当前位置:文档之家› 固体比热容的测量

固体比热容的测量

固体比热容的测量
固体比热容的测量

实验简介

19世纪,随着工业文明的建立与发展,特别是蒸汽机的诞生,量热学有了巨大的进展。经过多年的实验研究,人们精确地测定了热功当量,逐步认识到不同性质的能量(如热能、机械能、电能、化学能等)之间的转化和守恒这一自然界物质运动的最根本的定律,成为19世纪人类最伟大的科学进展之一。从今天的观点看,量热学是建立在“热量”或“热质”的基础上的,不符合分子动理论的观点,缺乏科学内含。但这无损量热学的历史贡献。至今,量热学在物理学、化学、航空航天、机械制造以及各种热能工程、制冷工程中都有广泛的应用。

比热容是单位质量的物质升高(或降低)单位温度所吸收(或放出)的热量。比热容的测定对研究物质的宏观物理现象和微观结构之间的关系有重要意义。

本实验采用混合法测固体(锌粒)的比热容。在热学实验中,系统与外界的热交换是难免的。因此要努力创造一个热力学孤立体系,同时对实验过程中的其他吸热、散热做出校正,尽量使二者相抵消,以提高实验精度。

实验原理

混合法测比热容

设一个热力学孤立体系中有种物质,其质量分别为,比热容为

()。开始时体系处于平衡态,温度为,与外界发生热量交换后又

达到新的平衡态,温度为

,若无化学反应或相变发生,则该体系获得(或放出)的热量为

假设量热器和搅拌器的质量为,比热容为,开始时量热器与其内质量

为的水具有共同温度,把质量为的待测物加热到后放入量热器内,最后这一系统达到热平衡,终温为。如果忽略实验过程中对外界的散热或吸热,

则有

式中为水的比热容。代表温度计的热容量,其中是温度计浸入到水中的体积。

?系统误差的修正

在量热学实验中,由于无法避免系统与外界的热交换,实验结果总是存在系统误差,有时甚至很大,以至无法得到正确结果。所以,校正系统误差是量热学实验中很突出的问题。为此可采取如下措施:

●要尽量减少与外界的热量交换,使系统近似孤立体系。此外,量热器不

要放在电炉旁和太阳光下,实验也不要在空气流通太快的地方进行。

●采取补偿措施,就是在被测物体放入量热器之前,先使量热器与水的初

始温度低于室温,但避免在两热器外生成凝结水滴。先估算,使初始温

度与室温的温差与混合后末温高出室温的温度大体相等。这样混合前量

热器从外界吸热与混合后向外界放热大体相等,极大地降低了系统误差。

●缩短操作时间,将被测物体从沸水中取出,然后倒入量热器筒中并盖好

的整个过程,动作要快而不乱,减少热量的损失。

●严防有水附着在量热筒外面,以免水蒸发时带走过多的热量。

●沸点的校正。在实验中,我们是取水的沸点为被测物体加热后的温度,

但压强不同,水的沸点也有所不同。为此需用大气压强计测出当时的气

压,再由气压与沸点的关系通过表5.3.3-1查出沸点的温度。

采取以上措施后,散热的影响仍难以完全避免。被测物体放入量热器后,水温达到最高温度前,整个系统还会向外散热。所以理论上的末温是无法得到的。这就需要通过实验的方法进行修正:在被测物体放入量热器前4-5min就开始测度量热器中水的温度,每隔1min读一次。当被测物体放入后,温度迅速上升,此时应每隔0.5min测读一次。直到升温停止后,温度由最高温度均匀下降时,恢复每分钟记一次温度,直到第15min截止。由实验数据作出温度和时间的关系

曲线(图5.3.3-1)。

为了推出式(2)中的初温度和末温,在图5.3.3-1中,对应于室温曲线上之点作一垂直与横轴的直线。然后将曲线上升部分AB及下降部分CD延长,与此垂线分别相交于E点和F点,这两个焦点的温度坐标可看成是理想情况下的

和,即相当于热交换无限快时水的初温与末温。

实验内容

实验内容是测量锌粒的比热容,实验装置如图

?称出质量为的锌粒,放入试管中隔水加热(注意:水不能溅入)。在沸水

中至少15min,才可认为锌粒与水同温。水沸腾后测出大气压强。

?在锌粒加热的同时,称出量热器内筒及搅拌器质量,然后倒入适量的水,

并加入冰屑使水温降低到室温下(注意:不能使筒外表有水凝结),利用公式(2)估算出水的质量后,称出质量。

?在倒入锌粒前,一面用棒轻轻搅动,一面每隔一分钟测一次水温(注意:一

定要待冰屑全部融化后才能开始测温),计时5分钟后将加热好的锌粒迅速

而准确地倒入量热器内(注意:不能使量热器中水溅出,又切勿碰到温度计),立即将盖盖好并继续搅拌(注意:不能太使劲),同时,每隔半分钟测一次水温。至水温均匀下降,每隔一分钟测一次水温,连续10min左右为止。

?温度计浸没在水下的体积可用一个小量筒测得。先将水注入小量筒中,即下

其体积,然后将温度计插入水中,使温度计插入水中的体积与在量热筒中没入水中的体积相同(以从量热筒中取出温度计上水印为准),读出液面升高后的体积,则温度计插入量热筒水中的体积

(注意:实验中温度计中的水银泡一定要没入水中,但又不能碰到锌粒)。

?查表5.3.3-1得到实验气压条件下水的沸点,即作为锌粒加热后的温度。

?作温度-时间曲线,求出和。

?根据式(2)求出锌的比热,并和锌的标准比热比较,求出

相对误差。

实验重点

?了解量热器的构造,如何保证量热器为孤立系统。

?如何对实验过程中的吸热、散热做出校正,尽量使二者相抵消,以提高实验

的精度。

思考题

?实验中采用什么实验条件来保障测比热容的条件成立?

?实验中质量称衡采用了精度较低的物理天平,为什么测量温度却采用分度

值为0.1°C的精密水银温度计?

为了提高量热精度,实验中采取了哪些措施?若要进一步提高测量精度可用什么方法?

固体比热容的测量

固体比热容的测量 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

固体比热容的测量 一、实验目的 1、掌握基本的量热方法——混合法; 2、测定金属的比热容; 3、学习一种修正散热的方法。 二、实验仪器 量热器、温度计( 0C 和 0C 各一支)、物理天平、待测金属粒、冰、停表、加热器、量筒等。 三、实验原理 1、 混合法测比热容 依据热平衡原理,温度不同的物体混合后,热量将由高温物体传给低温物体,如果在混合过程中和外界无热量交换,最后达到均匀稳定的平衡温度。根据能量守恒定律,高温物体放出的热量就应等于低温物体吸收的热量,即: 本实验即根据热平衡原理用混合法测定固体的比热。设量热器(包括搅拌器和温度计插入水中部分)的热容为C ,实验时,量热器内先盛以质量为0m ,温度为1t 的冷水,之后,把加热到温度为2t 质量为m 的待测金属块投入量热器中,经过热交换后,水量热器与金属块达到共同的末温θ,依热平衡方程有: ))(()(1002t C c m t mc -+=-θθ (1) 即 ) ())((2100θθ--+=t m t C c m c (2) 量热器的热容C 可以根据其质量和比热容算出。设量热器筒和搅拌器由相同的物质制成,其质量为1m ,比热容为1c ,则

(3) = + C' c m C 1 1 式中C'为温度计插入水中部分的热容。C'的值可由下式求出: C表示C'以J·0C-1为单位时的数值,而式中V为温度计插入水中部分的体积。{}10-?'C J {}3 V表示V以cm3为单位时的数值。 cm 2、系统误差的修正 上述讨论是在假定量热器与外界没有热交换时的结论。实际上只要有温度差异就必然会有热交换存在,因此实验结果总是存在系统误差,有时甚至很大,以至无法得到正确结果。所以,校正系统误差是量热学实验中很突出的问题。为此可采取如下措施:1)要尽量减少与外界的热量交换,使系统近似孤立体系。此外,量热器不要放在电炉旁和太阳光下,实验也不要在空气流通太快的地方进行。 2)采取补偿措施,就是在被测物体放入量热器之前,先使量热器与水的初始温度低于室温,但避免在两热器外生成凝结水滴。先估算,使初始温度与室温的温差与混合后末温高出室温的温度大体相等。这样混合前量热器从外界吸热与混合后向外界放热大体相等,极大地降低了系统误差。 3)缩短操作时间,将被测物体从沸水中取出,然后倒入量热器筒中并盖好的整个过程,动作要快而不乱,减少热量的损失。 4)严防有水附着在量热筒外面,以免水蒸发时带走过多的热量。 5)沸点的校正。在实验中,我们是取水的沸点为被测物体加热后的温度,但压强不同,水的沸点也有所不同。为此需用大气压强计测出当时的气压,再由气压与沸点的关系通过查表查出沸点的温度。 采取以上措施后,散热的影响仍难以完全避免。被测物体放入量热器后,水温达到最高温度前,整个系统还会向外散热。所以理论上的末温是无法得到的。这就需要通过

金属比热容测定

热学实验论文 。混合法测定金属的比热容 物质比热容的测量属于量热学范围,由于量热实验的误差一般较大,所以要做好量热实验必须仔细分析产生各种误差的原因,并采取相应措施设法减小误差。 测定固体或液体的比热容,在温度变化不太大时常用混合量热法、冷却法、电流量热器法。本实验用混合法测定金属的比热容。 一、实验目的 1. 学习热学实验的基本知识,掌握用混合法测定金属的比热容的方法; 2. 学习一种修正系统散热的方法。 二、仪器及用具 量热器,水银温度计,物理天平,待测金属粒,停表,量筒,烧杯及电加热器等。 三、实验原理 1. 用热平衡原理侧比热容 在一个与环境没有热交换的孤立系统中,质量为m 的物体,当它的温度由最初平衡态0θ变化到新的平衡态i θ时,所吸收(或放出)的热量Q 为 )(0θθ-=i mc Q (1) 式中mc 称为该物体的热容,c 称为物体的比热容,单位为J/(kg·K )。 用混合法测定固体比热容的原理是热平衡原理。把不同温度的物体混合在一起时,高温物体向低温物体传递热量,如果与外界没有任何热交换,则他们最终达到均匀、稳定的平衡温度,这时称系统达到了热平衡。高温物体放出的热量1Q 与低温物体吸收的热量2Q 相等,即 1Q =2Q (2) 本实验的高温部分由量热器内筒、搅拌器、水银温度计和热水等组成,而处于室温的金属粒为系统的低温部分。设量热器内筒和搅拌器(二者为同种材料制成)的质量为1m ,比热容为1c ;热水质量为2m ,比热容为2c ;水银温度计的质量为3m ,比热容为3c ,它们的共同

温度为1θ。待测金属粒的质量为M ,比热容为c ,温度与室温0θ相同。将适量金属粒倒入量热器内筒中,经过搅拌后,系统达到热平衡时的温度为2θ。假设系统与外界没有任何热交换,则根据式(2)可知,实验系统的热平衡方程为 )())((022*******θθθθ-=-++Mc c m c m c m (3) 式中33c m 为温度计的热容,其值用1.92V(J/K)表示,这里的V 表示温度计浸入水中部分的 体积,单位用3cm 。于是,式(3)可写成 )())(92.1(02212211θθθθ-=-++Mc V c m c m 则金属粒的比热容c 为 )() )(92.1(02212211θθθθ--++=M V c m c m c (4) 式中M 、1m 、2m 均可由天平称衡;V 可用量筒采用排水法测出;1c 、2c 查书后附录二或由实验室给出,0θ为室温。若能知道1θ和2θ的值,便可计算出金属粒的比热容c 。下面通过修正系统散热误差的方法求出1θ和2θ的值。 2. 系统散热误差的修正(面积补偿法) 在热学实验中,系统不可能完全绝热,必然存在着散热现象,因此,必须对系统的散热进行修正。修正散热的方法之一就是对温度进行修正,其方法是通过作图用外推法求出实验系统的高温部分(量热器内筒、热水、搅拌器、水银温度计等)混合前的温度1θ以及混合后系统达到热平衡时的温度2θ。图2-25所示的是实验系统的温度随时间变化的曲线。图 中AB 段是未投入金属粒前系统的散热温度变化曲线; B 点对应的时刻为金属粒投入热水中的时刻。B C 段是金属粒投入量热器热水中以后,系统进行热交换过程的散热曲线;C D 段是系统内热交换达到热平衡后的散热温度变化曲线。在BC 段实际上同时进行着两个过程,一是由于系统向空气散热而导致热水温度下降,二是由于金属粒投入后的吸热效应而使热水温度下降。现在就来考虑在有热量损失的情况下,应用面积补偿法,求出由于投入金属粒而使水温降低的实际数值。其具体做法是:在曲线上过对应于室温0θ的点G 作垂直横轴的直线,然后延长AB 到 E ,延长DC 到 F ,使BE G 面积等于GFC 面积,这样在BEGFC 和BGC 这两条图线各自相应的过程中所损失的热量是相等的,因而可将原来的BGC 过程等

固体比热容的测量

固体比热容的测量 一、 实验目的 1、 掌握基本的量热方法——混合法; 2、 测定金属的比热容; 3、 学习一种修正散热的方法。 二、 实验仪器 量热器、温度计(0、00-50、00 0C 与0、0-100、0 0C 各一支)、物理天平、待测金属粒、冰、停表、加热器、量筒等。 三、 实验原理 1、 混合法测比热容 依据热平衡原理,温度不同的物体混合后,热量将由高温物体传给低温物体,如果在混合过程中与外界无热量交换,最后达到均匀稳定的平衡温度。根据能量守恒定律,高温物体放出的热量就应等于低温物体吸收的热量,即: 本实验即根据热平衡原理用混合法测定固体的比热。设量热器(包括搅拌器与温度计插入水中部分)的热容为C,实验时,量热器内先盛以质量为0m ,温度为1t 的冷水,之后,把加热到温度为2t 质量为m 的待测金属块投入量热器中,经过热交换后,水量热器与金属块达到共同的末温θ,依热平衡方程有: ))(()(1002t C c m t mc -+=-θθ (1) 即 ) ())((2100θθ--+=t m t C c m c (2) 量热器的热容C 可以根据其质量与比热容算出。设量热器筒与搅拌器由相同的物质制成,其质量为1m ,比热容为1c ,则 C c m C '+=11 (3) 式中C '为温度计插入水中部分的热容。C '的值可由下式求出:

{}{ }3109.1cm C J V C ='-? 式中V 为温度计插入水中部分的体积。{}10-?'C J C 表示C '以J ·0 C -1为单位时的数值,而{}3cm V 表示V 以cm 3为单位时的数值。 2、 系统误差的修正 上述讨论就是在假定量热器与外界没有热交换时的结论。实际上只要有温度差异就必然会有热交换存在,因此实验结果总就是存在系统误差,有时甚至很大,以至无法得到正确结果。所以,校正系统误差就是量热学实验中很突出的问题。为此可采取如下措施: 1)要尽量减少与外界的热量交换,使系统近似孤立体系。此外,量热器不要放在电炉旁与太阳光下,实验也不要在空气流通太快的地方进行。 2)采取补偿措施,就就是在被测物体放入量热器之前,先使量热器与水的初始温度低于室温,但避免在两热器外生成凝结水滴。先估算,使初始温度与室温的温差与混合后末温高出室温的温度大体相等。这样混合前量热器从外界吸热与混合后向外界放热大体相等,极大地降低了系统误差。 3)缩短操作时间,将被测物体从沸水中取出,然后倒入量热器筒中并盖好的整个过程,动作要快而不乱,减少热量的损失。 4)严防有水附着在量热筒外面,以免水蒸发时带走过多的热量。 5)沸点的校正。在实验中,我们就是取水的沸点为被测物体加热后的温度,但压强不同,水的沸点也有所不同。为此需用大气压强计测出当时的气压,再由气压与沸点的关系通过查表查出沸点的温度。 采取以上措施后,散热的影响仍难以完全避免。被测物体放入量热器后,水温达到最高温度前,整个系统还会向外散热。所以理论上的末温就是无法得到的。这就需要通过实验的方法进行修正:在被测物体放入量热器前4-5min 就开始测度量热器中水的温度,每隔1min 读一次。当被测物体放入后,温度迅速上升,此时应每隔0、5min 测读一次。直到升温停止后,温度由最高温度均匀下降时,恢复每分钟记一次温度,直到第15min 截止。由实验数据作出温度与时间的关系t T -曲线,如图1所示。

常用固体 液体物质比热容

常用液体、固体比重-比热表 名称相态比重15.6至21℃比热15.6时kJ/Kg℃乙酸100% 液 1.05 2.01 乙酸10% 液 1.01 4.02 丙酮100% 液0.78 2.15 醇含乙醇95% 液0.81 2.51 醇含乙醇90% 液0.82 2.72 铝固 2.64 0.96 氨100% 液0.61 4.61 氨26% 液0.9 4.19 Aroclor 液 1.44 1.17 石棉板固0.88 0.8 沥青液 1 1.76 固体沥青固 1.1-1.5 0.92-1.67 苯液0.84 1.72 砖墙固 1.0-2.0 0.92 盐水-氯化钙25% 液 1.23 2.89 盐水-氯化钠25% 液 1.19 3.29 干粘土固 1.9-2.4 0.94 煤固 1.2-1.8 1.09-1.55(4℃)煤焦油固 1.2 1.47 固体焦固 1.0-1.4 1.11 铜固8.82 0.42 软木固0.25 2.01 棉固 1.5 1.34 棉籽油液0.95 1.97 导热姆 A 液0.99 2.64 导热姆 C 液 1.1 1.747-2.72 乙二酸液 1.11 2.43 脂肪酸-软脂液0.85 2.73 脂肪酸-硬脂液0.84 2.3 鲜鱼固 3.14-3.43 鲜水果固 3.35-3.68 汽油液0.73 2.22 耐热玻璃固 2.25 0.84 玻璃棉固0.072 0.66

胶,2份水1份干胶液 1.09 3.73 甘油100%(丙三醇)液 1.26 2.43 蜂蜜液 1.42 盐酸31.55%(氯化)液 1.15 2.51 盐酸10%(氯化)液 1.05 3.14 冰固0.9 2.09 冰淇淋固 2.93 猪油固0.92 2.68 铅固11.34 0.13 皮革固0.86-1.02 1.51 亚麻油液0.93 1.84 氧化镁85% 液0.208 1.13 枫树浆液/ 2.01 鲜猪肉固/ 3.27 牛奶液 1.03 3.77-3.89 镍固8.9 0.46 硝酸95% 液 1.05 2.09 硝酸60% 液 1.37 2.68 硝酸10% 液 1.05 3.77 1#燃油(煤油)液0.81 1.97 2#燃油液0.86 1.84 3#燃油液0.88 1.8 4#燃油液0.9 1.76 5#燃油液0.93 1.72 6#燃油液0.95 1.67 API中部原油液0.85 1.84 API汽油液0.88 1.76 纸固 1.7-1.15 1.88 石蜡固0.86-0.91 2.6 熔融石蜡液0.9 2.89 酚(碳酸)液 1.07 2.34 磷酸20% 液 1.11 3.56 磷酸10% 液 1.05 3.89 邻苯二酸酐液 1.53 0.97 硫化橡胶固 1.10 1.74 SAE-SW(8#机油)液0.88 /

实验五 固体比热容的测量(电热法)

实验五 固体比热容的测量(电热法) 金属是重要的固态物质,本文对固体物质比热容的测量重点介绍了金属比热容的测量,金属比热容是金属物质的重要特性,本文重点介绍电热法测量固体比热容。 【实验目的】 1、掌握基本的量热方法——用量热器测热量法。 2、学习用电热法测固体的比热容。 【实验仪器】 热学综合实验平台、量热器、待测钢球、测温探头 【实验原理】 固体比热容指单位质量的热容量,也是特定粒子电子、原子、分子等结构及其运动特性的宏观表现。测量固体物质比热容对于了解固体物质性质,物质内部结构等都具有重要的意义,常用于测量固体物质比热容的方法有动态法、混合法、冷却法等。 金属是重要的固态物质,本书对固体物质比热容的测量重点介绍了金属比热容的测量,金属比热容是金属物质的重要特性,本实验重点介绍电热法测量固体比热容。 在量热器中加入质量为m 的待测物,并加入质量为0m 的水,如果加在加热器两端的电压为U ,通过电阻的电流为I ,通电时间为t ,则电流作功为: UIt A = (5-1) 如果这些功全部转化为热能,使量热器系统的温度从1T ℃升高至2T ℃,则下式成立 ()()1201100T T c c m c m mc UIt -+++=ω (5-2) c 为待测物的比热容,0c 为水的比热热容,1m 为量热器内筒的质量,1c 为量热器内筒的比热容, 2m 为铜电极和铜搅拌器总质量,2c 为铜比热容。 由(5-2)式得 ()[]m c c m c m T T UIt c //0110012ω----= (5-3) 为了尽可能使系统与外界交换的热量达到最小,在实验的操作过程中就应注意以下几点: 1、不应当直接用手去把握量热筒的任何部分,不应当在阳光直接照射下进行实验。

常用液体固体比热对照表

常用液体、固体比重-比热表

几种常见物质的比热容:

物质化学符号模型相 态 比热容量(基本)J/ (kg ·K) 比热容量(25℃)J/ (kg ·K) 氢 H 2 气 14000 14300 氦 He 1 气 5190 5193.2 氨 NH3 4 气 2055 2050 氖 Ne 1 气 1030 1030.1 锂 Li 1 固 3580 3582 乙醇CH3CH2O H 9 液2460 2440 汽油混混液 2200 2220 石蜡CnH2n+2 62 至12 2 固2200 2500 甲烷 CH4 5 气 2160 2156 油混混液 2000 2000 软木塞混混固 2000 2000 乙烷 C2H6 8 气 1730 1729 尼龙混混固 1700 1720 乙炔 C2H2 4 气 1500 1511 聚苯乙烯 CH2 3 固 1300 1300 硫化氢 H2S 3 气 1100 1105 氮 N 2 气 1040 1042 空气(室温)混混气 1030 1012 空气(海平面、干燥、0℃)混混气 1005 1035 氧 O 2 气 920 918 二氧化碳 CO2 3 气 840 839 一氧化碳 CO 2 气 1040 1042 铝 Al 1 固 900 897 石绵混混固 840 847

陶瓷混混固 840 837 氟 F 2 气 820 823.9 砖混混固 750 750 石墨 C 1 固 720 710 四氟甲烷CF4 5 气660 659.1 二氧化硫 SO2 3 气 600 620 玻璃混混固 600 84 氯 Cl2 2 气 520 520 钻石 C 1 固 502 509.1 钢混混固 450 450 铁 Fe 1 固 450 444 黄铜Cu,Zn 混固 380 377 铜 Cu 1 固 385 386 银 Ag 1 固 235 233 汞Hg 1 液139 140 铂Pt 1 固135 135 金 Au 1 固 129 126 铅 Pb 1 固 125 128 水蒸气(水) H2O 3 气 1850 1850 水 H2O 3 液 4200 4186 冰(水)H2O 3 固 2060 2050 (- 10℃)

大学物理实验教案8-固体比热容的测量

实验名称: 固体比热容的测量 实验目的: 1、进一步熟悉量热方法及散热修正。 2、用混合法测定金属的比热容。 3、熟练掌握混合法的操作技巧,以减少量热器的散热。 实验仪器: 量热器 电子天平 温度计(0.1℃、50℃和1℃、100℃各一支) 停表 电水壶 小量筒 铝圆柱 实验原理: 根据热平衡原理,用混合法测定铝圆柱的比热。 质量m 、温度2t 的铝圆柱投入量热器的水中,设量热器及搅拌器质量为1m ,(比热容铜 31110.38510c J kg C --=???),水的质量为 0m (比热容取3 1 10 4.18710c J kg C --=???) ,温度计修正热容为1.9V (V 取3cm ),则 200111()( 1.9)()mc t m c m c V t θθ-=++- 即 001112( 1.9)() () m c m c V t c m t θθ++-= - 对1t 、θ须作散热修正,投物前5、6分钟开始测水温(30s 测一次),记下 投物前的时刻与温度,水温达到最高点后继续测5、6分钟,前图为温度——时间曲线。 吸热面积BOE S ;散热面积COF S 。当B O E S =COF S ,实验不受散热影响。应控制水温低于室温2~3度,可先粗测,后细测。 实验内容:

1.用天平分别测出量热器内筒和搅拌器的质量1m 、以及被测物铝圆柱的质量m 。 2.将量热器的内筒注入一定质量的水(适当加一点冰水),要求保证金属块放入后能完全被水浸没。称量出量热器内筒及水的总质量。计算出水的质量0m 。 3. 盖好胶木盖,用搅拌器上下轻轻搅拌,当从温度计上读出量热器及水的温度比室温低3~4度时,开始每隔30〞记录一次温度。 4.将铝块放入电水壶用水煮沸,确切测量出铝块的温度1t (与水温相同)。 5. 当量热器及水的温度比室温低2~3度时将铝属块迅速取出放入量热器的内筒中,盖好胶木盖,用搅拌器上下轻轻搅拌。同时每隔30〞记录一次温度t 。持续5~10分钟。 6.取出温度计处理温度计浸在水中的体积。 7. 绘制τ-t 图,求出混合前的初温1t 和混合温度θ。计算被测物的比热容及其标准不确定度。 实验数据处理 铝圆柱 质量59.73m g = 温度 299.5t =℃ 量热器 质量170.40m g = 比热容 31110.38510c J kg K --=??? 水 质量0204.42m g = 比热容 3110 4.18710c J kg K --=??? 室温 t =_24.75_℃ 温度计插入水中部分的体积 31.9V cm = 初温 t 1=22.21℃ 混合温度 26.52θ=℃ 铝的比热容为:

混合法测量固体比热容

实验题目:混合法测量固体比热容 实验目的:通过本实验,学会采用混合法测固体的比热容。 实验仪器:量热器(见右图所示),冰,水,干毛巾,天 平(带砝码),绝热套筒,锌粒,温度计,秒表, 加热装置等. 实验原理、步骤及测量记录: 本实验采用混合法测固体比热容,根据其原 理,假定:(实际室温:) 用天平测得量热器及搅拌器的质量和为: 查资料知: 又测得大气压强:

查表可知此状态下沸水的温度: 假定温度计没入水中的体积为: 利用公式: ))(0.2()'(1231112T T cm K VJ c m mc T T c m x x -??++=--- 可初步计算得水的质量: 取量热器及搅拌器并注入水放在天平上,调节水的质量得热器及搅拌器和水的质量: 计算得水的质量为: 在实验台上(套筒之外)利用冰进行水的降温操作,使其降到 ,并使冰彻底融化掉。 再将其放入绝热套筒中,密封。

然后将已加热15分钟的锌粒迅速放入量热器中,密封。迅速记录温度随时间的变化。记录数据如下所示: 表一,量热器中的温度 随时间的变化 ) ) ) ) ) 测量温度计没入水的体积: 数据处理: 根据以上数据可用Origin8.0画出温度随时间的变化图,见

下图: 根据公式: ))(0.2()'(1231112T T cm K VJ c m mc T T c m x x -??++=--- 及图中 计算得锌的比热容为: 相对误差为: 误差分析及改进: 本实验有一些系统误差修正的方法,比如采取补偿措 施,缩短操作时间,沸点的校正等,有效地减小了系统误差。 但是当把锌粒倒进量热器后,温度会迅速变化,此时对

实验六 固体比热容的测量(混合法)

实验六固体比热容的测量(混合法) 固体比热容指单位质量的热容量,也是特定粒子电子、原子、分子等结构及其运动特性的宏观表现。测量固体物质比热容对于了解固体物质性质,物质内部结构等都具有重要的意义,常用于测量固体物质比热容的方法有动态法、混合法、冷却法等。 【实验目的】 1、掌握基本的量热方法——混合法。 2、测固体的比热容。 【实验仪器】 热学综合实验平台、量热器、加热井装置 【实验原理】 金属是重要的固态物质,本书对固体物质比热容的测量重点介绍了金属比热容的测量,金属比热容是金属物质的重要特性,本实验重点介绍混合法测量金属比热容。 温度不同的物体混合后,热量将由高温物体传递给低温物体。如果在混合过程中和外界没有热交换,最后将达到均匀稳定的平衡温度,在这过程中,高温物体放出的热量等于低温物体所吸收的热量,此称为热平衡原理。本实验即根据热平衡原理用混合法测定固体的比热。 将质量为m、温度为T1 的金属块投入量热器的水中。设金属块、水、量热器内筒、搅拌器和温度计的比热分别为c、c0、c1和c2,质量分别为m、m0、m1和m2,待测物投入水中之前的水温为T2 。在待测物投入水中以后,其混合温度为θ,则在不计量热器与外界的热交换的情况下,将存在下列关系: mc (T1 ?θ ) = ( m0c0 + m1c1 + m2c2 ) (θ?T2 ) 即: )-( ) - )( + + ( = 1 1 2 2 2 1 1 θ T m T θ c m c m c m c 上述讨论是在假定量热器与外界没有热交换时的结论。实际上,只要有温度差异就必然会有热交换存在,因此,必须防止或进行修正热散失的影响。热散失的途径主要有三:第一是加热后的物体在投入量热器水中之前散失的热量,这部分热量不易修正,应尽量缩短投放时间。第二是在投下待测物后,在混合由外部吸热和高于室温后向外散失的热量。在本实验中,由于测量的是导热良好的金属,从投下物体到达混合温度所需时间较短,可以采用热量

冷却法测金属的比热容(实验报告)

冷却法测量金属的比热容 【实验目的】 (1) 测量固体的比热容。 (2)了解固体的冷却速率与环境之间的温差关系,以及进行测量的实验条件。 【实验仪器】 本实验装置是金属比热容测量仪;实验样品是直径5mm 、长30mm 的小圆柱,其底部深孔中安放铜—康同热电偶。 【实验原理】 单位质量的物质,其温度升高1K (或1℃)所需的热量叫该物质的比热容,其值随温度而变化, 将质量为1M 的金属样品加热后,放到较低温度的介质(例如室温的空气)中,样品将会逐渐冷却,其单位时间的热量损失(Q t ??)应与温度下降速率成正比,由此到下述关系式: 111 Q C M t t θ???? = ????? ① ? 式中1C 为该金属样品在温度1θ时的比热容,1 t θ??? ????为金属样品在温度1θ时的 温度下降速率,根据冷却定律有: 1110()m Q a S t θθ?=-? ② 式中,1a 为热交换系数,1S 为该样品外表面的面积,m 为常数,1θ为为金属样品的温度,0θ为周围介质的温度。由式①和②,可得:

1 11 1110()m C M a S t θθθ?=-? ③ 同理,对质量为2M ,比热容为2C 的另一种金属样品,有: 2 22 2220()m C M S t θαθθ?=-? ④ 由式③和式④,可得: m m s a s a t M C t M C )()(0111022211 12 22θθθθθθ--=???? m m s a t M s a t M C C ) ()(01112202221112θθθθθθ -??-??= 如果两样品的形状尺寸都相同,即12S S =;两样品的表面状况也相同(如涂 层、色泽等),而周围介质(空气)的性质当然也不变,则有12a a =。于是当周围介质温度不变(即室温0θ恒定,而样品又处于相同温度1θ=θθ=2)时,上式可以简化为: $ 2 21 11 2)()( t M t M C C ????=θθ 如果已知标准金属样品的比热容1C ,质量1M ,待测样品的质量2M 及两样品 在温度θ时冷却速率之比1??? ????t θ和2??? ????t θ,就可求得待测金属的比热容2 C 。 已知铜在100℃时的比热容为:1393().Cu C J kg C -=? 【实验内容】 1.测量铁和铝在100℃时的比热容。 步骤: (1)选取长度、直径、表面光洁度尽可能相同的三种金属样品(铜、铁、铝)用物理天平或电子天平秤出它们的质量0M 。再根据Cu M >Fe M >Al M 这一

固体比热容测量 姓名 朱业俊 学号 PB07013077

试验名称: 固体比热容的测量 试验目的:比热容是单位质量的物质升高(或降低)单位温度所吸收(或 放出)的热量。交换是难免的。因此要努力创造一个热力学孤立体系,同时对实验过程中的其他吸热、散热做出校正,尽量使二者相抵消,以提高实验的精度。 实验原理 1混合法测比热容 设一个热力学孤立体系中有n 种物质,其质量分别为m i ,比热容为c i (i=1,2,…,n )。开始时体系处于平衡态,温度为CT 1,与外界发生热量交换后又达到新的平衡态,温度为T 2。若体系中无化学反应或相变发生,则该体系获得(或放出)的热量为 ))(...(122211T T c m c m c m Q n n -+++= (1) 假设量热器和搅拌器的质量为m 1,比热容为c 1,开始时量热器与其内质量为m 的水具有共同温度T 1,把质量为m x 的待测物加热到T ’后放入量热器内,最后这一系统达到热平衡,终温为T 2。如果忽略实验过程中对外界的散热或吸热,则有 ))(0.2()'(1231112T T cm K VJ c m mc T T c m x x -??++=--- (2) 式中c 为水的比热容。310.2--??cm K VJ 代表温度计的热容量,其中V 是温度计浸入到水中的体积。 2.系统误差的修正 (1) 要尽量减少与外界的热量交换,使系统近似孤立体系。 (2) 采取补偿措施,就是在被测物体放入量热器之前,先使量热器与水的初始 温度低于室温,但避免在量热器外生成凝结水滴。先估算,使初始温度与室温的温差与混合后末温高出室温的温度大体相等。这样混和前量热器从外界吸热与混合后向外界放热大体相等,极大地降低了系统误差。

固体比热容的测定及误差分析

固体比热容的测定及误差分析 郭超 200802050234 08物理(2)班 摘要:比热容是物质的一个重要物理特性,比热容的测量是热学中的一个基本测量,在新 能源的开发和新材料的研制中,物质的比热容的测量往往是不可缺少的,但由于散热因素多而且不容易控制和测量,使量热实验的准确度往往较低,因此,设法改进实验方法,提高使用精确度便成为人们关注的问题,本实验用混合法测出来金属块的比热容,并进行了散热修正是误差减小到了最低。 关键词:固体、比热容、误差分析 Abstract: The specific heat capacity is an important material and physical properties, specific heat capacity of thermal measurement is a basic measurement, development of new energy and new material, the material specific heat capacity measurements are indispensable, but the heat factor more and not easy to control and measurement, so that calorimetry experiments are often less accurate, therefore, seek to improve the experimental methods, increase the accuracy of people have become issues of concern, the experiment measured by the piece of metal mixed with the specific heat capacity, and amendment to the heat reduced to a minimum error. Key words: solid, specific heat capacity, error analysis 一、实验原理: 1.1实验原理的引入: 测量固体的比热容的方法与有很多种,例如混合法、比较法、冷却法等,但是这些方法在实际操作中都会引入较大的误差。 温度不同的物体混合后,热量由高温物体传给低温物体,最后系统达到温度不同的物体混合之后,热量由高温物体传给低温物体,最后系统将达到均匀稳定的平衡温度,如果在混合过程中和外界没有热交换,则高温物体放出的热量等于低温物体所吸收的热量,此称为热平衡原理,本次探究就是根据热平衡原理用混合法测量铜的比热。 将质量为m 、温度为2t 的金属投入量热器的水中。设量热器(包括搅拌器和温度极差入水中部分)的比热容为C ,其中水的质量为0m ,比热容为0c ,待测物投入水中前的水的温

混合法测定金属的比热容

物理实验报告 姓名 NGUYEN MANH QUANG-阮孟光 学号 2140301239 班级 能动 47 混合法测定金属的比热容 物质比热容的测量属于量热学范围,由于量热实验的误差一般较大,所以要做好量热实验必须仔细分析产生各种误差的原因,并采取相应措施设法减小误差。 测定固体或液体的比热容,在温度变化不太大时常用混合量热法、冷却法、电流量热器法。本实验用混合法测定金属的比热容。 一、实验目的 1. 学习热学实验的基本知识,掌握用混合法测定金属的比热容的方法; 2. 学习一种修正系统散热的方法。 二、仪器及用具 量热器,水银温度计,物理天平,待测金属粒,停表,量筒,烧杯及电加热器等。 三、实验原理 1. 用热平衡原理侧比热容 在一个与环境没有热交换的孤立系统中,质量为m 的物体,当它的温度由最初平衡态0 θ变化到新的平衡态 i θ时,所吸收(或放出)的热量Q 为 )(0θθ-=i mc Q (1) 式中mc 称为该物体的热容,c 称为物体的比热容,单位为J/(kg·K )。 用混合法测定固体比热容的原理是热平衡原理。把不同温度的物体混合在一起时,高温物体向低温物体传递热量,如果与外界没有任何热交换,则他们最终达到均匀、稳定的平衡温度,这时称系统达到了热平衡。高温物体放出的热量1Q 与低温物体吸收的热量2Q 相等,即 1Q =2Q (2) 本实验的高温部分由量热器内筒、搅拌器、水银温度计和热水等组成,而处于室温的金属粒为系统的低温部分。设量热器内筒和搅拌器(二者为同种材料制成)的质量为1m ,比热容为1c ;热水质量为2m ,比热容为2c ;水银温度计的质量为 3m ,比热容为3c ,它们的共同

固体比热容的测量

实验简介 19世纪,随着工业文明的建立与发展,特别是蒸汽机的诞生,量热学有了巨大的进展。经过多年的实验研究,人们精确地测定了热功当量,逐步认识到不同性质的能量(如热能、机械能、电能、化学能等)之间的转化和守恒这一自然界物质运动的最根本的定律,成为19世纪人类最伟大的科学进展之一。从今天的观点看,量热学是建立在“热量”或“热质”的基础上的,不符合分子动理论的观点,缺乏科学内含。但这无损量热学的历史贡献。至今,量热学在物理学、化学、航空航天、机械制造以及各种热能工程、制冷工程中都有广泛的应用。 比热容是单位质量的物质升高(或降低)单位温度所吸收(或放出)的热量。比热容的测定对研究物质的宏观物理现象和微观结构之间的关系有重要意义。 本实验采用混合法测固体(锌粒)的比热容。在热学实验中,系统与外界的热交换是难免的。因此要努力创造一个热力学孤立体系,同时对实验过程中的其他吸热、散热做出校正,尽量使二者相抵消,以提高实验精度。 实验原理 混合法测比热容 设一个热力学孤立体系中有种物质,其质量分别为,比热容为 ()。开始时体系处于平衡态,温度为,与外界发生热量交换后又 达到新的平衡态,温度为 ,若无化学反应或相变发生,则该体系获得(或放出)的热量为 假设量热器和搅拌器的质量为,比热容为,开始时量热器与其内质量 为的水具有共同温度,把质量为的待测物加热到后放入量热器内,最后这一系统达到热平衡,终温为。如果忽略实验过程中对外界的散热或吸热,

则有 式中为水的比热容。代表温度计的热容量,其中是温度计浸入到水中的体积。 ?系统误差的修正 在量热学实验中,由于无法避免系统与外界的热交换,实验结果总是存在系统误差,有时甚至很大,以至无法得到正确结果。所以,校正系统误差是量热学实验中很突出的问题。为此可采取如下措施: ●要尽量减少与外界的热量交换,使系统近似孤立体系。此外,量热器不 要放在电炉旁和太阳光下,实验也不要在空气流通太快的地方进行。 ●采取补偿措施,就是在被测物体放入量热器之前,先使量热器与水的初 始温度低于室温,但避免在两热器外生成凝结水滴。先估算,使初始温 度与室温的温差与混合后末温高出室温的温度大体相等。这样混合前量 热器从外界吸热与混合后向外界放热大体相等,极大地降低了系统误差。 ●缩短操作时间,将被测物体从沸水中取出,然后倒入量热器筒中并盖好 的整个过程,动作要快而不乱,减少热量的损失。 ●严防有水附着在量热筒外面,以免水蒸发时带走过多的热量。 ●沸点的校正。在实验中,我们是取水的沸点为被测物体加热后的温度, 但压强不同,水的沸点也有所不同。为此需用大气压强计测出当时的气 压,再由气压与沸点的关系通过表5.3.3-1查出沸点的温度。

固体比热容测定

固体比热容的测定 【实验目的】 1. 学会用电热法测定固体的比热容; 2. 熟练掌握物理天平和量热器的使用方法。 【实验仪器】 HAQC-2电热法测固体比热容装置 HADM-T 数字温度计 HAYT-30直流稳压电源 HADM-A 2数字电流表 天平 实验连接线 HADM-V 8数字电压表 秒表 固体样品 【技术指标】 1. 电阻丝的阻值: R=30Ω 2. 铜电极的质量: m 4= g 【实验原理】 设在量热器中,装有质量为m 1、比热容为c 1的液体(蒸溜水),蒸溜水中安装有阻值为R 的电阻丝,将待测固体样品放入蒸溜水中。如果按照实验电路图一,闭合开关K ,则有电流通过电阻丝R ,根据焦耳—楞次定律,电阻产生的热量为 Q 放=IUt (1) 其中I 为电流强度,单位用安培;U 为加在R 上的电压,单位为伏特;R 为电阻,单位用欧姆; t 为通电时间,单位用秒,则热量Q 的单位为焦耳。 待测固体样品、蒸溜水、量热器内筒和铜电极等吸收电阻R 释放的热量Q 放后,温度升高。若量热器中固体的质量为m 、其比热容为c ;水的质量为m 1,其比热容为c 1;量热器内筒的质量m 2,其比热容为c 2;搅拌器的质量为m 3,其比热容为c 3;铜电极的质量为m 4,其比热容为c 4。初始温度(包括量热器及其附件)为T 1,加热终了的温度为T 2,则有 Q 吸=(cm +c 1m 1+c 2m 2+c 3m 3+c 4m 4)(T 2-T 1) (2) 因 Q 放= Q 吸 所以 IUt=(cm +c 1m 1+c 2m 2+c 3m 3+c 4m 4)(T 2-T 1) (3) 由上式得: ()4][14433221112c m c m c m c m T T I U t m c -----= 如果计算出Q 放= IUt ,再称出待测固体、蒸溜水、量热器内筒和搅拌器的质量m 、m 1、m 2和m 3,铜电极的质量m 4已给出,并测出温度T I 、T 2,就由(4)式可得到待测固体的比热容c ( c 1、c 2、c 3和c 4比热容由实验室给出)。 【实验仪器】 图一中1和2为铜电极(接线柱),3为加热电阻丝,4为待测固体,5为数字温度计,6为量热器的内筒(钢杯),7为蒸馏水,8为空气绝热层,9为绝热盖板,10为搅拌器,E 为加热电源,K 为单刀开关,V 为电压表,A 为电流表,IT-1为电流量热器。

(完整word版)用混合法测固体的比热容

实验八 混合法测定固体比热容 一 实 验 目 的 1、掌握基本的量热方法——混合法。 2、测定金属的比热容。 二 实 验 仪 器 量热器,温度计,物理天平,停表,加热器,小量筒,待测物(金属块)。 量热器如图1所示,C 为量热器筒(铜制),T 为曲管温度计,P 为搅拌器,J 为套铜,G 为保温用玻璃棉。 加热器如图2所示,待测物由细线吊在其中间的圆筒中,由蒸汽锅发出的蒸汽通过加热器的套筒中给待测物加热。加热厚后将其下侧的活门K 打开,就可将物体投入置于其下面的量热器中。为了减少加热器排出的水蒸汽,可将排汽管插入冰和水的盆中,使蒸汽凝结成水。 三 实 验 原 理 温度不同的物体混合之后,热量将由高温物体传给低温物体。如果在混 合过程中和外界没有热交换,最后将达到均匀稳定的平衡温度,在这过程中, 高温物体放出的热量等于低温物体所吸收的热量,此称为热平衡原理。本实 验即根据热平衡原理用混合法测定固体的比热。 将质量为m 、温度为t 2的金属块投入量热器的水中。设量热器(包 括搅拌器和温度计插入水中部分)的热容为q ,其中水的质量为m 0,比热容 为c 0,待测物投入水中之前的水温为t 1。在待测物投入水中以后,其混合温 度为θ,则在不计量热器与外界的热交换的情况下,将存在下列关系 ))(()(1002t q c m t mc -+=-θθ (1) 即)())((2100θθ--+=t m t q c m c (2) 量热器的q 可以根据其质量和比热容算出。设量热器筒和搅拌器由相同 的物质(铜)制成,其质量为m 1,比热容为c 1,温度计插入水中部分的体积 为V ,则 V c m q 9.111+= (3) )(9.11-??C J V 为温度计插入水中部分的热容,但V 的单位为cm 3。也 可以用混合法测量量热器的热容q 。即先将量热器中加入)(0 g m '水,它和量热器的温度为1 t ' ,其次将)(g m o ''温度为2t '的温水迅速倒入量热器中,搅拌后的混合温度为θ',则根据式(1),的 ))(()(100200 t q c m t c m '-'+'='-'''θθ 即 001200)(c m t t c m q '-' -''-'''=θθ (4) 但是用混合法测量热器热容q 时,要注意使水的总质量00 m m ''+'和实际测比热容时水的质量m 0大体相等,混合后的温度θ'也应和实测时的混合温度θ尽量接近才好。 上述讨论是在假定量热器与外界没有热交换时的结论。实际上只要由温度差异就必然会由热交换存图2 图3

固体比热测定

固体比热容的测定 指导老师:王亚辉 小组成员:李彦辉 张燚 杨朋波 胡宏明

电热法测固体比热容实验的改进 1引言 在传统的混合法测固体比热容实验中, 量热器等的吸热和散热一直是制约实验结果准确度的一个关键因素. 为了消除此类热量传递对测量结果的影响, 在一定的实验条件下, 可以近似地用作图法消除热交换的影响, 其次还要考虑量热器、搅拌器等的等效比热容和质量, 处理过程相当麻烦. 本实验采用电热法, 通过控制放试件和不放试件两种情况下的初末温度和液面高度, 将上述种种热散失抵消掉, 使测量较准确, 操作较简单. 另外, 本实验采用传感器加模拟电路来测量温度, 使温度的测量更准确; 用不锈钢杜瓦瓶代替传统的量热器筒和保温套筒,减少了向外界的热量散失, 且使用方便 2实验改进方法

实验装置如图1所示. 待测样品及水放在杜瓦瓶中, 并设置了AD590温度传感器和电加热器、搅拌器. 水面高度为杜瓦瓶的3/ 5左右;样品不宜太大或太小; AD590和样品大致位于水深的中部; 电加热器置于偏下部.设加热电压为U, 电流为I, 则电加热器在时间T内放出的热量为UIS. 此热量使量热器的整体温度由t1 升至t2. 根据能量守恒定律, 可得如下方程 UIT= (mc+ m0c0+ C1 + C2 + C3) (t2 - t1) + ΔQ ( 1) 式中, m, c为待测物的质量和比热容; m0, c0 为水的质量和比热容; C1, C2, C3 分别为在此实验状况下量热器( 包括搅拌器) 、电加热器、温度传感器的等效热容量; ΔQ为其它因素散失的热量. 本实验测量的困难在于C1, C2, C3 及ΔQ均为未知的参量. 为解决这一问题, 采用同等实验条件下的系统误差差值消去法.实验分两

固体比热测定方法

5.3.3 固体比热容的测量 (本文内容选自高等教育出版社《大学物理实验》) 19世纪,随着工业文明的建立与发展,特别是蒸汽机的诞生,量热学有了巨大的进展。经过多年的实验研究,人们精确地测定了热功当量,逐步认识到不同性质的能量(如热能、机械能、电能、化学能等)之间的转化和守恒这一自然界物质运动的最根本的定律,成为19世纪人类最伟大的科学进展之一。从今天的观点看,量热学是建立在“热量”或“热质”的基础上的,不符合分子动理论的观点,缺乏科学内含。但这无损量热学的历史贡献。至今,量热学在物理学、化学、航空航天、机械制造以及各种热能工程、制冷工程中都有广泛的应用。 比热容是单位质量的物质升高(或降低)单位温度所吸收(或放出)的热量。交换是难免的。因此要努力创造一个热力学孤立体系,同时对实验过程中的其他吸热、散热做出校正,尽量使二者相抵消,以提高实验的精度。 实验原理 1. 混合法测比热容 设一个热力学孤立体系中有n 种物质,其质量分别为m i ,比热容为c i (i=1,2,…,n )。开始时体系处于平衡态,温度为CT 1,与外界发生热量交换后又达到新的平衡态,温度为T 2。若体系中无化学反应或相变发生,则该体系获得(或放出)的热量为 ))(...(122211T T c m c m c m Q n n -+++= (1) 假设量热器和搅拌器的质量为m 1,比热容为c 1,开始时量热器与其内质量为m 的水具有共同温度T 1,把质量为m x 的待测物加热到T ’后放入量热器内,最后这一系统达到热平衡,终温为T 2。如果忽略实验过程中对外界的散热或吸热,则有 ))(0.2()'(1231112T T cm K VJ c m mc T T c m x x -??++=--- (2) 式中c 为水的比热容。310.2--??cm K VJ 代表温度计的热容量,其中V 是温度计浸入到水中的体积。 2. 系统误差的修正 在量热学实验中,由于无法避免系统与外界的热交换,实验结果总是存在系统误差,有时甚至很大,以至无法得到正确结果。所以,校正系统误差是量热学实验中很突出的问题。为此可采取如下措施: (1) 要尽量减少与外界的热量交换,使系统近似孤立体系。此外,量热器不要放在电炉旁和太阳 光下,实验也不要在空气流通太快的地方进行。 (2) 采取补偿措施,就是在被测物体放入量热器之前,先使量热器与水的初始温度低于室温,但 避免在量热器外生成凝结水滴。先估算,使初始温度与室温的温差与混合后末温高出室温的

相关主题
文本预览
相关文档 最新文档