当前位置:文档之家› 精馏塔课程设计

精馏塔课程设计

精馏塔课程设计
精馏塔课程设计

精馏塔课程设计

LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

目录

一、概述

二、设计方案和工艺流程的确定

三、塔的物料衡算四、回流比确定

五、塔板数的确立

六、塔的工艺条件及物性数据计算

七:塔和塔板主要工艺尺寸计算

八、塔板的流体力学验算

十、热量衡算

十一、筛板塔的设计结果总表

十二、辅助设备选型及接管尺寸

十三、精馏塔机械设计计算

十四、设计中的心得体会

一、概述:

塔设备是炼油、化工、石油化工等生产广泛应用的气液传质设备。根据塔内气液接触部件的结构型式,可分为板式塔和填料塔。板式塔内设置一定数量的塔板,气体以鼓泡或喷射形式穿过板上液层进行质,热传递,气液相组成呈阶梯变化,属逐渐接触逆流操作过程。填料塔内装有一定高度的填料层,液体自塔顶沿填料表面下流,气体逆流而上(也有并流向下者)与液体接触进行质热传递,气液组成沿塔高连续变化,属微分接触操作过程。

工业上对塔设备的要求:(1)生产能力大;(2)传质传热效率高;(3)气流的摩擦

阻力小;(4)操作稳定,适应性强,操作弹性大;(5)结构简单,材料耗用量小

(6)制作安装容易,维修方便。(7)设备不易堵塞,耐腐蚀。

其中板式塔又可分为有降液管的塔板(如泡罩塔,浮阀塔,筛板塔,舌型,S型

等)和无降液管的(如穿流式筛板,穿流式波纹板)该课程涉及到的是板式塔中的浮阀塔,其广泛用于精馏、吸收、和解吸等过程。其主要特点是再塔板的开孔上装有可浮动的浮阀,气流从浮阀的周边以稳定的速度水平地进入塔板上液层进行两相接触,浮阀课根据气流流速地大小上下浮动,自行调节。浮阀有盘式、条式等多种。国内多采用盘式,其优点为生产能力大,操作弹性大,分离效率较大,塔板结构较简单。此型中的F-1型结构简单,已经列入部颁标准,因此型号的重阀操作稳定性好,一般采用重阀。

二、设计方案和工艺流程的确定:

在此次课程涉及中主要介绍浮阀塔在精馏中的应用,精馏装置包括精馏塔、原料预热器、再沸器、冷凝器、釜液冷却器、和产品冷却器等设备。热量自塔釜输入,物料再塔内经多次部分气化与部分冷凝进行精馏分离,由冷凝器和冷却器的冷却物质将余热带走。此过程中因考虑节能。

另外,为保持塔的稳定性,流程除用泵直接送入塔原料外,也可采用高位槽送料以受泵操作波动影响。

塔顶冷凝器装置根据生产情况以决定采用全凝器和分凝器。一般,塔顶分凝器对上升蒸汽虽由一定的增浓作用,当在石油等工业中获取液相产品时往往采用全凝器,以便于准确的控制回流比。若后继装置使用气态物料,则宜用分凝器

操作压强由常压、低压和高压操作,其取决于冷凝温度,一般都采用常压,对于热敏性物质或混合液沸点过高的物质则宜采用减压操作,而常压下为气态的物质采用高压操作。

对于物料的进料,一般情况下采用冷进料,但是为了考虑塔的操作稳定性,则一把采用泡点进料。

蒸馏一般采用间接蒸汽加热,设置再沸器。对于本次的课程因为乙醇的挥发度较高,宜采用间接蒸汽加热,其优点时可以利用压强较低的加热蒸汽以节省操作费用,并省掉间接加热设备

选择回流比主要从经济的角度来考虑,力使操作费用和设备费用之和最低。这个将在下面详细的介绍。

本设计采用混合原料经原料余热至泡点,送入精馏塔。塔顶上升蒸汽采用全凝器冷凝后,一部分作为回流,其余为塔顶产品经冷却器冷却后送至贮槽。塔釜采用间接蒸汽再沸器供热,塔底产品经冷却后送入贮槽。(流程图见后面附录)

三、塔的物料衡算:

(一)料液及塔顶、塔底产品含苯摩尔分率。

X

F =

35/46.07

0.1740 35/46.0765/18.02

=

+

;

X

D =

94/46.07

0.86 94/46.076/18.02

=

+

;

X

W =

0.05/46.07

0.000197 0.05/46.0799.95/18.02

=

+

;

(二)平均分子量。

M

F =0.17446.07(10.174)18.0222.9?+-?=;

M

D =0.86046.07(10.860)18.0242.143?+-?=;

M

W =0.00019746.07(10.000197)18.0218.026?+-?=;

(三)物料衡算。

总物料衡算: D,+W,=F,=;易挥发组分物料衡算:,+ W,=?;

联立上面两式得:

F,=4166.7 kg/h= kmol/h;

D,=1550.04 kg/h= kmol/h;

W,=2616.66 kg/h= kmol/h

四、回流比确定。

由(附录-1)得出最小理论回流比为R

min

=五、塔板数的确立。

(一)全塔效率E

t

E t =0.25

0.49() 1.10.4481 1.10.493

αμ-?=?=;(其中α=,μ=

(二)由后面的(附录-3)的程序得出理论塔板数N

=54;

实际塔板数:N

实=N

/ E

t

=54/=;

所以实际塔板数等于110块;

六、塔的工艺条件及物性数据计算。(一)操作压强P

m

精馏段平均操作压强P

m =101.3250.7104174.125

+?= kp

a

(二)温度t m ,精=(+)/2 =81.0℃ (三)平均分子量

x d =y 1= ; x 1= ; 塔顶: M VDM =??42.14 kg ; M LDM =??37.94 kg ;

进料塔:M VFM =? ?=23.15 kg/kmol; M VFM =? ?=22.90 kg/kmol; 则精馏段分子量:

M VM 精=(+)/2=40.04 kg/kmol; M LM 精=+/2=23.03 kg/kmol; (四)精馏段气液负荷计算

Vs V =?M VM 精/(3600?ρVM 精)=0.59 m 3/s ; L=R ?D=? kmol/h ;

L S =L ? M LM 精/(3600?ρLM 精)=0.0007 m 3/s ;

L H = L S ?3600=2.52 m 3/s ;

七:塔和塔板主要工艺尺寸计算。 (一)塔径:

初选板间距H T = m ; 取板上液层高度h l = m ; H T -h l =0.29 m ;

(L S /V S )?(ρL /ρV )=?()= ; 查图得:C 20= ;

C =?()20δ=?38.86()20

U max = C ?sqrt{(ρL ?ρV )/ρV }=1.22 m/s ;

取安全系数为 ;则 U=?=?0.854 m ;

D =sqrt{(4?Vs )/(π?U)}= sqrt{?/?0.938 m ;

按标准,塔径园整为1.0m ,则空塔气速为0.75 m/s ; (二)溢流装置:

采用单溢流,弓形降液管,平形受液盘及平形溢流堰,不设进口堰。各项计算

如下:

1.溢流堰长

l W =?=?=0.6 m; 2.出口堰高

l W /D =1 = ; l h /(l h )= ;

查图知: E = ;

h OW =1000)?E ?(l h /l W )2/3 =1000)??2/3=0.008 m ; h W =h L -h OW =0.052 m ;

3.降液管的宽度W d 与移液管的宽度A f l W /D =1 = ;

查图知:W d /D = ; A f /A t =;

得: W d =?=?0.10 m ;

A f =?4

π

?=??0.041 m 2 ;

4.停留时间检验降液管面积 5。降液管底隙高度h

取液体通过降液管底隙的流速u o 、为0.09 m/s ; h o =h o /(l W ?u o 、)=?0.93 m ; (三):塔板布置

1。取边缘区宽度W c =0.035 m ;安定区宽度W b =0.070 m ; 2.计算开孔区面积A a

x=D/2-(W s +W b )=+=0.330 m ; R=D/2-W c =0.450 m ;

A a

=212[sin ]0.572180x R R

π-??= m 2

;

(四)筛孔数与开孔率

取筛孔的孔径d 0为5mm ; 正三角形排列,一般炭钢的板厚δ为3mm ; 取t/d 0= 故空中心距:t=?15.0 mm ;

1.筛孔数:33

22

1158101158100.572294415u n A t ??=

?=?=孔 ; 2.开孔率:20

0.9070.90710.1%9()o a A t A u ?===

%= ;

3.开孔面积:o A =??a A =?0.0578 m 2 ;

4.气体通过筛孔的气速:00/0.59/0.05810.21s u V A === /m s ; (五)塔有效高度

(1041)0.3536.05z =-?= m ; (六) 塔高计算

32.90.28.4445.5=+++= m ;

其中H :塔高 ; F H :进料板处板间距 ; p H :人孔处板间距 ; D H :塔顶空间;B H :塔底空间;n :实际塔板数;F n :进料板数; p n :人孔数 ; T H :板间距 ; 八、塔板的流体力学验算

(一)气体通过塔板的压降p ?相当于液柱高度p h

p c l h h h h δ=++ ; 1.干板压降相当于液体高度c h c h =200(

)v l u c ρρ=?211.55 2.92()0.84802.9

?=0.0351 m ; 其中由0/d δ=5/3= ; 查图得0C = ; 2.气体穿过板上液层压降相当得液柱高度l h 0.59

0.7900.7880.041

s a T F V u A A ===-- m/s ;

a F =a

u

= ; 由图查得上液层充气系数00.625ε=

00()0.625(0.0520.008)0.0375l L W ow h h h h εε=?=?+=?+= m ; 3.克服液体表面张力压降相当的液柱高度

3

04438.86100.00407777.99.80.005l h gd σσρ-??===?? m ;

由p c l h h h h δ=++=++=0.064 m ;

故单板压降:0.064777.99.814910.7p p l p h g pa kp ρ?==??=? 在设计允许范围内。 (二)雾沫夹带量v e 的验算

=0.012kg kg kg kg =液/气<0.1液/气 ; 其中: 2.5f l h h = ; (三)漏液的验算

筛板的稳定性系数:K=o u /ow u ==> 故再设计负荷下不会产生漏液。 (四)液泛验算

为了防止降液管液泛的产生,应使降液管中液泛的高度d H ()T w H h φ≤-。 依上面的公式计算的:

d p l d H h h h =++=++=0.135 m ;

其中2

2

00.00170.1530.1530.000990.660.032s d w L h L h ????

=?=?= ? ???????

m ;

取0.5φ=;则()0.5(0.40.047)0.223T w H h φ-=+= m ; 故d H ()T w H h φ≤-,在 设计负荷下不会产生液泛

根据以上的塔板各项流体力学验算,可认为精馏段塔径及各项工艺尺寸使合适的 九、塔板负荷性能图 (1)雾沫夹带线 依上面的公式:

3.2

6

5.710

a v T F u e H h σ

-???=

? ?-??

; ()2.5f W oW h h h =+2

3336002.5 2.84100.66S W L h E -???? ?=+?? ? ?????

; 0.7880.041

s s

a T F V V u A A =

=--=s V ;

近似取E =,w h = m ,w l = m; 故得:23

0.13 2.415f s h L =+

取v e = kg 液/kg 气 ; σ=310-? ; H T = 没; 代入上面得几个公式,化简得: s V =23

s L ;

在操作范围内任取几个s L ,依公式相应得算出s V 值,列于下表中:

()r w w ow p d H h h h h h φ-=+++ ;

E = ; w l =0.60 m ;

2

2

3

3

3

36002.84100.9659s ow s w L h E L L -???=???= ???

;

22

31.72438455.7s s

s V L L =-- ;

2

2

2.920.0510.06540.840.0537802.9S S V V ????==

? ????

?? ; 综上得:2

2330.625(0.0520.96)0.03250.6037l w ow s s

h h h L L =+=?+=+ ; h σ= ;

故:2230.06540.3250.60370.00407p l c S

s

h h h h V L σ=++=+++ ;

2

2

2

0.1530.15325750.600.013s s d s w o L L h L L h ????=== ? ???????

将:0.35T H m = ; 0.052w H m = ; 0.5φ= 及上面计算出来得数据代入得: 22

231.72438455.7s s

s V L L =-- ;

在操作范围内取若干个s L 值,同(一)计算得s V 值,列表如下:

取液体在降液管中停留时间为4秒。

,max 0.350.041

0.003594

T f

s H A L τ

??=

=

= 3/m s ; (四)漏液线(气相负荷下限表) 由

230.0520.9659l w ow s

h h h L =+=+ ; ,min 4.43s ow o

V u C A =

=; o A 由前面已经算出是 2m ; 得:,min 0.215s V = ;

取ow h = m 最为液相负荷下限条件,取E = ;

23

,min 36002.84

1000s ow w L h E l ???=

?? ??? ; 2

3

,min 36002.84

0.006 1.0310000.60s L ???=

?? ???

; 故:,min s L =434.9010/m s -?;

由精馏段负荷性能图,可知精馏段得操作弹性=

,max ,min

s s V V = ;

十、热量衡算: (1)再沸器:

(一)辅助设备选择

1.再沸器

该装置用于加热塔底料液使之部分汽化提供蒸馏过程所需热量的热交换设备,常用的几种有:内置式、釜式、虹吸式、强制循环式。

再沸器的选择根据工艺要求和再沸器的特点综合考虑。本设计采用的精馏塔实采用泡点进料,所需得传热面积小,而且物料是乙醇水溶液,气液混合物密度小于液体得密度。所以采用立式热虹吸再沸器比较合适。其单位面积得金属耗量明显小于其他的型式。注意的是这种型式的再沸器的气化率不能大于40%否则传热不良。且因加热管不能充分的润湿而易结诟。 2.塔顶回流冷凝器

该装置通常采用管壳式换热器,由卧式、立式、管内或管外冷凝等形式。按冷凝器与塔的相对位置区分为:整体式及自流式、强制循环式。

再沸器的选择和再沸器一样根据工艺要求和冷凝器的特点综合考虑:

(1)整体及自流式一般用于小塔,置于塔顶。优点是蒸汽压降较小,可籍改变气升管或塔板位置调节以保证回流与产出的压头,可用于凝液难以用泵输送或泵送由危险的场合。还可以节省安装面积。常用于减压蒸馏或者传热面积小的情况。

(2)强制循环式,用于塔的处理量很大或者塔板数很多的时候,冷凝器置于塔下部适当的位置。用泵向上输送回流。再冷凝器和泵之间设置回流罐。主要适用于常压或者加压操作。

本设计因处理量大,而且设计中的涉及的塔板数较多,常压操作,故选用强制循环式冷凝器,采用全回流操作。

3.蒸汽喷出器

一般对于粘度大的流体,流速应该取得小些;对于粘度小的流体,流速应该取得较大的流速.塔采用直接蒸汽加热的时候,釜中应该安装一蒸汽喷出器,使加热蒸汽均匀的分布在釜液中.其结构一般为一环形蒸汽管,管的下面和侧面适当开一些小孔供蒸汽喷出.小孔直径一般为3-10mm,孔心距为孔径的6-10倍.小孔总面积应为加热蒸汽管的横截面积的倍,管内蒸汽速度为20-25m/s,加热蒸气浸入釜中液层至少0.6m 以上,以保证蒸汽与溶液有足够的接触时间。 4.法兰

法兰按法兰和设备的联结型式分为焊接法兰、活套法兰和螺纹法兰。采用化工部标准(HG )

(二)主要接管尺寸计算 1.进料管

由以知料液流率为4166.67 kg/h ,取料液密度为900kg/m 2

则料液体积流率为: 22000.59

0.4520.03944

s V n u d ππ==

???? 3/m h ; 取管内流速 0.5F u = m/s ;

则进料管直径:0.0572357.23F d m mm =

===

取进料管尺寸为60 4.0Φ? ;

2.回流管

由以知回流液流率为 kg/h ,取回流液密度为700kg/m 2

则回流液体积流率为:1550.04

2.2143700R V == 3/m h ;

取管内流速:R u = m/s ;

则回流直径:0.0511R d =

= m ;

取回流管尺寸为54 3.5Φ? ; 3.釜液出口管

由以知釜液流率为 kg/h ,取釜液密度为980kg/m 2

则釜液体积流率为:2616.66

2.67980W V == 3/m h ;

取管内流速:W u = m/s ;

则釜液出口管直径:0.04346W d =

= m ;

取釜液回流管直径为:453Φ? ; 4.塔顶蒸汽管

近似取精馏段体积流率为塔顶蒸汽体积流率:

3124.3240.043600777.90.001778/p V m s =?÷÷= ; 取 u=15m/s ; 所以:

0.012W d m == ; 取塔顶蒸汽管尺寸为:122φ? ;

5.加热蒸汽管

(1)原料预热器加热管道

原料预热器蒸汽流率为344.6kg/h ,取蒸汽底部流率为1.64kg/m 3, 则u=15m/s ;

0.071H d m =

== ; 取加热管蒸汽管尺寸为:764φ? ; (2)再沸器加热管径

蒸汽流率为2243.65 kg/h , ρ=1.64 kg/m 3 ;

则32243.65

/1.643600

u m s =? ;取u=15m/s ;

0.180d m =

== ; 取管径尺寸为:1946φ? ;

十三、精馏塔机械设计计算:

(一)已知条件

1.塔体内径D i =1000mm,塔高H =45.5m ;

2.设计压力p= ,设计温度t=200℃介质为乙醇水溶液;

3.腐蚀裕量C 2=4mm ,安装在合肥地区(暂不考虑地震影响); (二)设计方法步骤

1.材料的选择:设计压力p=,属于低压分离装置,介质腐裕性未提特殊要求,可选取20R 作为塔体的材料。

2.筒体、封头壁厚的确定:先按内压容器设计厚度,然后按自重、液重等引起的正应力及风载荷引起的弯曲应力进行强度和稳定性验算。

3.实质性计算:

(1)背体厚度计算:

[]20t

R σφ?-在310℃时的作用应力,查的[]t

σ=110MPa ;

(2)封头壁厚计算:

采用标准椭圆形封头,则: []0.251000

120.84 6.1421100.850.50.75

20.5i

n t pD C C mm p

δσφ?=

++=

++=??-??- ;

为了便于焊接,采用封头和壁厚等厚,即n δ=12mm; (3)塔体上各项载荷计算

(a ) 塔体重量:()221785043.513458Q R R kg π=?-??外内= ; 110层塔盘与内件重量和位为:26370.5729.81104085Q kg =???= ;

保温层:3320.10.545.5104550Q kg =????= ; 操作塔共18层,每层500kg 及斜梯每5米重125kg ;

4Q =18?500+39?125=6045kg ;

料液按100层塔盘计算:5686110/(9.84)6045Q kg π=???= ; 裙座重量:6Q =1189 kg ; 充水重量:374510353254

Q kg π

=

??= ;

塔体操作时重量:

111234513458408545509975604538113Q Q Q Q Q Q kg -=++++=++++= ;

塔体与裙座操作时重量:0011638113118939302Q Q Q kg --=+=+= ; 全塔最大重量:007612345max 74627;Q Q Q Q Q Q Q Q kg -=++++++=

全塔最小重量:00146min 25622;Q Q Q Q kg -=++= (b 塔体的风载荷和风距:

风载荷:12ei v i i P K K D q f l = ;

1K =,塔高51米高,取裙座5.5米,ei D =1.0m,取2K =,v q =

?,4K =,4K =

i f 如下:

对于5-10 m 1l ==4.5m 查表的1f =0.78 m; 对于10-20 m 2l =20-10=10 m 查表的2f =1.15 m ; 对于20-30 m 3l =30-20=10 m 查表的3f =1.33 m ; 对于30-40 m 4l =40-30=10 m 查表的4f =1.33 m; 对于40-50m 5l =50-40=10m 查表的5f =1.56 m; 对于50-60m 6l =60-50=10m 查表的6f =1.58 m; 各段均取:ei D =1024+2?100+200+400=1624 m; 塔体各段风力:

对于5-10m

6

1121111100.7 1.80.0030.78450018242420e v P K K D q f l N =?=?????=

对于10-20m

63323333100.7 1.80.003 1.151000018249169e v P K K D q f l N =?=?????=

对于20-30m

62222222100.7 1.80.003 1.331000018247929e v P K K D q f l N =?=?????=

对于30-40m

62222222100.7 1.80.003 1.331000018247929e v P K K D q f l N =?=?????=

对于40-50m

64424444100.7 1.80.003 1.5610000182410756e v P K K D q f l N =?=?????=

对于50-60m

65525555100.7 1.80.003 1.58100018241090e v P K K D q f l N =?=?????=

经计算的(过程略)

塔底底部截面弯距:581.38.H

w

M N mm = 裙座底部截面弯距:00

789.91.w

M N mm -= (4)裙座强度及稳定性验算

设裙座厚度为12n mm δ=,附加量c=1mm,则有效高度12111e mm δ=-=;

(a ).裙座底部0-0截面的强度和轴向稳定性较核:

操作时全塔主要引起的应力0023930298

11.1510011Q g MPa Pi Se δππ

-??=

==???? ; 风载荷引起的弯曲应力00

3291.480.785100011

w M δ-=

=?? ;

(b ).裙座底部的强度和轴向稳定性转换

[][]

max 23t

t ev σδδδσ=+≤ ; 裙座材料采用20R 钢 ,[]t

σ=123MPa ,[]t

ev σ =264MPa ;

max 2311.1591.48102.63MPa δδδ=++=;

因此满足强度和稳定性计算较核。 (5)裙座基础环设计

(a )基础环内外径的确立 (b )互凝土基础环程度较核

00max 4422

0.30 3.01 3.31()

0.795()32w b ob id ob id ob M Q g

Pa D D D D D δπ-?=+=+=??-?-; 水压试验时:00max

4422

0.30.570.73 1.3()

0.795()32w b ob id ob id ob

M Q g

MPa Pa D D D D D δπ-??=+=+=??-?- 其中Pa =4MPa;

(c)基础环的厚度设计

采用n=20个均分的地脚螺栓,将基础环固定在混凝土基础环上,基础环上筋板的距离为:

214242420020

ob

d mm n

ππ

δ?-=

-= ; 基础环的外升宽度:14241024

20022

ob o D D b mm --=

== ; 基础环采用A3钢,其厚度:

25.37h C mm δ=

= ;

(4)地脚螺栓强度较核

塔设备在迎风则作用在基础环上的最小应力:

()00min 442222

9245229.8

3.01 3.20()0.785(1474624)0.78532w B ob id ob id ob

M Q MPa D D D D D δπ-??=-=+=?-?-- ; 由于B δ》0,为拉应力,设备可能翻到,必须安装地脚螺栓,若材料选择16Mn.取[]148bt MPa σ=。

则螺栓的根径为:

1345.23d c mm =

=

= ;

其中n 为地脚螺栓个数,选用M48地脚螺栓。

十四、设计中的心得体会:

本次设计共3周时间,第1周主要进行全面的了解任务、查阅文献和进行基本的计算,第2周主要进行经济优化,主要十通过编程来实现,第3周整理过程的数据和进行画图及书写设计报告。本次设计主要目的是在深入认识精馏塔的操作流程、塔设备的确定的基础上通过经济优化选择适宜的经济参数进行经济优化,使整个生产的过程中达到成本最小。

通过本次课程设计,使我们在各方面都得以提高和锻炼,大家集体合作,争分的努力,按时完成了计。本次设计充分利用我们过去所学知识,将各个知识点有机的传接在一起,体现了综合性的运用。过程中我们学习倒了很多的东西,进一步深化对文献的查阅知识,巩固了所学的知识,使对工业的设计问题有了基本的认识,有利于将来的社会化探索。从此次的设计中感触最深的是集体的力量,明白一个人的力量始终是有限的。在此,感谢学校给我们的这次锻炼的机会,感谢魏老师在设计过程中对我们的细心指导,感谢同组组员和各位同学的的热心帮助和互相支持。

苯-甲苯精馏塔课程设计报告书

课程设计任务书 一、课题名称 苯——甲苯混合体系分离过程设计 二、课题条件(原始数据) 1、设计方案的选定 原料:苯、甲苯 年处理量:108000t 原料组成(甲苯的质量分率):0.5 塔顶产品组成:%99>D x 塔底产品组成:%2

设计容 摘要:精馏是分离液体混合物最常用的一种单元操作,在化工﹑炼油﹑石油化工等工业中得到广泛的应用。本设计的题目是苯—甲苯二元物系板式精馏塔的设计。在确定的工艺要求下,确定设计方案,设计容包括精馏塔工艺设计计算,塔辅助设备设计计算,精馏工艺过程流程图,精馏塔设备结构图,设计说明书。关键词:板式塔;苯--甲苯;工艺计算;结构图 一、简介 塔设备是炼油、化工、石油化工等生产中广泛应用的气液传质设备。根据塔气液接触部件的结构型式,可分为板式塔和填料塔。板式塔设置一定数目的塔板,气体以鼓泡或喷射形式穿过板上液层进行质热传递,气液相组成呈阶梯变化,属逐级接触逆流操作过程。填料塔装有一定高度的填料层,液体自塔顶沿填料表面下流,气体逆流向上(也有并流向下者)与液相接触进行质热传递,气液相组成沿塔高连续变化,属微分接触操作过程。 工业上对塔设备的主要要:(1)生产能力大;(2)传热、传质效率高;(3)气流的摩擦阻力小;(4)操作稳定,适应性强,操作弹性大;(5)结构简单,材料耗用量少;(6)制造安装容易,操作维修方便。此外,还要求不易堵塞、耐腐蚀等。 板式塔大致可分为两类:(1)有降液管的塔板,如泡罩、浮阀、筛板、导向筛板、新型垂直筛板、蛇形、S型、多降液管塔板;(2)无降液管的塔板,如穿流式筛板(栅板)、穿流式波纹板等。工业应用较多的是有降液管的塔板,如浮阀、筛板、泡罩塔板等。 苯的沸点为80.1℃,熔点为5.5℃,在常温下是一种无色、味甜、有芳香气味的透明液体,易挥发。苯比水密度低,密度为0.88g/ml,但其分子质量比水重。苯难溶于水,1升水中最多溶解1.7g苯;但苯是一种良好的有机溶剂,溶解有机分子和一些非极性的无机分子的能力很强。 甲苯是最简单,最重要的芳烃化合物之一。在空气中,甲苯只能不完全燃烧,火焰呈黄色。甲苯的熔点为-95 ℃,沸点为111 ℃。甲苯带有一种特殊的芳香味(与苯的气味类似),在常温常压下是一种无色透明,清澈如水的液体,密度为0.866克/厘米3,对光有很强的折射作用(折射率:1,4961)。甲苯

筛板精馏塔实验报告

筛板精馏塔实验报告 学院:化学化工学院 姓名: 学号: 指导老师: 实验时间:2016年6月3日

摘要本文对筛板精馏塔的性能进行测试,主要对乙醇正丙醇的精馏过程中的不同实验条件进行探讨;得出了进料流量、回流比与全塔效率的关系,确定了该筛板精馏塔的最佳操作条件。 关键词精馏;回流比;全回流;部分回流;全塔效率 Abstract the performance of the test sieve distillation column, mainly ethanol, n-propanol in the distillation process in different experimental conditions were discussed; obtained feed rate, reflux ratio with the whole tower efficiency is determined that the screen optimum operating conditions plate rectification column. Key words Distillation;Reflux ratio;Total reflux;partial reflux;The tower efficiency 前言精馏过程的节能措施一直是人们普遍关注的问题。精馏操作是化工生产中应用非常广泛的一种单元操作,也是化工原理课程的重要章节。分析运行中的精馏塔,当某一操作条件改变时的分离效果变化,属于精馏的操作型问题。这类问题取材于工程实践,是培养工程观念、提高学生解决实际问题能力的好方法,但同时也成为学习的难点。在工业生产中,充分掌握操作条件各类因素的影响,对提高产品的质量稳定生产,提高效益有重要的意义。本研究从进料流量、回流比、全回流和部分回流等操作因素对数字型筛板精馏塔进行全面考察得出一系列可靠直观的结果,加深对精馏操作中一些工程概念的理解,对工业生产有一定的指导意义。通过本实验,我们得出了大量的实验数据,由计算机绘图找出最优一组实验参数,在这组参数下进行提纯将会节约大量能源,同时为今后开出的设计型、综合型、研究型的实验项目,为学生的创新性科研项目具有重要的教改意义。 1.实验部分 1.1实验目的 1.1.1了解板式精馏塔的结构及精馏流程。

化工设备课程设计计算书(板式塔)

《化工设备设计基础》 课程设计计算说明书 学生姓名:学号: 所在学院: 专业: 设计题目: 指导教师: 2011年月日 目录 一.设计任务书 (2)

二.设计参数与结构简图 (4) 三.设备的总体设计及结构设计 (5) 四.强度计算 (7) 五.设计小结 (13) 六.参考文献 (14) 一、设计任务书 1、设计题目 根据《化工原理》课程设计工艺计算内容进行填料塔(或板式塔)设计。

设计题目: 各个同学按照自己的工艺参数确定自己的设计题目:填料塔(板式塔)DNXXX设计。 例:精馏塔(DN1800)设计 2、设计任务书 2.1设备的总体设计与结构设计 (1)根据《化工原理》课程设计,确定塔设备的型式(填料塔、板式塔); (2)根据化工工艺计算,确定塔板数目(或填料高度); (3)根据介质的不同,拟定管口方位; (4)结构设计,确定材料。 2.2设备的机械强度设计计算 (1)确定塔体、封头的强度计算。 (2)各种开孔接管结构的设计,开孔补强的验算。 (3)设备法兰的型式及尺寸选用;管法兰的选型。 (4)裙式支座的设计验算。 (5)水压试验应力校核。 2.3完成塔设备装配图 (1)完成塔设备的装配图设计,包括主视图、局部放大图、焊缝节点图、管口方位图等。 (2)编写技术要求、技术特性表、管口表、明细表和标题栏。 3、原始资料 3.1《化工原理》课程设计塔工艺计算数据。 3.2参考资料: [1] 董大勤.化工设备机械基础[M].北京:化学工业出版社,2003. [2] 全国化工设备技术中心站.《化工设备图样技术要求》2000版[S]. [3] GB150-1998.钢制压力容器[S]. [4] 郑晓梅.化工工程制图化工制图[M].北京:化学工业出版社,2002. [5] JB/T4710-2005.钢制塔式容器[S]. 4、文献查阅要求

化工原理精馏实验报告

北 京 化 工 大 学 实 验 报 告 课程名称: 化工原理实验 实验日期: 2011.04.24 班 级: 化工0801 姓 名: 王晓 同 组 人:丁大鹏,王平,王海玮 装置型号: 精馏实验 一、摘要 精馏是实现液相混合物液液分离的重要方法,而精馏塔是化工生产中进行分离过程的主要单元,板式精馏塔为其主要形式。本实验用工程模拟的方法模拟精馏塔在全回流的状态下及部分回流状态下的操作情况,从而计算单板效率和总板效率,并分析影响单板效率的主要因素,最终得以提高塔板效率。 关键词:精馏、板式塔、理论板数、总板效率、单板效率 二、实验目的 1、熟悉精馏的工艺流程,掌握精馏实验的操作方法。 2、了解板式塔的结构,观察塔板上气-液接触状况。 3、测测定全回流时的全塔效率及单板效率。 4、测定部分回流时的全塔效率。 5、测定全塔的浓度或温度分布。 6、测定塔釜再沸器的沸腾给热系数。 三、实验原理 在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液,在塔板上实现多次接触,进行传热和传质,使混合液达到一定程度的分离。 回流是精馏操作得以实现的基础。塔顶的回流量和采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则需要有无穷多块塔板的精馏塔。当然,这不符合工业实际,所以最小回流比只是一个操作限度。若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中无实验意义。但是,由于此时所需理论板数最少,又易于达到稳定,故常在工业装置开停车、排除故障及科学研究时采用。 实际回流比常取用最小回流比的1.2-2.0倍。在精馏操作中,若回流系统出现故障,操作情况会急剧恶化,分离效果也将变坏。 板效率是体现塔板性能及操作状况的主要参数,有以下两种定义方法。 (1)总板效率E e N E N 式中 E —总板效率; N —理论板数(不包括塔釜); Ne —实际板数。

精馏塔课程设计

目录 一、概述 二、设计方案和工艺流程的确定 三、塔的物料衡算四、回流比确定 五、塔板数的确立 六、塔的工艺条件及物性数据计算 七:塔和塔板主要工艺尺寸计算 八、塔板的流体力学验算 十、热量衡算 十一、筛板塔的设计结果总表 十二、辅助设备选型及接管尺寸 十三、精馏塔机械设计计算 十四、设计中的心得体会 一、概述: 塔设备是炼油、化工、石油化工等生产广泛应用的气液传质设备。根据塔内气液接触部件的结构型式,可分为板式塔和填料塔。板式塔内设置一定数量的塔板,气体以鼓泡或喷射形式穿过板上液层进行质,热传递,气液相组成呈阶梯变化,属逐渐接触逆流操作过程。填料塔内装有一定高度的填料层,液体自塔顶沿填料表面下流,气体逆流而上(也有并流向下者)与液体接触进行质热传递,气液组成沿塔高连续变化,属微分接触操作过程。 工业上对塔设备的要求:(1)生产能力大;(2)传质传热效率高;(3)气流的摩擦阻力小;(4)操作稳定,适应性强,操作弹性大;(5)结构简单,材料耗用量小(6)制作安装容易,维修方便。(7)设备不易堵塞,耐腐蚀。 其中板式塔又可分为有降液管的塔板(如泡罩塔,浮阀塔,筛板塔,舌型,S型等)和无降液管的(如穿流式筛板,穿流式波纹板)该课程涉及到的是板式塔中的浮阀塔,其广泛用于精馏、吸收、和解吸等过程。其主要特点是再塔板的开孔上装有可浮动的浮阀,气流从浮阀的周边以稳定的速度水平地进入塔板上液层进行两相接触,浮阀课根据气流流速地大小上下浮动,自行调节。浮阀有盘式、条式等多种。国内多采用盘式,其优点为生产能力大,操作弹性大,分离效率较大,塔板结构较简单。此型中的F-1型结构简单,已经列入部颁标准,因此型号的重阀操作稳定性好,一般采用重阀。 二、设计方案和工艺流程的确定: 在此次课程涉及中主要介绍浮阀塔在精馏中的应用,精馏装置包括精馏塔、原料预热器、再沸器、冷凝器、釜液冷却器、和产品冷却器等设备。热量自塔釜输入,物料再塔内经多次部分气化与部分冷凝进行精馏分离,由冷凝器和冷却器的冷却物质将余热带走。此过程中因考虑节能。 另外,为保持塔的稳定性,流程除用泵直接送入塔原料外,也可采用高位槽送料以受泵操作波动影响。 塔顶冷凝器装置根据生产情况以决定采用全凝器和分凝器。一般,塔顶分凝器对上升蒸汽虽由一定的增浓作用,当在石油等工业中获取液相产品时往往采用全凝器,以便于准确的控制回流比。若后继装置使用气态物料,则宜用分凝器 操作压强由常压、低压和高压操作,其取决于冷凝温度,一般都采用常压,对于热敏性物质或混合液沸点过高的物质则宜采用减压操作,而常压下为气态的物质采用高压操作。 对于物料的进料,一般情况下采用冷进料,但是为了考虑塔的操作稳定性,则一把采用泡点进料。

筛板精馏塔精馏实验报告标准范本

报告编号:LX-FS-A15629 筛板精馏塔精馏实验报告标准范本 The Stage T asks Completed According T o The Plan Reflect The Basic Situation In The Work And The Lessons Learned In The Work, So As T o Obtain Further Guidance From The Superior. 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

筛板精馏塔精馏实验报告标准范本 使用说明:本报告资料适用于按计划完成的阶段任务而进行的,反映工作中的基本情况、工作中取得的经验教训、存在的问题以及今后工作设想的汇报,以取得上级的进一步指导作用。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 筛板精馏塔精馏实验 6.1实验目的 1.了解板式塔的结构及精馏流程 2.理论联系实际,掌握精馏塔的操作 3.掌握精馏塔全塔效率的测定方法。 6.2实验内容 ⑴采用乙醇~水系统测定精馏塔全塔效率、液泛点、漏液点 ⑵在规定时间内,完成D=500ml、同时达到xD≥93v%、xW≤3v%分离任务 6.3实验原理

塔釜加热,液体沸腾,在塔内产生上升蒸汽,上升蒸汽与沸腾液 体有着不同的组成,这种不同组成来自轻重组份间有不同的挥发度, 由此塔顶冷凝,只需要部分回流即可达到塔顶轻组份增浓和塔底重 组份提浓的目的。部分凝液作为轻组份较浓的塔顶产品,部分凝液 作为回流,形成塔内下降液流,下降液流的浓度自塔顶而下逐步下 降,至塔底浓度合格后,连续或间歇地自塔釜排出部分釜液作为重 组份较浓的塔底产品。 在塔中部适当位置加入待分离料液,加料液中轻组份浓度与塔截

塔设备设计说明书精选文档

塔设备设计说明书精选 文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

《化工设备机械基础》 塔设备设计 课程设计说明书 学院:木工学院 班级:林产化工0 8 学号: 035 036 姓名:万永燕郑舒元 分组:第四组

目录

前言 摘要 塔设备是化工、石油等工业中广泛使用的重要生产设备。塔设备的基本功能在于提供气、液两相以充分接触的机会,使质、热两种传递过程能够迅速有效地进行;还要能使接触之后的气、液两相及时分开,互不夹带。因此,蒸馏和吸收操作可在同样的设备中进行。根据塔内气液接触部件的结构型式,塔设备可分为板式塔与填料塔两大类。板式塔内沿塔高装有若干层塔板(或称塔盘),液体靠重力作用由顶部逐板流向塔底,并在各块板面上形成流动的液层;气体则靠压强差推动,由塔底向上依次穿过各塔板上的液层而流向塔顶。气、液两相在塔内进行逐级接触,两相的组成沿塔高呈阶梯式变化。填料塔内装有各种形式的固体填充物,即填料。液相由塔顶喷淋装置分布于填料层上,靠重力作用沿填料表面流下;气相则在压强差推动下穿过填料的间隙,由塔的一端流向另一端。气、液在填料的润湿表面上进行接触,其组成沿塔高连续地变化。目前在工业生产中,当处理量大时多采用板式塔,而当处理量较小时多采用填料塔。蒸馏操作的规模往往较大,所需塔径常达一米以上,故采用板式塔较多;吸收操作的规模一般较小,故采用填料塔较多。 板式塔为逐级接触式气液传质设备。在一个圆筒形的壳体内装有若干层按一定间距放置的水平塔板,塔板上开有很多筛孔,每层塔板靠塔壁处设有降液管。气液两相在塔板内进行逐级接触,两相的组成沿塔高呈阶梯式变化。板式塔的空塔气速很高,因而生产能力较大,塔板效率稳定,造价低,检修、清理方便

乙醇-水精馏塔课程设计报告浮阀塔

-- - 目录 设计任务书 (4) 第一章前言 (5) 第二章精馏塔过程的确定 (6) 第三章精馏塔设计物料计算 (7) 3.1水和乙醇有关物性数据 (7) 3.2 塔的物料衡算 (8) 3.2.1料液及塔顶、塔底产品及含乙醇摩尔分率 (8) 3.2.2平均分子量 (8) 3.2.3物料衡算 (8) 3.3塔板数的确定 (8) 3.3.1理论塔板数N T的求取 (8) 3.3.2求理论塔板数N T (9) 3.4塔的工艺条件及物性数据计算 (11) 3.4.1操作压强P m (12) 3.4.2温度t m (12) 3.4.3平均分子量M精 (12) 3.4.4平均密度ρM (13) 3.4.5液体表面X力σm (13) 3.4.6液体粘度μm L, (14) 3.4.7精馏段气液负荷计算 (14) 第四章精馏塔设计工艺计算 (15) 4.1塔径 (15) 4.2精馏塔的有效高度计算 (16) 4.3溢流装置 (16) 4.3.1堰长l W (16) 4.3.2出口堰高h W (16)

4.3.3降液管的宽度W d与降液管的面积A f (16) 4.3.4降液管底隙高度h o (17) 4.4塔板布置及浮阀数目排列 (17) 4.5塔板流体力学校核 (18) 4.5.1气相通过浮塔板的压力降 (18) 4.5.2淹塔 (18) 4.6雾沫夹带 (18) 4.7塔板负荷性能图 (19) 4.7.1雾沫夹带线 (19) 4.7.2液泛线 (20) 4.7.3液相负荷上限线 (20) 4.7.4漏液线(气相负荷下限线) (20) 4.7.5液相负荷下限线 (21) 4.8塔板负荷性能图 (22) 设计计算结果总表 (23) 符号说明 (24) 关键词 (25) 参考文献 (25) 课程设计心得 (26) 附录 (27) 附录一、水在不同温度下的黏度 (27) 附录二、饱和水蒸气表 (27) 附录三、乙醇在不同温度下的密度 (27)

甲醇-水溶液连续精馏塔课程设计91604

目录 设计任务书 一、概述 1、精馏操作对塔设备的要求和类型 (4) 2、精馏塔的设计步骤 (5) 二、精馏塔工艺设计计算 1、设计方案的确定 (6) 2、精馏塔物料衡算 (6) 3、塔板数的确定 (7) 的求取 (7) 3.1理论板层数N T 3.2实际板层数的求取 (8) 4、精馏塔的工艺条件及有关物性数据的计算 4.1操作温度的计算 (11) 4.2平均摩尔质量的计算 (11) 4.3平均密度的计算 (12) 4.4液相平均表面张力计算 (12) 4.5液体平均粘度计算 (13) 5、精馏塔塔体工艺尺寸计算 5.1塔径的计算 (14) 5.2精馏塔有效高度的计算 (15) 6、塔板主要工艺尺寸计算 6.1溢流装置计算 (16) 6.2塔板的布置 (17) 6.3浮阀计算及排列 (17) 7、浮阀塔流体力学性能验算 (19) 8、塔附件设计 (26) 7、精馏塔结构设计 (30)

7.1设计条件 (30) 7.2壳体厚度计算………………………………………………… 7.3风载荷与风弯矩计算………………………………………… 7.4地震弯矩的计算………………………………………………… 三、总结 (27) 化工原理课程设计任务书 一、设计题目: 甲醇-水溶液连续精馏塔设计 二、设计条件: 年产量: 95%的甲醇17000吨 料液组成(质量分数): (25%甲醇,75%水) 塔顶产品组成(质量分数): (95%甲醇,5%水) 塔底釜残液甲醇含量为6% 每年实际生产时间: 300天/年,每天24小时连续工作 连续操作、中间加料、泡点回流。 操作压力:常压 塔顶压力4kPa(表压) 塔板类型:浮阀塔 进料状况:泡点进料 单板压降:kPa 7.0 厂址:安徽省合肥市 塔釜间接蒸汽加热,加热蒸汽压力为0.5Mpa 三、设计任务 完成精馏塔的工艺设计,有关附属设备的设计和选型,绘制精馏塔系统工艺流程图和精馏塔装配图,编写设计说明书. 设计内容包括: 1、 精馏装置流程设计与论证 2、 浮阀塔内精馏过程的工艺计算 3、 浮阀塔主要工艺尺寸的确定 4、 塔盘设计 5、 流体力学条件校核、作负荷性能图 6、 主要辅助设备的选型 四、设计说明书内容 1 目录 2 概述(精馏基本原理) 3 工艺计算 4 结构计算 5 附属装置评价 6 参考文献 7 对设计自我评价 摘要:设计一座连续浮阀塔,通过对原料,产品的要求和物性参数的确定及对主

化工原理精馏实验报告

北京化工大学 实验报告 精馏实验 一、摘要 精馏是实现液相混合物液液分离的重要方法,而精馏塔是化工生产中进行分离过程的主要单元,板式精馏塔为其主要形式。本实验用工程模拟的方法模拟精馏塔在全回流的状态下及部分回流状态下的操作情况,从而计算单板效率和总板效率,并分析影响单板效率的主要因素,最终得以提高塔板效率。 关键词:精馏、板式塔、理论板数、总板效率、单板效率 二、实验目的 1、熟悉精馏的工艺流程,掌握精馏实验的操作方法。 2、了解板式塔的结构,观察塔板上气- 液接触状况。 3、测测定全回流时的全塔效率及单板效率。 4、测定部分回流时的全塔效率。 5、测定全塔的浓度或温度分布。 6、测定塔釜再沸器的沸腾给热系数。 三、实验原理 在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液,在塔 板上实现多次接触,进行传热和传质,使混合液达到一定程度的分离。 回流是精馏操作得以实现的基础。塔顶的回流量和采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则

需要有无穷多块塔板的精馏塔。当然,这不符合工业实际,所以最小回流比只是 一个操作限度。若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中无实验意义。但是,由于此时所需理论板数最少,又易于达到稳定,故常在工业装置开停车、排除故障及科学研究时采用。 实际回流比常取用最小回流比的倍。在精馏操作中,若回流系统出现故障,操作情况会急剧恶化,分离效果也将变坏。 板效率是体现塔板性能及操作状况的主要参数,有以下两种定义方法。 (1)总板效率E N e 式中E —总板效率;N—理论板数(不包括塔釜);Ne —实际板数。 2)单板效率E ml E x n 1 x n E ml * x n 1 x n* 式中E ml—以液相浓度表示的单板效率; x n,x n-1—第n 块板的和第(n-1 )块板得液相浓度; x n*—与第n 块板气相浓度相平衡的液相浓度。 总板效率与单板效率的数值通常由实验测定。单板效率是评价塔板性能优劣的重要数据。物系性质、板型及操作负荷是影响单板效率的重要因素。当物系与板型确定后,可通过改变气液负荷达到最高的板效率;对于不同的板型,可以在保持相同的物系及操作条件下,测定其单板效率,已评价其性能的优劣。总板效率反映全塔各塔板的平均分离效果,常用于板式塔设计中。 若改变塔釜再沸器中电加热器的电压,塔板上升蒸汽量将会改变,同时,塔釜再沸器电加热器表面的温度将发生变化,其沸腾给热系数也将发生变化,从而可以得到沸腾给热系数也加热量的关系。由牛顿冷却定律,可知 Q A t m

塔设备设计说明书

《化工设备机械基础》 塔设备设计 课程设计说明书 学院:木工学院 班级:林产化工0 8 学号: 姓名:万永燕郑舒元 分组:第四组 目录 前言............................................................... 错误!未定义书签。 摘要 (2) 关键字 (2) 第二章设计参数及要求 (2) 1.1符号说明 (2) 1.2.设计参数及要求 (3) 3 3 第二章材料选择 (4) 2.1概论 (4) 2.2塔体材料选择 (4) 2.3 裙座材料的选择 (4) 第三章塔体的结构设计及计算 (5) 3.1 按计算压力计算塔体和封头厚度 (5) 3.2 塔设备质量载荷计算 (5) 3.3 风载荷和风弯矩 (6) 3.4 地震弯矩计算 (7) 3.5 各种载荷引起的轴向应力 (7) 3.6 塔体和裙座危险截面的强度与稳定校核 (8) 3.7 塔体水压试验和吊装时的应力校核 (9) 3.7.1 水压试验时各种载荷引起的应力 (9) 9 3.8塔设备结构上的设计 (10) 10 10 板式塔的总体结构 (11) 小结 (11) 附录 (11) 附录一有关部件的质量 (11)

附录二矩形力矩计算表 (12) 附录三螺纹小径与公称直径对照表 (12) 参考文献 (12) 前言 摘要 塔设备是化工、石油等工业中广泛使用的重要生产设备。塔设备的基本功能在于提供气、液两相以充分接触的机会,使质、热两种传递过程能够迅速有效地进行;还要能使接触之后的气、液两相及时分开,互不夹带。因此,蒸馏和吸收操作可在同样的设备中进行。根据塔内气液接触部件的结构型式,塔设备可分为板式塔与填料塔两大类。板式塔内沿塔高装有若干层塔板(或称塔盘),液体靠重力作用由顶部逐板流向塔底,并在各块板面上形成流动的液层;气体则靠压强差推动,由塔底向上依次穿过各塔板上的液层而流向塔顶。气、液两相在塔内进行逐级接触,两相的组成沿塔高呈阶梯式变化。填料塔内装有各种形式的固体填充物,即填料。液相由塔顶喷淋装置分布于填料层上,靠重力作用沿填料表面流下;气相则在压强差推动下穿过填料的间隙,由塔的一端流向另一端。气、液在填料的润湿表面上进行接触,其组成沿塔高连续地变化。目前在工业生产中,当处理量大时多采用板式塔,而当处理量较小时多采用填料塔。蒸馏操作的规模往往较大,所需塔径常达一米以上,故采用板式塔较多;吸收操作的规模一般较小,故采用填料塔较多。 板式塔为逐级接触式气液传质设备。在一个圆筒形的壳体内装有若干层按一定间距放置的水平塔板,塔板上开有很多筛孔,每层塔板靠塔壁处设有降液管。气液两相在塔板内进行逐级接触,两相的组成沿塔高呈阶梯式变化。板式塔的空塔气速很高,因而生产能力较大,塔板效率稳定,造价低,检修、清理方便 关键字 塔体、封头、裙座、。 第二章设计参数及要求 1.1符号说明 Pc ----- 计算压力,MPa; Di ----- 圆筒或球壳内径,mm; [Pw]-----圆筒或球壳的最大允许工作压力,MPa; δ ----- 圆筒或球壳的计算厚度,mm; δn ----- 圆筒或球壳的名义厚度,mm; δe ----- 圆筒或球壳的有效厚度,mm;

化工原理课程设计-苯-甲苯精馏塔设计

资料 前言 化工原理课程设计是培养学生化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形。在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性、经济合理性。 化工生产常需进行液体混合物的分离以达到提纯或回收有用组分的目的,精馏是利用液体混合物中各组分挥发度的不同并借助于多次部分汽化和部分冷凝达到轻重组分分离的方法。塔设备一般分为阶跃接触式和连续接触式两大类。前者的代表是板式塔,后者的代表则为填料塔。 筛板塔和泡罩塔相比较具有下列特点:生产能力大于%,板效率提高产量15%左右;而压降可降低30%左右;另外筛板塔结构简单,消耗金属少,塔板的造价可减少40%左右;安装容易,也便于清理检修。本次课程设计为年处理含苯质量分数36%的苯-甲苯混合液4万吨的筛板精馏塔设计,塔设备是化工、炼油生产中最重要的设备之一。它可使气(或汽)液或液液两相之间进行紧密接触,达到相际传质及传热的目的。 在设计过程中应考虑到设计的精馏塔具有较大的生产能力满足工艺要求,另外还要有一定的潜力。节省能源,综合利用余热。经济合理,冷却水进出口温度的高低,一方面影响到冷却水用量。另一方面影响到所需传热面积的大小。即对操作费用和设备费用均有影响,因此设计是否合理的利用热能R等直接关系到生产过程的经济问题。 |

'

目录 第一章绪论 (1) 精馏条件的确定 (1) 精馏的加热方式 (1) 精馏的进料状态 (1) 精馏的操作压力 (1) 确定设计方案 (1) 工艺和操作的要求 (2) 满足经济上的要求 (2) 保证安全生产 (2) 第二章设计计算 (3) 设计方案的确定 (3) 精馏塔的物料衡算 (3) 原料液进料量、塔顶、塔底摩尔分率 (3) 原料液及塔顶、塔底产品的平均摩尔质量 (3) 物料衡算 (3) 塔板计算 (4) 理论板数NT的求取 (4) 全塔效率的计算 (6) 求实际板数 (7) 有效塔高的计算 (7) 精馏塔的工艺条件及有关物性数据的计算 (8) 操作压力的计算 (8) 操作温度的计算 (8) 平均摩尔质量的计算 (8) 平均密度的计算 (10) 液体平均表面张力的计算 (11) 液体平均黏度的计算 (12) 气液负荷计算 (13)

北京化工大学精馏实验报告

北 京 化 工 大 学 化 工 原 理 实 验 告 : : : : : : 实验名称 班级 姓名 学 号 同组成员 实验日期 精馏实验 2015.5.13 实验 日 期

精馏实验 一、实验目的 1、熟悉填料塔的构造与操作; 2、熟悉精馏的工艺流程,掌握精馏实验的操作方法; 3、了解板式精馏塔的结构,观察塔板上汽液接触状况; 4、掌握液相体积总传质系数K a的测定方法并分析影响因素 x 5、测定全回流时的全塔效率及单板效率; 6、测量部分回流时的全塔效率和单板效率 二、实验原理 在板式精馏塔中,混合液的蒸汽逐板上升,回流液逐板下降,气液两相在塔板上接触,实现传质、传热过程而达到分离的目的。如果在每层塔板上,上升的蒸汽与下降的液体处于平衡状态,则该塔板称之为理论塔板。然而在实际操做过程中由于接触时间有限,气液两相不可能达到平衡,即实际塔板的分离效果达不到一块理论塔板的作用。因此,完成一定的分离任务,精馏塔所需的实际塔板数总是比理论塔板数多。 回流是精馏操作得以实现的基础。塔顶的回流量与采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则需要有无穷多块板的精馏塔。这在工业上是不可行的,所以最小回流比只是一个操作限度。若在全回流下操作,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中无实验意义。实际回流比常取最小回流比的1.2~2.0倍。 本实验处于全回流情况下,既无任何产品采出,又无原料加入,此时所需理论板最少,又易于达到稳定,可以很好的分析精馏塔的性能。影响塔板效率的因素很多,大致可归结为:流体的物理性质(如粘度、密度、相对挥发度和表面张力等)、塔板结构以及塔的操作

化工原理精馏塔课程设计

课程设计 设计题目:板式设计精馏塔 学生姓名: 学号: 专业班级: 指导老师: 2011年01月21日

设计 题目 板式精馏塔的设计成绩 课 程 设 计主要内容流量的确定、各物理性质的计算、回流比的确定、各种管路的选型、各种强度的校核 指 导 教 师 评 语 建议:从学生的工作态度、工作量、设计(论文)的创造性、学术性、实用性及书面表达能力等方面给出评价。 签名:200 年月日

设计任务书 化工原理课程设计任务书 专业班级姓名学号 设计题目:板式精馏塔设计 设计时间:2011年1月10日至 2010年1月21日 指导老师: 设计任务:年处理 120000 kg乙醇--水溶液系统 1、料液含乙醇28%,馏出液含乙醇不少于94 wt%,残液含乙醇不大于0.05 wt% 2、操作条件: 。 (1)泡点进料,回流比R= 1.5 R min (2)塔釜加热蒸汽压力:间接0.2 MPa(表压),直接0.1 MPa(绝压)。 (3)塔顶全凝器冷却水进口温度20℃,出口温度50 ℃。 (4)常压操作。年工作日300~320 d,每天工作24 h。 (5)设备形式(筛板塔、浮阀塔、泡罩塔等)自选。 (6)安装地点:合肥 任务来源:合肥酒厂 设计主要内容: 工艺流程的确定,塔和塔板的工艺尺寸计算,塔板的流体力学验算及负荷性能图,辅助设备的计算与选型,主体设备的机械设计。 设计报告: 1、设计说明书一份。(格式:按照本科毕业设计论文书写格式) 2、主体设备总装图一张(1#图纸),带控制点工艺流程图(3#图纸)一张。

中文摘要:在化工、石油、医药、食品等生产中,常需将液体混合物分离以达到提纯或回收有用组分的目的,而蒸馏就是其中一种方法。随着化学 工业的发展,蒸馏技术、设备及理论也有了很大的发展。蒸馏操作的 理论依据是借混合液中各组分挥发性的差异而达到分离的目的。在操 作中进行多次的气体部分冷凝或液体部分气化称为精馏。习惯上,混 合物中的易挥发组分称为轻组分,难挥发组分成为中组分。为此,掌 握气液相平衡关系,熟悉各种塔型的操作特性,对选择、设计和分析 分离过程中的各种参数是非常重要的。 关键字:精馏,蒸馏,筛板,塔

化工原理课程设计之苯甲苯连续精馏塔浮阀塔的设计

化工原理课程设计 设计题目:苯-甲苯连续精馏塔浮阀塔的设计设计人: 班级: 学号: 指导老师: 设计时间:

目录 设计任务书 (3) 前言 (4) 第一章工艺流程设计 (5) 第二章塔设备的工艺计算 (6) 第三章塔和塔板主要工艺尺寸计算 (15) 第四章塔板的流体力学验算 (18) 第五章塔板负荷性能图 (21) 第六章换热器的设计计算与选型 (25) 第七章主要工艺管道的计算与选择 (28) 结束语 (30) 参考文献 (32) 附录 (33)

化工原理课程设计任务书 设计题目:苯—甲苯连续精馏塔(浮阀塔)的设计 一、工艺设计部分 (一)任务及操作条件 1. 基本条件:含苯25%(质量分数,下同)的原料液以泡点状态进入塔内,回流比为最小回流比的 1.25倍。 2. 分离要求:塔顶产品中苯含量不低于95%,塔底甲苯中苯含量不高于2%。 3. 生产能力:每小时处理9.4吨。 4. 操作条件:顶压强为4 KPa (表压),单板压降≯0.7KPa,采用表压0.6 MPa的饱和蒸汽加热。(二)塔设备类型浮阀塔。 (三)厂址:湘潭地区(年平均气温为17.4℃) (四)设计内容 1. 设计方案的确定、流程选择及说明。 2. 塔及塔板的工艺计算塔高(含裙座)、塔径及塔板结构尺寸;塔板流体力学验算;塔板的负荷性能图;设计结果概要或设计一览表。 3. 辅助设备计算及选型(注意:结果要汇总)。 4. 自控系统设计(针对关键参数)。 5. 图纸:工艺管道及控制流程图;塔板布置图;精馏塔的工艺条件图。 6. 对本设计的评述或有关问题的分析讨论。 二、按要求编制相应的设计说明书 设计说明书的装订顺序及要求如下: 1. 封面(设计题目,设计人的姓名、班级及学号等) 2. 目录 3. 设计任务书 4. 前言(课程设计的目的及意义) 5. 工艺流程设计 6. 塔设备的工艺计算(计算完成后应该有计算结果汇总表) 7. 换热器的设计计算与选型(完成后应该有结果汇总表) 8. 主要工艺管道的计算与选择(完成后应该有结果汇总表) 8. 结束语(主要是对自己设计结果的简单评价) 9. 参考文献(按在设计说明书中出现的先后顺序编排,且序号在设计说明书引用时要求标注) 10. 设计图纸 三、主要参考资料 [1] 化工原理;[2] 化工设备机械基础;[3] 化工原理课程设计;[4] 化工工艺设计手册 四、指导教师安排杨明平;胡忠于;陈东初;黄念东 五、时间安排第17周~第18周

精馏实验报告

化工原理实验报告 一、实验目的 1. 熟悉精馏的工艺流程,掌握精馏实验的操作方法; 2. 了解板式塔的结构,观察塔板上气-液接触状况; 3. 测定全回流时的全塔效率及单板效率。 4. 测定全塔的浓度分布。 二、摘要 在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶主板下降的回流液,在塔板上实现多次接触,进行传热与传质,使混合液达到一定程度的分离。对于双组分混合液的蒸馏,若已知汽液平衡数据,测得塔顶流出液组成D X 、釜残液组成W X ,液料组成F X 及回流比R 和进料状态,就可用图解法在y x 图上,或用其他方法求出理论塔板数T N 。塔的全塔效率T E 为理论塔板数与实际塔板数N 之比。精馏塔的单板效率M E 可以根据液相通过测定塔板的浓度变化进行计算。本实验在板式精馏塔全回流的情况下,通过测定乙醇丙醇体系混合液在精馏塔中的传质的一些参数,计算精馏塔的总板效率和某几块板的单板效率(液相单板效率),分析该塔的传质性能和操作情况。 三、实验原理 在板式精馏塔中,混合液的蒸汽逐板上升,回流液逐板下降,气液两相在塔板上接触,实现传质、传热过程而达到分离的目的。如果在每层塔板上,上升的蒸汽与下降的液体处于平衡状态,则该塔板称之为理论塔板。然而在实际操做过程中由于接触时间有限,气液两相不可能达到平衡,即实际塔板的分离效果达不到一块理论塔板的作用。因此,完成一定的分离任务,精馏塔所需的实际塔板数总是比理论塔板数多。 回流是精馏操作得以实现的基础。塔顶的回流量与采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。回流比存在两种极限情况:最小回流比和全回流。本实验处于全回流情况下,既无任何产品采出,又无原料加入,此时所需理论板最少,又易于达到稳定,可以很好的分析精馏塔的性能。影响塔板效率的因素很多,大致可归结为:流体的

精馏塔---课程设计

第1章绪论 1.1课程设计的目的 (1)把化工工艺与化工机械设计结合起来,巩固和强化有关机械课程的基本理论和知识基本知识。 (2)培养对化工工程设计上基本技能以及独立分析问题、解决问题的能力。 (3)培养识图、制图、运算、编写设计说明书的能力。 1.2课程设计的要求 (1)树立正确的设计思想。 (2)具有积极主动的学习态度和进取精神。 (3)学会正确使用标准和规范,使设计有法可依、有章可循。 (4)学会正确的设计方法,统筹兼顾,抓主要矛盾。 (5)在设计中处理好尺寸的圆整。 (6)在设计中处理好计算与结构设计的关系。 1.3课程设计的内容 对二氯乙烷精馏塔的机械设计。DN=1800mm P N=1.2MPa 1.4课程设计的步骤 (1)全面考虑按压力大小、温度高低、腐蚀性大小等因素来选材。 (2)选用零部件。 (3)计算外载荷,包括内压、外压、设备自重,零部件的偏载、风载、地震载荷等。

(4)强度、刚度、稳定性设计和校核计算(5)传动设备的选型、计算。 (6)绘制设备总装配图。

第2章 塔体的机械计算 2.1 按计算压力计算塔体和封头厚度 2.1.1 塔体厚度的计算 (1)计算压力 MPa Pc 2.1= (2)塔体计算厚度 mm Pc t PcDi 8.72 .185.017021800 2.1]δ[2δ=×××== (3)塔体设计厚度 mm 8.9δc δ=+=c (4)塔体名义厚度 n δ=12mm (5)塔体有效厚度 mm c n e 10δδ== 2.1.2 封头厚度计算 (1)计算厚度 mm Pc t PcDi 5.72 .15.085.017021800 2.15.0][2=?-???=?-= ?δδ (2)设计厚度 mm c 5.9c =+=δδ (3)名义厚度 mm n 12=δ (3)有效厚度 mm c n e 10=-=δδ 2.2 塔设备质量载荷计算 2.2.1 筒体圆筒、封头、裙座质量 m 01 (1)圆筒质量 m 1=4.1971979.36536=×Kg (2)封头质量 m 2=8.67624.338=×Kg (3)裙座质量 m 3=2.164006.3536=×Kg 说明:1 塔体圆筒总高度为36.79m ; 2查得DN1800mm ,厚度10mm 的圆筒质量为536Kg/m ; 3 查得 DN1800mm ,厚度10mm 的椭圆形封头质量为338.4Kg/m ; 4 裙座高度3060mm 。

化工原理课程设计(乙醇-水溶液连续精馏塔优化设计)

实用标准文档 化工原理课程设计题目乙醇-水溶液连续精馏塔优化设计

目录 1.设计任务书 (3) 2.英文摘要前言 (4) 3.前言 (4) 4.精馏塔优化设计 (5) 5.精馏塔优化设计计算 (5) 6.设计计算结果总表 (22) 7.参考文献 (23) 8.课程设计心得 (23)

精馏塔优化设计任务书 一、设计题目 乙醇—水溶液连续精馏塔优化设计 二、设计条件 1.处理量: 16000 (吨/年) 2.料液浓度: 40 (wt%) 3.产品浓度: 92 (wt%) 4.易挥发组分回收率: 99.99% 5.每年实际生产时间:7200小时/年 6. 操作条件: ①间接蒸汽加热; ②塔顶压强:1.03 atm(绝对压强) ③进料热状况:泡点进料; 三、设计任务 a) 流程的确定与说明; b) 塔板和塔径计算; c) 塔盘结构设计 i. 浮阀塔盘工艺尺寸及布置简图; ii. 流体力学验算; iii. 塔板负荷性能图。 d) 其它 i. 加热蒸汽消耗量; ii. 冷凝器的传热面积及冷却水的消耗量 e) 有关附属设备的设计和选型,绘制精馏塔系统工艺流程图和精馏塔装配 图,编写设计说明书。

乙醇——水溶液连续精馏塔优化设计 (某大学化学化工学院) 摘要:设计一座连续浮阀塔,通过对原料,产品的要求和物性参数的确定及对主要尺寸的计算,工艺设计和附属设备结果选型设计,完成对乙醇-水精馏工艺流程和主题设备设计。 关键词:精馏塔,浮阀塔,精馏塔的附属设备。 (Department of Chemistry,University of South China,Hengyang 421001) Abstract: The design of a continuous distillation valve column, in the material, product requirements and the main physical parameters and to determine the size, process design and selection of equipment and design results, completion of the ethanol-water distillation process and equipment design theme. Keywords: rectification column, valve tower, accessory equipment of the rectification column.

筛板精馏塔化工实验报告

筛板塔精馏过程实验 一、实验目的 1、了解筛板精馏塔及其附属设备的基本结构,掌握精馏过程的基本操作方法。 2、学会判断系统达到稳定的方法,掌握测定塔顶、塔釜溶液浓度的实验方法。 3、学习测定精馏塔全塔效率和单板效率的实验方法,研究回流比对精馏塔分离效率的影响。 二、实验原理 2.1 全塔效率 TE 全塔效率又称总板效率,是指达到指定分离效果所需理论板数与实际板数的比值于塔内所需理论塔板数,可由已知的双组分物系平衡关系,以及实验中测得的塔顶、塔釜出液的组成,回流比R和热状况q等,用图解法求得TN 2.2 图解法求理论塔板数 TN 图解法又称麦卡勃-蒂列(McCabe-Thiele)法,简称M-T法,其原理与逐板计算法完全相同,只是将逐板计算过程在y-x图上直观地表示出来。 2.3 全回流操作 在精馏全回流操作时,操作线在y-x图上为对角线,如图8-3所示,根据塔顶、塔釜的组成在操作线和平衡线间作梯级,即可得到理论塔板部分回流操作。部分回流操作时,图解法的主要步骤为: (1)根据物系和操作压力在y-x图上作出相平衡曲线,并画出对角线作为辅助线;(2)在x轴上定出x=xD、xF、xW三点,依次通过这三点作垂线分别交对角线于点a、f、b; (3)在y轴上定出yC=xD/(R+1)的点c,连接a、c作出精馏段操作线; (4)由进料热状况求出q线的斜率q/(q-1),过点f作出q线交精馏段操作线于点d; (5)连接点d、b作出提馏段操作线; (6)从点a开始在平衡线和精馏段操作线之间画阶梯,当梯级跨过点d时,就改在平衡线和提馏 段操作线之间画阶梯,直至梯级跨过点b为止; (7) 所画的总阶梯数就是全塔所需的理论踏板数(包含再沸器),跨过点d的那块板就是加料板, 其上的阶梯数为精馏段的理论塔板数。 2.4 实验装置和流程 本实验装置的主体设备是筛板精馏塔,配套的有加料系统、回流系统、产品出料管路、残液出料管路、进料泵和一些测量、控制仪表。 筛板塔主要结构参数:塔内径D=68mm,厚度洌?4mm,塔板数N=10块,板间距HT =100mm。加料位置由下向上起数第4块和第6块。降液管采用弓形,齿形堰,堰长56mm,堰高7.3mm,齿深4.6mm,齿数9个。降液管底隙4.5mm。筛孔直径d0=1.5mm,正三角形排列,孔间距t=5mm,开孔数为77个。塔釜为内电加热式,加热功率2.5kW,有效容积为10L。塔顶冷凝器、塔釜换热器均为盘管式。单板取样为自下而上第1块和第10块,斜向上为液相取样口,水平管为气相取样口。 本实验料液为乙醇水溶液,釜内液体由电加热器产生蒸汽逐板上升,经与各板上的液体传质后,进入盘管式换热器壳程,冷凝成液体后再从集液器流出,一部分作为回流液从塔顶流入塔内,另一部分作为产品馏出,进入产品贮罐;残液经釜液转子流量计流入釜液贮罐。

相关主题
文本预览
相关文档 最新文档