当前位置:文档之家› 各种牌 灰铸铁化学成分及金相组织参考表

各种牌 灰铸铁化学成分及金相组织参考表

各种牌 灰铸铁化学成分及金相组织参考表

各种牌号灰铸铁化学成分及金相组织参考表

金相分析 概述

第一讲金相分析技术之概述 1.1金相分析技术 金相分析技术是指用光学金相显微镜,观察,记录,分析,金属材料的微观组织结构的技术。 铁碳合金根据含碳量的不同分为亚共析钢,共析钢,过共析钢,白口铸铁等。不同成分的钢,它们的金相组织各不相同。另外成分相同的钢,根据热处理状态不同,它的组织结构也各不相同。组织不同,材料的性能也不相同。所以,成分,热处理状态等,决定了材料的组织,材料的组织结构,又决定着材料的各种性能。可见,研究材料组织结构的重要作用。 金属材料的结构,可分为:原子结构、晶体结构、组织结构和宏观结构。 我们所研究的主要是金属材料。要对这些材料进行合理地,有效地使用,充分发挥它们的潜力,必须要了解和掌握它们的某种或某些性能。为了达到这个目的,必须对材料进行测试。实际上金相分析技术应该是材料测试的一种。往往和其它测试手段共同进行,综合分析。 1.2材料的测试技术 材料的测试,从它的根本意义来说,它是属于信息技术的具体的应用。因为它是通过采用一定的方法,将材料的某种性能有关的内涵信息,进行提取,分离,输出,转换,处理,显示,记录,分析等等。经过这样一些过程,从而得到,我们所要探求的,真实的性能特征。 然后,将这些处理后的信息反馈到生产现场或实验室,对生产或实验进行指导或进行控制。 例如:最简单的是金属的拉伸试验……….。 近年来,由于近代物理,化学,光学,声学,及微电子,材料科学,计算机,自动控制等学科的迅速发展,提供了很多敏感元件,转换元件,检测器件,显示和记录装置等器材和技术,这样不仅使以前的测试方法和仪器有了很大的改进和更新。同时也开发了一些新的设备解决了以前所不能解决的问题。 如:硬度计。便携式,现场金相分析仪,高温金相分析仪及可以看到原子的扫描遂道电子显微镜,原子力显微镜,快速金相显微镜,可以看到动态变化的显微镜等等。 现在的检测技术要求:是向着快速,简便,精确,自动化,多功能,低费用的方向发展。 例如:以前化学分析到现在的光谱分析 以前洗相照相到现在的电脑,打印机输出。 1.2.1关于材料测试的重要意义: 我们可以从实际应用中的一些例子看出 1、在设计新的设备,或新的构件时就必须选用合适的材料,这就必须提供材料 有关的性能数据,特别需要提供设备或构件实际服役的性能,来作为设计的依据。如航空母舰的钢板。飞机发动机的材料。 2、在合成和制备新材料或制定新工艺时,要对材料的性能进行比较,筛选,和 确定最佳方案。如焊接工艺评定。 3、在工业生产中,对投产的原材料的质量,必须进行检查,用来了解它是不是 符合规格,用来保证产品的质量。如压力容器的生产。 4、在生产加工过程中要对各道工序前后的材料半成品,成品的性能进行监控,

金相组织观察报告

实验二金相常识简介和铁碳合金平衡组织观察 一、目地要求 1 、了解试样制备过程、金相显微镜基本构造和原理等金相常识。 2 、研究和了解铁碳合金在平衡状态下的显微组织。 3 、分析成分对铁碳合金显微组织的影响,从而加深理解成分、组织和性能之间的相互关系。 二、实验内容:将制好的样品放在显微镜上观察,注意显微镜的正确使用,并分析样品制备的质量好坏,初步认识显微镜下的组织特征并分析成分对铁碳合金显微组织的影响。 三、实验设备:金相显微镜,抛光机易耗品:吹风器、样品、不同号数的砂纸、玻璃板,抛光粉悬浮液、4%的硝酸酒精溶液、酒精、棉花等 四、实验步骤: 1.金相样品的制备方法。 2、样品硝酸酒精溶液腐蚀(即浸蚀)。

实验结论: 1画组织示意图 (1)画出下列试样的组织示意图 1)亚共析纲 2)过共析钢 3)亚共晶白口铸铁 4)过共晶白口铸铁 (2)画图方法要求如下 1)应画岩石记录表中的30—50直径的圆内,注明:材料名称、含碳量、 腐蚀剂和放大倍数。并将组织组成物用细线引出标明。如下图: 2.回答以下问题 (1)分析所画组织的形成原因。

(2)分析碳钢(任选一种成分)或白口铸铁(任选一种成分)凝固过程。

教学及实验方法: 1 、教师讲述和演示阶段: 用 1 5 分钟时间讲解试样制备、显微镜结构、反射原理和黑白成像等金相常识,用 2 0 分钟时间联系铁碳平衡图讲解、分析本次实验的 7 种铁碳合金在平衡状态下的显微组织,用电视显微镜向全体学生展示所有显微组织,用 5 分钟时间讲解绘制显微 组织的有关技巧。 2 、学生动手实验阶段: 学生用 5 0 分钟时间对 7 种铁碳合金平衡组织进行观察和分析,进一步建立成分和组织之间相互关系的概念,绘出所观察到的显微组织图,用箭头标明各显微组织,并在相应图下标出成分,确立组织和成分之间的关系。

球墨铸铁化学成分

球墨铸铁化学成分主要包括碳、硅、锰、硫、磷五大常见元素。对于一些对组织及性能有特殊要求的铸件,还包括少量的合金元素。同普通灰铸铁不同的是,为保证石墨球化,球墨铸铁中还须含有微量的残留球化元素。? 1、碳及碳当量的选择原则:? 碳是球墨铸铁的基本元素,碳高有助于石墨化。由于石墨呈球状后石墨对机械性能的影响已减小到最低程度,球墨铸铁的含碳量一般较高,在~%之间,碳当量在~%之间。铸件壁薄、球化元素残留量大或孕育不充分时取上限;反之,取下限。将碳当量选择在共晶点附近不仅可以改善铁液的流动性,对于球墨铸铁而言,碳当量的提高还会由于提高了铸铁凝固时的石墨化膨胀提高铁液的自补缩能力。但是,碳含量过高,会引起石墨漂浮。因此,球墨铸铁中碳当量的上限以不出现石墨漂浮为原则。? 2、硅的选择原则:? 硅是强石墨化元素。在球墨铸铁中,硅不仅可以有效地减小白口倾向,增加铁素体量,而且具有细化共晶团,提高石墨球圆整度的作用。但是,硅提高铸铁的韧脆性转变温度(图1),降低冲击韧性,因此硅含量不宜过高,尤其是当铸铁中锰和磷含量较高时,更需要严格控制硅的含量。球墨铸铁中终硅量一般在—%。选定碳当量后,一般采取高碳低硅强化孕育的原则。硅的下限以不出现自由渗碳体为原则。? 球墨铸铁中碳硅含量确定以后,可用图2进行检验。如果碳硅含量在图中的阴影区,则成分设计基本合适。如果高于最佳区域,则容易出现石墨漂浮现象。如果低于最佳区域,则容易出现缩松缺陷和自由碳化物。 3、锰的选择原则:? 由于球墨铸铁中硫的含量已经很低,不需要过多的锰来中和硫,球墨铸铁中锰的作用就主要表现在增加珠光体的稳定性,促进形成(Fe、Mn)3C。这些碳化物偏析于晶界,对球墨铸铁的韧性影响很大。锰也会提高铁素体球墨铸铁的韧脆性转变温度,锰含量每增加%,脆性转变温度提高10~12℃。因此,球墨铸铁中锰含量一般是愈低愈好,即使珠光体球墨铸铁,锰含量也不宜超过~%。只有以提高耐磨性为目的的中锰球铁和贝氏体球铁例外。? 4、磷的选择原则:? 磷是一种有害元素。它在铸铁中溶解度极低,当其含量小于%时,固溶于基体中,对力学性能几乎没有影响。当含量大于%时,磷极易偏析于共晶团边界,形成二元、三元或复合磷共晶,降低铸铁的韧性。磷提高铸铁的韧脆性转变温度,含磷量每增加%,韧脆性转变温度提高4~℃。因此,球墨铸铁中磷的含量愈低愈好,一般情况下应低于%。对于比较重要的铸件,磷含量应低于%。????球墨铸铁中碳硅含量确定以后,可用图2进行检验。如果碳硅含量在图中的阴影区,则成分设计基本合适。如果高于最佳区域,则容易出现石墨漂浮现象。如果低于最佳区域,则容易出现缩松缺陷和自由碳化物。? ?5、硫的选择原则:? 硫是一种反球化元素,它与镁、稀土等球化元素有很强的亲合力,硫的存在会大量消耗铁液中的球化元素,形成镁和稀土的硫化物,引起夹渣、气孔等铸造缺陷。球墨铸铁中硫的含量一般要求小于%。

碳钢热处理后的组织(金相分析)

碳钢热处理后的组织(金相分析) 发布时间:2009-5-30 13:46:34 关闭该页 一、概述 碳钢经退火、正火可得到平衡或接近平衡组织,经淬火得到的是非平衡组织。因此,研究热处理后的组织时,不仅要参考铁碳相图,而且更主要的是参考钢的等温转变曲线(C曲线)。 铁碳相图能说明慢冷时合金的结晶过程和室温下的组织以及相的相对量,C曲线则能说明一定成分的钢在不同冷却条件下所得到的组织。C曲线适用于等温冷却条件;而CCT曲线(奥氏体连续冷却曲线)适用于连续冷却条件。在一定的程度上可用C曲线,也能够估计连续冷却时的组织变化。 1、共析钢等温冷却时的显微组织 共析钢过冷奥氏体在不同温度等温转变的组织及性能列于表1中。

2、共析钢连续冷却时的显微组织 为了简便起见,不用CCT曲线,而用C曲线(图1)来分析。例如共析钢奥氏体,在慢冷时(相当于炉冷,见图1中的υ1)应得到100%的珠光体;当冷却速度增大到υ2时(相当于空冷),得到的是较细的珠光体,即索氏体或屈氏体;当冷却速度增大到υ3时(相当于油冷),得到的为屈氏体和马氏体;当冷却速度增大至υ4、υ5(相当于水冷),很大的过冷度使奥氏体骤冷到马氏体转变开始点(Ms)后,瞬时转变成马氏体,其中与C曲线鼻尖相切的冷却速度(υ4)称为淬火的临界冷却速度。 图1 图2 3、亚共析钢和过共析钢连续冷却时的显微组织 亚共析钢的C曲线与共析钢相比,只是在其上部多了一条铁素体先

析出线,如图2所示。 当奥氏体缓慢冷却时(相当于炉冷,如图2中υ1),转变产物接近平衡组织,即珠光体和铁素体。随着冷却速度的增大,即υ3>υ2>υ1时,奥氏体的过冷度逐渐增大,析出的铁素体越来越少,而珠光体的量逐渐增加,组织变得更细,此时析出的少量铁素体多分布在晶粒的边界上。 因此,v1的组织为铁素体+珠光体;v2的组织为铁素体+索氏体;v3的组织为铁素体+屈氏体。 当冷却速度为v4时,析出很少量的网状铁素体和屈氏体(有时可见到少量贝氏体),奥氏体则主要转变为马氏体和屈氏体(如图3);当冷却速度v5超过临界冷却速度时,钢全部转变为马氏体组织(如图6,图7)。 过共析钢的转变与亚共析钢相似,不同之处是后者先析出的是铁素体,而前者先析出的是渗碳体。 4、各组织的显微特征 (1)索氏体(s):是铁素体与渗碳体的机械混合物。其片层比珠光体更细密,在高倍(700倍以上)显微放大时才能分辨。 (2)托氏体(T)也是铁素体与渗碳体的机械混合物,片层比索氏体还细密,在一般光学显微镜下也无法分辨,只能看到如墨菊状的黑色形态。当其少量析出时,沿晶界分布,呈黑色网状,包围着马氏体;当析出量较多时,呈大块黑色团状,只有在电子显微镜下才能分辨其中的片层(见图3); 图3 托氏体+马氏体

灰铸铁的热处理

灰铸铁的热处理 退火 1.去应力退火为了消除铸件的残余应力,稳定其几何尺寸,减少或消除切削加工后产生的畸变,需要对铸件进行去应力退火。 去应力退火温度的确定,必须考虑铸铁的化学成分。普通灰铸铁当温度起过550℃时,即可能发生部分渗碳体的石墨化和粒化,使强度和硬度降低。当含有合金元素时,渗碳体开始分解的温度可提高到650℃左右。 通常,普通灰铸铁去应力退火温度以550℃为宜,低合金灰铸铁为600℃,高合金灰铸铁是可提高到650℃,加热速度一般选用60~120℃/h.保温时间决定于加热温度、铸件的大小和结构复杂程度以及对消除应力程度的要求。铸件去应力退火的冷却速度必须缓慢,以免产生二次残余内应力,冷却速度一般控制在20~40℃/h,冷却到200~150℃以下,可出炉空冷。 一些灰铸铁件的去应力退火规范示于表1. 2.石墨化退火灰铸铁件进行石墨化退火是为了降低硬度,改善加工性能,提高铸铁的塑性和韧性。 若铸件中不存在共晶渗碳体或其数量不多时,可进行低温石墨化退火;当铸件中共晶渗碳体数量较多时,须进行高温石墨化退火。 (1)低温石墨化退火,铸铁低温退火时会出现共析渗碳体石墨化与粒化,从而使铸件硬度降低,塑性增加。 灰铸铁低温石墨化退火工艺是将铸件加热到稍低于Ac1下限温度,保温一段时间使共析渗碳体分解,然后随炉冷却。

(2)高温石墨化退火,高温石墨化退火工艺是将铸件加热至高于Ac1上限以上的温度,使铸铁中的自由渗碳体分解为奥氏体和石墨,保温一段时间后根据所要求的基体组织按不同的方式进行冷却。 正火 灰铸铁正火的目的是提高铸件的强度、硬度和耐磨性,或作为表面淬火的预备热处理,改善基体组织。一般的正火是将铸件加热到Ac上限+30~50℃,使原始组织转变为奥氏体,保温一段时间后出炉空冷。形状复杂的或较重要的铸件正火处理后需再进行消除内应力的退火。如铸铁原始组织中存在过量的自由渗碳体,则必须先加热到Ac1上限+50~100℃的温度,先进行高温石墨化以消除自由渗碳体在正火温度范围内,温度愈高,硬度也愈高。因此,要求正火后的铸铁具有较高硬度和耐磨性时,可选择加热温度的上限。 正火后冷却速度影响铁素体的析出量,从而对硬度产生影响。冷速愈大,析出的铁素体数量愈少,硬度愈高。因此可采用控制冷却速度的方法)(空冷、风冷、雾冷),达到调整铸铁硬度的目的。 淬火与回火 1.淬火铸铁淬火工艺是将铸件加热到Ac1上限+30~50℃的温度,一般取850~900℃,使组织转变成奥氏体,并在此温度下保温,以增加碳在奥氏体中的溶解度,然后进行淬火,通常采用油淬。 对于形状复杂或大型铸件应缓慢加热,必要时可在500~650℃预热,以避免不均匀加热而造成开裂。 随奥氏体化温度升高,淬火后的硬度越高,但过高的奥氏体化温度,不但增加铸铁变形和开裂的危险,并产生较多的残留奥氏体,使硬度下降。 灰铸铁的淬透性与石墨大小、形状、分布、化学成分以及奥氏体晶粒度有关。

铜及铜合金的金相组织分析.

铜及铜合金的金相组织分析一)结晶过程的分析 结晶是以树枝状的方式生长,树枝状的结晶容易造成夹渣外,通常形成显微疏松。 取决于模壁的冷却速度外,还取决于合金成分、熔化与浇注温度等。 (二)宏观分析中常见缺陷 在浇注过程中往往产生缩孔、疏松、气孔、偏析等缺陷。 浇注温度和浇注方式的影响,铸锭、紫铜中容易出现气孔和皮下气孔。 由于合金元素的熔点、比重不一,熔炼工艺不当造成铸锭的成分偏析。 铸造时热应力可产生裂纹。 浇注工艺不当(浇注温度过低),浇注时金属液的中断会造成冷隔。 (三)微观分析 与铜相互作用的性质,杂质可分三类: 1. 溶解在固态铜中的元素(铝、铁、镍、锡、锌、银、金、呻、锑)。 2. 与铜形成脆性化合物的元素(硫、氧、磷等)。 3. 实际上不溶于固态铜中与铜形成易熔共晶的元素(铅、铋等)。 铋与铜形成共晶呈网状分布于铜的基体上,淡灰色。 铅含量很少时和铋一样呈网状分布于晶界,其颜色为黑色; 铅含量大时在铜的晶粒间界上呈单独的黑点。 暗场观察:铅点呈黑色,孔洞为亮点。 硫与氧的观察:均与铜形成化合物(Cu2S、Cu2O),又以共晶形式(Cu2S+ Cu、 Cu2O+ Cu)分布在铜的晶界上。 氯化高铁盐酸水溶液浸蚀:Cu2O变暗,Cu2S不浸蚀。 偏振光观察:Cu2O呈暗红色。 QJ 2337-92 铍青铜的金相试验方法 金相分析晶粒度检测金属显微组织分析,晶粒度分析,GB/T 6394-02 金属平均晶粒度测定方法 ASTM E 112-96(2004) 金属平均晶粒度测定方法

YS/T 347-2004 铜及铜合金平均晶粒度测定方法 GB/T13298-91 金属显微组织检验方法 GB/T 13299-91 钢的显微组织评定方法 GB/T 10561-2005 钢中非金属夹杂物含量的测定标准评级图显微检验法 ASTM E45-05 钢中非金属夹杂物含量测定方法 GB/T 224-87 钢的脱碳层深度测定方法 ASTM E407-07 金属及其合金的显微腐蚀标准方法 GB/T 226-91 钢的低倍组织及缺陷酸蚀检验方法 GB/T 1979-2001 结构钢低倍组织缺陷评级图 GB/T 5168-85 两相钛合金高低倍组织 GB/T 9441-1988 球墨铸铁金相检验 ASTM A 247-06 铸件中石墨微结构评定试验方法 GB/T 7216-87 灰铸铁金相 EN ISO 945:1994 石墨显微结构 GB/T 13320-07 钢质模锻件金相组织评级图及评定方法 CB 1196-88 船舶螺旋桨用铜合金相含量金相测定方法 JB/T 7946.1-1999 铸造铝合金金相 铸造铝硅合金变质 JB/T 7946.2-1999 铸造铝合金金相 铸造铝硅合金过烧 JB/T 7946.3-1999 铸造铝合金金相铸造铝 氧是铜中最常见的杂质,可产生氢脆。所以含氧量应严格规定。 1、金属平均晶粒度【001】金属平均晶粒度测定… GB 6394-2002 自动评级【010】铸造铝铜合金晶粒度测定…GB 10852-89

铸铁材料的分类

铸铁材料的分类、石墨的结构和特点二 第二节灰铸铁 一、灰铸铁的成分、组织与性能特点 1.灰铸铁的化学成分 铸铁中碳、硅、锰是调节组织的元素,磷是控制使用的元素,硫是应限制的元素目前生产中,灰铸铁的化学成分范围一般为:wC=2.7%~3.6%,wSi=1.0%~2.5%,wMn=0.5%~1.3%,wP≤0.3%,wS≤0.15% 2.灰铸铁的组织 灰铸铁是第一阶段和第二阶段石墨化过程都能充分进行时形成的铸铁 它的显微组织特征是片状石墨分布在各种基体组织上 由于第三阶段石墨化程度的不同,可以获得三种不同基体组织的灰铸铁 a)铁索体灰铸铁b)珠光体灰铸铁 c)铁索体珠光体灰铸铁 图7.4 灰铸铁的显微组织 3.灰铸铁的性能特点 (1)力学性能:灰铸铁的抗拉强度、塑性、韧性和弹性模量远比相应基体的钢低石墨片的数量愈多,尺寸愈粗大 分布愈不均匀,对基体的割裂作用和应力集中现象愈严重,则铸铁的强度、塑性与韧性就愈低 由于灰铸铁的抗压强度σbc、硬度与耐磨性主要取决于基体,石墨的存在对其影响不大,故灰铸铁的抗压强度一般是其抗拉强度的3~4倍同时,珠光体基体比其它两种基体的灰铸铁具有较高的强度、硬度与耐磨性 (2)其它性能石墨虽然会降低铸铁的抗拉强度、塑性和韧性,但也正是由于石墨的存在,使铸铁具有一系列其它优良性能 ①铸造性能良好由于灰铸铁的碳当量接近共晶成分,故与钢相比,不仅熔点低,流动性好,而且铸铁在凝固过程中要析出比容较大的石墨,部分地补偿了基体的收缩,从而减小了灰铸铁的收缩率,所以灰铸铁能浇铸形状复杂与壁薄的铸件 ②减摩性好减摩性是指减少对偶件被磨损的性能灰铸铁中石墨本身具有润滑作用,而且当它从铸铁表面掉落后,所遗留下的孔隙具有吸附和储存润滑油的能力,使摩擦面上的油膜易于保持而具有良好的减摩性所以承受摩擦的机床导轨、汽缸体等零件可用灰铸铁制造 ③减振性强铸铁在受震动时 石墨能阻止震动的传播 起缓冲作用,并把震动能量转变为热能,灰铸铁减振能力约比钢大10倍,故常用作承受压力和震动的机床底座、机架、机床床身和箱体等零件, ④切削加工性良好由于石墨割裂了基体的连续性 使铸铁切削时容易断屑和排屑 且石墨对刀具具有一定润滑作用,故可使刀具磨损减少 ⑤缺口敏感性小钢常因表面有缺口(如油孔、键槽、刀痕等)造成应力集中,使力学性能显著降低,故钢的缺口敏感性大灰铸铁中石墨本身已使金属基体形成了大量缺口,致使外加缺口的作用相对减弱,所以灰铸铁具有小的缺口敏感性 由于灰铸铁具有以上一系列的优良性能,而且价廉 易于获得,故在目前工业生产中,它仍然是应用最广泛的金属材料之一 二、灰铸铁的孕育处理 灰铸铁组织中石墨片比较粗大,因而它的力学性能较低为了提高灰铸铁的力学性能

金相实验报告(成分组织观察分析)

金相综合实验报告 实验名称: 碳钢成分-工艺-组织-性能综合分析实验专业: 材料科学与工程 班级: 材料11(1) 指导老师:席生岐高圆 小组组长: 仇程希 小组成员:齐慧媛李敏朱婧王艳姿闫士琪陈长龙黄忠鹤郭晓波丁江蒋经国庞小通林乐 二〇一四年四月三日

一、实验目的 1.了解碳钢热处理工艺操作; 2.学会使用洛氏硬度计测量材料的硬度性能值; 3.利用数码显微镜获取金相组织图像,掌握热处理后钢的金相组织分析方法; 4.探讨淬火温度、淬火冷却速度、回火温度对45和T12钢的组织和性能(硬度)的影响; 5.巩固课堂教学所学相关专业知识,体会材料的成分—工艺—组织—性能之间关系。 二、实验内容 1.进行45和T12钢试样退火、正火、淬火、回火热处理,工艺规范参考相关资料; 2.用洛氏硬度计测定试样热处理试样前后的硬度; 3.制备所给表中样品的金相试样,观察并获取其显微组织图像; 4.对照金相图谱,分析探讨本次实验可能得到的典型组织:片状珠光体、片状马氏体、板条状马氏体、回火马氏体、回火托氏体、回火索氏体等的金相特征。三、实验原理 热处理是一种很重要的金属加工工艺方法。热处理的主要目的是改变钢的性能,热处理工艺的特点是将钢加热到一定温度,经一定时间保温,然后以某种速度冷却下来,从而达到改变钢的性能的目的。研究非平衡热处理组织,主要是根据过冷奥氏体等温转变曲线来确定。 热处理之所以能使钢的性能发生显著变化,主要是由于钢的内部组织结构发生了的一系列的变化。采用不同的热处理工艺,将会使钢得到不同的组织结构,从而获得所需要的性能。 钢的热处理基本工艺方法可分为退火、正火、淬火和回火等。 (一)碳钢热处理工艺 1.加热温度 亚共析钢加热温度一般为Ac3+30-50℃,过共析钢加热温度一般为Ac 1+30-50℃(淬火)或Acm+50-100℃(正火)。 淬火后回火温度有三种,即:低温回火(150-250℃)、中温回火(350-500℃)、

球墨铸铁化学成分完整版

球墨铸铁化学成分集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

球墨铸铁化学成分主要包括碳、硅、锰、硫、磷五大常见元素。对于一些对组织及性能有特殊要求的铸件,还包括少量的合金元素。同普通灰铸铁不同的是,为保证石墨球化,球墨铸铁中还须含有微量的残留球化元素。 1、碳及碳当量的选择原则: 碳是球墨铸铁的基本元素,碳高有助于石墨化。由于石墨呈球状后石墨对机械性能的影响已减小到最低程度,球墨铸铁的含碳量一般较高,在3.5~3.9%之间,碳当量在4.1~4.7%之间。铸件壁薄、球化元素残留量大或孕育不充分时取上限;反之,取下限。将碳当量选择在共晶点附近不仅可以改善铁液的流动性,对于球墨铸铁而言,碳当量的提高还会由于提高了铸铁凝固时的石墨化膨胀提高铁液的自补缩能力。但是,碳含量过高,会引起石墨漂浮。因此,球墨铸铁中碳当量的上限以不出现石墨漂浮为原则。 2、硅的选择原则: 硅是强石墨化元素。在球墨铸铁中,硅不仅可以有效地减小白口倾向,增加铁素体量,而且具有细化共晶团,提高石墨球圆整度的作用。但是,硅提高铸铁的韧脆性转变温度(图1),降低冲击韧性,因此硅含量不宜过高,尤其是当铸铁中锰和磷含量较高时,更需要严格控制硅的含量。球墨铸铁中终硅量一般在1.4—3.0%。选定碳当量后,一般采取高碳低硅强化孕育的原则。硅的下限以不出现自由渗碳体为原则。 球墨铸铁中碳硅含量确定以后,可用图2进行检验。如果碳硅含量在图中的阴影区,则成分设计基本合适。如果高于最佳区域,则容易出现石墨漂浮现象。如果低于最佳区域,则容易出现缩松缺陷和自由碳化物。 3、锰的选择原则: 由于球墨铸铁中硫的含量已经很低,不需要过多的锰来中和硫,球墨铸铁中锰的作用就主要表现在增加珠光体的稳定性,促进形成(Fe、Mn)3C。这些碳化物偏析于晶界,对球墨铸铁的韧性影响很大。锰也会提高铁素体球墨铸铁的韧脆性转变温度,锰含量每增加0.1%,脆性转变温度提高10~12℃。因此,球墨铸铁中锰含量一般是愈低愈好,即使珠光体球墨铸铁,锰含量也不宜超过0.4~0.6%。只有以提高耐磨性为目的的中锰球铁和贝氏体球铁例外。 4、磷的选择原则: 磷是一种有害元素。它在铸铁中溶解度极低,当其含量小于0.05%时,固溶于基体中,对力学性能几乎没有影响。当含量大于0.05%时,磷极易偏析于共晶团边界,形成二元、三元或复合磷共晶,降低铸铁的韧性。磷提高铸铁的韧脆性转变温度,含磷量每增加0.01%,韧脆性转变温度提高4~4.5℃。因此,球墨铸铁中磷的含量愈低愈好,一般情况下应低于0.08%。对于比较重要的铸件,磷含量应低于0.05%。球墨铸铁中碳硅含量确定以后,可用图2进行检验。如果碳硅含量在图中的阴影区,则成分设计基本合适。如果高于最佳区域,则容易出现石墨漂浮现象。如果低于最佳区域,则容易出现缩松缺陷和自由碳化物。 5、硫的选择原则: 硫是一种反球化元素,它与镁、稀土等球化元素有很强的亲合力,硫的存在会大量消耗铁液中的球化元素,形成镁和稀土的硫化物,引起夹渣、气孔等铸造缺陷。球墨铸铁中硫的含量一般要求小于0.06%。

金相组织分析

实验三碳钢的非平衡组织及常用金属材料显微组织观察 实验目的概述实验内容实验方法实验报告思考题 一、实验目的 1. 观察碳钢经不同热处理后的显微组织。 2. 熟悉碳钢几种典型热处理组织——M、T、S、M回火、T回火、S回火等组织的形态及特征。 3. 熟悉铸铁和几种常用合金钢、有色金属的显微组织。 4. 了解上述材料的组织特征、性能特点及其主要应用。 TOP 二、概述 1. 碳钢热处理后的显微组织 碳钢经退火、正火可得到平衡或接近平衡组织,经淬火得到的是不平衡组织。因此,研究热处理后的组织时,不仅要参考铁碳相图,而且更主要的是参考钢的等温转变曲线(C曲线)。 为了简便起见,用C曲线来分析共析钢过冷奥氏体在不同温度等温转变的组织及性能(见表3-1)。 在缓慢冷时(相当于炉冷,见图2-3中的V 1)应得到100%的珠光体;当冷却速度增大到V 2 。时(相当于空冷), 得到的是较细的珠光体,即索氏体或屈氏体;当冷却速度增大到V3时(相当于油冷),得到的为屈氏体和马 氏体;当冷却速度增大至V 4、V 5 ,(相当于水冷),很大的过冷度使奥氏体骤冷到马氏体转变开始点(Ms)后, 瞬时转变成马氏体。其中与C曲线鼻尖相切的冷却速度(V 4 )称为淬火的临界冷却速度。

亚共析钢的C 曲线与共析钢相比,只是在其上部多了一条铁素体先析出线,当奥氏体缓慢冷却时(相当于炉冷,如图2-3中V 1:),转变产物接近平衡组织,即珠光体和铁素体。随着冷却速度的增大,即V 3>V 2>V ,时,奥氏体的过冷度逐渐增大,析出的铁素体越来越少,而珠光体的量逐渐增加,组织变得更细,此时析出的少量铁素体多分布在晶粒的边界上。因此,V 1的组织为铁素体+珠光体;V 2的组织为铁素体+索氏体; V 3,的组织为铁素体+屈氏体。当冷却速度为V 4,时,析出很少量的网状铁素体和屈氏体(有时可见到少量贝氏体),奥氏体则主要转变为马氏体和屈氏体(如图3-3);当冷却速度V 5,超过临界冷却速度时,钢全部 转变为马氏体组织(如图3-6,3-7)。 过共析钢的转变与亚共析钢相似,不同之处是后者先析出的是铁素体,而前者先析出的是渗碳体。 ① 珠光体(P ) 珠光体的组织形态主要有两种:片状珠光体和颗粒状珠光体。片状珠光体由一片片相互交错排列的铁素体和渗碳体所组成形成珠光体的先行条件是事先形成均匀的奥氏体,而后缓慢冷却在A1以下附近温度形成。片状珠光体似手指纹的层状结构,它是一层铁素体和一层渗碳体的机械混合物(见图3-1)。颗粒状珠光体是在铁素体的基体上分布着细小颗粒状的渗碳体的球化组织(见图3-2)。 图3-1片状珠光体500×4%硝酸酒精 图3-2 颗粒状珠光体500×4%硝酸酒精 ② 索氏体(s) 是铁素体与渗碳体的机械混合物。其片层比珠光体更细密,在高倍(700倍以上)显微放大时才能分辨(见图3-3)。 ③ 屈氏体(T) 也是铁素体与渗碳体的机械混合物,片层比索氏体还细密,在一般光学显微镜下也无法分辨,只能看到如墨菊状的黑色形态。当其少量析出时,沿晶界分布,呈黑色网状,包围着马氏体;当析出量较多时,呈大块黑色团状,只有在电子显微镜下才能分辨其中的片层(见图3-4)。 图3-3 索氏体500×4%硝酸酒精 图3-4 屈氏体+马氏体500×4%硝酸酒精

金相组织分析 可下载 可修改 优质文档

实验三碳钢的非平衡组织及常用金属材料 显微组织观察 实验目的概述实验内容实验方法实验报告思 考题 一、实验目的 1. 观察碳钢经不同热处理后的显微组织。 2. 熟悉碳钢几种典型热处理组织——M、T、S、M回火、T回火、S回火等组织的形态及特征。 3. 熟悉铸铁和几种常用合金钢、有色金属的显微组织。 4. 了解上述材料的组织特征、性能特点及其主要应用。 TOP 二、概述 1. 碳钢热处理后的显微组织 碳钢经退火、正火可得到平衡或接近平衡组织,经淬火得到的是不平衡组织。因此,研究热处理后的组织时,不仅要参考铁碳相图,而且更主要的是参考钢的等温转变曲线(C曲线)。 为了简便起见,用C曲线来分析共析钢过冷奥氏体在不同温度等温转变的组织及性能(见表3-1)。在缓慢冷时(相当于炉冷,见图2-3中的V1)应得到100%的珠光体;当冷却速度增大到V2。时(相当于空冷),得到的是较细的珠光体,即索氏体或屈氏体;当冷却速度增大到V3时(相当于油冷),得到的为屈氏体和马氏体;当冷却速度增大至V4、V5,(相当于水冷),很大的过冷度使奥氏体骤冷到马氏体转变开始点(Ms)后,瞬时转变成马氏体。其中与C曲线鼻尖相切的冷却速度(V4)称为淬火的临界冷却速度。 转变类型组织名称形成温度范围/℃显微组织特征硬度(HRC) 珠光体型相 变珠光体 (P) >650 在400~500X金相显微镜下可以观察到 铁索体和渗碳体的片层状组织 ~20 (HBl80~200)索氏体 (S) 600~650 在800一]000X以上的显微镜下才能分 清片层状特征,在低倍下片层模糊不清 25~35 屈氏体 (T) 550~600 用光学显微镜观察时呈黑色团状组织, 只有在电子显徽镜(5000~15000X)下 才能看出片层状 35—40 贝氏体型相 变上贝氏体 (B上) 350~550 在金相显微镜下呈暗灰色的羽毛状特 征 40—48 下贝氏体 (BT) 230~350在金相显微镜下呈黑色针叶状特征48~58

典型线材金相组织分析

典型线材金相组织分析 摘要:采用金相分析,对安阳钢铁公司典型线材进行综合检验,将正常组织和常见缺陷组织进行对比,分析缺陷组织产生的原因及其对线材力学性能的影响,并提出改进意见。 关键词:线材;金相组织;脱碳层;索氏体化率;力学性能 安钢线材中按要求需要做金相检验的有40钢、45钢、55钢、65钢、70钢、80钢等系列中、高碳普碳钢,以及按日本标准生产的 SWRCH15K,SWRCH35K,SWRCH45K以及SWRH82B,30MnSi等钢种。涉及的检验项目有金相组织、脱碳层、索氏体化率等。 1金相检验 1.1正常金相组织 几种线材的正常金相组织如图1所示。 1.2金相检验缺陷组织 金相检验缺陷组织如图2所示。

a)40钢网状、半网状铁素体和珠光体×100

2分析讨论 2.1组织不均匀 在40钢中有时会出现如图2a所示的组织不均匀现象。经图像仪分析,其珠光体体积分数最高可达81.5%,最低为57.8%。可推算出碳的质量分数最高为0.63%,最低为0.44%,碳含量局部明显偏高,使得C曲线右移,组织上表现为大块珠光体和沿晶界分布的细网状铁素体。这种不均匀导致线材力学性能有明显差异,另一方面,沿晶界分布的细网状铁素体也将导致力学性能下降。 2.2表面脱碳 线材表面脱碳主要是由于在热加工过程中,因周围氧化气氛的作用,使钢材表面的碳全部或部分丧失掉。一般来说,加热温度愈高(尤其在900℃以上)、时间愈长、炉内氧化性气氛愈强,则脱碳层愈厚。钢材中的钨、硅等也会促使脱碳的发生。脱碳不仅使线材的表面硬度下降,而且使其疲劳强度也降低。按照标准,要求其脱碳层厚度(包括完全脱碳层和不完全脱碳层)不得大于试样直径的1%。 2.3魏氏组织 SWRCH35K的表面一般极少见脱碳现象,但经常会在边部出现局部的魏氏组织。这主要是因为在加热过程中加热温度偏高、冷却速度较快,而在冷却时,先共析铁素体沿一定的晶面或惯析面呈针状析出,与奥氏体晶格之间有一定的取向关系。魏氏组织常伴随有粗大的奥氏体晶粒,造成钢的力学性能,尤其是冲击韧性的下降,严重时会造成材料在使用过程中的脆性断裂。图2c中魏氏组织比较严重,已达到3级。

金相组织照片全

1、组织成分:35钢(C-0.35%、Mn-0.8%)盘条;热处理状态:球化退火; 金相组织:铁素体+颗粒状渗碳体;腐蚀剂:3%硝酸酒精浸蚀。 2:组织成分:82B(C-0.82%、Mn-0.8%、Cr-0.2%)盘条心部偏析;热处理状态:热轧态;金相组织:珠光体+网状渗碳体;腐蚀剂:3%硝酸酒精浸蚀。

3:组织成分:35CrMo(C-0.35%、Cr-0.9%、Mo-0.2%)盘条;热处理状态:热轧态;金相组织:珠光体+铁素体;腐蚀剂:3%硝酸酒精浸蚀。

4:组织成分:低碳微合金板(C-0.06%、Nb、Mo、V微量);热处理状态:热轧态; 金相组织:铁素体+粒状贝氏体;腐蚀剂:3%硝酸酒精浸蚀。 5:组织成分:低碳微合金板(C-0.04%、Mo、Nb、V、Ni、Cu微量);热处理状态:热轧态; 金相组织:板条贝氏体铁素体+粒状贝氏体;腐蚀剂:3%硝酸酒精浸蚀。 板条贝氏体铁素体低碳钢(含碳量小于0.15%)典型的贝氏体组织,由带有高位错密度的板条铁素体晶体组成,若干铁素体板条平行排列构成板条束,一个奥氏体晶粒可形成很多板条束,板条界为小角度晶界,板条束界面则为大角度晶界,鉴于其板条的特征,故称板条铁素体。板条间可能有条状分布的MA岛。板条F的鉴别要依靠TEM,由于低角度晶界难以显示,光镜下板条F束常成为无特征的F晶粒。然而,经适当的深侵蚀,在光镜下仍能观察到依稀可见的板条轮廓,在扫描电镜下它的特征更为清晰。特别是当板条间有MA小岛分布时,平行排列的板条F特征显示得更为清晰可靠,所以,根据经验在光镜下鉴别针状F是可能的。 粒状贝氏体与板条贝氏体铁素体相比形成温度稍高,组织形态稍有不同。相同的是基体上都带有板条的轮廓,说明铁素体的形成在一定程度上也是依靠切变机制,此外都有弥散的岛状组织分布于铁素体基体上。不同的是,粒状贝氏体中小岛更接近于粒状或等轴形状。

铝合金金相组织观察

铝合金金相组织观察 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

北京工业大学 实验报告 模块(课程)名称:材料工程基础综合实验 实验名称:铝合金金相组织观察 学号:08090206 姓名:左迎雪

一、实验目的 ⒈了解铸造、固溶处理、轧制及时效处理4种加工条件对铝合金的组织特征的影响; ⒉分析不同材料加工工艺对铝合金力学性能的影响; 3. 深入了解材料四要素之间的内在联系。 二、实验内容 1. 铝合金铸造、固溶处理、轧制及时效处理后金相组织的观察; 2. 不同工艺处理后铝合金静态拉伸实验; 3. 实验报告撰写。 三、实验过程 1. 制样 每一位同学根据名单选取相应工艺的样品,根据《光学技术实验平台》中对于金相样品制备的学习,按照金相样品制备的一般要求进行。磨光过程经历200、400、600、800等四种牌号的水砂纸,然后抛光、腐蚀。 制样的要点: A 缩短在砂纸上停留的时间(包括全过程及每次接触) B 挡水盘距离盘面1cm,请节约用水 C 样品抛光前必须在粗砂纸上修出倒角 D 抛光膏的使用原则是微量、多次;注水少量、恰当 E 抛光时,用力避免过大,应当适中,可以任意方向抛光 2. 组织观察

3. 结果分析 (1)请同学写出自己制备样品(铸造、固溶、轧制或轧制时效处理)的简要生产工艺过程; (2)观察图片,分析铸造、固溶处理、轧制、轧制时效工艺处理后,形成的组织的特点、原因(注意放大倍数的影响); (3)分析自己制备样品的质量。 图中所示为铝合金铸态组织,主要由α-Al固溶体 与晶界上和枝晶间的低熔点共晶组成。晶粒基本 呈等轴状,在晶界处和晶内均分布有大量的第二 相颗粒,并且在晶界上还能看到存在一些显微疏松组织,可能是由于铸造过程中的收缩或气体含量过高造成的。此外, 由于铸造过程中的过冷度很大,成分偏析十分严重,这种偏析在会在晶 界处富铸造组织50× 集,越靠近晶界附近合金元素含量越高区域偏析越严重。晶粒细小。 图中所示为铝合金固溶处理组织,可以明显看出合 金晶粒粗化,再结晶组织增多,粗大的第二相组织 基本溶解。同时成分偏析得到一定消除,组织趋于 均匀。

金相分析总结

金相分析总结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

1.金相试样的制备步骤:取样、镶嵌、标识、磨光、抛光、显示 ⑴若选取的试样的形状、大小便于用手握持,则不必镶嵌 ⑵若检验非金属夹杂物或铸铁中石墨,就不必进行侵蚀 2.纵断面主要用于: ①检验非金属夹杂物的数量、大小和形状 ②检验晶粒的变形程度和锻造显微组织 ③检验钢材的带状组织,及通过热处理对带状组织的消除程度 3.横断面主要作用于: ①检验从表面到中心金相组织变化情况及偏析 ②检验表层各种缺陷 ③检验表面热处理结果 ④检验非金属夹杂物在整个断面上的分布 ⑤测定晶粒度等 4.镶嵌分为:有机材料镶嵌法、机械夹持法 5.金属变形层(金属扰乱层):金相试样在制备中磨面的微观变化,严重变形 的粉末金属与磨料的混合物,形成了高度变形玷污区(污染区) 6.金属变形层的危害:若抛光后未完全消除金属扰乱层,则侵蚀后在金相显微 镜下就观察不到真实组织而出现假象 故磨光和抛光时试样制备中极为重要的两道工序 7.扰乱层的产生: ①使用外形圆润的抛光粉 ②抛光压力过大(磨光) 8.扰乱层变薄:①减轻磨光、抛光压力 ②使用外形尖锐的抛光粉 完全避免:不用机械抛光,改用化学抛光 消除:扰乱层较厚的试样,一次侵蚀不能将其消除,可采用抛光、侵蚀交替进行法,直至真是组织清晰为止 9.磨光的目的:①得到平整光滑的磨面 ②莫面上允许有极细儿均匀,单一方向的磨痕 10.抛光目的:消除试样细磨时所留下的细微磨痕,得到平整光滑的镜面 机械抛光、电解抛光、化学抛光、复合抛光 11.机械抛光原理:抛光微粉与磨面间的相对机械作用使磨面变成光滑镜面的过 程 主要作用:①磨削(切削)作用【主要作用】 ②滚压作用 12.化学抛光:将试样侵入一定成分的溶液中,依靠化学药剂对表面的不均匀性 溶解,得到波浪形的平面 不适于高倍观察,适合低、中倍 13.化学侵蚀法:将抛光好的金相试样,侵入化学试剂中,或用化学试剂揩擦试 样磨面,显示出显微组织的方法 侵蚀原理 侵蚀时间及深浅程度:当抛光面失去光泽变成灰暗即可【变黑说明寝室过度】 14.常见宏观缺陷的特征及产生原因:

灰铸铁中各元素作用

灰铸铁中各元素作用 1、碳、硅 碳、硅都是强烈地促进石墨化的元素,可用碳当量来说明他们对灰铸铁金相组织和力学性能的影响。提高碳当量促使石墨片变粗、数量增加,强度硬度下降。相反降低碳当量可减少石墨数量、细化石墨、增加初析奥氏体枝晶数量,从而提高灰铸铁的力学性能。 但是降低碳当量会导致铸造性能下降。 2、锰:锰本身是稳定碳化物、阻碍石墨化的元素,在灰铸铁中具有 稳定和细化珠光体作用,在 Mn=0.5%~1%范围内,增加锰量,有利于强度、硬度的提高。 3、磷:铸铁中含磷量超过0.02%,就有可能出现晶间磷共晶。磷在奥 氏体中的溶解度很小,铸铁凝固时,磷基本上都留在液体中。共晶凝固接近完成时,共晶团之间剩余的液相成分接近三元共晶成(Fe-2%、C-7%、P)。此液相约在955℃凝固。 铸铁凝固时,钼、铬、钨和钒都偏析于富磷的液相中,使磷共晶的量增多。铸铁中含磷量高时,除磷共晶本身的有害作用外,还会使金属基体中所含的合金元素减少,从而减弱合金元素的作用。 磷共晶液体在凝固长大的共晶团周围呈糊状,凝固收缩很难得到补给,铸件出现缩松的倾向较大。 4、硫:降低铁液流动性,增加铸件热裂倾向,是铸件中的有害元素。 很多人认为硫含量越低越好,实则不然,当硫含量≤0.05%时,此种铸铁对我们使用的普通孕育剂来说不起作用,原因是孕育衰

退的很快,常常在铸件中产生白口。 5、铜:铜是生产灰铸铁最常加入的合金元素,主要原因是由于铜熔 点低(1083℃),易熔解,合金化效果好,铜的石墨化能力约为硅的1/5,因此能降低铸铁的白口倾向,同时铜也能降低奥氏体转变的临界温度,因此铜能促进珠光体的形成,增加珠光体的含量,同时能细化珠光体和强化珠光体及其中的铁素体,因而增加铸铁的硬度及强度。但是并非铜量越高越好,铜的适宜加入量为0.2%~0.4%当大量地加铜时,同时又加入锡和铬的做法对切削性能是有害的,它会促使基体组织中产生大量的索氏体组织。 6、铬:铬的合金化效果是非常强烈的,主要是因为加铬使铁水白口 倾向增大,铸件易收缩,产生废品。所以,应对铬量加以控制。 一方面希望铁水中含有一定量的铬,以提高铸件的强度和硬度; 另一方面又将铬严格控制在下限,以防止铸件收缩而造成废品率增加。传统的经验认为,原铁水铬量超过0.35%时,将对铸件产生致命的影响。 7、钼:钼是典型的化合物形成元素,是很强的珠光体稳定元素,它 能细化石墨,在ωMo<0.8%时,钼能细化珠光体,同时能强化珠光体中的铁素体,从而能有效地提高铸铁的强度和硬度。

金相组织分析原理

金相组织分析原理 金相组织分析原理: 采用定量金相学原理,由二维金相试样磨面或薄膜的金相显微组织的测量和计算来确定合金组织的三维空间形貌,从而建立合金成分、组织和性能间的定量关系。 通俗的说就是热处理后会得到不同的组织,每种组织有自己的形貌特征。每种组织的耐腐蚀性也有差异,因此通过制样,腐蚀,微观组织会出现不同的衬度或者说灰度,也就是说腐蚀后的金相试样微观表面是坑坑洼洼的,很多沟壑。这样我们就能在金相显微镜下区分和识别各种组织了。 金相组织分析方式: 1.原材料检验:对原材料的冶金质量情况如偏析、非金属夹杂物分布类型与级别检查;对铸造材料的铸造疏松、气孔、夹渣组织均匀性检查;对锻造件的表面脱碳、过热、过烧、裂纹、变形等情况检查。 2.生产过程中的质量控制:金相分析可以提供调整工序及修改工艺参数的根据,指导生产,如热处理淬火加热温度、保温时问、冷却速度等是否合适(正确);化学表面热处理工艺参数的控制;锻造的起始和终锻温度是否合适等。 3.产品质量检验:有些机械零件或产品除要求机械性能、物理性能指标外,有的还要求显微组织参数,作为质量评定的技术指标之一。 4.失效分析:金相组织分析方法在机械失效分析方面广泛应用,对一些常见的弊病鉴定很方便。如机件表面脱碳、显微裂纹的形貌及分布特征、化学热处理缺陷、热处理后的不正常组织、晶界脆性相析出等,这些金相分析的结果常作为故障分析的根据。 金相组织分析的意义: 金相分析是金属材料试验研究的重要手段之一,采用定量金相学原理,由二维金相试样磨面或薄膜的金相显微组织的测量和计算来确定合金组织的三维空间形貌,从而建立合金成分、组织和性能间的定量关系。将计算机应用于图像处理,具有精度高、速度快等优点,可以大大提高工作效率。 计算机定量金相分析正逐渐成为人们分析研究各种材料,建立材料的显微组织与各种性能间定量关系,研究材料组织转变动力学等的有力工具。中国船舶重工集团公司第七二五研究所采用计算机图像分析系统可以很方便地测出特征物的面积百分数、平均尺寸、平均间距、长宽比等各种参数,然后根据这些参数来确定特征物的三维空间形态、数量、大小及分布,并与材料的机械性能建立内在联系,为更科学地评价材料、合理地使用材料提供可靠的数据。

材料人网-铝合金金相组织图

铝合金金相组织图 1材料:AC4CHV 组织说明:α(Al)+(α+Si)共晶+极少量Mg2Si和S(Al2CuMg)+少量长条针状β(Al9Fe2Si2)相 抛光态形貌500× β(Al9Fe2Si2)相(20%硫酸水溶液) 500× Mg2Si相(25%硝酸水溶液) 500× 2 材料:LY-12CZ 组织说明:α(Al)基体上有褐色的可溶的强化相S(Al2CuMg)和Al2Cu及不可溶的黑色的杂质相 Al6(FeMnSi),晶粒沿变形方向伸长 抛光态形貌500× 腐蚀态(混合酸水溶液)形貌 500× 3 材料:A390 组织说明:α(Al)+(α+Si)共晶+块状相的初生Si+S(Al2CuMg)及少量针状(Al-Fe-Si)等杂质Fe相 抛光态形貌500× S(Al2CuMg)相(25%硝酸水溶液) 500× Al-Fe-Si相(20%硫酸水溶液) 500×

4 材料:T B -2 M 组织说明:α(Al)+(α+Si)共晶+块状相的初生Si +鱼骨状 Mg 2Si 和蜂窝状S(Al 2CuMg)+少量细短针状 Β(Al 9Fe 2Si 2)相 抛光态形貌 500× Mg 2Si 相(25%硝酸水溶液) 500× S(Al 2CuMg)相(20%硫酸水溶液) 500× 5 材料:ADC-12 组织说明:α(Al)+(α+Si)共晶+少量Al 2Cu+少量Mg 2Si+杂质AlFeMnSi 和细针状T(Al 2FeSi 2)相 抛光态形貌 500× AlFeMnSi 相(混合酸) 500× Mg 2Si 相(20%硫酸水溶液) 500× 6 材料:YL102 组织说明:α(Al)+(α+Si)共晶+少量块状初生Si+杂质针状β(Al 9Fe 2Si 2)相和粗针状Al 3Fe 相 抛光态形貌 500× Al 3Fe 相(20%硫酸水溶液) 500× β(Al 9Fe 2Si 2)相(0.5%HF 水溶液) 500×

相关主题
文本预览
相关文档 最新文档