当前位置:文档之家› 半波整流桥电路

半波整流桥电路

半波整流桥电路
半波整流桥电路

实验一单相半控桥整流电路

一、实验目的

⑴研究单相半控桥整流电路在电阻负载及电阻—电感性负载时的工作情况。

⑵掌握失控现象发生的原因和解决方法。

二、实验设备及仪表

⑴MCL-Ⅱ型电机控制教学实验台主控制屏;

⑵MCL-18控制和检测单元及过流过压保护组件;

⑶MCL-33触发电路及晶闸管主回路组件;

⑷MEL-03三相可调电阻器组件(900 ,0.41A);

⑸MEL-05波形测试及开关板组件;

⑹MCL-05锯齿波触发电路组件;

⑺双踪示波器;

⑻万用电表。

三、注意事项

⑴实验前必须先了解晶闸管的电流额定值(本装置为5A),并根据额定值与整流电路形式计算出负载电阻的最小允许值。

⑵为保护整流元件不受损坏,晶闸管整流电路的正确操作步骤为:

①在主电路不接通电源时,调试触发电路,使之正常工作。

②在控制电压Uct=0时,接通主电源。然后逐渐增大Uct,使整流电路投入工作。

③断开整流电路时,应先把Uct降到零,使整流电路无输出,然后切断总电源。工作;

⑶必须MCL-18与MCL-33之间的脉冲连接断开。

⑷正确使用示波器,避免示波器的两根地线接在非等电位的端点上,造成短路事故。

四、实验步骤

1.锯齿波触发电路调试及各点波形的观察

①按下图接线;

②将MCL-05面板上左上角的同步电压输入端接MCL-18的U、V端,“触发电

路选择”开关拨向“锯齿波”,

③将MCL-05面板中锯齿波发生电路的输出G1、K1、G2、K2、G3、K3、G4、

K4接线端全部悬空悬空,以便观察脉冲的移相范围;

④将主控制屏上的“交流电源输出调节”旋钮逆时针调到底,按下主控制屏绿

色“闭合”开关按钮。

⑤调节主控制屏“交流电源输出调节”旋钮使输出电压U UV=220V,打开MCL-05

面板右下角的电源开关。

⑥用示波器观察锯齿波触发电路的各孔波形,并调试触发电路。示波器地线通

过如下图所示的低压线接于“7”端。

a)使用示波器探头和如下导线测量“1”~“6”孔的波形

“1”孔波形“2”孔波形

b)调节MCL-05中锯齿波触发电路中的RP1电位器,使“3”孔的锯齿波刚

出现平顶,如下图所示。

未出现平顶的最大斜率波形出现平顶的波形(错误)

“4”孔波形

c)调节MCL-05中锯齿波触发电路中的RP2电位器,使“5”孔和“6”孔

出现脉冲。

d)使用示波器双通道同事观察两路信号,连接方法如下:

同时观察“1”“2”孔点波形

同时观察“1”“3”孔点波形,同时观察“1”“5”孔点波形

同时观察“1”“6”孔点波形

e)调节MCL-05中锯齿波触发电路中的RP2电位器,使“6”孔脉冲的前沿

处于正弦波的360°处,即α=180?。

f)观察锯齿波触发电路的输出U G1K1的波形,接线和波形如下:

⑦调节MCL-18上的G(给定)的移相可调电位器RP1,观察输出脉冲在30?~180?

范围内移相。

⑧调节MCL-05中锯齿波触发电路中的RP3电位器,使G1脉冲和G3脉冲相

差180°相位,测量方法和图形如下图所示。

2.研究单相半控桥整流电路供电给电阻性负载时的工作情况:

①按接线图1接线。

注意:触发电路中G1、K1和G2、K2同相位,接线时使用的是G1、K1和G3、K3。

②将MEL-05开关板中的开关S2拨向左侧,接入MCL-03组件的电阻Rd(由两个

900Ω的电阻并联而成)。

③将MCL-18组件上的开关S1拨至正给定,S2拨至0V。

④“交流电源输出调节”旋钮逆时针调到底,合上主电源,顺时针旋转“交流电源

输出调节”旋钮使输出电压U UV=220V。注意调节电阻Rd,使电流在0.1A~0.8A 之间。

⑤将MCL-18组件上的开关S2拨至给定,调节MCL-18上的RP1(锯齿波触发电

路调节好之后将不再做任何改动,后续控制电压的变化均需调节MCL-18上的给定),观察在不同控制角α时的u d、i d、u VT的波形。注意若输出电压的波形不对称,可分别调整锯齿波触发电路中的RP1、RP3电位器。

⑥记录α=90?时u d、i d、u VT的波形。

⑦将MCL-18上的RP1调节为零,将“交流电源输出调节”旋钮逆时针调到底,然

后断开主电源。

3.研究电阻-电感性负载时单相半控桥整流电路的工作情况:

①将MEL-05开关板中的开关S1闭合,接入续流二极管VD2(如图一所示)。

②将MEL-05开关板中的开关S2拨向右侧接入MCL-33的电抗器L=700mH。

③将MCL-18的给定电位器RP1逆时针调到底,使U ct=0。

④将“交流电源输出调节”旋钮逆时针调到底,合上主电源,顺时针旋转“交

流电源输出调节旋钮”使主控制屏输出电压U UV=220V。

⑤调节MCL-18上的RP1,观察不同α角下的u d、i d、u

VDR、u VT1的波形。

⑥记录α=90?时u d、i d、u

VDR、u V T1的波形。

⑦断开续流二极管,观察u d、i d的波形。调节电阻Rd,使电流至0.4A左右。

关闭MCL-05的右下角开关,即突然切断触发电路,观察失控现象。若不发

生失控现象,继续调节电阻Rd,增大负载电流。

⑧记录u d、i d和两个晶闸管两端的波形。

五、实验报告

①绘出α=90?时,实验整流电路供电给电阻性负载时的u d、i d、u VT1的波形。

②绘出α=90?时,实验整流电路供电给电阻—电感性负载时的触发脉冲、u d、i d、

u VT1的波形。

③绘出断开续流二极管后的失控现象波形。

④分析续流二极管的作用及电感量大小对负载电流的影响。

六、思考

分析失控现象产生的原因,并比较单相桥式全控整流电路与单相半控桥整流电路并联续流二极管的原因是否相同?为什么?

A:直流电流表。量程为5A MCL—05的G1、K1和G3、K3分别接至MCL—33的VT1、VT3的门极(G)、阴极(K)V:直流电压表。量程为300V R d:可选MEL—03的900 瓷盘电阻并联或自配

L:平波电抗器。可选择700mH VD2:续流二极管。位于MCL—33上

图1 单相半控桥整流电路接线图

13

整流二极管的作用及其整流电路

整流二极管的作用及其整流电路 整流二极管的作用及其整流电路 一种将交流电能转变为直流电能的半导体器件。通常它包含一个PN结,有阳极和阴极两个端子。 P区的载流子是空穴,N区的载流子是电子,在P区和N区间形成一定的位垒。外加使P区相对N区为正的电压时,位垒降低,位垒两侧附近产生储存载流子,能通过大电流,具有低的电压降(典型值为0.7V),称为正向导通状态。 若加相反的电压,使位垒增加,可承受高的反向电压,流过很小的反向电流(称反向漏电流),称为反向阻断状态。整流二极管具有明显的单向导电性,。 整流二极管可用半导体锗或硅等材料制造。硅整流二极管的击穿电压高,反向漏电流小,高温性能良好。通常高压大功率整流二极管都用高纯单晶硅制造。这种器件的结面积较大,能通过较大电流(可达上千安),但工作频率不高,一般在几十千赫以下。整流二极管主要用于各种低频整流电路。 二极管整流电路 一、半波整流电路 图5-1、是一种最简单的整流电路。它由电源变压器B 、整流二极管D 和负载电阻Rfz ,组成。变压器把市电电压(多为220伏)变换为所需要的交变电压e2,D 再把交流电变换为脉动直流电。 下面从图5-2的波形图上看着二极管是怎样整流的。

变压器砍级电压e2,是一个方向和大小都随时间变化的正弦波电压,它的波形如图5-2(a)所示。在0~K时间内,e2为正半周即变压器上端为正下端为负。此时二极管承受正向电压面导通,e2通过它加在负载电阻Rfz上,在π~2π时间内,e2为负半周,变压器次级下端为正,上端为负。这时D承受反向电压,不导通,Rfz,上无电压。在π~2π时间内,重复0~π时间的过程,而在3π~4π时间内,又重复π~2π时间的过程…这样反复下去,交流电的负半周就被"削"掉了,只有正半周通过Rfz,在Rfz上获得了一个单一右向(上正下负)的电压,如图5-2(b)所示,达到了整流的目的,但是,负载电压Usc。以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。 这种除去半周、留下半周的整流方法,叫半波整流。不难看出,半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个周期内的平均值,即负载上的直流电压 Usc =0.45e2 )因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。 二、全波整流电路(单向桥式整流电路) 如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。图5-3 是全波整流电路的电原理图。

整流桥电路大全

整流电路大全 9.3.7 正、负极性全波整流电路及故障处理 如图9-24所示是能够输出正、负极性单向脉动直流电压的全波整流电路。电路中的T1是电源变压器,它的次级线圈有一个中心抽头,抽头接地。电路由两组全波整流电路构成,VD2和VD4构成一组正极性全波整流电路,VD1和VD3构成另一组负极性全波整流电路,两组全波整流电路共用次级线圈。 图9-24 输出正、负极性直流电压的全波整流电路 1.电路分析方法 关于正、负极性全波整流电路分析方法说明下列2点: (1)在确定了电路结构之后,电路分析方法和普通的全波整流电路一样,只是需要分别分析两组不同极性全波整流电路,如果已经掌握了全波整流电路的工作原理,则只需要确定两组全波整流电路的组成,而不必具体分析电路。 (2)确定整流电路输出电压极性的方法是:两二极管负极相连的是正极性输出端(VD2和VD4连接端),两二极管正极相连的是负极性输出端(VD1和VD3连接端)。 2.电路工作原理分析 如表9-28所示是这一正、负极性全波整流电路的工作原理解说。 关键词说明

3.故障检测方法 关于这一电路的故障检测方法说明下列几点: (1)如果正极性和负极性直流输出电压都不正常时,可以不必检查整流二极管,而是检测电源变压器,因为几只整流二极管同时出现相同故障的可能性较小。 (2)对于某一组整流电路出现故障时,可按前面介绍的故障检测方法进行检查。这一电路中整流二极管中的二极管VD1和VD3、VD2和VD4是直流电路并联的,进行在路检测时会相互影响,所以准确的检测应该将二极管脱开电路。 4.电路故障分析 如表9-29所示是正、负极性全波整流电路的故障分析。 分页:123456

10种精密整流电路的详解

1.第一种得模拟电子书上(第三版442页)介绍得经典电路。A1用得就是半波整流并且放大 两倍,A2用得就是求与电路,达到精密整流得目得。(R1=R3=R4=R5=2R2) 2.第二种方法瞧起来比较简单A1就是半波整流电路,就是负半轴有输出,A2得电压跟随器 得变形,正半轴有输出,这样分别对正负半轴得交流电进行整流!(R1=R2) 3.第三种电路

仿真效果如下: 这个电路真就是她妈得坑爹,经过我半天得分析才发现就是这样得结论:Uo=-|Ui|,整出来得电路全就是负得,真想不通为什么作者放到这里,算了先把分析整理一下: 当Ui>0得时候电路等效就是这样得

放大器A就是同相比例电路,Uo1=(1+R2/R1)Ui=2Ui 放大器B就是加减运算电路,Uo2=(1+R2/R1)Ui-(R4/R3)Uo1=-Ui 当Ui<0得时候电路图等效如下: 放大器A就是电压跟随器,放大器B就是加减运算电路 式子整理:Uo2=(1+R4/(R2+R3))Ui- R4/(R2+R3)Ui=Ui 以上就是这个电路得全部分析,但就是想达到正向整流得效果就应该把二极管全部反向过来电路与仿真效果如下图所示

4.第四种电路就是要求所有电阻全部相等。这个仿真相对简单。 电路与仿真效果如下 计算方法如下: 当Ui>0时,D1导通,D2截止(如果真就是不清楚为什么就是这样分析,可以参照模拟电子技术书上对于第一种电路得分析),这就是电路图等效如下(R6就是为了测试信号源用得跟这个电路没有直接得关系,不知道为什么不加这个电阻就仿真不了)

放大器A构成反向比例电路,uo1=-ui, 这时在放大器B得部分构成加减运算电路,uo2=-uo1=-(-ui) 注意:这里放大器B得正相输入端就是相当于接地得,我刚开始一直没有想通,后来明白了,这一条线路上就是根本就没有电流得,根本就没有办法列出方程来。(不知道这么想就是不就是正确得) 当Ui<0得时候,D1截止,D2导通,电路图等效如下: 这时就需要列方程了 Ui<0时Ui/R1=-(U2/R5+U2/(R2+R3))计算得到U2=-2/3 Ui 再根据U2/(R2+R3)=(U0-U2)/R4 得到U0=3/2 U2 带入得到U0=-Ui

整流电路计算

桥式整流属于全波整流,它不是利用副边带有中心抽头的变压器,用四个二极管接成电桥形式,使在电压V2的正负半周均有电流流过负载,在负载形成单方向的全波脉动电压。 桥式整流电路计算主要参数: 单相全波整流电路图 利用副边有中心抽头的变压器和两个二极管构成如下图所示的全波整流电路。从 图中可见,正负半周都有电流流过负载,提高了整流效率。 全波整流的特点: 输出电压V O高;脉动小;正负半周都有电流供给负载,因而变压器得到充 分利用,效率较高。 主要参数:

桥式整流电路电感滤波原理 电感滤波电路利用 电感器两端的电流不能突变的特点,把电感器与负载串联起来,以达到使输出电流平滑的目的。从能量的观点看,当电源提供的电流增大(由电源电压增加引起)时,电感器L把能量存储起来;而当电流减小时,又把能量释放出来,使负载电流平滑,电感L有平波作用 桥式整流电路电感滤波优点:整流二极管的导电角大,峰值电流小,输出特性较平坦。 桥式整流电路电感滤波缺点:存在铁心,笨重、体积大,易引起电磁干扰, 只适应于低电压、大电流的场合。

例10.1.1桥式整流器滤波电路如图所示,已知V1是220V交流电源,频率为50Hz, 直流电压V L=30V,负载电流I L=50mA。试求电源变压器副边电压v2的有效值,选择整流二极管及滤波电容。

桥式整流电路电容滤波电路 图10.5分别是单相桥式整流电路图和整流滤波电路的部分波形。这里假设‘ 、 t<0时,电容器C已经充电到交流电压V2的最大值(如波形图所示)。 结论1:电容的储能作用,使得输出波形比较平滑,脉动成分降低输出电压的平均值增大。

十种精密全波整流电路图

十种精密全波整流电路图 图中精密全波整流电路的名称,纯属本人命的名,只是为了区分;除非特殊说明,增益均按1设计. 图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益。 图2优点是匹配电阻少,只要求R1=R2

图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3 图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益.缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点。 图5 和图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离.另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计。

图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K 图8的电阻匹配关系为R1=R2 图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称。

图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0.使用时要小心单电源运放在信号很小时的非线性.而且,单电源跟随器在负信号输入时也有非线性。 图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡。 精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态。 结论: 虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种。 图1的经典电路虽然匹配电阻多,但是完全可以用6个等值电阻R实现,其中电阻R3可以用两个R并联.可以通过R5调节增益,增益可以大于1,也可以小于1.最具有优势的是可以在R5上并电容滤波。 图2的电路的优势是匹配电阻少,只要一对匹配电阻就可以了。 图3的优势在于高输入阻抗。 其它几种,有的在D2导通的半周内,通过A2的复合实现A1的负反馈,对有些运放会出现自激. 有的两个半波的输入阻抗不相等,对信号源要求较高。

半波精密整流电路、8种类型精密全波整流电路及详细分析

精密全波整流电路 图中精密全波整流电路的名称,纯属本人命的名,只是为了区分;除非特殊说明,增益均按1设计.图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益 图2优点是匹配电阻少,只要求R1=R2 图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3 图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益.缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点. 图5 和图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离.另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计 图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K 图8的电阻匹配关系为R1=R2 图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称. 图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0.使用时要小心单电源运放在信号很小时的非线性.而且,单电源跟随器在负信号输入时也有非线性. 图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡. 精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态. 结论: 虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种. 图1的经典电路虽然匹配电阻多,但是完全可以用6个等值电阻R实现,其中电阻R3可以用两个R并联.可以通过R5调节增益,增益可以大于1,也可以小于1.最具有优势的是可以在R5上并电容滤波. 图2的电路的优势是匹配电阻少,只要一对匹配电阻就可以了.

开关电源整流桥的基础知识整理

开关电源整流桥的基础知识整理 50Hz交流电压经过全波整流后变成脉动直流电压u1,再通过输入滤波电容得到直流高压U1。在理想情况下,整流桥的导通角本应为180°(导通范围是从0°~180°),但由于滤波电容器C的作用,仅在接近交流峰值电压处的很短时间内,才有输入电流流经过整流桥对C 充电。50Hz交流电的半周期为10ms,整流桥的导通时间tC≈3ms,其导通角仅为54°(导通范围是36°~90°)。因此,整流桥实际通过的是窄脉冲电流。桥式整流滤波电路的原理如图1(a)所示,整流滤波电压及整流电流的波形分别如图l(b)和(c)所示。 最后总结几点: (1)整流桥的上述特性可等效成对应于输入电压频率的占空比大约为30%。(2)整流二极管的一次导通过程,可视为一个“选通脉冲”,其脉冲重复频率就等于交流电网的频率(50Hz)。 (3)为降低开关电源中500kHz以下的传导噪声,有时用两只普通硅整流管(例如1N4007) 与两只快恢复二极管(如FR106)组成整流桥,FRl06的反向恢复时间trr≈250ns。 2)整流桥的参数选择 隔离式开关电源一般采用由整流管构成的整流桥,亦可直接选用成品整流桥,完成桥式整流。全波桥式整流器简称硅整流桥,它是将四只硅整流管接成桥路形式,再用塑料封装而成的半导体器件。它具有体积小、使用方便、各整流管的参数一致性好等优点,可广泛用于开关电源的整流电路。硅整流桥有4个引出端,其中交流输入端、直流输出端各两个。 硅整流桥的最大整流电流平均值分0.5~40A等多种规格,最高反向工作电压有50~1000V等多种规格。小功率硅整流桥可直接焊在印刷板上,大、中功率硅整流桥则要用螺钉固定,并且需安装合适的散热器。 整流桥的主要参数有反向峰值电压URM(V),正向压降UF(V),平均整流电流 Id(A),正向峰值浪涌电流IFSM(A),最大反向漏电流IR(霢)。整流桥的反向击穿电压URR应满足下式要求:

十种运放精密全波整流电路

十种运放精密全波整流电路 图中精密全波整流电路的名称,纯属本人命的名,只是为了区分;除非特殊说明,增益均按1设计. 图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益 图2优点是匹配电阻少,只要求R1=R2 图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3

图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益.缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点. 图5 和图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离.另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计 图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K

图8的电阻匹配关系为R1=R2 图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称. 图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0.使用时要小心单电源运放在信号很小时的非线性.而且,单电源跟随器在负信号输入时也有非线性. 图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡. 精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态. 结论: 虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种. 图1的经典电路虽然匹配电阻多,但是完全可以用6个等值电阻R实现,其中电阻R3可以用两个R并联.可以通过R5调节增益,增益可以大于1,也可以小于1.最具有优势的是可以在R5上并电容滤波. 图2的电路的优势是匹配电阻少,只要一对匹配电阻就可以了. 图3的优势在于高输入阻抗. 其它几种,有的在D2导通的半周内,通过A2的复合实现A1的负反馈,对有些运放会出现自激. 有的两个半波的输入阻抗不相等,对信号源要求较高. 两个单运放型虽然可以实现整流的目的,但是输入\输出特性都很差.需要输入\输出都加跟随

各类整流电路图及工作原理

桥式整流电路图及工作原理介绍 桥式整流电路如图1所示,图(a)、(b)、(c)是桥式整流电路的三种不同画法。由电源变压器、四只整流二极管D1~4 和负载电阻RL组成。四只整流二极管接成电桥形式,故称桥式整流。 图1 桥式整流电路图 桥式整流电路的工作原理 如图2所示。

在u2的正半周,D1、D3导通,D2、D4截止,电流由TR次级上端经D1→ RL →D3回到TR 次级下端,在负载RL上得到一半波整流电压。 在u2的负半周,D1、D3截止,D2、D4导通,电流由Tr次级的下端经D2→ RL →D4 回到Tr次级上端,在负载RL 上得到另一半波整流电压。 这样就在负载RL上得到一个与全波整流相同的电压波形,其电流的计算与全波整流相同,即 UL = 0.9U2 IL = 0.9U2/RL 流过每个二极管的平均电流为 ID = IL/2 = 0.45 U2/RL 每个二极管所承受的最高反向电压为 什么叫硅桥,什么叫桥堆 目前,小功率桥式整流电路的四只整流二极管,被接成桥路后封装成一个整流器件,称"硅桥"或"桥堆",使用方便,整流电路也常简化为图Z图1(c)的形式。桥式整流电路克服了全波整流电路要求变压器次级有中心抽头和二极管承受反压大的缺点,但多用了两只二极管。在半导体器件发展快,成本较低的今天,此缺点并不突出,因而桥式整流电路在实际中应用较为广泛。 二极管整流电路原理与分析 半波整流 二极管半波整流电路实际上利用了二极管的单向导电特性。

当输入电压处于交流电压的正半周时,二极管导通,输出电压v o=v i-v d。当输入电压处于交 流电压的负半周时,二极管截止,输出电压v o=0。半波整流电路输入和输出电压的波形如图所 示。 二极管半波整流电路 对于使用直流电源的电动机等功率型的电气设备,半波整流输出的脉动电压就足够了。但对于电子电路,这种电压则不能直接作为半导体器件的电源,还必须经过平滑(滤波)处理。平滑处理电路实际上就是在半波整流的输出端接一个电容,在交流电压正半周时,交流电源在通过二极管向负载提供电源的同时对电容充电,在交流电压负半周时,电容通过负载电阻放电。 电容输出的二极管半波整流电路仿真演示 通过上述分析可以得到半波整流电路的基本特点如下: (1)半波整流输出的是一个直流脉动电压。 (2)半波整流电路的交流利用率为50%。 (3)电容输出半波整流电路中,二极管承担最大反向电压为2倍交流峰值电压(电容输出 时电压叠加)。 (3)实际电路中,半波整流电路二极管和电容的选择必须满足负载对电流的要求。

种精密整流电路的详解

1.第一种的模拟电子书上(第三版442页)介绍的经典电路。A1用的是半波整流并且放 大两倍,A2用的是求和电路,达到精密整流的目的。(R1=R3=R4=R5=2R2) 2.第二种方法看起来比较简单A1是半波整流电路,是负半轴有输出,A2的电压跟随器的 变形,正半轴有输出,这样分别对正负半轴的交流电进行整流!(R1=R2) 3.第三种电路

仿真效果如下: 这个电路真是他妈的坑爹,经过我半天的分析才发现是这样的结论:Uo=-|Ui|,整出来的电路全是负的,真想不通为什么作者放到这里,算了先把分析整理一下: 当Ui>0的时候电路等效是这样的

放大器A是同相比例电路,Uo1=(1+R2/R1)Ui=2Ui 放大器B是加减运算电路,Uo2=(1+R2/R1)Ui-(R4/R3)Uo1=-Ui 当Ui<0的时候电路图等效如下: 放大器A是电压跟随器,放大器B是加减运算电路 式子整理:Uo2=(1+R4/(R2+R3))Ui- R4/(R2+R3)Ui=Ui 以上是这个电路的全部分析,但是想达到正向整流的效果就应该把二极管全部反向过来电路和仿真效果如下图所示

4.第四种电路是要求所有电阻全部相等。这个仿真相对简单。 电路和仿真效果如下 计算方法如下: 当Ui>0时,D1导通,D2截止(如果真是不清楚为什么是这样分析,可以参照模拟电子技术书上对于第一种电路的分析),这是电路图等效如下(R6是为了测试信号源用的跟这个电路没有直接的关系,不知道为什么不加这个电阻就仿真不了)

放大器A构成反向比例电路,uo1=-ui, 这时在放大器B的部分构成加减运算电路,uo2=-uo1=-(-ui) 注意:这里放大器B的正相输入端是相当于接地的,我刚开始一直没有想通,后来明白了,这一条线路上是根本就没有电流的,根本就没有办法列出方程来。(不知道这么想是不是正确的) 当Ui<0的时候,D1截止,D2导通,电路图等效如下: 这时就需要列方程了 Ui<0时Ui/R1=-(U2/R5+U2/(R2+R3))计算得到U2=-2/3 Ui 再根据U2/(R2+R3)=(U0-U2)/R4 得到U0=3/2 U2 带入得到U0=-Ui

整流桥

整流桥-桥式整流工作原理 (2009-12-31 17:11:44) 转载 标 签: 杂谈 整流桥-桥式整流工作原理 整流桥 有多种方法可以用整流二极管将交流电转换为直流电,包括半波整流、全波整流以及桥式整流等。整流桥,就是将桥式整流的四个二极管封装在一起,只引出四个引脚。四个引脚中,两个直流输出端标有+或-,两个交流输入端有~标记。 应用整流桥到电路中,主要考虑它的最大工作电流和最大反向电压。 图一整流桥(桥式整流)工作原理

图二各类整流桥 (有些整流桥上有一个孔,是加装散热器用的) 这款电源的整流桥部分采用了一体式的整流桥,整流桥的作用就是能够通过二极管的单向导通的特性将电平在零点上下浮动的交流电转换为单向的直流电,通常电源中采用的整流桥除了这种单颗集成式的还有采用四颗二极管实现的,它们的原理完全相同 作用就是整流,把交流电变为直流电。实质上就是把4个硅二极管接成桥式整流电路之后封装在一起用塑料包装起来,引出4个脚,其中2个脚接交流电源,用~~符号表示,2个脚是直流输出,用+ -表示。 特点是方便小巧。不占地方。 规格型号一般直接用参数表示:50伏1安,100伏5安等等。 如果你要使用整流桥,选择的时候留点余量,例如要做12伏2安培输出的整流电源,就可以选择25伏5安培的桥。 选择整流桥要考虑整流电路和工作电压. 整流桥堆 整流桥堆一般用在全波整流电路中,它又分为全桥与半桥。 全桥是由4只整流二极管按桥式全波整流电路的形式连接并封装为一体构成的,图是其外形。

全桥的正向电流有0.5A、1A、1.5A、2A、2.5A、3A、5A、10A、20A、35A、50A等多种规格,耐压值(最高反向电压)有25V、50V、100V、200V、300V、400V、500V、600V、800V、1000V等多种规格。 常用的国产全桥有佑风YF系列,进口全桥有ST、IR等。 整流桥命名规则 一般整流桥命名中有3个数字,第一个数字代表额定电流,A;后两个数字代表额电压(数字*100),V 如:KBL410 即4A,1000V RS507 即5A,700V 整流这一个术语,它是通过二极管的单向导通原理来完成工作的,通俗的来说二极管它是正向导通和反向截止,也就是说,二极管只允许它的正极进正电和负极进负电。二极管只允许电流单向通过,所以将其接入交流电路时它能使电路中的电流只按单向流动,即所谓“整流”,用两只管是半泼整流,四只是全泼整流。

10种全波精密整流电路

十种精密全波整流电路 图中精密全波整流电路的名称,纯属本人命的名,只是为了区分;除非特殊

说明,增益均按1设计。 图1是最经典的电路,优点是可以在电阻R5上并联滤波电容。电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益 图2优点是匹配电阻少,只要求R1=R2 图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3 图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益。缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点。 图5 和图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离。另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计 图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K 图8的电阻匹配关系为R1=R2 图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称。 图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0。使用时要小心单电源运放在信号很小时的非线性。而且,单电源跟随器在负信号输入时也有非线性。 图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡。 精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态。 结论: 虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种。 图1的经典电路虽然匹配电阻多,但是完全可以用6个等值电阻R实现,

精密整流电路

实验 精密整流电路 一、实验目的 (1) 了解精密半波整流电路及精密全波整流电路的电路组成、工作原理及参数估算; (2) 学会设计、调试精密全波整流电路,观测输出、输入电压波形及电压传输特性。 二、知识点 半波精密整流、全波精密整流 三、实验原理 将交流电压转换成脉动的直流电压,称为整流。众所周知,利用二极管的单向导电性,可以组成半波及全波整流电路。在图1(a )中所示的一般半波整流电路中,由于二极管的伏安特性如图1(b )所示,当输入电压 幅值小于二极管的开启电压 时,二极管在信 号的整个周期均处于截止状态,输出电压始终为零。即使幅值足够大,输出电压也只反 映 大于 的那部分电压的大小,故当用于对弱信号进行整流时,必将引起明显的误差, 甚至无法正常整流。如果将二极管与运放结合起来,将二极管置于运放的负反馈回路中,则 可将上述二极管的非线性及其温漂等影响降低至可以忽略的程度,从而实现对弱小信号的精密整流或线性整流。 1.精密半波整流 图2给出了一个精密半波整流电路及其工作波形与电压传输特性。下面简述该电路的工作原理: 当输入>0时,<0,二极管D 1导通、D 2截止,由于N 点“虚地”,故≈0(≈-0.6V )。 图1 一般半波整流电路 V i V O

当输入<0 时,>0,二极管D2导通、D1 截止,运放组成反相比例运算器,故,若R1=R2,则=-。其工作波形及电压传输特性如图所示。电路的输出电压可表示为 v0 = 0 v i>0 -v i v i<0 (a)电路(b)波形 (c)电压传输特性 图2 精密半波整流电路

这里,只需极小的输入电压,即可有整流输出,例如,设运放的开环增益为105 ,二 极管的正向导通压降为0.6V ,则只需输入为 μV 以上,即有整流输出了。同 理,二极管的伏安特性的非线性及温漂影响均被压缩了105 倍。 2.精密全波整流 图3给出一个具有高输入阻抗的精密全波整流电路及其工作波形与电压传输特性。 当输入 >0时, <0,二极管D 1导通、D 2截止,故 = = 。运放A 2为差分输入 放大器,由叠加原理知。 v o v i V OM (b )工作波形 (c ) 电压传输特性 图3 精密全波整流电路 v i R - + A 1 +15V -15V N D 1 R D 2 v o1 - + A 2 +15V -15V N R 2R R L v o (a )电路 t v i v o t

全桥整流电路(仅供参考)

全桥整流电路 全桥整流电路图: 全桥整流电路图 看完了全桥整流电路图,我们再来看一个关于全桥整流电路问题实例: 交流220v的全桥整流电路的输入端能否直接输入直流310v电源?为什么? 能得到峰值为310伏的脉动直流电压。如果得到纯直流电还要需要接电容电感等一系列的原件进行滤波。得到310伏的电压不容易。 如果工作电压或电流超过了二极管的极限参数那都要损坏。和多高电压多大电流无关。前提是在正常的工作范围内。 得到的高压经整流过后得到的高电压一般可看作虚电压。接上负载以后电压通常保持不再这个值。这个你可以用低压试验试试看。

最后电子元件技术网再来给大家讲讲全桥式整流电路工作原理: 电子系统的正常运行离不开稳定的电源,除了在某些特定场合下采用太阳能电池或化学电池作电源外,多数电路的直流电是由电网的交流电转换来的。这种直流电源的组成以及各处的电压波形如图所示。直流电源的组成 图中各组成部分的功能如下:⑴电源变压器:将电网交流电压(220V或380V)变换成符合需要的交流电压,此交流电压经过整流后可获得电子设备所需的直流电压。因为大多数电子电路使用的电压都不高,这个变压器是降压变压器。 ⑵整流电路:利用具有单向导电性能的整流元件,把方向和大小都变化的50Hz交流电变换为方向不变但大小仍有脉动的直流电。 ⑶滤波电路:利用储能元件电容器C两端的电压(或通过电感器L的电流)不能突变的性质,把电容C(或电感L)与整流电路的负载RL并联(或串联),就可以将整流电路输出中的交流成分大部分加以滤除,从而得到比较平滑的直流电。在小功率整流电路中,经常使用的是电容滤波。 ⑷稳压电路:当电网电压或负载电流发生变化时,滤波电路输出的直流电压的幅值也将随之变化,因此,稳压电路的作用是使整流滤波后的直流电压基本上不随交流电网电压和负载的变化而变化。 利用二极管的单向导电性组成整流电路,可将交流电压变为单向脉动电压。本章为便于分析整流电路,把整流二极管当作理想元件,即认为它的正向导通电阻为零,而反向电阻为无穷大。但在实际应用中,应考虑到二极管有内阻,整流后所得波形,其输出幅度会减少0.6~1V,当整流电路输入电压大时,这部分压降可以忽略。但输入电压小时,例如输入为3V,则输出只有2V多,需要考虑二极管正向压降的影响。 在小功率直流电源中,常见的几种整流电路有单相半波、全波、桥式和三相整流电路等。 整流(和滤波)电路中既有交流量,又有直流量。对这些量经常采用不同的表述方法:输入(交流)——用有效值或最大值;输出(直流)——用平均值;二极管正向电流——用平均值;二极管反向电压——用最大值。 单相全波桥式整流电路的工作原理

全波整流电路图

全波整流电路如图Z0703所示。它是由次级具有中心抽头的电源变压器Tr、两个整流二极管D1、D2和负载电阻R L组成。 变压器次级电压u21和u22大小相等,相位相反, 即 u21 = - u22= 式中,U2 是变压器次级半边绕组交流电压的有效 值。 全波整流电路的工作过程是:在u2 的正半周(ωt = 0~π)D1正偏导通,D2反偏截止,R L 上有自上而下的电流流过,RL上的电压与u21 相同。 在u2 的负半周(ωt =π~2π),D1反偏截止,D2正偏导通,R L上也有自上而下的电流流过, R L上的电压与u22相同。可画出整流波形如图Z0704所示。可见,负载凡上得到的也是一单 向脉动电流和脉动电压。其平均值分别为: GS0705 流过负载的平均电流为 GS0706 流过二极管D的平均电流(即正向电流)为 加在二极管两端的最高反向电压为 选择整流二极管时,应以此二参数为极限参数。 全波整流输出电压的直流成分(较半波)增大,脉动程度减小, 但变压器需要中心抽头、制造麻烦,整流二极管需承受的反向 电压高,故一般适用于要求输出电压不太高的场合。 全波整流电路如图Z0703所示。它是由次级具有中心抽头的电 源变压器Tr、两个整流二极管D1、D2和负载电阻R L组成。变 压器次级电压u21和u22大小相等,相位相反,即 u21 = - u22=

式中,U2 是变压器次级半边绕组交流电压的有效值。 全波整流电路的工作过程是:在u2 的正半周(ωt = 0~π)D1正偏导通,D2反偏截止,R L 上有自上而下的电流流过,RL上的电压与u21 相同。 在u2 的负半周(ωt =π~2π),D1反偏截止,D2正偏导通,R L上也有自上而下的电流流过, R L上的电压与u22相同。可画出整流波形如图Z0704所示。可见,负载凡上得到的也是一单 向脉动电流和脉动电压。其平均值分别为: 流过负载的平均电流为 流过二极管D的平均电流(即正向电流)为 加在二极管两端的最高反向电压为 选择整流二极管时,应以此二参数为极限参数。 全波整流输出电压的直流成分(较半波)增大,脉动程度减小,但变压器需要中心抽头、制造麻烦,整流 二极管需承受的反向电压高,故一般适用于要求输出电压不太高的场合。

无需二极管的精密全波信号整流器

无需二极管的精密全波信号整流器 使用半导体二极管的整流器电路通常要处理大大超过二极管正向压降的电压,一般这不会影响整流的精度。但是,当二极管压降超过施加的电压时,整流信号的精度就会受到影响。精密整流电路将二极管与运算放大器结合起来,可消除了二极管压降的影响,实现了高精度的小信号整流。由于它具有现代运放的优点,因而可以处理满摆幅的输入、输出。图 1 的电路中完全无需二极管,即可在单电源供电情况下运行,提供全波整流。 电路工作原理如下:如果VIN>0V,则IC1A 的输出VHALF 等于VIN/2,而IC1B 用作一个减法器,其输出电压VOUT = VIN。实际上,这个电路是一个单位增益的跟随器。如果VIN = 0V,则VHALF = 0V,此时电路是一个单位增益反相器,输出VOUT = - VIN。图2 显示了电路在VIN、中间电压VHALF,以及输出电压VOUT下的输入信号。 无需二极管的精密全波信号整流器 作者:José M Blanes and José A Carrasco, University Miguel Hernández, Elche, Spain 使用半导体二极管的整流器电路通常要处理大大超过二极管正向压降的电压,一般这不会影响整流的精度。但是,当二极管压降超过施加的电压时,整流信号的精度就会受到影响。精密整流电路将二极管与运算放大器结合起来,可消除了二极管压降的影响,实现了高精度的小信号整流。由于它具有现代运放的优点,因而可以处理满摆幅的输入、输出。图 1 的电路中完全无需二极管,即可在单电源供电情况下运行,提供全波整流。

电路工作原理如下:如果VIN>0V,则IC1A 的输出VHALF 等于VIN/2,而IC1B 用作一个减法器,其输出电压VOUT = VIN。实际上,这个电路是一个单位增益的跟随器。如果VIN = 0V,则VHALF = 0V,此时电路是一个单位增益反相器,输出VOUT = - VIN。图2 显示了电路在VIN、中间电压VHALF,以及输出电压VOUT下的输入信号。 本电路使用了一块美国国家半导体公司的LMC6482 芯片,工作在两个运算放大器的线性区。推荐的应用包括用于自动增益控制、信号解调和过程仪表的低成本整流。电路只有一个与器件有关的特性:当输入电压超出负供电电压时,放大器一定不能有相位反转,LMC6482就能满足这一要求

各种整流电路图解分析

整流电路 电力网供给用户的是交流电,而各种无线电装置需要用直流电。整流,就是把交流电变为直流电的过程。利用具有单向导电特性的器件,可以把方向和大小交变的电流变换为直流电。下面介绍利用晶体二极管组成的各种整流电路。 一、半波整流电路 图5-1、是一种最简单的整流电路。它由电源变压器B 、整流二极管D 和负载电阻Rfz ,组成。变压器把市电电压(多为220伏)变换为所需要的交变电压e2 ,D 再把交流电变换为脉动直流电。 下面从图5-2的波形图上看着二极管是怎样整流的。

变压器砍级电压e2 ,是一个方向和大小都随时间变化的正弦波电压,它的波形如图5-2(a)所示。在0~K时间内,e2 为正半周即变压器上端为正下端为负。此时二极管承受正向电压面导通,e2 通过它加在负载电阻Rfz上,在π~2π时间内,e2 为负半周,变压器次级下端为正,上端为负。这时D 承受反向电压,不导通,Rfz,上无电压。在π~2π时间内,重复0~π时间的过程,而在3π~4π时间内,又重复π~2π时间的过程…这样反复下去,交流电的负半周就被"削"掉了,只有正半周通过Rfz,在Rfz上获得了一个单一右向(上正下负)的电压,如图5-2(b)所示,达到了整流的目的,但是,负载电压Usc 。以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。 这种除去半周、图下半周的整流方法,叫半波整流。不难看出,半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个周期内的平均值,即负载上的直流电压Usc =0.45e2 )因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。 二、全波整流电路 如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。图5-3 是全波整流电路的电原理图。 全波整流电路,可以看作是由两个半波整流电路组合成的。变压器次级线圈中间需要引出一个抽头,把次组线圈分成两个对称的绕组,从而引出大小相等但极性相反的两个电压e2a 、e2b ,构成e2a 、D1、Rfz与e2b 、D2 、Rfz ,两个通电回路。 全波整流电路的工作原理,可用图5-4 所示的波形图说明。在0~π间内,e2a 对Dl为正向电压,D1 导通,在Rfz 上得到上正下负的电压;e2b 对D2 为反向电压, D2 不导通(见图5-4(b)。在π-2π时间内,e2b 对D2 为正向电压,D2 导通,在Rfz 上得到的仍然是上正下负的电压;e2a 对D1 为反向电压,D1 不导通(见图5-4(C)。

标准整流桥电路

常州瑞华电力电子器件有限公司根据市场需求,充分利用公司近二十年来专业生产各类电力半导体模块的工艺制造技术,设计能力,工艺和测试设备以及生产制造经验,于2006年开发出了能满足VVVF变频器、高频逆变焊机、大功率开关电源、不停电电源、高频感应加热电源和伺服电机传动放大器所需的“三相整流二极管整流桥开关模块”(其型号为MDST)的基础上,近期又开发出了“三相超快恢复分公司极管整流桥开关模块”(其型号为MFST),由于这种模块与采用3~5普通整流二极管相比具有反向恢复时间(trr)短,反向恢复峰值电流(IRM)小和反向恢复电荷(Qrr)低的FRED,因而使变频的噪音大大降低,从而使变频器的EMI 滤波电路内的电感和电容尺寸减小,价格下降,使变频器更易符合国内外抗电磁干扰(EMI)标准。 模块化结构提高了产品的密集性、安全性和可靠性,同时也可降低装置的生产成本,缩短新产品进入市场的周期,提高企业的市场竞争力。由于电路的联线已在模块内部完成,因此,缩短了元器件之间的连线,可实现优化布线和对称性结构的设计,使装置线路的寄生电感和电容参数大大降低,有利于实现装置的高频化。此外,模块化结构与同容量分立器件结构相比,还具有体积小、重量轻、结构紧凑、外接线简单、便于维护和安装等优点,因而大大缩小了装置的何种,降低装置的重量和成本,且模块的主电极端子、控制端子和辅助端子与铜底板之间具有2.5kV以上有效值的绝缘耐压,使之能与装置内各种模块共同安装在一个接地的散热器上,有利于装置体积的进一步缩小,简化装置的结构设计。 1 模块的结构及特点 FRED整流桥开关模块是由六个超快恢复二极管芯片和一个大功率高压晶闸管芯片按一定电路连成后共同封装在一个PPS(加有40%玻璃纤维)外壳内制成,模块内部的电联接方式如图1所示。图中VD1~VD 6为六个FRED芯片,相互联成三相整流桥、晶闸管T串接在电桥的正输出端上。图2示出了模块外形结 构示意图,现将图中的主要结构件的功能分述如下:

小信号精密全波整流电路

图中精密全波整流电路的名称,纯属本人命的名,只是为了区分;除非特殊说明,增益均按1设计. 图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益 图2优点是匹配电阻少,只要求R1=R2 图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3

图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益.缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点. 图5 和图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离.另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计

图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K 图8的电阻匹配关系为R1=R2 图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称. 图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0.使用时要小心单电源运放在信号很小时的非线性.而且,单电源跟随

器在负信号输入时也有非线性. 图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡. 精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态. 结论: 虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种. 图1的经典电路虽然匹配电阻多,但是完全可以用6个等值电阻R实现,其中电阻R3可以用两个R并联.可以通过R5调节增益,增益可以大于1,也可以小于1.最具有优势的是可以在R5上并电容滤波. 图2的电路的优势是匹配电阻少,只要一对匹配电阻就可以了. 图3的优势在于高输入阻抗.

相关主题
文本预览
相关文档 最新文档