷作用下应力和变形分布规律的一门学科。在弹性力学中针对微小的单元体建立基本方程,把复杂形状弹性体的受力和变形分析问题归结为偏微分方程组的边值问题。弹性力学的基本方程包括平衡方程、几何方程、物理方程。 弹性力学的基本假定如下: 1)完全弹性,2)连续,3)均匀,4)各向同性,5)小变形。 3.1.1基本变量 弹性力学中的基本变量为体力、面力、应力、位移、应变,各自的定义如下。 体力 体力是分布在物体体积内的力,例如重力和惯性力。 面力 面力是分布在物体表面上的力,例如接触压力、流体压力。 应力 物体受到约束和外力作用,其内部将产生内力。物体内某一点的内力就是应力。 图3.1

如图3.1假想用通过物体内任意一点p 的一个截面mn 将物理分为Ⅰ、Ⅱ两部分。将部分Ⅱ撇开,根据力的平衡原则,部分Ⅱ将在截面mn 上作用一定的内力。在mn 截面上取包含p 点的微小面积A ?,作用于A ?面积上的内力为Q ?。 令A ?无限减小而趋于p 点时,Q ?的极限S 就是物体在p 点的应力。 S A Q A =??→?0lim 应力S 在其作用截面上的法向分量称为正应力,用σ表示;在作用截面上的切向分量称为剪应力,用τ表示。 显然,点p 在不同截面上的应力是不同的。为分析点p 的应力状态,即通过p 点的各个截面上的应力的大小和方向,在p 点取出的一个平行六面体,六面体的各楞边平行于坐标轴。 图3.2 将每个上的应力分解为一个正应力和两个剪应力,分别与三个坐标轴平行。用六面体表面的应力分量来表示p 点的应力状态。应力分量的下标约定如下: 第一个下标表示应力的作用面,第二个下标表示应力的作用方向。 xy τ,第一个下标x 表示剪应力作用在垂直于X 轴的面上,第二个下标y 表示剪应力指 向Y 轴方向。 正应力由于作用表面与作用方向垂直,用一个下标。x σ表示正应力作用于垂直于X 轴的面上,指向X 轴方向。 应力分量的方向定义如下: 如果某截面上的外法线是沿坐标轴的正方向,这个截面上的应力分量以沿坐标轴正方向为正; 如果某截面上的外法线是沿坐标轴的负方向,这个截面上的应力分量以沿坐标轴负方向为正。 剪应力互等:xz zx zy yz yx xy ττττττ===,, 物体内任意一点的应力状态可以用六个独立的应力分量x σ、y σ、z σ、xy τ、yz τ、zx τ

弹性力学平面问题的有限元法

Mmm 3 弹性力学平面问题的有限元法 本章包括以下的内容: 3.1弹性力学平面问题的基本方程 3.2单元位移函数 3.3单元载荷移置 3.4单元刚度矩阵 3.5单元刚度矩阵的性质与物理意义 3.6整体分析 3.7约束条件的处理 3.8整体刚度矩阵的特点与存储方法 3.9方程组解法 3.1弹性力学平面问题的基本方程 弹性力学是研究弹性体在约束和外载荷作用下应力和变形分布规律的一门学科。在弹性力学中针对微小的单元体建立基本方程,把复杂形状弹性体的受力和变形分析问题归结为偏微分方程组的边值问题。弹性力学的基本方程包括平衡方程、几何方程、物理方程。 弹性力学的基本假定如下: 1)完全弹性,2)连续,3)均匀,4)各向同性,5)小变形。 3.1.1基本变量 弹性力学中的基本变量为体力、面力、应力、位移、应变,各自的定义如下。 体力 体力是分布在物体体积内的力,例如重力和惯性力。 面力 面力是分布在物体表面上的力,例如接触压力、流体压力。 应力 物体受到约束和外力作用,其内部将产生内力。物体内某一点的内力就是应力。

图3.1 如图3.1假想用通过物体内任意一点p 的一个截面mn 将物理分为Ⅰ、Ⅱ两部分。将部分Ⅱ撇开,根据力的平衡原则,部分Ⅱ将在截面mn 上作用一定的内力。在mn 截面上取包含p 点的微小面积A ?,作用于A ?面积上的内力为Q ?。 令A ?无限减小而趋于p 点时,Q ?的极限S 就是物体在p 点的应力。 S A Q A =??→?0lim 应力S 在其作用截面上的法向分量称为正应力,用σ表示;在作用截面上的切向分量称为剪应力,用τ表示。 显然,点p 在不同截面上的应力是不同的。为分析点p 的应力状态,即通过p 点的各个截面上的应力的大小和方向,在p 点取出的一个平行六面体,六面体的各楞边平行于坐标轴。 图3.2 将每个上的应力分解为一个正应力和两个剪应力,分别与三个坐标轴平行。用六面体表面的应力分量来表示p 点的应力状态。应力分量的下标约定如下: 第一个下标表示应力的作用面,第二个下标表示应力的作用方向。 xy τ,第一个下标x 表示剪应力作用在垂直于X 轴的面上,第二个下标y 表示剪应力指 向Y 轴方向。

有限元平面问题

[] ()1 ,2 1 1112 1 =∴---++== i i i j k i j k i i k k j j i k k j j i i y x N y x y x y x y x y x y x y x y x y x A 即:()()()1,,,===k k k j j j i i i y x N y x N y x N (由i,j,k 轮换性知) 同理可证:()()0,,==k k i j j i y x N y x N (作业:证明:()()k j i j i y x N j j i ,,0,=≠=) 因此 ()()()()()()()()()()?? ??? ??===???≠===?======1 ,,0,,0,,1,00,,1,,0,0 ,,0,,1,k k k j j k i i k j i i k k j j j j i i j k k i j j i i i i y x N y x N y x N j i j i j N y x N y x N y x N y x N y x N y x N δ (2-12) 即形函数在自己节点上为1,在其余节点上为0。 2. 在单元上任意一点,三个形函数之和为1,即 ()()()1,,,=++y x N y x N y x N k j i 。 证明: ()()()()()()()[] y c c c x b b b a a a A y c x b a y c x b a y c x b a A y x N y x N y x N k j i k j i k j i k k k j j j i i i k j i ++++++++= ++++++++=++21 21 ,,,

力学WORD教案-CHAPTER3弹性力学平面问题的有限元法

3弹性力学平面问题的有限元法 本章包括以下的内容: 3.1弹性力学平面问题的基本方程 3.2单元位移函数 3.3单元载荷移置 3.4单元刚度矩阵 3.5单元刚度矩阵的性质与物理意义 3.6整体分析 3.7约束条件的处理 3.8整体刚度矩阵的特点与存储方法 3.9方程组解法 3.1弹性力学平面问题的基本方程 弹性力学是研究弹性体在约束和外载荷作用下应力和变形分布规律的一门学科。在弹性力学中针对微小的单元体建立基本方程,把复杂形状弹性体的受力和变形分析问题归结为偏 微分方程组的边值问题。弹性力学的基本方程包括平衡方程、几何方程、物理方程。 弹性力学的基本假定如下: 1)完全弹性,2)连续,3)均匀,4)各向同性,5)小变形。 3.1.1基本变量 弹性力学中的基本变量为体力、面力、应力、位移、应变,各自的定义如下。 体力 体力是分布在物体体积内的力,例如重力和惯性力。 面力 面力是分布在物体表面上的力,例如接触压力、流体压力。 应力 物体受到约束和外力作用,其内部将产生内力。物体内某一点的内力就是应力。

图3.1

如图3.1假想用通过物体内任意一点 p 的一个截面 mn 将物理分为I 、n 两部分。将部 分n 撇开,根据力的平衡原则, 部分n 将在截面 mn 上作用一定的内力。 在mn 截面上取包含 p 点的微小面积 A ,作用于:A 面积上的内力为:Q 。 令.\A 无限减小而趋于p 点时, Q 的极限S 就是物体在p 点的应力。 应力S 在其作用截面上的法向分量称为正应力,用 b 表示;在作用截面上的切向分量 称为剪应力,用T 表示。 显然,点p 在不同截面上的应力是不同的。 为分析点p 的应力状态,即通过p 点的各个 截面上的应力的大小和方向,在p 点取出的一个平行六面体,六面体的各楞边平行于坐标轴。 将每个上的应力分解为一个正应力和两个剪应力, 分别与三个坐标轴平行。用六面体表 面的应力分量来表示 p 点的应力状态。应力分量的下标约定如下: 第一个下标表示应力的作用面,第二个下标表示应力的作用方向。 xy ,第一个下标 x 表示剪应力作用在垂直于 X 轴的面上,第二个下标 y 表示剪应力指 向Y 轴方向。 正应力由于作用表面与作用方向垂直,用一个下标。 二x 表示正应力作用于垂直于 X 轴 的面上,指向X 轴方向。 应力分量的方向定义如下: 如果某截面上的外法线是沿坐标轴的正方向, 这个截面上的应力分量以沿坐标轴正方向 为正; 如果某截面上的外法线是沿坐标轴的负方向, 这个截面上的应力分量以沿坐标轴负方向 为正。 图3.2

平面问题的有限元方法-8.6作业-集中力-平面问题

一个受到集中力P 作用的结构,泊松比ν=61,m N P y 16=,t=1cm ,试按平面应力问题计算,采用三角形单元,求出节点位移。 解: 如图所示,划分三角形单元为四部分,并进行单元坐标编号,编程进行求解

单元①的刚度矩阵为: ???? ??????=333231232221 131211 1K K K K K K K K K K ()3,2,1===m j i 其中子矩阵表达式为: ???? ??????-+-+-+-+?-=s r s r s r s r s r s r s r s r rs b b v c c c b b c b c c b c c v b b Et K 21212121)1(42ννννν()m j i s r ,,,= E E E E E Et 2,,22210944.110944.121)611(401 .0)1(4--==?≈???? ??-??=? -ν 调用 Triangle2D3Node_Stiffness 函数,求出单元刚度矩阵: )3,2,1(0.2143 0 0 0.2143- 0.2143- 0.2143 0 0.5143 0.0857- 0 0.0857 0.5143- 0 0.0857- 0.5143 0 0.5143- 0.0857 0.2143- 0 0 0.2143 0.2143 0.2143- 0.2143- 0.0857 0.5143- 0.2143 0.7286 0.3000- 0.2143 0.5143- 0.0857 0.2143- 0.3000- 0.7286 '1===????????? ???????????=m j i E K

有限元平面问题MATLAB程序

计算力学(有限元方法部分) 程序设计 程序说明书 程序1:平面问题的有限元分析 文件名:h01.m 算例文本:h01.txt 输出文本:result1.txt 使用前请先将h01.txt放入默认的文本读取路径(我的要求与m文件在同一文件夹内)! 文本输入顺序: 材料信息(编号、弹性模量、泊松比) 注意:材料编号须按1、2、3、4……的顺序排列 节点信息(编号、x坐标、y坐标) 注意:节点编号须按1、2、3、4……的顺序排列 约束信息(约束节点号、x方向有无约束、y方向有无约束、x方向位移、y 方向位移)有约束处填一正数,无约束处填0。无约束处请勿输入位移。 单元信息(厚度、材料编号、节点编号,若为3节点单元,则第四个编号填0) 注意:单元编号须按1、2、3、4……的顺序排列 集中力(作用节点号、x方向力、y方向力) 线荷载(作用边上的两个节点号、x方向分布力、y方向分布力) 面荷载(作用单元号、x方向分布力、y方向分布力) 程序可调部分: 4-6行中可以指定输出哪些图像(按顺序依次为节点、单元图像,x、y方向位移图像,xx、yy、xy方向应力图像),第7行中可以指定输入的.txt文本名称。 文本输出内容: 结点位移信息(节点号、x方向位移、y方向位移) 单元形心处的应变信息(单元号、x方向正应变、y方向正应变、xy方向工程切应变)

单元形心处的应力信息(单元号、x方向正应力、y方向正应力、xy方向切应力) 本程序附有三角形单元自动加密前处理部分h01auto.m,其算例文本: h01coarse.txt,输出文本:h01new.txt。它可以适用于本题的要求,在已给定本题所需全部信息的情况下将已有的单元加密为三角形单元。其输出文本可直接作为上面程序的输入文本。 h01.m h01.txt h01auto.m h01coarse.txt 欢迎交流与提问!附上邮箱:x67891@https://www.doczj.com/doc/8014401077.html,。祝力学学习顺利!

129331406890781250平面有限元法作业

第三章作业 3-1:试证明平面三角形单元内任一点的形函数之和恒等于1。 证明1:设单元发生X 方向的刚体位移0u ,则单元内到处应有位移0u ,有 0u u u u m j i === ()00u u N N N u N u N u N u m j i m m j j i i =++=++= 1=++m j i N N N 若位移函数不满足此要求,则不能反映单元的刚体位移,不能得到正确的结果。# 证明2:设P 是三角形内任一点,可用面积坐标表示为() m j i L L L P 。由面积坐标的定义和性质知1=++m j i L L L ,且三节点三角形的一点的面积坐标即为其形函数,故平面三角形单元内任一点的形函数之和恒等于1。# 3-2:试证明三角形单元的任一边上的一点的三个形函数与第三个顶点的坐标无关。 证明1:设k 是三角形ij 边上的任一点,点k 面积坐标得 0==m m L N # 证明2:三角形单元是协调单元,必须在单元边界上保持连续性,所以在单元边界上的点的位移只能由边上两个节点的形函数来贡献,否则就会撕裂和重叠,即(如在ij 边上的点) j j i i j j i i v N v N v u N u N u +=+= 故三角形的三边上的点的形函数只与边上节点的坐标有关,而与第三点无关。# 3-3:证明三角形单元是常应变单元。 证明: y x u 321ααα++=,y x v 654ααα++= 2αε=??= x u x 6αε=??= y v y

53ααγ+=??+??= x v y u xy # 即三角形单元是常应变单元。 3-4:已知单元刚度矩阵[][][][]tdxdy B D B k T A e ??= ,试说明[][]D B ,分别是什么矩阵,与单 元的那些特性有关?若厚度为t 的平面三角形常应变单元ijm 的单元刚度矩阵记为: [][][] [][][] []??? ? ? ?? ???=mm jm jj im ij ii k k k k k k k 说明子块[] ij k 的物理意义,并证明[]k 为对称矩阵。 解:[]B 是应变矩阵又称几何矩阵,与单元节点坐标有关;[]D 为弹性矩阵,与材料的弹性常数E 、μ有关。 []ij k 表示当节点j 处产生单位位移,其余节点完全被约束时,在节点i 处引起的节点力。 利用矩阵的运算关系 [] [][][][] [][][] []tA B D B tA B D B k T T T T T T T == 由于[]D 是对称矩阵,[][]D D T = 所以[][][][][]k tA B D B k T T ==,即[]k 为对称矩阵。# 3-5:图示平面等腰三角形单元,若3.0=μ,弹性模量为E ,厚度为t ,求形函数矩阵[]N 、应变矩阵[]B 及单元刚度矩阵[]K 。(补充题意:平面应力情况) 解:对平面等腰直角三角形建立图示坐标系。 x y

相关主题
文本预览
相关文档 最新文档