当前位置:文档之家› 考虑饱和_非饱和渗流的土坡极限分析

考虑饱和_非饱和渗流的土坡极限分析

考虑饱和_非饱和渗流的土坡极限分析
考虑饱和_非饱和渗流的土坡极限分析

(完整word)高中化学极限法

专题7·极限法 极限判断是指从事物的极端上来考虑问题的一种思维方法。该思维方法的特点是确定了事物发展的最大(或最小)程度以及事物发生的范围。 例1 :在120℃时分别进行如下四个反应: A.2H2S+O2=2H2O+2S B.2H2S+3O2=2H2O+2SO2 C.C2H4+3O2=2H2O+2CO2D.C4H8+6O2=4H2O+4CO2 (l)若反应在容积固定的容器内进行,反应前后气体密度(d)和气体总压强(P)分别符合关系式d前=d后和P前>P后的是;符合关系式d前=d后和P前=P后的是(请填写反应的代号)。 (2)若反应在压强恒定容积可变的容器内进行,反应前后气体密度(d)和气体体积(V)分别符合关系式d前>d后和V前d后和V前>V后的是(请填写反应的代号)。 方法:从反应物全部变成生成物来作极限判断。 解析:(1)在容积固定的容器内,四个反应的反应物和生成物中除硫单质外均为气体, 总结:解本题还应用了物理学中气态方程和化学中的阿伏加德罗定律。这是一道物理和化学学科间综合试题,体现了当今的命题方向。 例2 :把含有某一种氯化物杂质的氯化镁粉末95mg溶于水后,与足量的硝酸银溶液反应, 生成氯化银沉淀300mg,则该氯化镁中的杂质可能是() A.氯化钠B.氯化铝C.氯化钾D.氯化钙

方法:采用极值法或平均分子量法。 解析:[解法一]:(极值法) 假设95mg全为MgCl2,无杂质,则有:MgCl2 ~ 2AgCl 95mg2×143.5mg 生成沉淀为287mg,所以假设95mg全部为杂质时,产生的AgCl沉淀应大于300mg。 总结:极值法和平均分子量法本质上是相同的,目的都是求出杂质相对分子量的区间值,或者杂质中金属元素的原子量的区间值,再逐一与选项比较,筛选出符合题意的选项。 例3 :在一个容积固定的反应器中,有一可左右滑动的密封隔板,两侧分别进行如图所示的可逆反应.各物质的起始加入量如下:A、B和C均为4.0mol、D为6.5 mol、F为2.0 mol,设E为x mol.当x在一定范围内变化时,均可以通过调节反应器的温度,使两侧反应都达到平衡,并且隔板恰好处于反应器的正中位置.请填写以下空白:

芝诺悖论的极限分析

芝诺悖论的极限分析 学生姓名:王慧文指导教师:岳进 摘要:古希腊哲学家芝诺提出了著名的“二分法”,其结论的荒谬性不言而喻,可是对他的论证我们 似乎很难找出毛病,好像是可以接受的。其结论之所以不可以接受,源于在他的论证中隐藏着一些 谬论。在极限方面过程中把带有统一度量单位的“无穷”混为一谈。在哲学方面违反了辩证法的客观 性原则、全面性原则和对立统一性原则;但芝诺悖论的提出,对辩证法的方法,以及运动过程中诸 要素的多种矛盾,通过逻辑运算对芝诺悖论的荒谬性进行反驳,对数学的发展起了很大的作用。 同时本文利用数学求极限的方法,通过逻辑运算,揭示阿基里斯永远追不上乌龟结论的错误。 关键词:悖论;无穷与有穷;运动与静止;连续与间断 引言: 数学悖论是数学发展过程中的一个重要的存在形态,它是数学体系中出现的一种尖锐的矛盾,对于这一矛盾的处理与研究,丰富了数学的内容,促进了数学的发展。 芝诺是公元五世纪古希腊埃利亚学派的代表人物。芝诺“二分法”悖论是说,你不能在有限的时间内穿过无穷的点。在你穿过一定的距离的全部之前,你必须穿过这个距离的一半。这样做下去就会陷入无止境,所以在任何一定的空间中都有无穷个点,你不能在有限的时间中一个接一个地接触无穷个点。运动只是假象,不动不变才是真实。假如承认有运动,就得承认速度最快的赶不上速度最慢的”,即快的“只能无限地接近但永远不能赶上”慢的。因为,快的要追上慢的,总要到达慢的所处,的所经过的每个出发点,而当它到达第一个出发点时,慢的已经往前走了“一段,即阿基里斯追赶乌龟的赛跑。 芝诺的哲学观点虽然不对,但是,他如此尖锐地提出了空间和时间是连续还是离散的问题,引起人们长期的讨论和发展,不能不说是巨大的贡献。本论文就是通过极限与哲学的分析,对芝诺悖论进行剖析。 1、悖论对数学产生的作用 1.1从悖论说起 什么是悖论?它既属于逻辑矛盾、语义矛盾,也属于思想方法上的矛盾。简单地说,悖论一般表现为这样的命题:如果你认为它真,则可以推出它为假;如果你认为它假,则可以推出它为真[1]。悖论往往以逻辑推理为手段,深入到原理论的基础之中深刻地揭露出该理论体系中的无法回避的矛

高边坡山体饱和非饱和渗流场的初步分析_张家发

◇ 科 研 高边坡山体饱和非饱和渗流场的初步分析 张家发 李思慎 叶自桐 摘 要 对一高边坡山体花岗岩全风化带土样和基岩裂隙测得了水份特征曲线,并进而得到了水力传导 率的解析模型。采用有限元方法模拟分析了类似多年平均降雨条件下高边坡山体中的稳定渗流状态,以及强降雨入渗条件下的非稳定入渗过程和渗流场变化趋势,并对设计的排水措施的效果进行了初步分析。模拟结果说明,在一定条件下现已布置的排水措施作用可能有限。针对这一情况,为下一步的观测和研究工作提出了相应的建议。 主题词 渗流观测 排水设施 有限元法 风化岩 试验研究 边坡体中的水压力和水流分布是影响边坡稳定和变形的因素之一。因此边坡排水设计及其方案论证是边坡设计与科研的重要内容。以往高边坡渗流场研究通常采用的是稳定流模型。对降雨入渗补给的作用,仅考虑多年平均降水量对应的入渗条件,且入渗边界假设在地下水面上。实际上在一些山地暴雨区,雨量丰沛且在时间分布上很集中,以阵发性暴雨为主。强降雨过程中高边坡山体接受入渗补给以及边坡体中的地下水瞬态运动和水压分布将会更加恶化边坡的排水条件和边坡体的稳定状态。另一方面,在多山地区,尤其是在工程开挖边坡造成的地形深切割条件下,旱季地下水位通常是很低的,形成了深厚的非饱和区。在继之而来的雨季强降雨过程中,非饱和区的水份运动将对降水入渗补给过程以及地下水压力分布发生影响。考虑这些影响后,在以往研究成果基础上设计的排水措施的效果如何?这是本文的研究重点。 本文在已往研究成果基础上,开展降雨入渗条件下高边坡岩体饱和非饱和渗流的研究。由于这是参数高度非线性问题,且非饱和参数的测定不是常规地质勘探工作的内容,通常资料很少,此次工作只能是初步的。文中首先进行了非饱和参数研究;然后在参数资料不足的情况下通过假设,用有限元数值模拟分析了类似多年平均降雨强度下边坡中的稳定渗流状态以及强降雨过程中的非稳定入渗补给过程及边坡中地下水运动和水压分布的变化趋势。 1 参数的研究 本文所研究的高边坡岩体为花岗岩体,其渗透性与岩体风化程度和裂隙发育状况关系密切,总体上可分为与全强风化带、弱风化带和微新岩体相对应的三个渗透性分区。每一渗透性分区的非饱和参数包括K (θ)和h (θ)这两组非线性函数,通常它们是分别通过实验测定的。本文首次介绍了对该高边坡岩体的饱和非饱和渗流参数试验研究,包括分别对新鲜岩体的裂隙和全强风化带的松散介质进行的室内实验。 新鲜岩样中有一个完整的贯穿裂隙面。通过饱和渗流试验 并根据立方定理推算出裂隙的水力开度为179μm 。假设通过岩样的基质孔隙的水流可以忽略不计,采用不互溶驱替法,用 非湿润流体(变压器油)驱替裂隙中的湿润流体(水),通过流量和水压力的观测得到裂隙的毛管压力~饱和度关系(如图1所示)。然后采用va n Ge nuch ten 模型[1]和Broo ks -Co rey 模型[2]对实验数据进行拟合,进而得到了裂隙水力传导率的解析模型(如图2所示) 。 图1  裂隙负压水头与饱和度关系实验曲线 图2 裂隙的K r 曲线 将全强风化带土样按 1.88的容重装填,采用压力板出流 · 44·V o l .29 N o .1 人民长江 Y AN G T Z E RIV ER J a nuar y 1998DOI:10.16232/https://www.doczj.com/doc/7f977242.html, k i .1001-4179.1998.01.016

非饱和渗流

非饱和渗流中渗透系数计算的推导 (1) 拟合 由实验测出测点的含水率和基质吸力的实验数据,所测得的含水率可算出其有效饱和度,即有效饱和度可由含水率表示出来,然后再用VG 模型拟合出土体的水分特征曲线SWCC 。 式中: 为有效饱和度,,为基质吸力。拟合出VG 模型中的三个参数,即可得到有效饱和度与基质吸力的关系SWCC 曲线。 用所得到的有效饱和度,再由VG 模型可得到相对渗透系数与有效饱和度的关系 而非饱和渗透系数与相对渗透系数的关系是: k w = k r w k s 由土常规物理实验可测得土体的饱和渗透系数,即可得到非饱和渗透系数与含水率的函数。 (2)达西定律直接计算 由法国水力学家 H.-P.-G.达西在1852~1855年通过大量实验得出,1856年总结得出渗透能量损失与渗流速度之间的相互关系即为达西定律。反映水在岩土孔隙中渗流规律的实验定律。这个定律说明水通过多孔介质的速度同水力梯度的大小及介质的渗透性能成正比。 达西定律是多孔介质中流体所应满足的运动方程。质量守恒是物质运动和变化普遍遵循的原理,将质量守恒原理具体应用在多孔介质中的流体流动即为连续方程。达西定律和连续方程相结合便导出了土体中水分运动的基本方程。 根据达西(Darcy)定律和质量守恒定律,对于二维问题非饱和土壤水运动的基本微分方程如下: ()()x y K K t x x y y θ??θθ?????????=+????????????? 式中θ为体积含水量;φ为总水势(总水头),由基质势和重力势组成,φ= y+h ,y 为重力势(位置势),h 为基质势;x K ,y K 为x ,y 方向的渗透系数,若土体为各向同性,则x K =y K =K (θ) 由于非饱和渗透系数是基质吸力或者含水率的函数,故此方程为一个二阶非线性的偏微分方程,除少量问题外,一般情况下对此方程的解析求解是困难的,很多的问题需要用数值法求解。 由于非饱和土的渗透系数K 可以是基质吸力(负压水头)的函数,因此方程(5.1)的左端可以改写为:

概率极限理论

随机微分方程基本理论 1、引言 随机微分方程(SDE )的诞生有其一定的应用背景。随机微积分和随机微积分方程起源于马氏过程的构造和柯尔莫哥洛夫的分析方法与费尔的半群方法。常微分方程在物理、工程技术、生物和经济等领域中的应用是众所周知的,然而随着科学技术的发展,要求对实际问题的描述越来越精确。因此,随机因素的影响就不能轻易地被忽略,于是对于某些实际过程的分析也就有必要从通常的确定性观点转到随机的观点,从而对这些实际系统的描述,也就自然地从确定性的常微分方程转到随机常微分方程,简称随机微分方程。 随机微分方程是一种针对生物、化学、医药、机电、经济等领域中的随机现象而建立的数学模型,其广泛应用于自然科学、工程技术和经济学等领域。伊藤型随机微积分方程就是指带有白噪声的微分方程。自从爱因斯坦建立了布朗运动和随机分子扩散的数学理论以来,各种不同的领域内,如分子物理学、院子物理学、化学动力学、固态理论、结构稳定性、群体遗传学、通信以及自然科学、社会科学和工程的许多其他分支中开展了一系列理论的科学研究。在随机微分方程理论研究的早期阶段,爱因斯坦、斯莫路苏斯基、郎之万、奥伦斯坦、乌伦贝克和克拉美等人做了许多卓有成效的工作,这些工作综合在查德瑞赛卡1943男的主要论文中。随着随机微分方程的数学理论的发展数学研究人员在这一领域中发展了一些及其重要的结果,随着伊藤积分概念的引入,随机微分方程的理论向更深纵发展。 2、基础理论和线性方程 0)0( , )()),(()),(()(x x x dw t t x b dt t t x a t dx =+= (2.1) 是由伊藤积分方程 )() ),(()),(()(0 0s dw s s x b s s x a x t x t t ??+ + = (2.2) 定义。

comsol在非饱和土渗流的应用

基于comsol的非饱和土渗流研究 /comsol在岩土工程渗流的应用 摘要:岩土工程的核心难点即解决地下水问题,一般岩土工程事故都是由于对地下水的影响重视不够而造成的,然而解决这一难点关键在于解决地下水渗流问题。目前对于非饱和土渗流研究的理论仍相对落后,本文结合非饱和土渗流场基本方程以及由水土特征曲线得到的相关渗流参数(渗透系数,体积含水量),阐明了如何解决渗透模型要求渗流场方程的连续性与现场实测数据的非连续性之间的矛盾,并利用comsol Multiphysics 软件对某工程中非饱和土渗流问题进行了模拟,并验证了Fredlund和xing(1994)土水特征曲线方程的正确性。这种解决非饱和土渗流问题的思想可供学者参考。 关键词:非饱和土;渗流场;渗流参数;连续性矛盾;Comsol Multiphysics Study on seepage of unsaturated soil seepage based on comsol Abstract:The core difficulty of geotechnical engineering is to solve groundwater problems, the general geotechnical engineering accidents are due to the impact of groundwater caused by insufficient attention, however, the key to solve this difficult problem is to deal with the groundwater flow. At present, for the study of unsaturated soil seepage theory is still relatively backward, this paper combines basic equation of unsaturated soil seepage with soil-water characteristics curve and obtains the relevant flow parameters (hydraulic conductivity, volumetric water content) from them, and illustrates how to solve the conflict between the seepage field penetration model requiring Equation of continuity and the measured data of non-continuity, and using the software comsol Multiphysics to simulate unsaturated soil seepage problems in one project and verified the right of Fredlund and xing (1994) soil-water characteristic curve equation. The idea of solving unsaturated soil seepage problems may be referred by similar projects. Key words: unsaturated soil; seepage field; seepage parameters; continuous conflict; Comsol Multiphysics 1引言 岩土工程设计与施工的难点在于解决地下水问题,一般岩土工程事故都是由于对地下水的影响重视不够而造成的,像2003年7月14日上海轨道交通4号线工程事故;2007年8月17日山东新汶煤矿透水事故;2008年11月15日杭州地铁工地塌陷事故以及2011年1月1日杭州余杭区-工地土方坍塌事故等等都是由于忽视地下水的影响而造成的。然而解决这一难题的关键在于解决地下水渗流问题。虽然众多国内外学者对土的渗流问题做了大量的研究,但是目前对于非饱和土渗流研究的理论以及实践应用仍相对落后。一般来说,解决非饱和土渗流设计的问题以及与其相关的工程实践问题,可以归结于就具体的非饱和土渗流工程概况而建立渗流场基本方程,然后解这一渗流场基本方程,从而得出相关的渗流流线(水位)分布、水流渗流力矢量分布、流速矢量分布和相关的趋势,最后以此来指导实践施工。然而在求解非饱和土渗流场基本方程时,首要要解决两个重要未知参数,即体积含水量θ和渗透系数k,这两个参数在实际工程中是通过实验得到的,试验得到的是一系列孤立的点,然而这与渗流场基本方程建立于连续性模型相悖,这就给求解渗流场基本方程带来了很大的困难,于是国内外很多学者对此进行了大量的研究。为了解决非饱和土的

数学分析求极限的方法

求极限的方法 具体方法 ⒈利用函数极限的四则运算法则来求极限 定理1①:若极限)(lim 0 x f x x →和)(lim x g x x →都存在,则函数)(x f ±)(x g ,)()(x g x f ? 当0x x →时也存在且 ①[])()()()(lim lim lim 0 .0 x g x f x g x f x x x x x →→→±=± ②[])()()()(lim lim lim 0 x g x f x g x f x x x x x x →→→?=? 又若0)(lim 0 ≠→x g x x ,则 ) () (x g x f 在0x x →时也存在,且有 )()()() (lim lim lim 0 x g x f x g x f x x x x x x →→→= 利用极限的四则运算法则求极限,条件是每项或每个因子极限存在,一般所给的变量都不满足这个条件,如 ∞ ∞、00 等情况,都不能直接用四则运算法则,必须要对变量进行变形,设法消去分子、分母中的零因子,在变形时,要熟练掌握饮因式分解、有理化运算等恒等变形。 " 例1:求24 22 lim ---→x x x 解:原式=()()()022 22lim lim 22 =+= -+-- - →→x x x x x x ⒉用两个重要的极限来求函数的极限 ①利用1sin lim =→x x x 来求极限 1sin lim 0 =→x x x 的扩展形为: 令()0→x g ,当0x x →或∞→x 时,则有

()()1sin lim 0=→x g x g x x 或()()1sin lim =∞ →x g x g x 例2:x x x -→ππ sin lim 解:令t=x -π.则sinx=sin(-π t)=sint, 且当π→x 时0→t 故 1sin sin lim lim 0 ==-→→t t x x t x ππ ~ 例3:求() 11 sin 21 lim --→x x x 解:原式=()()()()()()()211sin 1111sin 1221 21lim lim =--?+=-+-+→→x x x x x x x x x ②利用e x x =+∞→)1 1(lim 来求极限 e x x =+∞ →)1 1(lim 的另一种形式为e =+→α α α1 )1(lim .事实上,令 .1 x =α∞→x .0→?α所以=+=∞ →x x x e )11(lim e =+→ααα1 0)1(lim 例4: 求x x x 1 )21(lim +→的极限 解:原式=221 210)21()21(lim e x x x x x =?? ?+????+→ 利用这两个重要极限来求函数的极限时要仔细观察所给的函数形式只有形式符合或经过变化符合这两个重要极限的形式时才能够运用此方法来求极限。一般常用的方法是换元法和配指数法。 ⒊利用等价无穷小量代换来求极限 所谓等价无穷小量即.1) () (lim =→x g x f x x 称)(x f 与)(x g 是0x x →时的等价无穷小量,记作)(x f )(~x g .)(0x x →.

数学分析中求极限的方法总结

数学分析中求极限的方 法总结 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

数学分析中求极限的方法总 结 1 利用极限的四则运算法则和简单技巧 极限的四则运算法则叙述如下: 定理:如果0 x x lim f x =,lim g x =x x →→A B ()() (1)[]0 lim ()()lim ()lim ()x x x x x x f x g x f x g x →→→±=±=A ±B (2)[]0 x x lim f x g x =lim f x)lim ()x x x x g x →→→??=A?B ()()( (3)若B ≠0 (4)0 x lim c ()lim ()x x x f x c f x c →→?=?=A (5) [] 0lim ()lim ()n n n x x x x f x f x →→??==A ????(n 为自然数) 上述性质对于,,x x x →∞→+∞→-∞也同样成立i 由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商。 例1. 求225 lim 3x x x →+-的极限 解:由定理中的第三式可以知道 例2. 求3 2 lim 3x x →-的极限 式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可 例3. 已知 ()1111223 1n x n n = +++ ??-?,求lim n n x →∞ 解: 观察 11 =112 2- ? 111=2323-?

因此得到 ()1111223 1n x n n = +++ ??-? 所以 1lim lim 11n n n x n →∞→∞ ?? =-= ??? 2 利用导数的定义求极限 导数的定义:函数f(x)在0x 附近有定义,χ??,则 如果 存在, 则此极限值就称函数f(x)在点0x 的导数记为 () 0'f x 。 即 在这种方法的运用过程中,首先要选好f(x)。然后把所求极限都表示成f(x)在定点0 x 的导数。 例4. 3 利用两个重要极限公式求极限 两个极限公式: (1 (2)1lim 1x x e x →∞ ?? += ??? 但我们经常使用的是它们的变形: (1,

成层非饱和土渗流的耦合解析解

2011年8月 Rock and Soil Mechanics Aug. 2011 收稿日期:2010-06-07 基金项目:国家自然科学基金(No. 40902087);香港Research Grants Council (No. 622207);教育部科学技术研究重点项目(No. 110186);教育部博士点新教师基金(No. 20095122120007);四川省杰出青年学术技术带头人培育计划(No. 2010JQ0034)。 第一作者简介:吴礼舟,男,1975年生,博士,副教授,主要从事工程地质和岩土工程科研教学工作。E-mail: wulizhoucn@https://www.doczj.com/doc/7f977242.html, 文章编号:1000-7598 (2011) 08-2391-06 成层非饱和土渗流的耦合解析解 吴礼舟1,张利民2,黄润秋1 (1.成都理工大学 地质灾害防治国家重点实验室,成都 610059;2.香港科技大学 土木系,香港 九龙) 摘 要:成层土在工程中很常见,研究降雨过程中成层非饱和土的渗流-变形耦合对非饱和土土力学的发展具有重要的意义。由流体质量守恒,Darcy 定律和Lloret 等的非饱和土本构模型可得成层非饱和土渗流-变形耦合的控制方程。采用Gardner 的非饱和土的渗透系数公式以及Boltzman 模型,基于Laplace 变换得到耦合方程的解析解。解析及其参数分析表明,渗流和变形耦合是具有时间效应的。与吸力变化相关的土的模量F ,对成层土的孔隙水压力分布有明显影响。两层土的F 差异越大,孔隙水压力消散得越慢,耦合效应越不显著。增大表层土的F 值有利于降低耦合效应。成层土饱和体积含水率变化对吸力变化产生有限的影响。 关 键 词:非饱和土;渗流和变形;耦合;成层土;降雨入渗 中图分类号:TU 46+2 文献标识码:A Analytic solution to coupled seepage in layered unsaturated soils WU Li-zhou 1 , ZHANG Li-min 2, HUANG Run-qiu 1 (1. State Key Laboratory of Geological Hazard Prevention and Geological Environment Protection, Chengdu University of Technology, Chengdu 610059, China; 2. Department of Civil and Environmental Engineering, HongKong University of Science and Technology, Kowloon, Hong Kong, China) Abstract: Layered soil such as landfill and cracked soils are often found in engineering. Its coupled infiltration and deformation during rainfall is significant for development of unsaturated soil mechanics. Based on fluid mass conservation, Darcy’s law, and the constitutive model proposed by Lloret et al., coupled governing equations for seepage and deformation in unsaturated soils are obtained. The unsaturated coefficient of permeability is expressed using Gardner’s model and the water retention characteristics are expressed using Boltzman’s model. The analytic solution to the coupled equation is developed by Laplace transformation. The analytic solution and parameter analysis results show that the effect of coupling between unsaturated seepage and deformation is related with time. The modulus related to suction changes F has a marked effect on the pore water pressure. The larger the F ratio values for two-layer soils are, the more slowly the suction dissipates. The results indicate that a large F for the top-layer soil can effectively reduce the coupling effect. V olumetric moisture content changes in two-layer soils play a limited role in the suction distribution. Key words: unsaturated soil; seepage and deformation; coupling; layered soil; rainfall infiltration 1 引 言 非饱和土在地球表面广泛分布,非饱和土由土骨架、孔隙水、孔隙气和水气膜组成[1]。降雨入渗过程中非饱和土体中的渗流场和位移场均是变化的,且相互影响。孔隙水压力变化导致应力变化及非饱和土体变形;应力变化及孔隙改变反过来又影响渗流状态[2]。因此,降雨过程中非饱和土的渗流-变形耦合问题是一个重要的课题,成层土常见于工程中,如垃圾、废料填埋土。干湿循环易诱发表层 土产生裂隙,因而表层裂隙的土层作为连续介质,其渗透系数增大,与下层未出现裂隙土层一起构成等效的成层土。研究成层非饱和土的渗流-变形耦合对推动非饱和土土力学的发展有着重要的意义。 关于渗流-变形耦合的数值解有不少研究[3 -6] 。 Kim [3]提出非饱和土地表加载引起水位波动和变形的耦合数值模型。Thomas [4]提出了可变形的非饱和土热、水和气转化的理论表达式。田东方等[5]提出坡面径流-非饱和渗流分析与应力场的耦合计算方法,并编制了相应的有限元程序。张玉军[6]从建立

函数极限理论的归纳与解题方法的总结

目录 引言 (1) 一、基本概念与基本理论 (2) (一)函数极限 (2) (二)重要极限 (9) (三)函数的上极限与下极限 (10) (四)Stolz定理的推广定理 (11) 二、习题类型与其解题方法归纳 (11) (一) 根据定义证明函数正常极限与非正常极限的方法。 (12) (二)根据定义与极限性质证题的方法 (14) (三)求函数极限方法 (15) (四)判断函数极限存在与不存在的方法 (20) 参考文献: (24)

函数极限理论的归纳与解题方法的总结 薛昌涛 (渤海大学数学系辽宁锦州121000 中国) 摘要:宇宙中的任何事物都是不断运动变化、相互联系、相互制约的。“函数”的产生正是为了满足刻划这种关系的需要,函数极限理论可谓函数理论重中之重。极限定义24个,性质60个,习题更是千变万化,看上去似乎很繁杂,但经过深入浅出的分析就会很明了。本文旨在化繁为简、总结规律,启示方法。 关键词:函数、极限、方法 The Conclusion of Theory of Function Limit and Methods Summary (Department of math bohai university liaoning jinzhou 121000) Xue Changtao Abstract: Everything in the universe is always moving, varying, intergrating or restricting each other. Function emerged for the need of describing this relation. The thory of function limit plays a key role in function theory. There are Twenty – four definitions to limit, sixty qualties, and the exercises are ever changing. It seems complex very much, but it will be clear after delicate analysis. This text aim at changing complex to simple, suming up the regulars, enlightening the methods. Key words: Function Limit Method 引言 “函数”一词是微积分的创始人之一莱布尼兹(Leibniz)最先使用的,并且把x的函数记为) f 等,但是,直到19世纪初,人们还是把函 x ( ), (x 数理解为“变量和常数组成的解析表达式”。直到1834年,狄里克莱(Dirichlet)指出,函数y与变量x的关系不但不必用统一的法则在全区间上给出,而且不必用解析式给出。至此,函数才被赋予了单值对应的意义。

ABAQUS在饱和-非饱和渗流分析中的应用

ABAQUS 在饱和-非饱和渗流分析中的应用 徐海奔 河海大学水工结构工程专业,南京 (210024) E-mail :hohaixhb@https://www.doczj.com/doc/7f977242.html, 摘 要:本文首先对大型通用有限元软件ABAQUS 在土石坝渗流分析中的应用进行分析,着重从多孔介质的饱和渗流,非饱和渗流及二者的混合问题(渗流自由面的计算)等方面论述。结合一个土石坝库水位下降时二维渗流计算实例,考虑流体重力作用下,采用非线性定律求解总孔隙压力及库水位下降过程渗流自由面变化过程。 关键词:非饱和;渗流;ABAQUS ;土石坝;自由面 1.引言 ABAQUS 大型通用有限元软件,在我国土木工程结构分析方面应用日益广泛。本文对它在土石坝渗流计算分析中的应用进行评述。 近年来,在国内外随着孔隙介质非饱和渗流和土体饱和渗流理论的发展,人们逐渐意识到堤坝稳定性与非饱和区渗流作用密切相关。在研究堤坝非饱和渗流问题时,主要采用数值模拟的方法。长期蓄水的土坝,当库水位以太快的速度下降时,坝体内孔隙水压力常常不能很快消散,因而坝体的浸润线高于上游库水水位。在这种情况下,渗流的动水压力或渗透力的作用对上游坝坡造成浮起及下滑的趋势,甚至酿成滑坡事故。因此在实际工程中必须防止因库水位下降速度太快而导致这类事故发生。为进行上游坝坡的稳定分析,需要确定库水位下降过程中各时段坝体浸润线的位置,也就是通常所说的进行土坝不稳定渗流计算。 坝体浸润线下降的速度,一般决定于库水位下降的速度V 、土坝坝体渗透系数k 以及土体的给水度u 等因素[1],与坝体的结构形式特别是坝体及地基上游面的排水条件也有很大关系。 2.ABAQUS 在均质土坝饱和-非饱和渗流计算原理 在饱和土壤中,引起水分转移的力是重力和水的压力。在非饱和土中,支配着土壤水在液态下整体转移的是重力和水的表面张力。Richards 等曾在1931年就证明非饱和土中的渗流与饱和土一样符合达西定律和连续方程[2]。若将达西定律代入连续方程(忽略渗透过程中总应力的改变和土颗粒骨架的变形)并以总水头h 作为未知量,当渗透的主方向与坐标轴一致时,非饱和土渗流的二维微分方程就可表示为: t y h k x x h k x w y x ??=????????????+??????????θ (1) 式中,x k ,y k 分别为x ,y 方向的渗透系数;w θ为体积含水量;h 为总水头;t 为时间。 令y 为位置水头,则:y u h w w +=γ,若w m 为土水特征曲线斜率,则: ()y h m u m w w w w w ??=?=?γθ。式(1)就可以写为: ()t y h m y h k x x h k x w w y x ???=??? ?????????+??????????γ (2) 因为y 为常数,式(2)可简化为:

裂隙岩体非饱和渗流研究综述_胡云进

收稿日期:19990614 基金项目:国家自然科学基金资助项目(59879004);高等学校博士点学科专项基金资助项目(98029408);水利部水利技术开发基金资助项目(97472603).作者简介:胡云进(1974—),男,浙江东阳人,博士研究生,水力学及河流动力学专业,主要从事裂隙岩体非饱和渗流研究. 裂隙岩体非饱和渗流研究综述 胡云进,速宝玉,詹美礼 (河海大学水利水电工程学院,江苏南京210098) 摘要:综述了国内外裂隙岩体(主要是细、微裂隙岩体)非饱和渗流的研究情况.首先,评述了现有的 测定和确定单裂隙非饱和水力参数的几种方法的优缺点,为单裂隙非饱和水力参数的确定提供了 理论依据.其次,分析了目前用于求解裂隙岩体非饱和渗流的四种数学模型的优缺点,为选取合理 的数学模型用于求解具体的裂隙岩体非饱和渗流问题提供了参考依据.最后,在上述基础上提出了 一些需要进一步研究的问题. 关键词:裂隙岩体;非饱和渗流;非饱和水力参数;数学模型 中图分类号:TV139.1 文献标识码:A 文章编号:10001980(2000)01004007 由于构造、风化、卸荷等作用,天然岩体中存在着大量的裂隙.裂隙岩体中地下水位以上部分是未被水充满的非饱和带,降雨入渗和地面水体的下渗都是通过该带到达稳定地下水面的非饱和渗流过程.可以说,在自然界中裂隙岩体非饱和渗流是普遍、客观存在的.以往,由于裂隙岩体非饱和渗流的复杂性,在许多工程问题中都作了简化处理[1].近十多年来,随着西方工业发达国家核电等核工业的不断发展,大量核废料亟待深埋处理(一般埋在裂隙岩体深厚的非饱和带中),故评价核废料深埋对地下水环境的污染以及处理核废料的选址等都要求对裂隙岩体非饱和渗流作深入细致的研究[2,3,4].另外,研究降雨入渗对地面污染物的淋滤[5],石油二次开采[6]和地热能开发[7]等也涉及裂隙岩体非饱和渗流或两(多)相流问题.在国内,近年来随着孔隙介质非饱和渗流和裂隙岩体饱和渗流理论的发展,已越来越清楚地认识到雨季的岩坡滑坡、地下洞室巷道的塌方以及泄洪雾化雨导致岩质边坡的失稳等均与裂隙岩体非饱和渗流密切相关[1](即降雨入渗等会导致地下水位以上非饱和区孔隙水压力的升高,产生暂态的附加水荷载,同时降低岩体的力学强度指标). 由于上述工程应用领域的需要,国外已有不少学者相继从80年代中期开始对裂隙岩体非饱和渗流进行试验和理论研究.近年来,国内也有学者开始了这方面的研究工作.目前的工作主要有:(a )对单裂隙非饱和渗流进行试验和理论研究,主要集中在单裂隙非饱和水力参数(即毛细压力饱和度和相对渗透率(非饱和渗透率与饱和渗透率的比值)饱和度(或毛细压力)的函数关系)的测定和确定方面;(b )提出各种求解裂隙岩体非饱和渗流的数学模型并进行相应的数值分析. 1 单一裂隙非饱和渗流研究 在裂隙岩体非饱和渗流研究中,最关键的是单裂隙毛细压力饱和度和相对渗透率饱和度(或毛细压力)关系的建立.目前,建立上述关系主要有以下三种方法:(a )物模试验法,即直接通过单裂隙拟稳态驱替试验和非饱和渗流试验(准确地说是二相流试验),借用孔隙介质拟合模型拟合出经验关系式;(b )数值试验法,即通过建立单裂隙概化模型,利用数值模拟法和孔隙介质拟合模型拟合出经验关系式;(c )数学推导法,即在某些假设简化的前提下,根据裂隙开度分布推导出上述关系式. 1.1 物模试验法 天然裂隙壁面是凹凸不平的,两粗糙裂隙面间的空隙空间的开度是逐点变化的[8,9].天然裂隙可概化为第28卷第1期 2000年1月河海大学学报JOUR NAL OF HOHAI UNIVERSITY Vol .28No .1Jan .2000

数学分析中求极限的方法总结

数学分析中求极限的方法 总结 This model paper was revised by the Standardization Office on December 10, 2020

数学分析中求极限的方法总结 1 利用极限的四则运算法则和简单技巧 极限的四则运算法则叙述如下: 定理:如果0 x x lim f x =,lim g x =x x →→A B ()() (1)[]0 lim ()()lim ()lim ()x x x x x x f x g x f x g x →→→±=±=A ±B (2)[]0 x x lim f x g x =lim f x)lim ()x x x x g x →→→??=A?B ()()( (3)若B ≠0 (4)0 x lim c ()lim ()x x x f x c f x c →→?=?=A (5)[]00lim ()lim ()n n n x x x x f x f x →→??==A ????(n 为自然数) 上述性质对于,,x x x →∞→+∞→-∞也同样成立i 由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商。 例1. 求225 lim 3x x x →+-的极限 解:由定理中的第三式可以知道 例2. 求3 x →的极限

式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可 例3. 已知 ()1111223 1n x n n = +++ ??-?,求lim n n x →∞ 解: 观察 11=112 2-? 111=2323- ?因此得到 ()1111223 1n x n n = +++ ??-? 所以 1lim lim 11n n n x n →∞→∞ ?? =-= ??? 2 利用导数的定义求极限 导数的定义:函数f(x)在0x 附近有定义,χ??,则 如果 存在, 则此极限值就称函数f(x)在点0x 的导数记为 () 0'f x 。 即 在这种方法的运用过程中,首先要选好f(x)。然后把所求极限都表示成f(x)在定点 x 的导数。

数学分析求极限的方法

求极限的方法 具体方法 ⒈利用函数极限的四则运算法则来求极限 定理1①:若极限)(lim 0 x f x x →和)(lim x g x x →都存在,则函数)(x f ±)(x g ,)()(x g x f ? 当0x x →时也存在且 ①[])()()()(lim lim lim 0 .00 x g x f x g x f x x x x x →→→± = ± ②[])()()()(lim lim lim 0 x g x f x g x f x x x x x x →→→?= ? 又若0)(lim 0 ≠→x g x x ,则 ) ()(x g x f 在0x x →时也存在,且有 ) ()() ()(lim lim lim x g x f x g x f x x x x x x →→→= 利用极限的四则运算法则求极限,条件是每项或每个因子极限存在,一般所给的变量都不满足这个条件,如 ∞ ∞、 0等情况,都不能直接用四则运算法则, 必须要对变量进行变形,设法消去分子、分母中的零因子,在变形时,要熟练掌握饮因式分解、有理化运算等恒等变形。 例1:求2 42 2 lim --- →x x x 解:原式=()() ()022 22lim lim 2 2 =+= -+-- - →→x x x x x x ⒉用两个重要的极限来求函数的极限 ①利用1sin lim =→x x x 来求极限 1sin lim =→x x x 的扩展形为: 令()0→x g ,当0x x →或∞→x 时,则有 ()() 1sin lim =→x g x g x x 或()() 1sin lim =∞ →x g x g x

非饱和土力学

石家庄铁道大学 研究生课程考试答题纸 培养单位土木工程学院 学科专业岩土工程 课程名称非饱和土力学 任课教师冯怀平 考试日期 2011-12-28 学生姓名李幸吉 学号 120110404 研究生学院 4 非饱和渗流场与应力场耦合分析

非饱和渗流场与应力场的耦合机制为:介质内渗流会产生渗透力,进而改变应力场及其分布;应力场的变化又引起介质孔隙率等的变化,从而改变其渗透系数及渗流场,这一点可以从考虑了应力的土-水特征曲线(即式(3))得到体现。从而两场是耦合的。目前,解决两场耦合问题常用的方法还是迭代解法。本文同样采用迭代的方法。该程序先假定一初始应力场,计算围压后,通过式(3)、式(7)计算渗透系数,即从考虑固结压力的土-水特征曲线入手,建立应力与渗透系数的关系,从而计算渗流场,实现两场耦合计算。其中,应力计算采用弹塑性有限元计算程序,非饱和径流-渗流耦合计算采用第3节中所述方法。笔者在现有程序基础上,自编两场耦合有限元分析程序CPSS,用于耦合分析。其计算流程图如图 1 所示。

目前在工程实践中渗流对土坡稳定的影响分析一般采用传统的极限平衡法(LEM) ,强度折减有限元方法也已成功用于分析干土坡的稳定性。Gri ffiths D V和Lane P A[1 ]分析了稳定渗流对土坝稳定性影响的算例,但文中假定土体内的浸润线为直线且没有采用非饱和渗流分析以及没有考虑非饱和区的影响。Cai F和Ugai K[2 ]采用该技术并结合非饱和非稳定渗流有限元程序用于分析降雨作用下的土坡稳定性。Lane P A和Gri ffiths D V[3 ]采用强度折减技术用于确定水位缓降以及水位刚骤降瞬时这两种极端情况的土坡稳定性,但其中没有考虑非饱和非稳定渗流的影响。黄茂松和贾苍琴[4 ,5 ]利用强度折减有限元方法分析了饱和- 非饱和非稳定渗流条件下土坝的安全系数,并与极限平衡法进行初步的比较。韦立德[6~8 ]先后研制了饱和稳定渗流下的强度折减有限元程序、饱和- 非饱和稳定渗流下的强度折减有限元程序、考虑泡水强度降低的饱和稳定渗流下的强度折减有限元程序和考虑饱和稳定渗流下饱和区膨胀变形的强度折减有限元程序等,并把程序计算结果和常规极限平衡法的计算结果进行对比,并得到了一些有价值的结论。 饱和- 非饱和渗流计算基本方程和耦合原理 基本方程 假设地下水渗流在微段压力梯度上遵从Darcy定律。对于稳定饱和- 非饱和渗流场(无内源时)的简单情况计算归结为求解满足边界条件的拟调和方程:

相关主题
文本预览
相关文档 最新文档