当前位置:文档之家› 酒精连续精馏板式塔的设计

酒精连续精馏板式塔的设计

酒精连续精馏板式塔的设计
酒精连续精馏板式塔的设计

第一部分设计任务书

1、题目:

酒精连续精馏板式塔的设计

2、原始数据:

2.1 乙醇-水混合物,含乙醇 37 %(质量),温度 25 ℃;

2.2 产品:馏出液含乙醇 94 %(质量),温度 35 ℃;

2.3塔底:塔底液含乙醇 0.06 %(质量)

2.4生产能力:日产酒精(指馏出液) 11500 kg;

2.5热源条件:加热蒸汽为饱和蒸汽,其绝对压强为 300 kPa;

3、任务:

3.1确定精馏的流程,绘出流程图,标明所需的设备、管线及其有关观测或控制所必需

的仪表和装置。

3.2精馏塔的工艺设计和结构设计:选定塔板型,确定塔径、塔高及进料板的位置;选

择塔板的结构型式、确定塔板的结构尺寸;进行塔板流体力学的计算(包括塔板压降、淹塔的校核及雾沫夹带量的校核等)。

3.3作出塔的操作性能图、计算其操作弹性。

3.4确定与塔身相连的各种管路的直径。

3.5计算全塔装置所用蒸汽量和冷却水用量,确定每个换热器的传热面积并进行选型,

若采用直接蒸汽加热,需确定蒸汽鼓泡管的形式和尺寸。

3.6其它。

4、作业份量:

4.1设计说明书一份,说明书内容见《化工过程及设备设计》的绪论,其中设计说明结

果概要一项具体内容包括:塔板数、塔高、塔径、板间距、回流比、蒸汽上升速度、热交换面积、单位产品热交换面积、蒸汽用量、单位产品蒸汽用量、冷却水用量、单位产品冷却水用量、操作压强、附属设备的规格、型号及数量等。

4.2塔装配图(1号图纸);塔板结构草图(35×35计算纸);工艺流程图(35×50计

算纸〕

第二部分确定设计方案

1、设计方案的确定

(1)塔板类型:选用F1型重浮阀塔.

浮阀塔兼有泡罩塔和筛板塔的优点,而且操作弹性大,操作灵活,板间压降小,液面落差小, 浮阀的运动具有去污作用,不容易积垢堵塞,操作周期长,结构简单,容易安装,操作费用较小,其制造费用仅为泡罩塔的60%~80%;又由于F1型浮阀塔结构简单,制造方便,节省材料,性能良好;另外轻阀压降虽小,但操作稳定性差,低气速时易漏液。

综上所述,选择F1型重阀浮阀塔。

(2)操作压力:常压精馏

对于乙醇-水体系,在常压下已经是液态,且乙醇-水不是热敏性材料,在常压下也可成功分离,所以选用常压精馏。因为高压或者真空操作会引起操作上的其他问题以及设备费用的增加,尤其是真空操作不仅需要增加真空设备的投资和操作费用,而且由于真空下气体体积增大,需要的塔径增加,因此塔设备费用增加。综上所述,选择常压操作。

(3)进料状态:泡点进料

进料状态有五种,如果选择泡点进料,即q=1时,操作比较容易控制,且不受季节气温的影响,此外,泡点进料时精馏段和提馏段的塔径相同,设计和制造时比较方便。

(4)加热方式:间接蒸汽加热

蒸馏釜的加热方式通常采用间接蒸汽加热,设置再沸器。直接蒸汽加热只能用于塔底产物基本是水,由于蒸汽的不断通入,对塔底溶液起了稀释作用,在塔底易挥发物损失量相同的情况下,塔底残液中易挥发组分的浓度应较低,因而塔板数稍有增加,成本增加,故采用间接加热。

(5)热能利用方式:选择适宜回流比,塔釜残液作为原料预热热源

适宜的回流比应该通过经济核算来确定,即操作费用和设备折旧费用之和为最低时的回流比为最适宜的回流比。确定回流比的方法为:先求出最小回流比R min,根据经验取操作回流比为最小回流比的1.1-2.0倍,考虑到原始数据和设计任务,本方案取1.5,即:R=1.5R min;采用釜液产品去预热原料,可以充分利用釜液产品的余热,节约能源。

(6)回流方式:泡点回流

泡点回流易于控制,设计和控制时比较方便,而且可以节约能源。

2、工艺流程图

第三部分 设计计算过程

1、工艺条件和物性参数计算

1.1 将质量分数换算成摩尔分数

0.1869F x = 0.8597D x = 0.000235W x = 1.2 理论塔板数的求取

1.2.1最小回流比

因为是泡点进料,所以q=1。作平衡线和q 线的关系图,并作平衡线的切线与q 线交于点(0.1869,0.3962),则最小回流比:

min 0.85970.3962

2.2140.39620.1869

D x y R y x '--=

==''-- 0

10

20

30

40

50

60

70

80

90

100

0102030405060

708090100y (m o l /%)

x(mol/%)

1.2.2 实际回流比

取最小回流比的1.5倍,则min 1.5 3.32R R =?=

1.2.3 物料衡算

W D F W x Dx Fx += W D F +=

D=11.389kmol/h W=41.061kmol/h F=52.450kmol/h D=0.1331kg/s W=0.2054kg/s F=0.3385kg/s (1) 精馏段

液相流量:L 3.3211.38937.8/kmol h =?=

气相流量:V 3.32111.38949.2/kmol h =

+?=() (2) 提馏段

液相流量:137.811152.4590.3/L L F kmol h '=+?=+?= 气相流量:49.2/V V kmol h '==

1.2.4 操作线方程

(1) 精馏段方程:0.76860.1989y x =+ (2) 提馏段方程: 1.8350.0001961y x =-

1.2.5 图解法计算理论塔板数

10

20

30

40

50

60

70

80

90

100

0102030405060

708090100y (m o l /%)

x(mol/%)

22

图解法得理论塔板数为26.9125.9T N =-=

1.3 全塔效率T E

1.3.1 由下图可确定塔顶、进料、塔釜温度分别为: 78.29D t =℃

83.55F t =℃

W t =99.93℃

05101520253035404550556065707580859095100

80

85

90

95

100

T (℃)

x(mol/%)

1.3.2 由平衡曲线可得塔顶、进料、塔底汽液相摩尔分数:

1.3.3 全塔平均相对挥发度

(1) 塔顶的相对挥发度:

y / 1.199(1)/(1)

D

D

D D D

x y x α=

=--

(2) 进料的相对挥发度:

/ 4.634(1)/(1)

F F

F F F y x y x α=

=--

(3) 塔釜的相对挥发度:

/13.101(1)/(1)

W W

W W W y x y x α=

=--

全塔平均相对挥发度:

4.175α===

1.3.4 全塔平均粘度

(1) 塔顶粘度:0.4275D mPa s μ= (2) 塔底粘度:0.2797W mPa s μ= (3) 进料粘度:0.3510F mPa s μ= 全塔平均粘度:0.3475mPa s μ==

1.3.5 全塔效率为:

0.2450.2450.49()0.49(4.1750.3475)0.4473T E αμ--==??=

1.4 实际塔板数

实际全塔效率取理论全塔效率的1.4倍,即1.4?0.4473=0.63

25.9

420.63

T P T N N E =

≈块

精馏段为35块,进料板为第36块,提馏段为7块

1.5 塔的工艺条件与物料数据计算

1.5.1 平均分子量的计算

(1) 塔顶:D x =0.8363 D y =0.8597

气相:,0.85974610.859718 42.0716g/mol V D M =?+-?=() 液相:,0.83634610.83631841.4164g/mol L D M =?+-?=()

(2) 进料:F x =0.1869 F y =0.5158

气相:,0.51584610.51581832.4424g/mol V F M =?+-?=() 液相:,0.18694610.18691823.2332g/mol L F M =?+-?=()

(3) 塔釜:W x =0.000235 W y =0.00307

气相:,0.003074610.003071818.0860/V W M g mol =?+-?=()

液相:(),0.00023546 1 0.0002351818.0066g/mol L W M =?+-?= 精馏段平均分子量:

气相:M =(42.0716+32.4424)2=37.257g/mol V ÷ 液相:L M 41.416423.2332)/232.3248g/mol +==( 提馏段平均分子量

气相:V M 32.442418.0860)/225.2642g/mol '+==( 液相:L M 23.233218.0066/220.6199g/mol '+==()

1.5.2 平均密度的计算

(1) 液相:

塔顶:水ρ(液)=0.98023

/cm g 乙醇ρ(液)=0.73483

/cm g

,L D ρ=0.8597×0.7348+(1-0.8597)×0.9802=0.76923/cm g

=769.23

/m kg

进料: 水ρ(液)=0.97863

/cm g 乙醇ρ(液)=0.72933

/cm g

,L F ρ=0.1869×0.7293+(1-0.1869)×0.9786=0.93203/cm g

=9323

/m kg

塔釜:水ρ(液)=0.97353

/cm g 乙醇ρ(液)=0.71153

/cm g

,L W ρ=0.000235×0.7115+(1-0.000235)×0.9735=0.97343/cm g =973.43/m kg

精馏段平均液相密度:L ρ=(769.2+932)/2=850.63/m kg 提馏段平均液相密度:L ρ'=(932+973.4)/2=952.73/m kg

(2) 气相:

查表(224)传热传质过程设备设计 塔顶:,V D ρ=1.4783/m kg 进料:,V F ρ=0.8013/m kg 塔釜:,V W ρ=0.5923/m kg

精馏段气相平均密度: V ρ=(1.478+0.801)/2=1.13953

/m kg

提馏段气相平均密度:V ρ'=(0.801+0.592)/2=0.69653/m kg (3) 表面张力

塔顶:62.4σ水=mN/m =乙醇σ17.4mN/m

D σ=0.8597×17.4+(1-0.8597)×62.4=23.7mN/m

进料:=水σ61.4mN/m =乙醇σ16.9mN/m

F σ=0.1869×16.9+(1-0.1869)×61.4=53.1mN/m

塔釜:=水σ58.2 mN/m =乙醇σ15.3mN/m

W σ=0.000235×15.3+(1-0.000235)×58.2=58.2 mN/m

精馏段平均表面张力:σ=(23.7+53.1)/2=38.4 mN/m 提馏段平均表面张力:σ'=(53.1+58.2)/2=55.7 mN/m

(4) 气液相负荷量 精馏段: 37.832.32483600850.63600

L L L L M q ρ??=

=??=0.0003993

/m s

V 49.237.2573600 1.13953600

V V V M q ρ??=

=??=0.4468 3

/m s

提馏段:90.320.6199952.736003600L L L L M q ρ''??'==?'?=0.0005433/m s V 49.225.26420.69653600

3600V V V M q ρ''??'==?'?=0.49573/m s 2、 板式塔的主要工艺尺寸计算

2.1

塔径D

2.1.1 求空塔气速u

2.1.1.1

精馏段:

(1) 0.5

0.5

0.000399850.60.02440.4468 1.1395L L V V q q ρρ??????== ???

???

????

(2) 取板间距T H =0.35m ,板上清液层高度为l h =0.05m 则分离空间

T H -l h =0.3m

(3) 查图得负荷系数:20C =0.061,则

C=20C 0.220σ?? ???=0.061?0.2

38.420?? ???

=0.0695

(4) max u

可取安全系数0.70,则u=0.70max u =0.7?1.898=1.3286 m/s 2.1.1.2 提馏段

0.5

0.5

0.000543952.7(1)0.49570.6965l L V v Q Q ρρ????

''?? ???= ? ???''??

????

=0.0405

(2)取板间距T H =0.35m ,板上清液层高度为l h =0.05m 则分离空间

T H -l h =0.3m

(3) 查图得负荷系数: 20C =0.063,则

C=20C 0.220σ?? ???=0.063?0.2

55.720?? ???

=0.07732

(4)max

u

=2.858

可取安全系数0.70,则u=0.70max u =0.7?2.858=2.001 m/s 精馏段空塔气速小于提馏段,所以选择精馏段的空塔气速计算塔径

2.1.2 塔径

0.655=m 圆整取D=0.7m ,则实际空塔气速为u=1.162 m/s

塔的截面积:2220.250.250.70.3847T A D m ππ=??=??=

2.2 溢流装置

采用单溢流、弓形降液管,不设进口堰。 2.2.1 堰长

取 w l =0.75D

w l =0.75?0.7=0.525m

2.2.2 出口堰高 w h =L ow h h -

选用平直堰,堰上液层高度ow h 由下式计算

ow h =

2/3

2.841000h w L E L ??

???

近似取E=1.03,则 ow h =0.005722

故 w h =0.05-0.005722=0.044m

2.2.3 降液管的宽度d W 与降液管的面积f A 由

0.750w

l D

=查《化工设计手册》

d

W D =0.17,f T

A A =0.08 故 d W =0.17D=0.12m f A =0.08()2

4

D π=0.0312m 停留时间 f T s

A H L τ=

=31.1s (>5s 符合要求)

2.2.4 降液管底隙高度 h ο

h ο=w h -0.006=0.044-0.006=0.038m

2.3

塔板布置及浮阀数目及排列

2.3.1 阀孔数

取阀孔动能因子 F ο=10 孔速 精馏段: u ο

=9.368m

提馏段:u ο'

=11.982m 浮阀数 精馏段:n=

24

s V d u ο

π

=

20.4468

0.0399.368

4

π

?=40(个)

提馏段n=

24

s V d u ο

π

'=

20.4957

0.03911.982

4

π

?=35(个)

2.3.2 塔板布置

取无效区宽度 c W =0.06m 安定区宽度 s W =0.07m

开孔区面积

212sin 180a x A R R π-?

?

=???

?

R=

2c D

W -=0.29m x=()2

d D

W Ws -+=0.16m 故 a A

=21

0.1620.29sin 180

0.29π

-??

???

?

=0.175m

精馏段:阀孔总面积:000.4468

9.368

V Q A u =

=

=0.0477

t d ==提馏段:阀孔总面积:00

0.495711.982V Q A u ''==

'

=0.0414 t d '===0.076

浮阀排列方式采用等边三角形叉排 实际布置如下:

精馏段 37个 提馏段 33个

2.3.3 验证气速及阀孔动能因素及开孔率

2.3.3.1 由实际浮阀个数可知,实际阀孔中气体速度为: 精馏段:012

04V

Q u d N

π=

=10.11 01F u =提馏段:022

04V Q u d N π'

=

=12.58 02F u =阀孔动能因素在9~12的范围内

2.3.3.2 精馏段塔板开孔率为:

202

4

100%4

d N D π

φπ

=?=11.49%

提馏段塔板开孔率为:202

4

100%4

d N D π

φπ

=?=10.24%

均在 10%-14%之间,符合要求。

3、 塔板流体力学校核

3.1 阻力计算

气相通过浮塔板的压力降,由下式计算

p c f h h h h σ=++

3.1.1 干板阻力

临界孔速:11.825

073.1c v u ρ??

=

???

精馏段:1

11.825

1.825

073.173.11.1395c v u ρ??

??==

? ???

??

=9.778<0u =10.11

∴阀全开

2

5.34

2V c L u h g

ορρ==21.139510.115.342850.69.81???=0.037m 液柱 提馏段:1

11.825

1.825

073.173.10.6965c v u ρ????==

? ???

??

=12.8>0u '=12.58

∴阀全开

2

5.34

2V c L u h g

ορρ==20.696512.585.342952.79.81???=0.031m 3.1.2 液层阻力x ο

取充气系数数 οε=0.5,有

f h =οεL h =0.5?0.05=0.025m 液柱

3.1.3 液体表面张力所造成阻力x ο此项可以忽略不计。 3.1.4 故气体流经一层浮阀塔塔板的压力降的液柱高度为:

精馏段:p h =0.037+0.025=0.062m 常板压降

p p L P h g ρ?==0.062?850.6?9.81=517.4a P (<0.7K a P ,符合设计要求)。 提馏段:p h =0.031+0.025=0.056

常板压降

p p L P h g ρ?==0.056?952.7?9.81=523.3(<0.7K a P ,符合设计要求)。

3.2 淹塔

为了防止淹塔现象了生,要求控制降液管中清液层高度符合()d T w H H h φ≤+,

其中 d p L d H h h h =++

精馏段:由前计算知 p h =0.062m,按下式计算

d h =0.1532

s w L l h ο?? ???

=0.1532

0.0003990.5250.038?? ????=0.0004m

板上液层高度 L h =0.05m,得:

d H =0.062+0.05+0.0004=0.1124m

提馏段:由前计算知 p h =0.056m,

d h =0.1532

s w L l h ο?? ???

=0.1532

0.0005430.5250.038??

????=0.00074m d H =0.056+0.05+0.00074=0.1067m

取φ=0.5,板间距为0.35m,w h =0.044m, 有

φ()T w H h +=0.5?(0.35+0.044)=0.197m

由此可见:d H <φ()T w H h +,符合要求。

3.3 雾沫夹带

浮阀塔可以考虑泛点率,参考化学工程手册。

泛点率

F b

?100%

L l =D-2d W =0.7-2?0.12=0.46 b A =T A -2f A =0.3847-2?0.031=0.323

式中L l ——板上液体流经长度,m; b A ——板上液流面积,2m ; F C ——泛点负荷系数, K ——特性系数,取1.0. 精馏段:

泛点率

=54.1% (<70%,符合要求)

提馏段:

泛点率

=47.3% (<70%,符合要求)

4、 塔板负荷性能图

4.1 雾沫夹带线

按泛点率=70%计

F b

?

100%=70%

100%70%=

将上式整理得

0.0366V q +0.6256L q =0.0215

4.2 泛液线

通过式d p l d H h h h =++以及式p c f h h h h σ=++得

p L d h h Φ++T w (H +h )=h =c f L d h h h h H σ++++ 由此确定液泛线方程。

ΦT w (H +h )=2200036005.370.153()(1)2L v L L w w w

u q q h g l h l 2/3ρ2.84

+++ε[+?E()]ρ?1000

2

2236005.37 1.13950.153(

) 1.50.044850.629.810.5250.0580.525

0.039374V L L q q q π2/3

?? ???2.84?1.03++[+()] ????1000 ?????

=ΦT w (H +h )=0.197

简化上式得关系方程如下:

222/30.188165.010.15830.131V L L q q q ++=

4.3 液相负荷上限线

求出上限液体流量L q 值(常数) 以降液管内停留时间τ=4s 则 3,max 0.0310.35

0.0027/4

f T

L A H q m s ?==

4.4 漏液线

对于1F

型重阀,由06F u ==,计算得

0u =

220004

4

V q d n u d n π

π

=

??=

? 则

2

3,min 0.7850.039370.207/V q m s =??=

4.5 液相负荷下限线

取堰上液层高度ow h =0.0057m 根据ow h 计算式求L q 的下限值

,min 2.840.00571000L w

q E l 2/3

[]= =

,min 36002.84

1.030.005710000.525

L q 2/3[]= 取E=1.03

3

,min 0.000316/L q m s =

经过以上流体力学性能的校核可以将精馏段塔板负荷性能图划出。如

0.0000

0.00050.00100.00150.00200.00250.00300.0035

0.0

0.10.20.30.40.5

0.60.70.80.9q V

q L

P

由塔板负荷性能图可以看出: ① 在任务规定的气液负荷下的操作点

P (0.000399,0.4468)(设计点),处在适宜的操作区内。

② 塔板的气相负荷上限完全有雾沫夹带控制,操作下限由漏液控制。 ③ 按固定的液气比,求出操作弹性K ,即 K=

,max ,min

s s V V =

0.579

0.351

=1.65 5、 主要接管尺寸计算

5.1 进料管

已知:F=0.3885kg/s, F t =83.6℃, 进料液的密度:F ρ=932,进料由泵输入塔中,适宜流速为1.5~2.5m/s 。

取进料流速为1.5m/s ,则进料管内径:

d =

=

选取钢管253mm φ? 校核设计流速220.3885

1.5/(0.0250.0032)932

4

4

F

u m s

d π

π

ρ

=

=

=?-??

因此设备适用。 5.2 回流管

已知:37.841.421565.68/0.4349/L kg h kg s =?==,3769.2/L kg m ρ= 采用泵输送回流液,适宜流速为1.0~2.0m/s

取回流液流速u=1.5m/s ,则回流管内径为:

0.0219d m =

==

选取钢管Φ32×3.5mm 。 校核设计流速:2

0.4349

1.15/(0.0320.00352)769.2

4

u m s

π

=

=?-??

因此设备适用。

5.3 釜液出口管

已知:0.2054/W kg s =,3973.4/W kg m ρ=,釜液出口管一般的适宜流速为0.5~1.0m/s 。

取釜液流速u=0.8m/s ,则釜液出口管内径为:

0.0183d m =

=

选取钢管Φ25×3mm 。 校核设计流速,20.2054

0.745/(0.0250.0032)973.4

4

u m s π

=

=?-??

因此设备适用。

5.4 塔顶蒸汽管

已知:3

0.389/V m s =,蒸汽管一般适宜流速为15~25m/s. 取蒸汽管流速为u=24m/s ,则塔顶蒸汽管管口内径为:

0.144d m =

=

选取钢管Φ159×4.5mm 。 校核设计流速:2

0.389

22.03/(0.1590.00452)4

u m s π

=

=?-?

经校核,设备适用。

5.5 塔釜蒸汽管

已知: 3

0.418/V m s '=,蒸汽管一般适宜流速为15~25m/s. 取蒸汽管流速为u=20m/s ,则塔釜蒸汽管管口内径为:

0.163d m =

==

选取钢管Φ194×6mm 。 校核设计流速:2

0.418

16.08/(0.1940.0062)4

u m s π

=

=?-?

经校核,设备适用。

6、塔的辅助设备设计

6.1塔顶全凝器

6.1.1 全凝器设计:

已知:塔顶蒸气流量V =0.575 Kg/s ;蒸气汽化潜热:

0.94840.2210.942321929kJ /kg m r =?+-?=()

则:0.575929534.18/C m Q V kJ s γ===?=

取水进口温度为25℃,水的出口温度为45℃,查得:3

989.7/kg m ρ=水

1.174/(p c kJ kg =? 水C)

取安全系数为1.1,则

1.1 4.174(4525)

C Q W =??-水

7.039/W kg s =水

()()78.34578.34578.325/ln 42.578.325m t C -??

???=---= ???-??

取K=700 ,则实际传热面积为

C A =()()321.1/ 1.1534.1810/70042.519.75m Q k t m ??=???=

取流速为2/u m s = 选择Φ25×2.5 mm ,并设单程管数为N

2

447.0392/0.02989.7

s i I i L V V u m s A d n n πρπ?=

===???水 N=12

单根管长:19.75

120.025

L π=

??=21m

选用管长L=6m ,则需 4个管程,总管数为4?12=48根。查《传热传质过程设备设计》,可选用固定管板式换热器型号:Φ25×2.5mm ,L=6m ,壳径为325mm ,管程为4,总管数为40根,每程10根,中心管排数n=9。 即型号:6

BEM 325 1.018.5425

----- 6.12 全凝器校核:

(1) 管内传热系数:

()

23447.039

2.265/0.0210989.7Re /2.265989.70.02/0.61151073317Pr / 4.1740.6115/0.6318 4.04

s i I i L i i i L p V V u m s

A d n u d c πρπρμ

μλ-?====???==???===?=水

0.80.40.80.40.6318

0.023Re Pr 0.02373317 4.040.02

i i i

h d λ

=?

?=?

??=9908.2 (2) 管间传热系数:

3233

78.29,0.427510,0.225/(),

958.810/,769.2/D W L t C Pa s W m s KJ kg kg m

μλγρ-=?=??=?=?=

14

3

2

2/31

3234

2/33

0.7250.225769.29.81958.8100.7251727.890.0250.42751042.5o o g h n d t λργμ-??

= ?

???

??

????== ???????

(3) 壁面污垢系数:

Rso= 0.0001722

m ℃/w Rsi= 0.0001722m ℃/w

乙醇水精馏塔设计

⑴综合运用“化工原理”和相关选修课程的知识,联系化工生产的实际完成单元操作的化工设计实践,初步掌握化工单元操作的基本程序和方法。 ⑵熟悉查阅资料和标准、正确选用公式,数据选用简洁,文字和工程语言正确表达设计思路和结果。 ⑶树立正确设计思想,培养工程、经济和环保意识,提高分析工程问题的能力。二、设计任务及操作条件在一常压操作的连续精馏塔分离乙醇-水混合物。 生产能力(塔顶产品)3000 kg/h 操作周期 300 天/年 进料组成 25% (质量分数,下同) 塔顶馏出液组成≥94% 塔底馏出液组成≤0.1% 操作压力 4kPa(塔顶表压) 进料热状况泡点 单板压降:≤0.7 kPa 设备型式筛板 三、设计容: (1) 精馏塔的物料衡算; (2) 塔板数的确定: (3) 精馏塔的工艺条件及有关物件数据的计算; (4) 精馏塔的塔体工艺尺寸计算; (5) 塔板主要工艺尺寸的计算; (6) 塔板的流体力学验算: (7) 塔板负荷性能图; (8) 精馏塔接管尺寸计算; (9) 绘制生产工艺流程图; (10) 绘制精馏塔设计条件图; (11) 对设计过程的评述和有关问题的讨论。 [ 设计计算 ] (一)设计方案选定 本设计任务为分离水-乙醇混合物。 原料液由泵从原料储罐中引出,在预热器中预热至84℃后送入连续板式精馏塔(筛板塔),塔顶上升蒸汽流采用强制循环式列管全凝器冷凝后一部分作为回流液,其余作为产品经冷却至25℃后送至产品槽;塔釜采用热虹吸立式再沸器提供气相流,塔釜残液送至废热锅炉。 1精馏方式:本设计采用连续精馏方式。原料液连续加入精馏塔中,并连续收集产物和排出残液。其优点是集成度高,可控性好,产品质量稳定。由于所涉浓度围乙醇和水的挥发度相差较大,因而无须采用特殊精馏。 2操作压力:本设计选择常压,常压操作对设备要求低,操作费用低,适用于乙醇和水这类非热敏沸点在常温(工业低温段)物系分离。 3塔板形式:根据生产要求,选择结构简单,易于加工,造价低廉的筛板塔,筛板塔处理能力大,塔板效率高,压降较低,在乙醇和水这种黏度不大的分离工艺中有很好表现。 4加料方式和加料热状态:加料方式选择加料泵打入。由于原料温度稳定,为减少操作成本采用30度原料冷液进料。

丙酮水连续精馏塔设计说明书吴熠

课程设计报告书丙酮水连续精馏浮阀塔的设计学院化学与化工学院 专业化学工程与工艺 学生姓名吴熠 学生学号 指导教师江燕斌 课程编号 课程学分 起始日期

目录 \ "" \ \ \

第部分设计任务书 设计题目:丙酮水连续精馏浮阀塔的设计 设计条件 在常压操作的连续精馏浮阀塔内分离丙酮水混合物。生产能力和产品的质量要求如下: 任务要求(工艺参数): .塔顶产品(丙酮):, (质量分率) .塔顶丙酮回收率:η=0.99(质量分率) .原料中丙酮含量:质量分率(*) .原料处理量:根据、、返算进料、、、 .精馏方式:直接蒸汽加热 操作条件: ①常压精馏 ②进料热状态q=1 ③回流比R=3R min ④加热蒸汽直接加热蒸汽的绝对压强 冷却水进口温度℃、出口温度℃,热损失以计 ⑤单板压降≯ 设计任务 .确定双组份系统精馏过程的流程,辅助设备,测量仪表等,并绘出工艺流程示意图,表明所需的设备、管线及有关观测或控制所必需的仪表和装置。 .计算冷凝器和再沸器热负荷。塔的工艺设计:热量和物料衡算,确定操作回流比,选定板型,确定塔径,塔板数、塔高及进料位置 .塔的结构设计:选择塔板的结构型式、确定塔的结构尺寸;进行塔板流体力学性能校核(包括塔板压降,液泛校核及雾沫夹带量校核等)。 .作出塔的负荷性能图,计算塔的操作弹性。 .塔的附属设备选型,计算全套装置所用的蒸汽量和冷却水用量,和塔顶冷凝器、塔底蒸馏釜的换热面积,原料预热器的换热面积与泵的选型,各接管尺寸的确定。

第部分设计方案及工艺流程图 设计方案 本设计任务为分离丙酮水二元混合物。对于该非理想二元混合物的分离,应使用连续精馏。含丙酮(质量分数)的原料由进料泵输送至高位槽。通过进料调节阀调节进料流量,经与釜液进行热交换温度升至泡点后进入精馏塔进料板。塔顶上升蒸汽使用冷凝器,冷凝液在泡点一部分回流至塔内,其余部分经产品冷却后送至储罐。该物系属于易分离物系(标况下,丙酮的沸点°),塔釜为直接蒸汽加热,釜液出料后与进料换热,充分利用余热。 工艺流程图

醋酸工艺流程

醋酸工艺流程 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

1.1 公司生产工艺、装置、储存设施等基本情况: 醋酸工艺流程图及简述: 醋酸生产流程简述: 酒精氧化:95%原料酒精和本车间回收的76%酒精在配料槽内混合配比成84±%稀酒精,配料酒精经蒸发锅加热送入氧化炉,在555±5℃高温和电解银催化剂作用下反应生成乙醛气体,反应混合气体经冷凝后进入吸收塔,被一次水吸收后得到8-10%左右的稀乙醛。 乙醛精制与酒精回收:稀乙醛经泵加压进入乙醛精馏塔精馏,控制塔顶温度在45±2℃,压力,塔顶采出得纯乙醛。塔釜温度控制在121±3℃,物料自行压入酒精回收塔精馏,塔顶温度控制在90±5℃塔顶采出约76%酒精供酒精氧化工序配料使用,塔釜温度控制在110±3℃范围内,废水经塔釜排出。 乙醛氧化:乙醛经计量泵加压后进入氧化塔,与来自空压的压缩空气在温度50~80℃、压力~和一定量醋酸锰催化作用条件下反应生成粗醋酸。粗醋酸由氧化

塔上部出料口排至粗醋酸贮槽,未反应的乙醛由塔顶经冷凝器冷凝分离后,液体回流至氧化塔塔底,尾气经进入鼓泡吸收器进一步吸收后排入大气。 醋酸精制:粗醋酸经高沸锅蒸发将重组份醋酸锰分离,高沸蒸发锅温度控制在120±2℃,高沸锅底部醋酸锰排入乙醛氧化工序的锰循环槽循环使用。顶部轻组份进入浓缩精馏塔,塔釜温度控制在123±3℃,塔釜醋酸连续定量的排入成品蒸发锅,在120±2℃条件下蒸馏冷凝后得醋酸进入成品计量槽,经分析合格后放入成品大罐。塔顶温度控制在100±2℃,塔顶采出的稀酸进入计量槽,经计量后放入稀酸大罐。

苯-甲苯精馏塔课程设计报告书

课程设计任务书 一、课题名称 苯——甲苯混合体系分离过程设计 二、课题条件(原始数据) 1、设计方案的选定 原料:苯、甲苯 年处理量:108000t 原料组成(甲苯的质量分率):0.5 塔顶产品组成:%99>D x 塔底产品组成:%2

设计容 摘要:精馏是分离液体混合物最常用的一种单元操作,在化工﹑炼油﹑石油化工等工业中得到广泛的应用。本设计的题目是苯—甲苯二元物系板式精馏塔的设计。在确定的工艺要求下,确定设计方案,设计容包括精馏塔工艺设计计算,塔辅助设备设计计算,精馏工艺过程流程图,精馏塔设备结构图,设计说明书。关键词:板式塔;苯--甲苯;工艺计算;结构图 一、简介 塔设备是炼油、化工、石油化工等生产中广泛应用的气液传质设备。根据塔气液接触部件的结构型式,可分为板式塔和填料塔。板式塔设置一定数目的塔板,气体以鼓泡或喷射形式穿过板上液层进行质热传递,气液相组成呈阶梯变化,属逐级接触逆流操作过程。填料塔装有一定高度的填料层,液体自塔顶沿填料表面下流,气体逆流向上(也有并流向下者)与液相接触进行质热传递,气液相组成沿塔高连续变化,属微分接触操作过程。 工业上对塔设备的主要要:(1)生产能力大;(2)传热、传质效率高;(3)气流的摩擦阻力小;(4)操作稳定,适应性强,操作弹性大;(5)结构简单,材料耗用量少;(6)制造安装容易,操作维修方便。此外,还要求不易堵塞、耐腐蚀等。 板式塔大致可分为两类:(1)有降液管的塔板,如泡罩、浮阀、筛板、导向筛板、新型垂直筛板、蛇形、S型、多降液管塔板;(2)无降液管的塔板,如穿流式筛板(栅板)、穿流式波纹板等。工业应用较多的是有降液管的塔板,如浮阀、筛板、泡罩塔板等。 苯的沸点为80.1℃,熔点为5.5℃,在常温下是一种无色、味甜、有芳香气味的透明液体,易挥发。苯比水密度低,密度为0.88g/ml,但其分子质量比水重。苯难溶于水,1升水中最多溶解1.7g苯;但苯是一种良好的有机溶剂,溶解有机分子和一些非极性的无机分子的能力很强。 甲苯是最简单,最重要的芳烃化合物之一。在空气中,甲苯只能不完全燃烧,火焰呈黄色。甲苯的熔点为-95 ℃,沸点为111 ℃。甲苯带有一种特殊的芳香味(与苯的气味类似),在常温常压下是一种无色透明,清澈如水的液体,密度为0.866克/厘米3,对光有很强的折射作用(折射率:1,4961)。甲苯

乙醇-水连续浮阀式精馏塔的设计方案

乙醇-水连续浮阀式精馏塔的设计方案 第1章前言 1.1精馏原理及其在化工生产上的应用 实际生产中,在精馏柱及精馏塔中精馏时,上述部分气化和部分冷凝是同时进行的。 对理想液态混合物精馏时,最后得到的馏液(气相冷却而成)是沸点低的B物质,而残液是沸点高的A物质,精馏是多次简单蒸馏的组合。精馏塔底部是加热区,温度最高;塔顶温度最低。精馏结果,塔顶冷凝收集的是纯低沸点组分,纯高沸点组分则留在塔底。 1.2精馏塔对塔设备的要求 精馏设备所用的设备及其相互联系,总称为精馏装置,其核心为精馏塔。常用的精馏塔有板式塔和填料塔两类,通称塔设备,和其他传质过程一样,精馏塔对塔设备的要求大致如下: 一:生产能力大:即单位塔截面大的气液相流率,不会产生液泛等不正常流 动。 二:效率高:气液两相在塔保持充分的密切接触,具有较高的塔板效率或传质效率。 三:流体阻力小:流体通过塔设备时阻力降小,可以节省动力费用,在减压操作是时,易于达到所要求的真空度。 四:有一定的操作弹性:当气液相流率有一定波动时,两相均能维持正常的流动,而且不会使效率发生较大的变化。 五:结构简单,造价低,安装检修方便。

六:能满足某些工艺的特性:腐蚀性,热敏性,起泡性等。 1.4常用板式塔类型及本设计的选型 常用板式塔类型有很多,如:筛板塔、泡罩塔、舌型塔、浮阀塔等。而浮阀塔具有很多优点,且加工方便,故有关浮阀塔板的研究开发远较其他形式的塔板广泛,是目前新型塔板研开发的主要方向。近年来与浮阀塔一直成为化工生中主要的传质设备,浮阀塔多用不锈钢板或合金。实际操作表明,浮阀在一定程度的漏夜状态下,使其操作板效率明显下降,其操作的负荷围较泡罩塔窄,但设计良好的塔其操作弹性仍可达到满意的程度。 浮阀塔塔板是在泡罩塔板和筛孔塔板的基础上发展起来的,它吸收了两者的优点。所以在此我们使用浮阀塔,浮阀塔的突出优点是结构简单,造价低,制造方便;塔板开孔率大,生产能力大等。 乙醇与水的分离是正常物系的分离,精馏的意义重大,在化工生产中应用非常广泛,对于提纯物质有非常重要的意义。所以有必要做好本次设计 1.4.本设计所选塔的特性 浮阀塔的优点是: 1.生产能力大,由于塔板上浮阀安排比较紧凑,其开孔面积大于泡罩塔板,生产能力 比泡罩塔板大 20%~40%,与筛板塔接近。 2.操作弹性大,由于阀片可以自由升降以适应气量的变化,因此维持正常操作而允许 的负荷波动围比筛板塔,泡罩塔都大。 3.塔板效率高,由于上升气体从水平方向吹入液层,故气液接触时间较长,而雾沫夹 带量小,塔板效率高。 4.气体压降及液面落差小,因气液流过浮阀塔板时阻力较小,使气体压降及液面落差

设备选型-精馏塔设计说明书

第三章设备选型-精馏塔设计说明书3.1 概述 本章是对各种塔设备的设计说明与选型。 3.2设计依据 气液传质分离用的最多的为塔式设备。它分为板式塔和填料塔两大类。板式塔和填料塔均可用作蒸馏、吸收等气液传质过程,但两者各有优缺点,根据具体情况进行选择。设计所依据的规范如下: 《F1型浮阀》JBT1118 《钢制压力容器》GB 150-1998 《钢制塔式容器》JB4710-92 《碳素钢、低合金钢人孔与手孔类型与技术条件》HG21514-95 《钢制压力容器用封头标准》JB/T 4746-2002 《中国地震动参数区划图》GB 18306-2001 《建筑结构荷载规范》GB50009-2001 3.3 塔简述 3.3.1填料塔简述 (1)填料塔

填料塔是以塔内的填料作为气液两相间接触构件的传质设备,由外壳、填料、填料支承、液体分布器、中间支承和再分布器、气体和液体进出口接管等部件组成。 填料是填料塔的核心,它提供了塔内气液两相的接触面,填料与塔的结构决定了塔的性能。填料必须具备较大的比表面,有较高的空隙率、良好的润湿性、耐腐蚀、一定的机械强度、密度小、价格低廉等。常用的填料有拉西环、鲍尔环、弧鞍形和矩鞍形填料,20世纪80年代后开发的新型填料如QH—1型扁环填料、八四内弧环、刺猬形填料、金属板状填料、规整板波纹填料、格栅填料等,为先进的填料塔设计提供了基础。 填料塔适用于快速和瞬间反应的吸收过程,多用于气体的净化。该塔结构简单,易于用耐腐蚀材料制作,气液接触面积大,接触时间长,气量变化时塔的适应性强,塔阻力小,压力损失为300~700Pa,与板式塔相比处理风量小,空塔气速通常为0.5-1.2 m/s,气速过大会形成液泛,喷淋密度6-8 m3/(m2.h)以保证填料润湿,液气比控制在2-10L/m3。填料塔不宜处理含尘量较大的烟气,设计时应克服塔内气液分布不均的问题。 (2)规整填料 塔填料分为散装填料、规整填料(含格栅填料) 和散装填料规整排列3种,前2种填料应用广泛。 在规整填料中,单向斜波填料如JKB,SM,SP等国产波纹填料已达到国外MELLAPAK、FLEXIPAC等同类填料水平;双向斜波填料如ZUPAK、DAPAK 等填料与国外的RASCHIG SUPER-PAK、INTALOX STRUCTURED PACKING 同处国际先进水平;双向曲波填料如CHAOPAK等乃最新自主创新技术,与相应型号的单向斜波填料相比,在分离效率相同的情况下,通量可提高25% -35%,比国外的单向曲波填料MELLAPAK PLUS通量至少提高5%。上述规整填料已成功应用于φ6400,φ8200,φ8400,φ8600,φ8800,φ10200mm等多座大塔中。 (3)板波纹填料 板波纹填料由开孔板组成,材料薄,空隙率大,加之排列规整,因而气体通过能力大,压降小。其比表面积大,能从选材上确保液体在板面上形成稳定薄液

精馏塔设计

精馏塔设计 目录 § 1 设计任务书 (1) § 1.1 设计条件 (1) § 2 概述 (1) § 2.1 塔型选择 (1) § 2.2 精馏塔操作条件的选择 (3) § 2.3 再沸器选择 (4) § 2.4 工艺流程 (4) § 2.5 处理能力及产品质量 (4) § 3 工艺设计 (5) § 3.1 系统物料衡算热量衡算 (5) § 3.2 单元设备计算 (9) § 4 管路设计及泵的选择 (28) § 4.1 进料管线管径 (28) § 4.2 原料泵P-101的选择 (31) § 5 辅助设备的设计和选型 (32)

§ 5.1 贮罐………………………………………………………………………………… 32 § 5.2 换热设备…………………………………………………………………………… 34 § 6 控制方案…………………………………………………………………………………… 34 附录1~………………………………………………………………………………………… 35 参考文献………………………………………………………………………………………… 37 后 记 (38) §1 设计任务书 §1.1 设计条件 工艺条件:饱和液体进料,进料量丙烯含量x f =65%(摩尔百分数) 塔顶丙烯含量D x =98%,釜液丙烯含量w x ≤2%,总板效率为0.6。 操作条件:建议塔顶压力1.62MPa (表压) 安装地点:大连 §2 概述 蒸馏是分离液体混合物(含可液化的气体混合物)常用的一种单元操作,在化工、炼油、石油化工等工业中得到广泛的应用。其中,简单蒸馏与平衡蒸馏只能将混合物进行初步的分离。为了获得较高纯度的产品,应

乙醇—水溶液精馏塔设计[精选.]

第一章绪论 (2) 一、目的: (2) 二、已知参数: (2) 三、设计内容: (2) 第二章课程设计报告内容 (3) 一、精馏流程的确定 (3) 二、塔的物料衡算 (3) 三、塔板数的确定 (4) 四、塔的工艺条件及物性数据计算 (6) 五、精馏段气液负荷计算 (10) 六、塔和塔板主要工艺尺寸计算 (10) 七、筛板的流体力学验算 (15) 八、塔板负荷性能图 (18) 九、筛板塔的工艺设计计算结果总表 (22) 十、精馏塔的附属设备及接管尺寸 (22) 第三章总结 (23) .

乙醇——水连续精馏塔的设计 第一章绪论 一、目的: 通过课程设计进一步巩固课本所学的内容,培养学生运用所学理论知识进行化工单元过程设计的初步能力,使所学的知识系统化,通过本次设计,应了解设计的内容,方法及步骤,使学生具有调节技术资料,自行确定设计方案,进行设计计算,并绘制设备条件图、编写设计说明书。 在常压连续精馏塔中精馏分离含乙醇25%的乙醇—水混合液,分离后塔顶馏出液中含乙醇量不小于94%,塔底釜液中含乙醇不高于0.1%(均为质量分数)。 二、已知参数: (1)设计任务 ●进料乙醇 X = 25 %(质量分数,下同) ●生产能力 Q = 80t/d ●塔顶产品组成 > 94 % ●塔底产品组成 < 0.1 % (2)操作条件 ●操作压强:常压 ●精馏塔塔顶压强:Z = 4 KPa ●进料热状态:泡点进料 ●回流比:自定待测 ●冷却水: 20 ℃ ●加热蒸汽:低压蒸汽,0.2 MPa ●单板压强:≤ 0.7 ●全塔效率:E T = 52 % ●建厂地址:南京地区 ●塔顶为全凝器,中间泡点进料,筛板式连续精馏 三、设计内容: (1)设计方案的确定及流程说明 (2)塔的工艺计算

化工原理课程设计说明书-板式精馏塔设计

前言 化工生产中所处理的原料,中间产物,粗产品几乎都是由若干组分组成的混合物,而且其中大部分都是均相物质。生产中为了满足储存,运输,加工和使用的需求,时常需要将这些混合物分离为较纯净或几乎纯态的物质。 精馏是分离液体混合物最常用的一种单元操作,在化工,炼油,石油化工等工业得到广泛应用。精馏过程在能量计的驱动下,使气,液两相多次直接接触和分离,利用液相混合物中各相分挥发度的不同,使挥发组分由液相向气相转移,难挥发组分由气相向液相转移。实现原料混合物中各组成分离该过程是同时进行传质传热的过程。本次设计任务为设计一定处理量的分离四氯化碳和二硫化碳混合物精馏塔。 板式精馏塔也是很早出现的一种板式塔,20世纪50年代起对板式精馏塔进行了大量工业规模的研究,逐步掌握了筛板塔的性能,并形成了较完善的设计方法。与泡罩塔相比,板式精馏塔具有下列优点:生产能力(2 0%——40%)塔板效率(10%——50%)而且结构简单,塔盘造价减少40%左右,安装,维修都较容易。 化工原理课程设计是培养学生化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形。在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性、经济合理性。 在设计过程中应考虑到设计的业精馏塔具有较大的生产能力满足工艺要求,另外还要有一定的潜力。节省能源,综合利用余热。经济合理,冷却水进出口温度的高低,一方面影响到冷却水用量。另一方面影响到所需传热面积的大小。即对操作费用和设备费用均有影响,因此设计是否合理的利用热能R等直接关系到生产过程的经济问题。 本课程设计的主要内容是过程的物料衡算,工艺计算,结构设计和校核。 【精馏塔设计任务书】 一设计题目 精馏塔及其主要附属设备设计 二工艺条件

工业生产酒精工艺流程

木薯生产酒精工艺流程 1、原料除杂:对木薯进行初步除杂,除去泥块、石子、绳线等杂物及金属体。 2、原料粉碎:是为了减少蒸煮时间、便于机械化和连续化生产及提高淀粉出酒率等。木薯干的水分较低,淀粉含量高,容易破碎。采用一级粉碎,负压送料。 3、拌料预煮:拌料水用蒸馏室冷却余水,水温控制在70℃左右,温度过低,加热时震动大,对原料的均匀糊化不利,温度过高,料液粘稠。料水比控制在1:2.5~3。拌料完成后,加ɑ-淀粉酶(加入量为0.2L/T淀粉原料)液化15min,主要目的是降低预煮醪的粘度,对浓醪发酵有利。 4、蒸煮:液化完成后,迅速将醪液升温至92℃,蒸煮时间应在90min 以上。蒸煮醪要呈微黄色,不含颗粒,定时检测化验。 5、糖化:先准备好20倍糖化酶的稀释液,再将蒸煮液经由真空冷却器进入已彻底冷却并杀菌的糖化罐内,控制温度为58~60℃,同时按100u/g 原料流加糖化酶进行糖化,时间应保持30min。糖化指标为:总糖10-13;总还原糖5-6;糖化率45%;酸度4.3。 6、发酵:将糖化醪液冷却后泵入发酵罐内,同时加入10%酒母醪进行发酵,发酵温度30~34℃,发酵时间控制在50h左右。发酵成熟醪检测指标为:酸度≤6.2,残糖≤1%,残余还原糖≤0.3%,酒精份10~12%(v/v)。 7、蒸馏工序:发酵成熟醪液经预热器加热后,从粗馏塔顶部进入,粗馏塔塔底通入蒸汽,控制粗塔塔底温度为108℃-111℃,顶温为96~98℃,酒精糟液从粗馏塔底部排出进入污水处理场进行处理。酒精含量约50%的粗酒精蒸气从粗馏塔顶部进入精馏塔中部,精塔底温为108~109℃,中温为84~85℃,进行精馏,精塔底部废水排入污水处理场,然后再经水洗、脱醇等工序制成成品,成品酒精和杂醇油分别经冷却进入成品储罐。

甲醇-水溶液连续精馏塔课程设计91604

目录 设计任务书 一、概述 1、精馏操作对塔设备的要求和类型 (4) 2、精馏塔的设计步骤 (5) 二、精馏塔工艺设计计算 1、设计方案的确定 (6) 2、精馏塔物料衡算 (6) 3、塔板数的确定 (7) 的求取 (7) 3.1理论板层数N T 3.2实际板层数的求取 (8) 4、精馏塔的工艺条件及有关物性数据的计算 4.1操作温度的计算 (11) 4.2平均摩尔质量的计算 (11) 4.3平均密度的计算 (12) 4.4液相平均表面张力计算 (12) 4.5液体平均粘度计算 (13) 5、精馏塔塔体工艺尺寸计算 5.1塔径的计算 (14) 5.2精馏塔有效高度的计算 (15) 6、塔板主要工艺尺寸计算 6.1溢流装置计算 (16) 6.2塔板的布置 (17) 6.3浮阀计算及排列 (17) 7、浮阀塔流体力学性能验算 (19) 8、塔附件设计 (26) 7、精馏塔结构设计 (30)

7.1设计条件 (30) 7.2壳体厚度计算………………………………………………… 7.3风载荷与风弯矩计算………………………………………… 7.4地震弯矩的计算………………………………………………… 三、总结 (27) 化工原理课程设计任务书 一、设计题目: 甲醇-水溶液连续精馏塔设计 二、设计条件: 年产量: 95%的甲醇17000吨 料液组成(质量分数): (25%甲醇,75%水) 塔顶产品组成(质量分数): (95%甲醇,5%水) 塔底釜残液甲醇含量为6% 每年实际生产时间: 300天/年,每天24小时连续工作 连续操作、中间加料、泡点回流。 操作压力:常压 塔顶压力4kPa(表压) 塔板类型:浮阀塔 进料状况:泡点进料 单板压降:kPa 7.0 厂址:安徽省合肥市 塔釜间接蒸汽加热,加热蒸汽压力为0.5Mpa 三、设计任务 完成精馏塔的工艺设计,有关附属设备的设计和选型,绘制精馏塔系统工艺流程图和精馏塔装配图,编写设计说明书. 设计内容包括: 1、 精馏装置流程设计与论证 2、 浮阀塔内精馏过程的工艺计算 3、 浮阀塔主要工艺尺寸的确定 4、 塔盘设计 5、 流体力学条件校核、作负荷性能图 6、 主要辅助设备的选型 四、设计说明书内容 1 目录 2 概述(精馏基本原理) 3 工艺计算 4 结构计算 5 附属装置评价 6 参考文献 7 对设计自我评价 摘要:设计一座连续浮阀塔,通过对原料,产品的要求和物性参数的确定及对主

乙醇_水精馏塔设计说明

符号说明:英文字母 Aa---- 塔板的开孔区面积,m2 A f---- 降液管的截面积, m2 A T----塔的截面积 m C----负荷因子无因次 C20----表面力为20mN/m的负荷因子 d o----阀孔直径 D----塔径 e v----液沫夹带量 kg液/kg气 E T----总板效率 R----回流比 R min----最小回流比 M----平均摩尔质量 kg/kmol t m----平均温度℃ g----重力加速度 9.81m/s2 F----阀孔气相动能因子 kg1/2/(s.m1/2) h l----进口堰与降液管间的水平距离 m h c----与干板压降相当的液柱高度 m h f----塔板上鼓层高度 m h L----板上清液层高度 m h1----与板上液层阻力相当的液注高度 m ho----降液管底隙高度 m h ow----堰上液层高度 m h W----溢流堰高度 m h P----与克服表面力的压降相当的液注高度m H-----浮阀塔高度 m H B----塔底空间高度 m H d----降液管清液层高度 m H D----塔顶空间高度 m H F----进料板处塔板间距 m H T·----人孔处塔板间距 m H T----塔板间距 m l W----堰长 m Ls----液体体积流量 m3/s N----阀孔数目 P----操作压力 KPa △P---压力降 KPa △Pp---气体通过每层筛的压降 KPa N T----理论板层数 u----空塔气速 m/s V s----气体体积流量 m3/s W c----边缘无效区宽度 m W d----弓形降液管宽度 m W s ----破沫区宽度 m 希腊字母 θ----液体在降液管停留的时间 s υ----粘度 mPa.s ρ----密度 kg/m3 σ----表面力N/m φ----开孔率无因次 X`----质量分率无因次 下标 Max---- 最大的 Min ---- 最小的 L---- 液相的 V---- 气相的 m----精馏段 n-----提馏段 D----塔顶 F-----进料板 W----塔釜

甲醇精馏塔设计说明书

设计条件如下: 操作压力:105.325 Kpa(绝对压力) 进料热状况:泡点进料 回流比:自定 单板压降:≤0.7 Kpa 塔底加热蒸气压力:0.5M Kpa(表压) 全塔效率:E T=47% 建厂地址:武汉 [ 设计计算] (一)设计方案的确定 本设计任务为分离甲醇- 水混合物。对于二元混合物的分离,应采用连续精馏流程。设计中采用泡点进料,将原料液通过预热器加热至泡点后送入精馏塔内。塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却后送至储罐。 该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的2 倍。塔釜采用间接蒸气加热,塔底产品经冷却后送至储罐。 (二)精馏塔的物料衡算 1、原料液及塔顶、塔底产品的摩尔分率 甲醇的摩尔质量:M A=32 Kg/Kmol 水的摩尔质量:M B=18 Kg/Kmol x F=32.4% x D=99.47% x W=0.28% 2、原料液及塔顶、塔底产品的平均摩尔质量 M F= 32.4%*32+67.6%*18=22.54 Kg/Kmol M D= 99.47*32+0.53%*18=41.37 Kg/Kmol M W= 0.28%*32+99.72%*18=26.91 Kg/Kmol 3、物料衡算 3 原料处理量:F=(3.61*10 3)/22.54=160.21 Kmol/h 总物料衡算:160.21=D+W 甲醇物料衡算:160.21*32.4%=D*99.47%+W*0.28% 得D=51.88 Kmol/h W=108.33 Kmol/h (三)塔板数的确定 1、理论板层数M T 的求取 甲醇-水属理想物系,可采用图解法求理论板层数 ①由手册查得甲醇-水物搦的气液平衡数据,绘出x-y 图(附表) ②求最小回流比及操作回流比 采用作图法求最小回流比,在图中对角线上,自点e(0.324 ,0.324)作垂线ef 即为进料线(q 线),该线与平衡线的交战坐标为(x q=0.324,y q=0.675) 故最小回流比为R min= (x D- y q)/( y q - x q)=0.91 取最小回流比为:R=2R min=2*0.91=1.82 ③求精馏塔的气、液相负荷 L=RD=1.82*51.88=94.42 Kmol/h V=(R+1)D=2.82*51.88=146.30 Kmol/h

化工原理课程设计-苯-甲苯精馏塔设计

资料 前言 化工原理课程设计是培养学生化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形。在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性、经济合理性。 化工生产常需进行液体混合物的分离以达到提纯或回收有用组分的目的,精馏是利用液体混合物中各组分挥发度的不同并借助于多次部分汽化和部分冷凝达到轻重组分分离的方法。塔设备一般分为阶跃接触式和连续接触式两大类。前者的代表是板式塔,后者的代表则为填料塔。 筛板塔和泡罩塔相比较具有下列特点:生产能力大于%,板效率提高产量15%左右;而压降可降低30%左右;另外筛板塔结构简单,消耗金属少,塔板的造价可减少40%左右;安装容易,也便于清理检修。本次课程设计为年处理含苯质量分数36%的苯-甲苯混合液4万吨的筛板精馏塔设计,塔设备是化工、炼油生产中最重要的设备之一。它可使气(或汽)液或液液两相之间进行紧密接触,达到相际传质及传热的目的。 在设计过程中应考虑到设计的精馏塔具有较大的生产能力满足工艺要求,另外还要有一定的潜力。节省能源,综合利用余热。经济合理,冷却水进出口温度的高低,一方面影响到冷却水用量。另一方面影响到所需传热面积的大小。即对操作费用和设备费用均有影响,因此设计是否合理的利用热能R等直接关系到生产过程的经济问题。 |

'

目录 第一章绪论 (1) 精馏条件的确定 (1) 精馏的加热方式 (1) 精馏的进料状态 (1) 精馏的操作压力 (1) 确定设计方案 (1) 工艺和操作的要求 (2) 满足经济上的要求 (2) 保证安全生产 (2) 第二章设计计算 (3) 设计方案的确定 (3) 精馏塔的物料衡算 (3) 原料液进料量、塔顶、塔底摩尔分率 (3) 原料液及塔顶、塔底产品的平均摩尔质量 (3) 物料衡算 (3) 塔板计算 (4) 理论板数NT的求取 (4) 全塔效率的计算 (6) 求实际板数 (7) 有效塔高的计算 (7) 精馏塔的工艺条件及有关物性数据的计算 (8) 操作压力的计算 (8) 操作温度的计算 (8) 平均摩尔质量的计算 (8) 平均密度的计算 (10) 液体平均表面张力的计算 (11) 液体平均黏度的计算 (12) 气液负荷计算 (13)

乙醇—水溶液精馏塔设计

乙醇-水溶液连续精馏塔设计 目录 1.设计任务书 (3) 2.英文摘要前言 (4) 3.前言 (4) 4.精馏塔优化设计 (5) 5.精馏塔优化设计计算 (5) 6.设计计算结果总表 (22) 7., 8.参考文献 (23) 9.课程设计心得 (23) 精馏塔设计任务书 一、设计题目 乙醇—水溶液连续精馏塔设计 二、设计条件 1.处理量: 15000 (吨/年) 2.料液浓度: 35 (wt%) ! 3.产品浓度: 93 (wt%) 4.易挥发组分回收率: 99% 5.每年实际生产时间:7200小时/年 6. 操作条件: ①间接蒸汽加热; ②塔顶压强: atm(绝对压强) ③进料热状况:泡点进料; 三、设计任务

a) 流程的确定与说明; b) 塔板和塔径计算; 、 c) 塔盘结构设计 i. 浮阀塔盘工艺尺寸及布置简图; ii. 流体力学验算; iii. 塔板负荷性能图。 d) 其它 i. 加热蒸汽消耗量; ii. 冷凝器的传热面积及冷却水的消耗量 e) 有关附属设备的设计和选型,绘制精馏塔系统工艺流程图和精馏塔装配 图,编写设计说明书。 乙醇——水溶液连续精馏塔优化设计 前言 ! 乙醇在工业、医药、民用等方面,都有很广泛的应用,是很重要的一种原料。在很多方面,要求乙醇有不同的纯度,有时要求纯度很高,甚至是无水乙醇,这是很有困难的,因为乙醇极具挥发性,也极具溶解性,所以,想要得到高纯度的乙醇很困难。 要想把低纯度的乙醇水溶液提升到高纯度,要用连续精馏的方法,因为乙醇和水的挥发度相差不大。精馏是多数分离过程,即同时进行多次部分汽化和部分冷凝的过程,因此可使混合液得到几乎完全的分离。化工厂中精馏操作是在直立圆形的精馏塔内进行的,塔内装有若干层塔板或充填一定高度的填料。为实现精馏分离操作,除精馏塔外,还必须从塔底引入上升蒸汽流和从塔顶引入下降液。可知,单有精馏塔还不能完成精馏操作,还必须有塔底再沸器和塔顶冷凝器,有时还要配原料液预热器、回流液泵等附属设备,才能实现整个操作。 浮阀塔与20世纪50年代初期在工业上开始推广使用,由于它兼有泡罩

化工原理课程设计之苯甲苯连续精馏塔浮阀塔的设计

化工原理课程设计 设计题目:苯-甲苯连续精馏塔浮阀塔的设计设计人: 班级: 学号: 指导老师: 设计时间:

目录 设计任务书 (3) 前言 (4) 第一章工艺流程设计 (5) 第二章塔设备的工艺计算 (6) 第三章塔和塔板主要工艺尺寸计算 (15) 第四章塔板的流体力学验算 (18) 第五章塔板负荷性能图 (21) 第六章换热器的设计计算与选型 (25) 第七章主要工艺管道的计算与选择 (28) 结束语 (30) 参考文献 (32) 附录 (33)

化工原理课程设计任务书 设计题目:苯—甲苯连续精馏塔(浮阀塔)的设计 一、工艺设计部分 (一)任务及操作条件 1. 基本条件:含苯25%(质量分数,下同)的原料液以泡点状态进入塔内,回流比为最小回流比的 1.25倍。 2. 分离要求:塔顶产品中苯含量不低于95%,塔底甲苯中苯含量不高于2%。 3. 生产能力:每小时处理9.4吨。 4. 操作条件:顶压强为4 KPa (表压),单板压降≯0.7KPa,采用表压0.6 MPa的饱和蒸汽加热。(二)塔设备类型浮阀塔。 (三)厂址:湘潭地区(年平均气温为17.4℃) (四)设计内容 1. 设计方案的确定、流程选择及说明。 2. 塔及塔板的工艺计算塔高(含裙座)、塔径及塔板结构尺寸;塔板流体力学验算;塔板的负荷性能图;设计结果概要或设计一览表。 3. 辅助设备计算及选型(注意:结果要汇总)。 4. 自控系统设计(针对关键参数)。 5. 图纸:工艺管道及控制流程图;塔板布置图;精馏塔的工艺条件图。 6. 对本设计的评述或有关问题的分析讨论。 二、按要求编制相应的设计说明书 设计说明书的装订顺序及要求如下: 1. 封面(设计题目,设计人的姓名、班级及学号等) 2. 目录 3. 设计任务书 4. 前言(课程设计的目的及意义) 5. 工艺流程设计 6. 塔设备的工艺计算(计算完成后应该有计算结果汇总表) 7. 换热器的设计计算与选型(完成后应该有结果汇总表) 8. 主要工艺管道的计算与选择(完成后应该有结果汇总表) 8. 结束语(主要是对自己设计结果的简单评价) 9. 参考文献(按在设计说明书中出现的先后顺序编排,且序号在设计说明书引用时要求标注) 10. 设计图纸 三、主要参考资料 [1] 化工原理;[2] 化工设备机械基础;[3] 化工原理课程设计;[4] 化工工艺设计手册 四、指导教师安排杨明平;胡忠于;陈东初;黄念东 五、时间安排第17周~第18周

化工原理课程设计乙醇水精馏塔设计

化工原理课程设计 题目:乙醇水精馏筛板塔设计 设计时间:2010、12、20-2011、1、6

化工原理课程设计任务书(化工1) 一、设计题目板式精馏塔的设计 二、设计任务:乙醇-水二元混合液连续操作常压筛板精馏塔的设计 三、工艺条件 生产负荷(按每年7200小时计算):6、7、8、9、10、11、12万吨/年 进料热状况:自选 回流比:自选 加热蒸汽:低压蒸汽 单板压降:≤0.7Kpa 工艺参数 组成浓度(乙醇mol%) 塔顶78 加料板28 塔底0.04 四、设计内容 1.确定精馏装置流程,绘出流程示意图。 2.工艺参数的确定 基础数据的查取及估算,工艺过程的物料衡算及热量衡算,理论塔板数,塔板效率,实际塔板数等。 3.主要设备的工艺尺寸计算 板间距,塔径,塔高,溢流装置,塔盘布置等。 4.流体力学计算 流体力学验算,操作负荷性能图及操作弹性。 5.主要附属设备设计计算及选型 塔顶全凝器设计计算:热负荷,载热体用量,选型及流体力学计算。 料液泵设计计算:流程计算及选型。 管径计算。 五、设计结果总汇 六、主要符号说明 七、参考文献 八、图纸要求 1、工艺流程图一张(A2 图纸) 2、主要设备工艺条件图(A2图纸) 目录 前言 (4)

1概述 (5) 1.1 设计目的 (5) 1.2 塔设备简介 (6) 2设计说明书 (7) 2.1 流程简介 (7) 2.2 工艺参数选择 (8) 3 工艺计算 (9) 3.1物料衡算 (9) 3.2理论塔板数的计算 (10) 3.2.1 查找各体系的汽液相平衡数据 (10) 如表3-1 (10) 3.2.2 q线方程 (9) 3.2.3 平衡线 (11) 3.2.4 回流比 (12) 3.2.5 操作线方程 (12) 3.2.6 理论板数的计算 (12) 3.3 实际塔板数的计算 (13) 3.3.1全塔效率ET (13) 3.3.2 实际板数NE (14) 4塔的结构计算 (15) 4.1混合组分的平均物性参数的计算 (15) 4.1.1平均分子量的计算 (15) 4.1.2 平均密度的计算 (16) 4.2塔高的计算 (17) 4.3塔径的计算 (17) 4.3.1 初步计算塔径 (17) 4.3.2 塔径的圆整 (18) 4.4塔板结构参数的确定 (19) 4.4.1溢流装置的设计 (19) 4.4.2塔盘布置(如图4-4) (20) 4.4.3 筛孔数及排列并计算开孔率 (21) 4.4.4 筛口气速和筛孔数的计算 (21) 5 精馏塔的流体力学性能验算 (22) 5.1 分别核算精馏段、提留段是否能通过流体力学验算 (22) 5.1.1液沫夹带校核 (22) 5.2.2塔板阻力校核 (23) 5.2.3溢流液泛条件的校核 (25) 5.2.4 液体在降液管内停留时间的校核 (26) 5.2.5 漏液限校核 (26) 5.2 分别作精馏段、提留段负荷性能图 (26) 5.3 塔结构数据汇总 (29) 6 塔的总体结构 (30) 7 辅助设备的选择 (31) 7.1塔顶冷凝器的选择 (31) 7.2塔底再沸器的选择 (32) 7.3管道设计与选择 (33)

酒精生产过程中蒸煮流程

目录 第1章酒精生产过程中蒸煮流程简介 (2) 1.1 酒精生产及蒸煮工艺 (2) 1.2 CAD流程图 (4) 第2章标准节流装置设计及计算程序设计 (5) 2.1 标准节流装置设计概述 (5) 2.2 原始数据 (5) 2.3 标准节流装置计算 (6) 第3章调节阀选型及计算 (10) 3.1 调节阀选型 (10) 3.2 调节阀口径计算 (10) 第4章课程设计心得 (13) 参考文献 (14)

第1章酒精生产过程中蒸煮流程简介 1.1 酒精生产及蒸煮工艺 用淀粉质原料生产酒精的工厂,多数采用连续蒸煮工艺,只有少部分小型酒精厂和白酒厂,还采用间歇蒸煮工艺,下面分别加以介绍。 (一)间歇蒸煮法 间歇蒸煮法常用的蒸煮设备是立式锥形蒸煮锅,其外形和结构简单。 1.间歇蒸煮工艺流程 目前我国酒精厂间歇蒸煮的方法基本上有两种,一种是加压间歇蒸煮,一种是添加细菌淀粉酶液化后低压或常压间歇蒸煮、 加压间歇蒸煮是原料经人工或运输机械送到蒸煮车间,经除杂后进入拌料罐,加温水拌料,并维持一定时间,然后送入蒸煮锅中,通入直接蒸汽将醪液加热到预定蒸煮压力,维持一定的蒸煮时间,蒸煮时间结束后,进行吹醪。操作工艺流程如下: 温水蒸汽 ↓↓ 原料→除杂→粉碎→拌料→泵→蒸煮→成熟蒸煮醪送入糖化锅 (1)加水蒸煮整粒原粒时,水温要求在80~90℃,尤其是蒸煮含有淀粉酶的甘薯干,更不能用低温水。蒸煮粉状原料时,水温不宜过高,一般要求在50~55℃。原料加水比因原料不同和粉碎度不同而不同,一般为:粉状原料为1:3.4至1:4.0;薯干为1:3.0 至1:4.0;谷物原料为1:2.8至1:3.0 (2)投料。蒸煮整粒原料时,投完粒即加盖进汽,或者在投料过程中同时通入少量蒸汽,起搅拌作用。蒸煮粉状原料时,可先在拌料桶内将粉料加水调成粉浆后在送入蒸煮罐;或向罐内直接投料,边投料,边通入压缩空气搅拌,以防结块,影响蒸煮质量。投料时间因罐的容量大小和投料方法不同而有差异,通常在15~20min。 (3)升温(生压)。投料毕,即关闭加料盖,通入蒸汽,同时打开排气阀,驱除罐内冷空气,以防罐内冷空气存在而产生“冷压”,影响压力表所指示的数值,不能反反映罐内的真实温度,造成原料蒸煮不透。正确排出“冷压”的方法是:通入蒸汽加热时,打开排气阀,直到排出的气体发白(水蒸气),并保持2~3min,而后再关闭排气阀,升温时间一般40~50min。 (4)蒸煮(定压)。料液升到规定压力后,保持此压力维持一定的时间。使原料达到彻底糊化的操作,工厂常称之为定压。 定压后,通入锅内的蒸汽已经很少,锅内热力分布不均匀,易造成下部原料局部受热而焦化,上部原料受热不足而蒸煮不透。另外,料液翻动不好,原料与罐壁及其相互之间撞击摩擦轻缓,则导致原料的植物组织和淀粉粒不易破裂。为了使原料受热均匀和彻底糊化,采用循环汽的办法来搅拌罐内的料液。一般每隔10~15min循环换汽一次,每次维持3~5min,直至蒸煮完毕为止。循环换气后使罐内达到原规定压力。循环换汽和稳压操作,是保证蒸煮醪液质量的两个重要条件。 (5)吹醪。蒸煮完毕的醪液,利用蒸煮罐内的压力从蒸煮锅排出,并送入糖化锅内。吹醪时间视蒸煮罐容量的大小而定,不得少于10~15min。

化工原理课程设计(乙醇-水溶液连续精馏塔优化设计)

实用标准文档 化工原理课程设计题目乙醇-水溶液连续精馏塔优化设计

目录 1.设计任务书 (3) 2.英文摘要前言 (4) 3.前言 (4) 4.精馏塔优化设计 (5) 5.精馏塔优化设计计算 (5) 6.设计计算结果总表 (22) 7.参考文献 (23) 8.课程设计心得 (23)

精馏塔优化设计任务书 一、设计题目 乙醇—水溶液连续精馏塔优化设计 二、设计条件 1.处理量: 16000 (吨/年) 2.料液浓度: 40 (wt%) 3.产品浓度: 92 (wt%) 4.易挥发组分回收率: 99.99% 5.每年实际生产时间:7200小时/年 6. 操作条件: ①间接蒸汽加热; ②塔顶压强:1.03 atm(绝对压强) ③进料热状况:泡点进料; 三、设计任务 a) 流程的确定与说明; b) 塔板和塔径计算; c) 塔盘结构设计 i. 浮阀塔盘工艺尺寸及布置简图; ii. 流体力学验算; iii. 塔板负荷性能图。 d) 其它 i. 加热蒸汽消耗量; ii. 冷凝器的传热面积及冷却水的消耗量 e) 有关附属设备的设计和选型,绘制精馏塔系统工艺流程图和精馏塔装配 图,编写设计说明书。

乙醇——水溶液连续精馏塔优化设计 (某大学化学化工学院) 摘要:设计一座连续浮阀塔,通过对原料,产品的要求和物性参数的确定及对主要尺寸的计算,工艺设计和附属设备结果选型设计,完成对乙醇-水精馏工艺流程和主题设备设计。 关键词:精馏塔,浮阀塔,精馏塔的附属设备。 (Department of Chemistry,University of South China,Hengyang 421001) Abstract: The design of a continuous distillation valve column, in the material, product requirements and the main physical parameters and to determine the size, process design and selection of equipment and design results, completion of the ethanol-water distillation process and equipment design theme. Keywords: rectification column, valve tower, accessory equipment of the rectification column.

相关主题
文本预览
相关文档 最新文档