当前位置:文档之家› 高考物理新力学知识点之动量经典测试题及答案(5)

高考物理新力学知识点之动量经典测试题及答案(5)

高考物理新力学知识点之动量经典测试题及答案(5)
高考物理新力学知识点之动量经典测试题及答案(5)

高考物理新力学知识点之动量经典测试题及答案(5)

一、选择题

1.如图所示,水平地面上有倾角为θ、质量为m 的 光滑斜面体,质量也为m 的光滑直杆穿过固定的竖直滑套,杆的底端置于斜而上高为h 的位置处.现将杆和斜面体由静止自由释放,至杆滑到斜面底端(杆始终保持竖直状态),对该过程下列分折中正确的是(重力加速度为g )

A .杆和斜面体组成的系统动量守恒

B .斜面体对杆的支持力不做功

C .杆与斜面体的速度大小比值为sin θ

D .杆滑到斜面底端时,斜面体的速度大小为2gh cos θ

2.如图所示,在光滑水平面上,有质量分别为2m 和m 的A B 、两滑块,它们中间夹着一根处于压缩状态的轻质弹簧(弹簧与A B 、不拴连),由于被一根细绳拉着而处于静止状态.当剪断细绳,在两滑块脱离弹簧之后,下述说法正确的是( )

A .两滑块的动量大小之比:2:1A

B p p = B .两滑块的速度大小之比A B v v :2:1=

C .两滑块的动能之比12::kA kB E E =

D .弹簧对两滑块做功之比:1:1A B W W =

3.如图所示,A 、B 是位于水平桌面上两个质量相等的小滑块,离墙壁的距离分别为L 和

2

L

,与桌面之间的动摩擦因数分别为A μ和B μ,现给滑块A 某一初速度,使之从桌面右端开始向左滑动,设AB 之间、B 与墙壁之间的碰撞时间都很短,且碰撞中没有能量损失,若要使滑块A 最终不从桌面上掉下来,滑块A 的初速度的最大值为( )

A .()A

B gL μμ+ B .()2A B gL μμ+

C .()2

A B gL μμ+

D .

()1

2

A B gL μμ+ 4.“天津之眼”是一座跨河建设、桥轮合一的摩天轮,是天津市的地标之一.摩天轮悬挂透明座舱,乘客随座舱在竖直面内做匀速圆周运动.下列叙述正确的是( )

A .摩天轮转动过程中,乘客的机械能保持不变

B .在最高点,乘客重力大于座椅对他的支持力

C .摩天轮转动一周的过程中,乘客重力的冲量为零

D .摩天轮转动过程中,乘客重力的瞬时功率保持不变

5.如图,一个倾角为α的直角斜面体静置于光滑水平面上,斜面体质量为M ,顶端高度为h ,今有一质量为m 的小物体,沿光滑斜面下滑,当小物体从斜面顶端自由下滑到底端时,斜面体在水平面上移动的距离是( )

A .

mh

M m

+

B .

Mh

M m

+

C .

cot mh M m

α

+

D .

cot Mh M m

α

+

6.如图所示,一个质量为M 的滑块放置在光滑水平面上,滑块的一侧是一个四分之一圆弧EF ,圆弧半径为R =1m .E 点切线水平.另有一个质量为m 的小球以初速度v 0从E 点冲上滑块,若小球刚好没跃出圆弧的上端,已知M =4m ,g 取10m/s 2,不计摩擦.则小球的初速度v 0的大小为( )

A.v0=4m/s B.v0=6m/s C.v0=5m/s D.v0=7m/s

7.如图所示,一内外侧均光滑的半圆柱槽置于光滑的水平面上.槽的左侧有一竖直墙壁.现让一小球(可认为质点)自左端槽口A点的正上方从静止开始下落,与半圆槽相切并从A点进入槽内,则下列说法正确的是()

A.小球离开右侧槽口以后,将做竖直上抛运动

B.小球在槽内运动的全过程中,只有重力对小球做功

C.小球在槽内运动的全过程中,小球与槽组成的系统机械能守恒

D.小球在槽内运动的全过程中,小球与槽组成的系统水平方向上的动量守恒

8.一颗子弹水平射入置于光滑水平面上的木块A并留在其中,A、B用一根弹性良好的轻质弹簧连在一起,如图所示.则在子弹打入木块A及弹簧被压缩的过程中,子弹、两木块和弹簧组成的系统()

A.动量守恒,机械能守恒B.动量不守恒,机械能守恒

C.动量守恒,机械能不守恒D.动量不守恒,机械能也不守恒

9.质量为m1=1kg和m2(未知的两个物体在光滑的水平面上正碰,碰撞时间极短,其x-t 图象如图所示,则

A.被碰物体质量为5kg

B.此碰撞一定为弹性碰撞

C.碰后两物体速度相同

D.此过程有机械能损失

10.一个不稳定的原子核质量为M,处于静止状态.放出一个质量为m的粒子后反冲,已知放出的粒子的动能为E0,则原子核反冲的动能为

A.E0B.m

M

E0C.

m

M m

-

E0D.

Mm

M m

-

E0

11.我国2019年年底将发射“嫦娥五号”,实现区域软着陆及采样返回,探月工程将实现“绕、落、回”三步走目标。若“嫦娥五号”在月球表面附近落向月球表面的过程可视为末速度为零的匀减速直线运动,则在此阶段,“嫦娥五号”的动能k E 与距离月球表面的高度h 、动量p 与时间t 的关系图象,可能正确的是

A .

B .

C .

D .

12.如图所示,质量为m 的半圆轨道小车静止在光滑的水平地面上,其水平直径AB 长度为2R ,现将质量也为m 的小球从距A 点正上方0h 高处由静止释放,然后由A 点经过半圆轨道后从B 冲出,在空中能上升的最大高度为

03

4

h (不计空气阻力),则

A .小球和小车组成的系统动量守恒

B .小车向左运动的最大距离为2R

C .小球离开小车后做斜上抛运动

D .小球第二次能上升的最大高度034

h h <

13.将一个质量为m 的小球,以一定的初速度0v 斜向上抛出,小球在空中运动t 时间内的动量改变量大小为(不计空气阻力,重力加速度为g )( ) A .0mv

B .02mv

C .mgt

D .0mgt mv +

14.质量为1 kg 的物体做直线运动,其速度—时间图象如图所示,则物体在前10 s 内和后10 s 内所受合外力的冲量分别是( )

A.10 N·s,10 N·s

B.10 N·s,-10 N·s

C.0,10 N·s

D.0,-10 N·s

15.下列说法正确的是()

A.若一个物体的动量发生变化,则动能一定变化

B.若一个物体的动能发生变化,则动量一定变化

C.匀速圆周运动的物体,其动量保持不变

D.一个力对物体有冲量,则该力一定会对物体做功

16.篮球运动员接传来的篮球时,通常要先伸出两臂迎球,手触到球瞬间顺势后引.这样可以减小

A.球对手的力的冲量B.球对手的力的大小

C.球的动量变化量D.球的动能变化量

17.现有甲、乙两滑块,质量分别为3m和m,以相同的速率v在光滑水平面上相向运动,发生了碰撞.已知碰撞后,甲滑块静止不动,那么这次碰撞是()

A.弹性碰撞B.非弹性碰撞

C.完全非弹性碰撞D.条件不足,无法确定

18.质量相等的A、B两球在光滑水平面上沿同一直线,同一方向运动,A球动量为

7kg·m/s,B球的动量为5kg·m/s,当A球追上B球时发生碰撞,则碰后A、B两球的动量可能值是()

A.P A=3kg·m/s P B=9kg·m/s B.P A=-4kg·m/s P B=17kg·m/s

C.P A=-2kg·m/s P B=14kg·m/s D.P A=6kg·m/s P B=6kg·m/s

19.如图所示,质量为m的A球以速度v0在光滑水平面上运动,与原静止的质量为4m的B球碰撞,碰撞后A球以v=av0(待定系数a<1)的速率弹回,并与挡板P发生完全弹性碰撞,若要使A球能追上B球再相撞,则a的取值范围为()

A.1

5

1

3

1

3

2

3

1

3

2

5

≤D.

1

3

3

5

20.如图所示,将质量为M1、半径为R且内壁光滑的半圆槽置于光滑水平面上,左侧靠墙角,右侧靠一质量为M2的物块.今让一质量为m的小球自左侧槽口A的正上方h高处从静止开始落下,与圆弧槽相切自A点进入槽内,则以下结论中正确的是()

A .小球在槽内运动的全过程中,小球与半圆槽在水平方向动量守恒

B .小球在槽内运动的全过程中,小球、半圆槽和物块组成的系统动量守恒

C .小球离开C 点以后,将做竖直上抛运动

D .槽将不会再次与墙接触

21.如图所示,在光滑的水平地面上有一辆平板车,车的两端分别站着人A 和B ,A 的质量为m A ,B 的质量为m B ,m A >m B .最初人和车都处于静止状态.现在,两人同时由静止开始相向而行,A 和B 对地面的速度大小相等,则车 ( )

A .向左运动

B .左右往返运动

C .向右运动

D .静止不动

22.质量为m 的均匀木块静止在光滑水平面上,木块左右两侧各有一位持有完全相同步枪和子弹的射击手.首先左侧射手开枪,子弹水平射入木块的最大深度为d 1,然后右侧射手开枪,子弹水平射入木块的最大深度为d 2,如图所示.设子弹均未射穿木块,且两颗子弹与木块之间的作用大小均相同.当两颗子弹均相对于木块静止时,下列判断正确的是( )

A .木块静止,d 1=d 2

B .木块静止,d 1

C .木块向右运动,d 1

D .木块向左运动,d 1=d 2

23.将质量为1.00 kg 的模型火箭点火升空,50 g 燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出。在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略) A .30kg m/s ? B .5.7×

102kg m/s ? C .6.0×

102kg m/s ? D .6.3×

102kg m/s ? 24.如图所示,物体A 和B 用轻绳相连后通过轻质弹簧悬挂在天花板上,物体A 的质量为m ,物体B 的质量为M ,当连接物体A 、B 的绳子突然断开后,物体A 上升到某一位置时的速度大小为v ,这时物体B 的下落速度大小为u ,在这一段时间里,弹簧的弹力对物体A 的冲量为( )

A .mv

B .mv Mu -

C .mv Mu +

D .mv mu +

25.中国空间站的建设过程是,首先发射核心舱,核心舱入轨并完成相关技术验证后,再发射实验舱与核心舱对接,组合形成空间站。假设实验舱先在近地圆形过渡轨道上运行,某时刻实验舱短暂喷气,离开过渡轨道与运行在较高轨道上的核心舱安全对接。忽略空气阻力,以下说法正确的是 A .实验舱应当向前喷出气体

B .喷气前后,实验舱与喷出气体的总动量不变

C .喷气前后,实验舱与喷出气体的机械能不变

D .实验舱在飞向核心舱过程中,机械能逐渐减小

【参考答案】***试卷处理标记,请不要删除

一、选择题 1.D 解析:D 【解析】 【详解】

A .杆和斜面体组成的系统受的合外力不为零,则系统的动量不守恒,选项A 错误;

B .斜面体对杆的支持力的方向垂直斜面向上,与杆的位移方向夹角为钝角,则斜面体对杆的支持力对杆做负功,选项B 错误;

C .根据杆和斜面的位移关系,tan H

L

θ=,可得到速度之比为tan v v θ=杆斜,选项C 错误;

D .杆滑到斜面底端时,由能量关系:

22

1122

mgh mv mv =+杆斜

tan v v θ=杆

联立解得斜面体的速度大小为2v gh 斜θ,选项D 正确。

2.C

解析:C

【详解】

在两滑块刚好脱离弹簧时运用动量守恒得:20A B mv mv +=,得2

B

A v v =-

,两滑块速度大小之比为:12A B v v =;两滑块的动能之比221212:122

A kA k

B B mv E E mv ?==,B 错误

C 正确;两滑块的动量大小之比211

A A

B B p mv p mv ==,A 错误;弹簧对两滑块做功之比等于两滑块动能之比为:1:2,D 错误.

3.B

解析:B 【解析】 【分析】 【详解】

以A 、B 两物体组成的系统为研究对象,A 与B 碰撞时,由于相互作用的内力远大于摩擦力,所以碰撞过程中系统的动量守恒。设A 与B 碰前速度为v A ,碰后A 、B 的速度分别为v A ′、v B ′,由动量守恒定律得

A A A A

B B m v m v m v ='+'

由于碰撞中总动能无损失,所以

2'2'2

A A A A

B B 111222

m v m v m v =+ 且

A B m m m ==

联立得

A B A 0v v v '='=,

即A 与B 碰后二者交换速度。所以第一次碰后A 停止运动,B 滑动;第二次碰后B 停止运动,A 向右滑动,要求A 最后不掉下桌面,它所具有的初动能正好等于A 再次回到桌边的全过程中A 、B 两物体克服摩擦力所做的功,即

20A B 12()2222

L L mv mg L mg μμ=-+ 解得

0v =故ACD 错误,B 正确。 故选B 。

4.B

解析:B

摩天轮运动过程中做匀速圆周运动,乘客的速度大小不变,则动能不变,但高度变化,所以机械能在变化,选项A 错误;圆周运动过程中,在最高点由重力和支持力的合力提供向

心力,即2

N v mg F m r

-=,所以重力大于支持力,选项B 正确;转动一周,重力的冲量为

I=mgT ,不为零,C 错误;运动过程中,乘客的重力大小不变,速度大小不变,但是速度方向时刻在变化,根据P=mgvcos θ可知重力的瞬时功率在变化,选项D 错误.故选B .

5.C

解析:C 【解析】 【详解】

此题属“人船模型”问题,m 与M 组成的系统在水平方向上动量守恒,设m 在水平方向上对地位移为x 1,M 在水平方向对地位移为x 2,因此0=mx 1-Mx 2.且x 1+x 2=h cot α.联立可得x 2=

cot mh M m

α

+,故选C.

6.C

解析:C 【解析】 【详解】

当小球上升到滑块上端时,小球与滑块水平方向速度相同,设为v 1,根据水平方向动量守

恒有:mv 0=(m +M )v 1,根据机械能守恒定律有:

()220111

22

mv m M v mgR ++=;根据题意有:M =4m ,联立两式解得:v 0=5m/s ,故ABD 错误,C 正确.故选C . 【点睛】

本题考查了动量守恒定律、机械能守恒定律以及能量守恒定律等,知道小球刚好没跃出圆弧的上端,两者水平方向上的速度相同,结合水平方向系统动量守恒和系统机械能守恒列式求解即可.

7.C

解析:C 【解析】 【详解】

A 、小球经过槽的最低点后,在小球沿槽的右侧面上升的过程中,槽也向右运动,小球离开右侧槽口时相对于地面的速度斜向右上方,小球将做斜抛运动而不是做竖直上抛运动,故A 错误;

B 、小球在槽内运动的全过程中,从刚释放到最低点,只有重力做功,而从最低点开始上升过程中,除小球重力做功外,还有槽对球作用力做负功,故B 错误;

C 、小球在槽内运动的全过程中,从刚释放到最低点,只有重力做功,而从最低点开始上升过程中,除小球重力做功外,还有槽对球作用力做负功,但球对槽作用力做正功,两者之和正好为零,所以小球与槽组成的系统机械能守恒,故C 正确;

D、小球在槽内运动的前半过程中,小球与槽组成的系统水平方向上的动量不守恒,而小球在槽内运动的后半过程中,小球与槽组成的系统水平方向上的动量守恒,故D错误.【点睛】

考查动量守恒定律与机械能守恒定律.当球下落到最低点过程,由于左侧竖直墙壁作用,小球与槽组成的系统水平方向上的动量不守恒,但小球机械能守恒.当球从最低点上升时,小球与槽组成的系统水平方向上的动量守恒,但小球机械能不守恒,而小球与槽组成的系统机械能守恒.

8.C

解析:C

【解析】

【分析】

【详解】

在子弹打入木块A及弹簧被压缩的过程中,子弹、两木块和弹簧组成的系统所受的合外力为零,则系统的动量守恒,在此过程中,除弹簧弹力做功外还有摩擦力对系统做功,所以系统机械能不守恒,故ABD错误,C正确。

故选C。

9.B

解析:B

【解析】

【详解】

AC.由图象可知,碰撞前m2是静止的,m1的速度为:

1 1

18

4m/s 2

x

v

t

===碰后m1的速度为:

1 1

108

m/s2m/s 62

x v

t '-

'===-

'-

m2的速度为:

2 2

2168

2m/s 62

x v

t '-

'===

'-

即碰后两物体速度大小相等,方向相反,速度不相同;两物体碰撞过程动量守恒,由动量守恒定律得:

m1v1=m1v1′+m2v2′即:

1×4=1×(-2)+m2×2解得:

m2=3kg

选项AC错误;

BD.碰撞前总动能:

22221211221111

14308J 2222

k k k E E E m v m v =+=

+=??+??= 碰撞后总动能:

2222121122111112328J 2222

k k k E E E m v m v '='+'=

'+'=??-+??=() 碰撞前后系统动能不变,故碰撞是弹性碰撞,故B 正确, D 错误;

10.C

解析:C 【解析】 【详解】

放出质量为m 的粒子后,剩余质量为M-m ,该过程动量守恒,有:()0mv M m v =-①,放出的粒子的动能为:20012E mv =②,原子核反冲的动能:()21

2

k E M m v =-③,联立①②③得:0k m

E E M m

=

-,故ABD 错误,C 正确。 11.B

解析:B 【解析】 【详解】

AB .若“嫦娥五号”在月球表面附近落向月球表面的过程可视为末速度为零的匀减速直线运动,设在此阶段合力为恒力F 。由逆向思维,等效为由月球表面向上做匀加速直线运动,由动能定理知:

0k Fh E =-

整理得:

k E Fh =

故A 错误,B 正确。

CD .同样由逆向思维法,等效为由月球表面向上做匀加速直线运动,由动量定理:

0Ft p =-

整理得:

p Ft =

故CD 错误。

12.D

解析:D 【解析】 【详解】

A. 小球与小车组成的系统在竖直方向合力不为0,所以系统的动量不守恒。故A 项错误;

B.在水平方向所受合外力为零,水平方向系统动量守恒,设小车的位移为x ,以向右为正方向,在水平方向,由动量守恒定律得:

mv ?mv ′=0

即:

20R x x

m

m t t

--=, 解得小车的位移:

x =R ,

故B 项错误;

C.小球与小车组成的系统在水平方向动量守恒,系统初状态在水平方向动量为零,由动量守恒定律可知,系统在任何时刻在水平方向动量都为零,小球离开小车时相对小车向上运动,水平方向和小车有相同的速度,所以小球与小车在水平方向速度都为零,小球离开小车后做竖直上抛运动,故C 项错误;

D. 小球离开小车时,小球与小车水平方向动能为零,如果系统机械能守恒,由机械能守恒定律可知,小球离开小车后上升的最大高度为h 0,由题意可知,小球离开小车后在空中能上升的最大高度为

03

4

h

4

h ,故D 项正确。

13.C

解析:C 【解析】 【详解】

由于小球作曲线运动,不知道末速度,故只能根据动量定理求解,根据动量定理可知,小球动量变化等于重力的冲量,即p mgt ?=,C 项正确。

14.D

解析:D 【解析】

由图象可知,在前10s 内初、末状态的动量相同,p 1=p 2=5kg·

m/s ,由动量定理知I 1=0;在后10s 内末状态的动量p 3=-5kg·m/s ,由动量定理得I 2=p 3-p 2=-10N·s ,故正确答案为D .

15.B

解析:B 【解析】 【详解】

A.若动量变化,可能是只有速度方向变化,而速度大小不变,则此时动能不变,故A 错误;

B.若一个物体的动能变化,则说明速度大小一定变化,动量一定变化,故B 正确;

C.匀速圆周运动,速度大小不变,方向时刻在变化;说明动量一定变化,故C 错误;

D.一个力对物体有了冲量,若物体没有运动,则该力对物体不做功,故D 错误.

16.B

解析:B 【解析】

球对手的力的冲量0P mv mv =-,不变,A 错误;篮球运动员接传来的篮球时,通常要先伸出两臂迎球,手触到球瞬间顺势后引,增加了手与球间的相互作用力时间,根据

0Ft mv mv =-可知,减小了球对手的力的大小,B 正确;根据动量变化0P mv mv ?=-可

知,动量变化量相同,C 错误;球的动能变化量22

01122

k E mv mv ?=-,相同,故D 错误.

17.A

解析:A 【解析】 【分析】 【详解】

由动量守恒3m·v-mv =0+mv′,所以v′=2v 碰前总动能:E k =42×3m·v 2+4

2

mv 2=2mv 2 碰后总动能E k ′=

4

2

mv′2=2mv 2,E k =E k ′,所以A 正确. 18.D

解析:D 【解析】 【详解】

以两物体组成的系统为研究对象,以A 的初速度方向为正方向,两个物体的质量均为m ,碰撞前系统的总动量:

P =7kg ?m/s+5kg ?m/s=12kg ?m/s ,

系统的总动能:

227537

22=+=

k E m m m

; A.若碰后A 、B 两球动量为:p A =3kg ?m/s ,p B =9kg ?m/s ,系统的总动量

P ′=3+9=12kg ?m/s ,

遵守动量守恒定律。

223945

22k E m m m

'=+=

>E k , 故碰撞后动能增大,是不可能发生的,故A 错误;

B.若碰后A 、B 两球动量为:p A =-4kg ?m/s ,p B =17kg ?m/s ,系统的总动量

P ′=-4+17=13kg ?m/s ,

不遵守动量守恒定律,故B 错误;

C.若碰后A 、B 两球动量为:p A =?2k g ?m/s ,p B =14kg ?m/s ,系统的总动量:

P ′=?2+14=12kg ?m/s ,

遵守动量守恒定律。

22214100

22k E m m m

'=+=

>E k , 故碰撞后动能增大,是不可能发生的,故C 错误;

D.若碰后A 、B 两球动量为:p A =6kg ?m/s ,p B =6kg ?m/s ,系统的总动量

P ′=6+6=12kg ?m/s ,

遵守动量守恒定律。

22663622k E m m m

'=+=

19.D

解析:D 【解析】

A 、

B 、碰撞过程动量守恒,以0v 方向为正方向有00A A B B m v m av m v =-+,A 与挡板P 碰撞后能追上B 发生再碰撞的条件是0B av v >,解得

1

3

a <;碰撞过程中损失的机械能222

00111[()]0222k A A B B E m v m av m v ?=

-+≥,解得35

a ≤,故1335a <≤,D 正确;故选D .

【点睛】本题考查了动量守恒和能量守恒的综合运用,要抓住碰后A 的速度大于B 的速度,以及有机械能损失大于等于零进行求解.

20.D

解析:D 【解析】

小球从AB 的过程中,半圆槽对球的支持力沿半径方向指向圆心,而小球对半圆槽的压力方向相反指向左下方,因为有竖直墙挡住,所以半圆槽不会向左运动,可见,该过程中,小球与半圆槽在水平方向受到外力作用,动量并不守恒,而由小球、半圆槽 和物块组成的系统动量也不守恒;从B →C 的过程中,小球对半圆槽的压力方向向右下方,所以半圆槽要向右推动物块一起运动,因而小球参与了两个运动:一个是沿半圆槽的圆周运动,另一个是与半圆槽一起向右运动,小球所受支持力方向与速度方向并不垂直,此过程中,因为有物块挡住,小球与半圆槽在水平方向动量并不守恒,在小球运动的全过程,水平方向 动量也不守恒,选项AB 错误;当小球运动到C 点时,它的两个分运动的合速度方向并不是竖直向上,所以此后小球做斜上抛运动,C 错误;因为全过程中,整个系统在水平 方向上获得了水平向右的冲量,最终槽将与墙不会再次接触,D 正确.

【点睛】判断系统动量是否守恒关键是明确系统是否受到外力的作用,故在应用动量守恒

定律时一定要明确是哪一系统动量守恒.

21.A

解析:A 【解析】 【分析】 【详解】

两人与车组成的系统动量守恒,开始时系统动量为零,两人与大小相等的速度相向运动,A 的质量大于B 的质量,则A 的动量大于B 的动量,AB 的总动量方向与A 的动量方向相同,即向右,要保证系统动量守恒,系统总动量为零,则小车应向左运动,故A 正确,BCD 错误.

22.B

解析:B 【解析】

左侧射手开枪后,子弹射入木块与木块一起向右运动,设共同速度为v 1,由动量守恒有mv 0=(M+m)v 1,由能量守恒有F f d 1=

22011

()22

mv M m v -+.右侧射手开枪后,射出的子弹与木块及左侧射手射出的第一颗子弹共同运动的速度设为v 2,由动量守恒有(M+m)v 1-mv 0=(M+2m)v 2,由能量守恒有F f d 2=

222

012111()(2)222

mv M m v M m v ++-+,解之可得v 2=0,d 1=

20,2()f Mmv F M m +d 2=2

(2),2()

f M m mv F M m ++故B 正确. 23.A

解析:A 【解析】

开始总动量为零,规定气体喷出的方向为正方向,根据动量守恒定律得,0=m 1v 1+p ,解得火箭的动量110.05600kg m/s 30kg m/s p m v =-=-??=-?,负号表示方向,故A 正确,BCD 错误;

【点睛】解决本题的关键掌握动量守恒定律的条件,以及知道在运用动量守恒定律时,速度必须相对于地面为参考系。

24.D

解析:D 【解析】 【详解】

以向上为正方向,在这一段时间里,对物体B 由动量定理得

0Mgt Mu -=--

在这一段时间里,对物体A 由动量定理得

0I mgt mv -=-

解得

()

=+

I m v u

故D正确,ABC错误。

故选D。

25.B

解析:B

【解析】

【分析】

本题考查卫星变轨过程各物理量的变化。

【详解】

A.实验舱要向高轨道运行,需要做离心运动,所以要加速,应该向后喷出气体,A错误;

B.喷气过程没有外力,实验舱与喷出气体系统动量守恒,喷气前后,总动量不变,B正确;

C.喷气前后,内力做功,总机械能增大,发生变化,C错误;

D.实验舱飞向核心舱过程中,地球的万有引力做负功,重力势能增大,且实验舱速度增大,机械能增大,D错误;

故选B。

动量守恒定律经典习题(带答案)

动量守恒定律习题(带答案)(基础、典型) 例1、质量为1kg的物体从距地面5m高处自由下落,正落在以5m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为 4kg,地面光滑,则车后来的速度为多少? 例2、质量为1kg的滑块以4m/s的水平速度滑上静止在光滑水平面上的质量为3kg的小车,最后以共同速度运动,滑块与车的摩擦系数为0.2,则此过程经历的时间为多少? 例3、一颗手榴弹在5m高处以v0=10m/s的速度水平飞行时,炸裂成质量比为3:2的两小块,质量大的以100m/s的速度反向飞行,求两块落地 点的距离。(g取10m/s2) 例4、如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为1.6kg,木块与小车之间的摩擦系数为0.2(g取10m/s2)。设 小车足够长,求: (1)木块和小车相对静止时小车的速度。 (2)从木块滑上小车到它们处于相对静止所经历的时间。 (3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。 例5、甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他所乘的冰车的质量共为30kg,乙和他所乘的冰车的质量也为30kg。游戏时,甲推着一个质量为15kg的箱子和甲一起以2m/s的速度滑行,乙以同样大小的速度迎面滑来。为了避免相撞,甲突然将箱子沿冰面推向乙,箱子滑到乙处,乙迅速将它抓住。若不计冰面的摩擦,甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞? 答案:1.

h b 分析:以物体和车做为研究对象,受力情况如图所示。 在物体落入车的过程中,物体与车接触瞬间竖直方向具有较大的动量,落入车后,竖直方向上的动量减为0,由动量定理可知,车给重物的作用力远大于物体的重力。因此地面给车的支持力远大于车与重物的重力之和。 系统所受合外力不为零,系统总动量不守恒。但在水平方向系统不受外力作用,所以系统水平方向动量守恒。以车的运动方向为正方向,由动量守恒定律可得: 车 重物初:v 0=5m/s 0末:v v ?Mv 0=(M+m)v ?s m v m N M v /454 14 0=?+=+= 即为所求。 2、分析:以滑块和小车为研究对象,系统所受合外力为零,系统总动量守恒。 以滑块的运动方向为正方向,由动量守恒定律可得 滑块 小车初:v 0=4m/s 0末:v v ?mv 0=(M+m)v ?s m v m M M v /143 11 0=?+=+= 再以滑块为研究对象,其受力情况如图所示,由动量定理可得 ΣF=-ft=mv-mv 0 ?s g v v t 5.110 2.0) 41(0=?--=-=μf=μmg 即为所求。 3、分析:手榴弹在高空飞行炸裂成两块,以其为研究对象,系统合外力不为零,总动量不守恒。但手榴弹在爆炸时对两小块的作用力远大于自身的重力,且水平方向不受外力,系统水平方向动量守恒,以初速度方向为正。 由已知条件:m 1:m 2=3:2 m 1 m 2 初:v 0=10m/s v 0=10m/s

最新物理动量守恒定律练习题20篇

最新物理动量守恒定律练习题20篇 一、高考物理精讲专题动量守恒定律 1.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求: (1)A球与B球碰撞中损耗的机械能; (2)在以后的运动过程中弹簧的最大弹性势能; (3)在以后的运动过程中B球的最小速度. 【答案】(1);(2);(3)零. 【解析】 试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有: 碰后A、B的共同速度 损失的机械能 (2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大 根据动量守恒定律有: 三者共同速度 最大弹性势能 (3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速. 弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有: 根据机械能守恒定律: 此时A、B的速度,C的速度

可知碰后A 、B 已由向左的共同速度减小到零后反向加速到向右的 ,故B 的最小速度为零 . 考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞. 【名师点睛】A 、B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答 2.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求: (1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ; (2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1; (3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值. 【答案】(1)2 4.610N F N -=? (2)1 1.25B T = (3)127s 360 t π = ,001290143ββ==和 【解析】 【详解】 解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v

经典验证动量守恒定律实验练习题(附答案)

验证动量守恒定律 由于v 1、v1/、v2/均为水平方向,且它们的竖直下落高 度都相等,所以它们飞行时间相等,若以该时间为时间单 位,那么小球的水平射程的数值就等于它们的水平速度。 在右图中分别用OP、OM和O/N表示。因此只需验证: m1?OP=m1?OM+m2?(O/N-2r)即可。 注意事项: ⑴必须以质量较大的小球作为入射小球(保证碰撞后两小球都向前运动)。 ⑵小球落地点的平均位置要用圆规来确定:用尽可能小的圆把所有落点都圈在里面,圆心就是落点的平均位置。 ⑶所用的仪器有:天平、刻度尺、游标卡尺(测小球直径)、碰撞实验器、 ⑷若被碰小球放在斜槽末端,而不用支柱,那么两小球将不再同时落地,但两个小球都将从斜槽末端开始做平抛运动,于是验证式就变为:m1?OP=m1?OM+m2?ON,两个小球的直径也不需测量 实验练习题 1. 某同学设计了一个用打点计时器验证动量守恒定律的实验:在小车A的前m 端粘有橡皮泥,推动小车A使之作匀速运动。然后与原来静止在前方的小车B 相碰并粘合成一体,继续作匀速运动,他设计的具体装置如图所示。在小车A 后连着纸带,电磁打点计时器电源频率为50Hz,长木板垫着小木片用以平衡摩擦力。 若已得到打点纸带如上图,并测得各计数点间距标在间上,A为运动起始的第一点,则应选____________段起计算A的碰前速度,应选___________段来计算A 和B碰后的共同速度。(以上两格填“AB”或“BC”或“CD”或“DE”)。已测得小l车A的质量m1=0.40kg,小车B的质量m2=0.20kg,由以上测量结果可得:碰前总动量=__________kg·m/s. 碰后总动量=_______kg·m/s 2.某同学用图1所示装置通过半径相同的A. B两球的碰撞来验证动量守恒定律。图中PQ是斜槽,QR为水平槽,实验时先使A球从斜槽上某一固定位置G由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹。重复上述操作10次,得到10个落点痕迹再把B球放在水平槽上靠近槽末端的地方,让A球仍从位置G由静止开始滚下,记录纸上的垂直投影点。B球落点痕迹如图2所示,其中米尺水平放置。且平行于G.R.Or所在的平面,米尺的零点与O 点对齐。 (1)碰撞后B球的水平射程应取为______cm. (2)在以下选项中,哪些是本次实验必须进行的测量?答:

碰撞与动量守恒单元测试题含答案

碰 撞 与 动 量 守 恒 单 元 测 试 题 命题人:官桥中学高二物理备课组 一、单项选择题(共4小题,每小题4分,共16分,在每小题给出的四个选项 中,只有一个选项正确) 1、篮球运动员接传来的篮球时,通常要先伸出两臂迎接,手接触到球后,两臂随球迅速引至胸前,这样做可以( ) A.减小球对手作用力的冲量 B.减小球的动量变化率 C.减小球的动量变化量 D.减小球的动能变化量 2、在空间某一点以大小相等的速度分别竖直上抛、竖直下抛、水平抛出质量相等的小球,不计空气阻力,当小球落地时( ) A.做上抛运动的小球动量变化最大 B.三个小球动量变化大小相等 C. 做平抛运动的小球动量变化最小 D.三个小球动量变化相等 3、把一支枪水平固定在小车上,小车放在光滑的水平地面上。当枪发射子弹时,关于枪、子弹、车,下列说法中正确的是( ) A.枪和子弹组成的系统动量守恒 B.枪和车组成的系统动量守恒 C.若不计子弹和枪筒之间的摩擦,枪、车、子弹组成的系统动量近似守恒 D.枪、子弹、车组成的系统动量守恒 4、自行火炮车连同炮弹的总质量为M,火炮车在·水平路面上以1V 的速度向右匀速行驶,炮管水平发射一枚质量为m 的炮弹后,自行火炮的速度变为2V ,仍向右行驶,则炮弹相对炮筒的发射速度0V 为( ) A. m mV V V m 2 21)(+- B.m V V M )(21- C. m m V V V m 2212)(+- D.m V V m V V m ) ()(2121--- 二、双项选择(共5小题,每小题5分,共25分) 5、质量为m 的物体在倾角为θ的光滑斜面顶端由静止释放,斜面高h,物体从斜面顶端滑到斜面底端过程中( ) A.物体所受支持力的冲量为零 B.物体所受支持力的冲量方向垂直于斜面向上 C.物体所受重力的冲量方向沿斜面向下 D.物体所受重力的冲量大小为 θsin 2gh m

高中物理动量守恒定律练习题

一、系统、内力和外力┄┄┄┄┄┄┄┄① 1.系统:相互作用的两个(或多个)物体组成的一个整体。 2.内力:系统内部物体间的相互作用力。 3.外力:系统以外的物体对系统内部的物体的作用力。 [说明] 1.系统是由相互作用、相互关联的多个物体组成的整体。 2.组成系统的各物体之间的力是内力,将系统看作一个整体,系统之外的物体对这个整体的作用力是外力。 ①[填一填]如图,公路上有三辆车发生了追尾事故,如果把前面两辆车看作一个系统,则前面两辆车之间的撞击力是________,最后一辆车对前面两辆车的撞击力是________(均填“内力”或“外力”)。 答案:内力外力 二、动量守恒定律┄┄┄┄┄┄┄┄② 1.内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。 2.表达式:对两个物体组成的系统,常写成: p1+p2=或m1v1+m2v2=。 3.适用条件:系统不受外力或者所受外力的矢量和为0。 4.动量守恒定律的普适性 动量守恒定律是一个独立的实验规律,它适用于目前为止物理学研究的一切领域。 [注意] 1.系统动量是否守恒要看研究的系统是否受外力的作用。

2.动量守恒是系统内各物体动量的矢量和保持不变,而不是系统内各物体的动量不变。 ②[判一判] 1.一个系统初、末状态动量大小相等,即动量守恒(×) 2.两个做匀速直线运动的物体发生碰撞,两个物体组成的系统动量守恒(√) 3.系统动量守恒也就是系统的动量变化量为零(√) 1.对动量守恒定律条件的理解 (1)系统不受外力作用,这是一种理想化的情形,如宇宙中两星球的碰撞,微观粒子间的碰撞都可视为这种情形。 (2)系统受外力作用,但所受合外力为零。像光滑水平面上两物体的碰撞就是这种情形。 (3)系统受外力作用,但当系统所受的外力远远小于系统内各物体间的内力时,系统的总动量近似守恒。例如,抛出去的手榴弹在空中爆炸的瞬间,弹片所受火药爆炸时的内力远大于其重力,重力可以忽略不计,系统的动量近似守恒。 (4)系统受外力作用,所受的合外力不为零,但在某一方向上合外力为零,则系统在该方向上动量守恒。 2.关于内力和外力的两点提醒 (1)系统内物体间的相互作用力称为内力,内力会改变系统内单个物体的动量,但不会改变系统的总动量。 (2)系统的动量是否守恒,与系统的选取有关。分析问题时,要注意分清研究的系统,系统的内力和外力,这是正确判断系统动量是否守恒的关键。 [典型例题] 例 1.[多选]如图所示,光滑水平面上两小车中间夹一压缩了的轻弹簧,两手分别按住小车,使它们静止,对两车及弹簧组成的系统,下列说法中正确的是() A.两手同时放开后,系统总动量始终为零

经典验证动量守恒定律实验练习题(附答案)

· 验证动量守恒定律由于v 1、v1/、v2/均为水平方向,且它们的竖直下落高 度都相等,所以它们飞行时间相等,若以该时间为时间单位,那么小球的水平射程的数值就等于它们的水平速度。在右图中分别用OP、OM和O/N表示。因此只需验证: m 1OP=m 1 OM+m 2 (O/N-2r)即可。 注意事项: ⑴必须以质量较大的小球作为入射小球(保证碰撞后两小球都向前运动)。 ⑵小球落地点的平均位置要用圆规来确定:用尽可能小的圆把所有落点都圈 在里面,圆心就是落点的平均位置。 ⑶所用的仪器有:天平、刻度尺、游标卡尺(测小球直径)、碰撞实验器、复写纸、白纸、重锤、两个直径相同质量不同的小球、圆规。 ⑷若被碰小球放在斜槽末端,而不用支柱,那么两小球将不再同时落地,但两个小球都将从斜槽末端开始做平抛运动,于是验证式就变为: m 1OP=m 1 OM+m 2 ON,两个小球的直径也不需测量 《 实验练习题 1. 某同学设计了一个用打点计时器验证动量守恒定律的实验:在小车A的前m 端粘有橡皮泥,推动小车A使之作匀速运动。然后与原来静止在前方的小车B 相碰并粘合成一体,继续作匀速运动,他设计的具体装置如图所示。在小车A 后连着纸带,电磁打点计时器电源频率为50Hz,长木板垫着小木片用以平衡摩擦力。 若已得到打点纸带如上图,并测得各计数点间距标在间上,A为运动起始的第一点,则应选____________段起计算A的碰前速度,应选___________段来计算A 和B碰后的共同速度。(以上两格填“AB”或“BC”或“CD”或“DE”)。已测得 小l车A的质量m 1=0.40kg,小车B的质量m 2 =0.20kg,由以上测量结果可得:碰 前总动量=__________kg·m/s. 碰后总动量=_______kg·m/s 2.某同学用图1所示装置通过半径相同的A. B两球的碰撞来验证动量守恒定律。图中PQ是斜槽,QR为水平槽,实验时先使A球从斜槽上某一固定位置G由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹。重复上述操作10次,得到10个落点痕迹再把B球放在水平槽上靠近槽末端的地方,让A球仍从位置G

动量守恒定律单元测试题

动量守恒定律单元测试题 一、动量守恒定律 选择题 1.如图所示,在光滑水平面上有质量分别为A m 、B m 的物体A ,B 通过轻质弹簧相连接,物体A 紧靠墙壁,细线连接A ,B 使弹簧处于压缩状态,此时弹性势能为p0E ,现烧断细线,对以后的运动过程,下列说法正确的是( ) A .全过程中墙对A 的冲量大小为p02A B E m m B .物体B 的最大速度为 p02A E m C .弹簧长度最长时,物体B 的速度大小为 p02B A B B E m m m m + D .弹簧长度最长时,弹簧具有的弹性势能p p0 E E > 2.如图所示,物体A 、B 的质量均为m =0.1kg ,B 静置于劲度系数k =100N/m 竖直轻弹簧的上端且B 不与弹簧连接,A 从距B 正上方h =0.2m 处自由下落,A 与B 相碰并粘在一起.弹簧始终在弹性限度内,g =10m/s 2.下列说法正确的是 A .A B 组成的系统机械能守恒 B .B 运动的最大速度大于1m/s C .B 物体上升到最高点时与初位置的高度差为0.05m D .AB 在最高点的加速度大小等于10m/s 2 3.A 、B 两球沿同一直线运动并发生正碰,如图所示为两球碰撞前后的位移—时间(x-t)图像,图中a 、b 分别为A 、B 两球碰撞前的图线,c 为碰撞后两球共同运动的图线.若A 球的质量 2A m kg =,则由图可知下列结论正确的是( )

A .A 、 B 两球碰撞前的总动量为3 kg·m/s B .碰撞过程A 对B 的冲量为-4 N·s C .碰撞前后A 的动量变化为4kg·m/s D .碰撞过程A 、B 两球组成的系统损失的机械能为10 J 4.将质量为m 0的木块固定在光滑水平面上,一颗质量为m 的子弹以速度v 0沿水平方向射入木块,子弹射穿木块时的速度为 3 v .现将同样的木块放在光滑的水平桌面上,相同的子弹仍以速度v 0沿水平方向射入木块,设子弹在木块中所受阻力不变,则以下说法正确的是() A .若m 0=3m ,则能够射穿木块 B .若m 0=3m ,子弹不能射穿木块,将留在木块中,一起以共同的速度做匀速运动 C .若m 0=3m ,子弹刚好能射穿木块,此时子弹相对于木块的速度为零 D .若子弹以3v 0速度射向木块,并从木块中穿出,木块获得的速度为v 1;若子弹以4v 0速度射向木块,木块获得的速度为v 2;则必有v 1<v 2 5.质量分别为3m 和m 的两个物体,用一根细绳相连,中间夹着一根被压缩的轻弹簧,在光滑的水平面上以速度v 0匀速运动.某时刻剪断细绳,质量为m 的物体离开弹簧时速度变为v= 2v 0,如图所示.则在这一过程中弹簧做的功和两物体之间转移的动能分别是 A .2 083 mv 2023 mv B .2 0mv 2032 mv C . 2012mv 2032mv D . 2023mv 2 056 mv 6.如图所示,两个小球A 、B 在光滑水平地面上相向运动,它们的质量分别为 m A =4kg ,m B =2kg ,速度分别是v A =3m/s (设为正方向),v B =-3m/s .则它们发生正碰后,速度的可能值分别为( ) A .v A ′=1 m/s ,v B ′=1 m/s B .v A ′=4 m/s ,v B ′=-5 m/s C .v A ′=2 m/s ,v B ′=-1 m/s D .v A ′=-1 m/s ,v B ′=-5 m/s 7.如图所示,轻弹簧的一端固定在竖直墙上,一质量为2m 的光滑弧形槽静止放在足够长的光滑水平面上,弧形槽底端与水平面相切,一质量为m 的小物块从槽上高h 处开始下

动量与动量守恒定律练习题(含参考答案)

高二物理3-5:动量与动量守恒定律 1.如图所示,跳水运动员从某一峭壁上水平跳出,跳入湖水中,已知 运动员的质量m =70kg ,初速度v 0=5m/s 。若经过1s 时,速度为v = 5m/s ,则在此过程中,运动员动量的变化量为(g =10m/s 2 ,不计空气阻力): ( ) A. 700 kg·m/s B. 350 kg·m/s B. C. 350(-1) kg·m/s D. 350(+1) kg·m/s 2.质量相等的A 、B 两球在光滑水平面上,沿同一直线,同一方向运动,A 球的动量p A =9kg?m/s ,B 球的动量p B =3kg?m/s .当A 追上B 时发生碰撞,则碰后A 、B 两球的动量可能值是( ) A .p A ′=6 kg?m/s ,p B ′=6 kg?m/s B .p A ′=8 kg?m/s ,p B ′=4 kg?m/s C .p A ′=﹣2 kg?m/s ,p B ′=14 kg?m/s D .p A ′=﹣4 kg?m/s ,p B ′=17 kg?m/s 3.A 、B 两物体发生正碰,碰撞前后物体A 、B 都在同一直线上运动,其位移—时间图象如图所示。由图可知,物体A 、B 的质量之比为: ( ) A. 1∶1 B. 1∶2 C. 1∶3 D. 3∶1 4.在光滑水平地面上匀速运动的装有砂子的小车,小车和砂子总质量为M ,速度为v 0,在行驶途中有质量为m 的砂子从车上漏掉,砂子漏掉后小车的速度应为: ( ) A. v 0 B. 0Mv M m - C. 0mv M m - D. ()0M m v M - 5.在光滑水平面上,质量为m 的小球A 正以速度v 0匀速运动.某时刻小球A 与质量为3m 的静止 小球B 发生正碰,两球相碰后,A 球的动能恰好变为原来的14.则碰后B 球的速度大小是( ) A.v 02 B.v 06 C.v 02或v 06 D .无法确定

高中物理-动量守恒定律及其应用(实验)教案

高中物理-动量守恒定律及其应用(实验)教案 【学习目标】 1.知道动量与冲量的概念,理解动量定理与动量守恒定律. 2.会用动量定理与动量守恒定律解决实际应用问题. 3.明确探究碰撞中的不变量的基本思路. 【要点导学】 1.冲量与动量的概念理解. 2.运用动量定理研究对象与过程的选择. 3.动量守恒定律的适用条件、表达式及解题步骤. 4.弹性碰撞和非弹性碰撞 (1)弹性碰撞:___________________________________ (2)非弹性碰撞:____________________________________ (3)在光滑水平面上,质量为m 1的小球以速度v 1与质量为m 2的静止小球发生弹性正碰,根据动量 守恒和机械能守恒,碰后两个小球的速度分别为: v 1’=_____________v 2’=_____________。 【典型例题】 类型一 冲量与动量定理 【例1】质量为m 的小球,从沙坑上方自由下落,经过时间1t 到达沙坑表面,又经过时间2t 停在沙坑里。 求: (1)沙对小球的平均阻力F ; (2)小球在沙坑里下落过程所受的总冲量I 的大小. 类型二 动量守恒定律及守恒条件判断 【例2】 把一支枪水平固定在小车上,小车放在光滑的水平面上,枪发射出一颗子弹时,关于枪、 弹、 车,下列说法正确的是( ) A .枪和弹组成的系统,动量守恒 B .枪和车组成的系统,动量守恒 C .三者组成的系统,因为枪弹和枪筒之间的摩擦力很小,使系统的动量变化很小,可以忽略不计,故系 统动量近似守恒 D .三者组成的系统,动量守恒,因为系统只受重力和地面支持力这两个外力作用,这两个外力的合 力为零 【变式训练1】如图A 、B 两物体的质量之比m A ∶m B =3∶2,原来静止在平板小车C 上,A 、B 间有 一根被压缩了的弹簧,A 、B 与平板车上表面间的滚动摩擦系数相同,地面光滑,当弹簧突然释放后, 则( ) A .A 、B 组成的系统动量守恒 B .A 、B 、 C 组成的系统动量守恒 C .小车向左运动 D .小车向右运动 类型三 动量守恒与能量守恒的综合应用 【例3】在静止的湖面上有一质量为M=100kg 的小船,船上站一个质量为m=50kg 的人。船长6米, A B C

动量单元检测 题目

动量单元练习 一、单选题 1.光滑水平地面上,A、B两物块质量都为m,A以速度v向右运动,B原来静 止,左端有一轻弹簧,如图所示,当A撞上弹簧,弹簧被压缩到最短时() A. A、B系统总动量为2mv B. A的动量变为零 C. B的动量达到最大值 D. A、B的速度相等 2.如图所示,质量为M的车厢静止在光滑的水平面上,车厢内有一质量为m的滑 块,以初速度v0在车厢地板上向右运动,与车厢两壁发生若干次碰撞,最后相 对车厢静止,则车厢的最终速度是() A. 0 B. v0,方向水平向右 C. ,方向水平向右 D. ,方向水平向右 3.下列说法正确的是() A. 速度大的物体,它的动量一定也大 B. 动量大的物体,它的速度一定也大 C. 只要物体的运动速度大小不变,则物体的动量也保持不变 D. 物体的动量变化越大则该物体的速度变化一定越大 4.下列情况中系统动量守恒的是() ①小车停在光滑水平面上,人在车上走动时,对人与车组成的系统 ②子弹水平射入放在光滑水平面上的木块中,对子弹与木块组成的系统 ③子弹射入紧靠墙角的木块中,对子弹与木块组成的系统 ④气球下用轻绳吊一重物一起加速上升时,绳子突然断开后的一小段时间内,对气球与重物组成的系 统. A. 只有① B. ①和② C. ①和③ D. ①和③④ 5.一物体在合外力F的作用下从静止开始做直线运动,合外力方向不变,大小随时间的变化如图所示, 该物体在t0和2t0时刻,物体的动能分别为E k1、E k2,物块的动量分别为p1、p2,则() A. E k2=9E k1,p2=3p1 B. E k2=3E k1,p2=3p1 C. E k2=8E k1,p2=4p1 D. E k2=3E k1,p2=2p1 6.关于物体的动量,下列说法中正确的是() A. 物体的动量越大,其惯性也越大 B. 物体的速度方向改变,其动量一定改变 C. 物体的动量改变,其动能一定改变 D. 运动物体在任一时刻的动量方向一定是该时刻的加速度方向 7.将质量为1.00kg的模型火箭点火升空,50g燃烧的燃气以大小为600m/s的速度从火箭喷口在很短时 间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)() A. 30kg?m/s B. 5.7×102kg?m/s C. 6.0×102kg?m/s D. 6.3×102kg?m/s

《动量守恒定律》测试题(含答案)(2)

《动量守恒定律》测试题(含答案)(2) 一、动量守恒定律选择题 1.在光滑的水平桌面上有等大的质量分别为M=0.6kg,m=0.2kg的两个小球,中间夹着一个被压缩的具有E p=10.8J弹性势能的轻弹簧(弹簧与两球不相连),原来处于静止状态。现突然释放弹簧,球m脱离弹簧后滑向与水平面相切、半径为R=0.425m的竖直放置的光滑半圆形轨道,如图所示。g取10m/s2。则下列说法正确的是() A.球m从轨道底端A运动到顶端B的过程中所受合外力冲量大小为3.4N·s B.弹簧弹开过程,弹力对m的冲量大小为1.8N·s C.若半圆轨道半径可调,则球m从B点飞出后落在水平桌面上的水平距离随轨道半径的增大而减小 D.M离开轻弹簧时获得的速度为9m/s 2.如图所示,将一光滑的、质量为4m、半径为R的半圆槽置于光滑水平面上,在槽的左侧紧挨着一个质量为m的物块.今让一质量也为m的小球自左侧槽口A的正上方高为R处从静止开始落下,沿半圆槽切线方向自A点进入槽内,则以下结论中正确的是() A.小球在半圆槽内第一次由A到最低点B的运动过程中,槽的支持力对小球做负功B.小球第一次运动到半圆槽的最低点B时,小球与槽的速度大小之比为41︰ C.小球第一次在半圆槽的最低点B时对槽的压力为13 3 mg D.物块最终的动能为 15 mgR 3.如图甲所示,质量M=2kg的木板静止于光滑水平面上,质量m=1kg的物块(可视为质点)以水平初速度v0从左端冲上木板,物块与木板的v-t图象如图乙所示,重力加速度大小为10m/s2,下列说法正确的是() A.物块与木板相对静止时的速率为1m/s B.物块与木板间的动摩擦因数为0.3

【物理】 物理动量守恒定律专题练习(及答案)

【物理】 物理动量守恒定律专题练习(及答案) 一、高考物理精讲专题动量守恒定律 1.运载火箭是人类进行太空探索的重要工具,一般采用多级发射的设计结构来提高其运载能力。某兴趣小组制作了两种火箭模型来探究多级结构的优越性,模型甲内部装有△m=100 g 的压缩气体,总质量为M=l kg ,点火后全部压缩气体以v o =570 m/s 的速度从底部喷口在极短的时间内竖直向下喷出;模型乙分为两级,每级内部各装有2 m ? 的压缩气体,每级总质量均为 2 M ,点火后模型后部第一级内的全部压缩气体以速度v o 从底部喷口在极短时间内竖直向下喷出,喷出后经过2s 时第一级脱离,同时第二级内全部压缩气体仍以速度v o 从第二级底部在极短时间内竖直向下喷出。喷气过程中的重力和整个过程中的空气阻力忽略不计,g 取10 m /s 2,求两种模型上升的最大高度之差。 【答案】116.54m 【解析】对模型甲: ()00M m v mv =-?-?甲 21085=200.5629 v h m m g =≈甲甲 对模型乙第一级喷气: 10022 m m M v v ??? ?=-- ???乙 解得: 130m v s =乙 2s 末: ‘ 11=10m v v gt s -=乙乙 22 11 1'=402v v h m g -=乙乙乙 对模型乙第一级喷气: ‘120=)2222 M M m m v v v ??--乙乙( 解得: 2670= 9 m v s 乙 2 2222445=277.10281 v h m m g =≈乙乙 可得: 129440 += 116.5481 h h h h m m ?=-≈乙乙甲。 2.一质量为的子弹以某一初速度水平射入置于光滑水平面上的木块 并留在其中, 与木块 用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧 被压缩瞬间 的速度 ,木块 、 的质量均为 .求:

高中物理_复习:《验证动量守恒定律实验》教学设计学情分析教材分析课后反思

复习:《实验:验证动量守恒定律》教学设计 一、教学目标: 【知识与技能】 1、明确验证动量守恒定律的基本思路; 2、掌握同一条直线上运动的两个物体碰撞前后的速度的测量方法; 3、掌握实验数据处理的方法; 【过程与方法】 1、学习根据实验要求,设计实验,完成气垫导轨实验和斜槽小球碰撞实验的设计方法; 2、学习根据实验数据进行处理、归纳、总结的方法。 【情感态度与价值观】 1、通过对实验方案的设计,培养学生积极主动思考问题的习惯,并锻炼其思考的全面性、准确性与逻辑性。 2、通过对实验数据的记录与处理,培养学生实事求是的科学态度,能使学生灵活地运用科学方法来研究问题,解决问题,提高创新意识。 3、在对实验数据处理、误差处理的过程中合作探究、头脑风暴,提高学生合作探究能力。 4、在对现象规律的语言阐述中,提高了学生的语言表达能力,还体现了各学科之间的联系,可引伸到各事物间的关联性,使自己溶入社会。 【教学重难点】 教学重点:验证动量守恒定律的实验探究 教学难点:速度的测量方法、实验数据的处理. 【教学过程】 (一)复习导入:问题1、动量守恒定律的内容是什么? 2、动量守恒的条件是什么? (二)讲授新课 实验方案一:气垫导轨以为碰撞实验 1、实验器材 气垫导轨、光电计时器、天平、滑块(两个)、重物、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等. 2、实验步骤

(1)测质量:用天平测出滑块的质量. (2)安装:正确安装好气垫导轨. (3)实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前后的速度(①改变滑块的质量;②改变滑块的初速度大小和方向③通过放置橡皮泥、振针、胶布等改变能量损失). (4)验证:一维碰撞中的动量守恒. (5)数据处理 1.滑块速度的测量:v =Δx Δt ,式中Δx 为滑块挡光片的宽度(仪器说明书上给出,也可直接测量),Δt 为数字计时器显示的滑块(挡光片)经过光电门的时间. 2.验证的表达式:m 1v 1+m 2v 2=m 1v′1+m 2v′2。 (6)注意事项 气垫导轨应水平 [典例1] 现利用图(a)所示的装置验证动量守恒定律.在图(a)中,气垫导轨上有A 、B 两个滑块,滑块A 右侧带有一弹簧片,左侧与打点计时器(图中未画出)的纸带相连;滑块B 左侧也带有一弹簧片,上面固定一遮光片,光电计时器(未完全画出)可以记录遮光片通过光电门的时间. 实验测得滑块A 的质量m1=0.310 kg ,滑块B 的质量m2=0.108 kg ,遮光片的 宽度d =1.00 cm ;打点计时器所用交流电的频率f =50.0 Hz. 将光电门固定在滑块B 的右侧,启动打点计时器,给滑块A 一向右的初速度,使它与B 相碰.碰后光电计时器显示的时间为ΔtB =3.500 ms ,碰撞前后打出的纸带如图(b)所示. 实验测得滑块A 的质量m1=0.310 kg ,滑块B 的质量m2=0.108 kg ,遮光片的 宽度d =1.00 cm ;打点计时器所用交流电的频率f =50.0 Hz. 将光电门固定在滑块B 的右侧,启动打点计时器,给滑块A 一向右的初速度,使它与B 相碰.碰后光电计时器显示的时间为ΔtB =3.500 ms ,碰撞前后打出的纸带如图(b)所示. (b) 若实验允许的相对误差绝对值× 100%最大为5%,本实验是否在误差范围内验证了动量守恒

人教版高二物理选修3-5动量守恒定律 单元测试题(word 无答案)

2020年高二物理选修3-5动量守恒定律单元测试题 一、选择题 1.(多选)如图所示,A、B两物体质量之比m A∶m B=3∶2,原来静止在平板小车C上,A、B间有一根被压缩的弹簧,地面光滑,当弹簧突然释放后,则() A.若A、B与平板车上表面间的动摩擦因数相同,A、B组成的系统的动量守恒 B.若A、B与平板车上表面间的动摩擦因数相同,A、B、C组成的系统的动量守恒 C.若A、B所受的摩擦力大小相等,A、B组成的系统的动量守恒 D.若A、B所受的摩擦力大小相等,A、B、C组成的系统的动量守恒 2.将质量为1.00kg的模型火箭点火升空,50g燃烧的燃气以大小为600m/s的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)() A.30kg·m/s B.5.7×102kg·m/s C.6.0×102kg·m/s D.6.3×102kg·m/s 3.(多选)两个小球A、B在光滑水平面上相向运动,已知它们的质量分别是m1=4kg,m2=2kg,A的速度v1=3m/s(设为正),B的速度v2=-3m/s,则它们发生正碰后,其速度可能分别是() A.均为1m/s B.+4m/s和-5m/s C.+2m/s和-1m/s D.-1m/s和5m/s 4.现有甲、乙两滑块,质量分别为3m和m,以相同的速率v在光滑水平面上相向运动,发生了碰撞.已知碰撞后,甲滑块静止不动,那么这次碰撞是() A.弹性碰撞 B.非弹性碰撞 C.完全非弹性碰撞 D.条件不足,无法确定 5.(多选)如图甲所示,在光滑水平面上的两个小球发生正碰.小球的质量分别为m1和m2.图乙为它们碰撞前后的x-t图象.已知m1=0.1kg.由此可以判断() A.碰前m 2静止,m1向右运动 B.碰后m2和m1都向右运动 C.m2=0.3kg D.碰撞过程中系统损失了0.4J的机械能 6.(多选)在光滑的水平面上有质量相等的A、B两球,其动量 分别为10kg·m/s与2kg·m/s,方向均向东,且规定该方向为正方向,A球在B球后,当A球追上B球时发生正碰,则相碰以后,A、B两球的动量可能分别为() A.6kg·m/s,6kg·m/s B.-4kg·m/s,16kg·m/s C.6kg·m/s,12kg·m/s D.3kg·m/s,9kg·m/s 7.(多选)质量为M和m0的滑块用轻弹簧连接,以恒定的速度v沿光滑水平面运动,与位于正对面的质量为m的静止滑块发生碰撞,如图5所示,碰撞时间极短,在此过程中,下列情况可能发生的是() A.M、m0、m速度均发生变化,分别为v1、v2、v3,而且满足(M+m0)v=Mv1+m0v2 +mv3 B.m0的速度不变,M和m的速度变为v1和v2,而且满足Mv=Mv1+mv2 C.m0的速度不变,M和m的速度都变为v′,且满足Mv=(M+m)v′ D.M、m0、m速度均发生变化,M、m0速度都变为v1,m的速度变为v2,且满足(M+m)v0=(M+m)v1+mv2

高考物理最新力学知识点之动量经典测试题附答案解析(5)

高考物理最新力学知识点之动量经典测试题附答案解析(5) 一、选择题 1.质量为5kg 的物体,原来以v=5m/s 的速度做匀速直线运动,现受到跟运动方向相同的冲量15Ns 的作用,历时4s ,物体的动量大小变为( ) A .80 kg· m/s B .160 kg· m/s C .40 kg· m/s D .10 kg· m/s 2.自然界中某个量D 的变化量D ?,与发生这个变化所用时间t ?的比值D t ??,叫做这个量D 的变化率.下列说法正确的是 A .若D 表示某质点做平抛运动的速度,则 D t ??是恒定不变的 B .若D 表示某质点做匀速圆周运动的动量,则 D t ??是恒定不变的 C .若D 表示某质点做竖直上抛运动离抛出点的高度,则D t ??一定变大. D .若D 表示某质点的动能,则D t ??越大,质点所受外力做的总功就越多 3.下列说法正确的是( ) A .速度大的物体,它的动量一定也大 B .动量大的物体,它的速度一定也大 C .只要物体的运动速度大小不变,物体的动量就保持不变 D .物体的动量变化越大则该物体的速度变化一定越大 4.如图所示,一个质量为M 的滑块放置在光滑水平面上,滑块的一侧是一个四分之一圆弧EF ,圆弧半径为R =1m .E 点切线水平.另有一个质量为m 的小球以初速度v 0从E 点冲上滑块,若小球刚好没跃出圆弧的上端,已知M =4m ,g 取10m/s 2,不计摩擦.则小球的初速度v 0的大小为( ) A .v 0=4m/s B .v 0=6m/s C .v 0=5m/s D .v 0=7m/s 5.将充足气后质量为0.5kg 的篮球从1.6m 高处自由落下,篮球接触地面的时间为0.5s ,竖直弹起的最大高度为0.9m 。不计空气阻力,重力加速度大小为g=9.8m/s 2。则触地过程中篮球地面的平均作用力大小为 A .4.9N B .8.9N C .9.8N D .14.7N 6.篮球运动深受同学们喜爱。打篮球时,某同学伸出双手接传来的篮球,双手随篮球迅速

最新物理动量守恒定律练习

最新物理动量守恒定律练习 一、高考物理精讲专题动量守恒定律 1.如图所示,质量为M=1kg 上表面为一段圆弧的大滑块放在水平面上,圆弧面的最底端刚好与水平面相切于水平面上的B 点,B 点左侧水平面粗糙、右侧水平面光滑,质量为m=0.5kg 的小物块放在水平而上的A 点,现给小物块一个向右的水平初速度v 0=4m/s ,小物块刚好能滑到圆弧面上最高点C 点,已知圆弧所对的圆心角为53°,A 、B 两点间的距离为L=1m ,小物块与水平面间的动摩擦因数为μ=0.2,重力加速度为g=10m/s 2.求: (1)圆弧所对圆的半径R ; (2)若AB 间水平面光滑,将大滑块固定,小物块仍以v 0=4m/s 的初速度向右运动,则小物块从C 点抛出后,经多长时间落地? 【答案】(1)1m (2)4282 25 t s = 【解析】 【分析】 根据动能定理得小物块在B 点时的速度大小;物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒和系统机械能守恒求出圆弧所对圆的半径;,根据机械能守恒求出物块冲上圆弧面的速度,物块从C 抛出后,根据运动的合成与分解求落地时间; 【详解】 解:(1)设小物块在B 点时的速度大小为1v ,根据动能定理得:22011122 mgL mv mv μ= - 设小物块在B 点时的速度大小为2v ,物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒则有:12()mv m M v =+ 根据系统机械能守恒有:22 01211()(cos53)22 mv m M v mg R R =++- 联立解得:1R m = (2)若整个水平面光滑,物块以0v 的速度冲上圆弧面,根据机械能守恒有: 22 00311(cos53)22 mv mv mg R R =+- 解得:322/v m s = 物块从C 抛出后,在竖直方向的分速度为:38 sin 532/5 y v v m s =?= 这时离体面的高度为:cos530.4h R R m =-?=

验证动量守恒定律实验

物理一轮复习学案 第六周(10.8—10.14)第四课时 验证动量守恒定律实验 【考纲解读】 1.会用实验装置测速度或用其他物理量表示物体的速度大小. 2.验证在系统不受外力的作用下,系统内物体相互作用时总动量守恒. 【重点难点】 验证动量守恒定律 【知识结构】 一、验证动量守恒定律实验方案 1.方案一 实验器材:滑块(带遮光片,2个)、游标卡尺、气垫导轨、光电门、天平、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等。 实验情境:弹性碰撞(弹簧片、弹性碰撞架);完全非弹性碰撞(撞针、橡皮泥)。 2.方案二 实验器材:带细线的摆球(摆球相同,两套)、铁架台、天平、量角器、坐标纸、胶布等。实验情境:弹性碰撞,等质量两球对心正碰发生速度交换。 3.方案三 实验器材:小车(2个)、长木板(含垫木)、打点计时器、纸带、天平、撞针、橡皮泥、刻度尺等。 实验情境:完全非弹性碰撞(撞针、橡皮泥)。 4.方案四 实验器材:小球(2个)、斜槽、天平、重垂线、复写纸、白纸、刻度尺等。 实验情境:一般碰撞或近似的弹性碰撞。 5.不同方案的主要区别在于测速度的方法不同:①光电门(或速度传感器);②测摆角(机械能守恒);③打点计时器和纸带;④平抛法。还可用频闪法得到等时间间隔的物体位置,从而分析速度。 二、验证动量守恒定律实验(方案四)注意事项 1.入射球质量m1应大于被碰球质量m2。否则入射球撞击被碰球后会被弹回。 2.入射球和被碰球应半径相等,或可通过调节放被碰球的立柱高度使碰撞时球心等高。否则两球的碰撞位置不在球心所在的水平线上,碰后瞬间的速度不水平。 3.斜槽末端的切线应水平。否则小球不能水平射出斜槽做平抛运动。 4.入射球每次必须从斜槽上同一位置由静止释放。否则入射球撞击被碰球的速度不相等。5.落点位置确定:围绕10次落点画一个最小的圆将有效落点围在里面,圆心即所求落点。6.水平射程:被碰球放在斜槽末端,则从斜槽末端由重垂线确定水平射程的起点,到落地点的距离为水平射程。

高中物理动量测试题经典.doc

高中物理动量测试题 1.以下说法中正确的是: A.动量相等的物体,动能也相等; B.物体的动能不变,则动量也不变; C.某力F对物体不做功,则这个力的冲量就为零; D.物体所受到的合冲量为零时,其动量方向不可能变化. 2.一个笔帽竖立在桌面上平放的纸条上,要求把纸条从笔帽下抽出,如果缓慢拉动纸条笔帽必倒;若快速拉纸条,笔帽可能不倒。这是因为 A.缓慢拉动纸条时,笔帽受到冲量小; B.缓慢拉动纸条时,纸条对笔帽的水平作用力小; C.快速拉动纸条时,笔帽受到冲量小; D.快速拉动纸条时,纸条对笔帽的水平作用力小。 3.两辆质量相同的小车置于光滑的水平面上,有一个人静立在a车上。当此人从a车跳到b 车上,接着又跳回a车,则a车的速率: A.为0 ; B.等于b车速率; C.大于b车速率; D.小于b车速率。 4.恒力F作用在质量为m的物体上,如图18所示,由于地面对物体的 摩擦力较大,没有被拉动,则经时间t,下列说法正确的是 A.拉力F对物体的冲量大小为零 B.拉力F对物体的冲量大小为Ft 图18 C.拉力F对物体的冲量大小是Ft cosθ D.合力对物体的冲量大小为零 5.为了模拟宇宙大爆炸初的情境,科学家们使两个带正电的重离子被加速后,沿同一条直线相向运动而发生猛烈碰撞,若要碰撞前的动能尽可能多地转化为内能,应该设法使两个重离子在碰撞前的瞬间具有 A.相同的速率; B.相同大小的动量; C.相同的动能; D.相同的质量。 6.在光滑水平面上,动能为E0、动量的大小为P0的小钢球1与静止小钢球2发生碰撞,碰撞 前后球1的运动方向相反。将碰撞后球1的动能和动量的大小分别记为E1、P1,球2的动能和动量的大小分别记为E2、P2,则不可能有: 精选

相关主题
文本预览
相关文档 最新文档