当前位置:文档之家› 发电机励磁系统的数学模型

发电机励磁系统的数学模型

发电机励磁系统的数学模型
发电机励磁系统的数学模型

发电机励磁系统的数学

模型

-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

课程设计报告

课程名称电力系统自动装置原理设计题目发电机励磁系统数学建模

及PID控制仿真

设计时间 2016-2017学年第一学期专业年级电气133班

姓名姚晓

学号 2012012154 提交时间 2016年12月30日成绩

指导教师陈帝伊谭亲跃

水利与建筑工程学院

发电机励磁系统数学建模及PID控制仿真

摘要:本文主要进行了发电机励磁系统的数学建模和PID控制仿真。励磁系统在电力系统的规划与控制领域都有非常重要的作用,精确的模型结构与参数是选择有效控制手段和整个电力系统仿真准确性的基础。文中通过对励磁系统建模及仿真的研究,在整理系统稳定性判断理论发展的基础上,运用MATLAB软件仿真,论证了PID励磁调节可有效地改进励磁控制品质,仿真试验是调整励磁系统参数的有效措施。

关键字:电力系统、励磁系统、根轨迹、PID、仿真

目录

第一章绪论 (5)

1.1本课题研究意义 (5)

1.2本文主要内容 (5)

第二章发电机励磁系统的数学模型 (7)

2.1励磁系统数学模型的发展 (7)

2.2发电机励磁系统原理与分类 (8)

2.3发电机励磁系统的数学模型 (8)

2.3.1励磁机的传递函数 (8)

2.3.2励磁调节器各单元的传递函数 (10)

2.3.3同步发电机的传递函数 (10)

2.3.4励磁稳定器 (11)

2.4励磁控制系统的传递函数 (11)

第三章励磁控制系统的稳定性 (12)

3.1传统方法绘制根轨迹 (12)

3.2用MATLAB绘制根轨迹 (14)

第四章 PID在发电机励磁系统中的应用 (15)

4.1同步发电机的励磁系统的动态指标 (15)

4.2无PID调节的励磁系统 (15)

4.2.1源程序 (15)

4.2.2数值计算结果 (17)

4.3有PID调节的励磁系统 (18)

4.3.1源程序 (19)

4.3.2数值计算结果 (20)

第五章总结与体会 (22)

参考文献 (23)

第一章绪论

1.1本课题研究意义

供给同步发电机励磁电流的电源及其附属设备统称为励磁系统。它一般由励磁功率单元和励磁调节器两个主要部分组成。励磁功率单元向同步发电机转子提供励磁电流;而励磁调节器则根据输入信号和给定的调节准则控制励磁功率单元的输出。励磁系统的自动励磁调节器对提高电力系统并联机组的稳定性具有相当大的作用。尤其是现代电力系统的发展导致机组稳定极限降低的趋势,也促使励磁技术不断发展。在电力系统正常运行或事故运行中,同步发电机的励磁控制系统起着重要的作用。优良的励磁控制系统不仅可以保证发电机可靠运行,提供合格的电能,而且还可有效地提高系统的技术指标。

励磁控制系统承担着如下重要任务:(1)维持发电机端电压在给定值,当发电机负荷发生变化时,通过调节磁场的强弱来恒定机端电压。(2)合理分配并列运行机组之间的无功分配。(3)提高电力系统的稳定性,包括静态稳定性和暂态稳定性及动态稳定性。(4)改善电力系统的运行条件。(5)水轮发电机组的强行减磁[1]。

同步发电机的励磁控制系统是一个自动控制系统。一般说来,对于自动控制系统的基本要求是:首先,系统必须是稳定的;其次是系统的暂态性能应满足生产工艺所要求的暂态性能指标;其三是系统的稳态误差要满足生产的工艺要求[2]。其中,稳定性是控制系统的首要条件,一个不稳定的系统是无法完成预期控制任务的。因此,如何判别一个系统是否稳定以及怎样改善其稳定性乃是系统分析与设计的一个首要问题。

在经典控制理论中,对于单输入单输出线形定常系统,应用劳斯判据和胡维茨判据等代数方法间接判定系统的稳定性,而用根轨迹法及频域中的奈奎斯特判据和波德图则是更为有效的方法,它不仅用于判定系统是否稳定,还能指明改善系统稳定性的方向。但这些方法在绘图和计算时需要花费大量的时间和精力。MATLAB是1980年推出的用于工程计算和数值分析的交互式语言。经过多年的完善,它已成为当前最受流行的软件,集数值分析、矩阵运算、信号处理和图形显示于一体[3]。MATLAB有很强的绘图功能,只要写两三句代码就能得到所需要的图形。

1.2本文主要内容

本课题通过对电力系统的基本知识的学习,和以往电力系统励磁控制方法的学习、总结、研究,提出了基于matlab的同步发电机励磁控制系统的仿真,文章的主要内容是:

第一章,具体说明了同步发电机励磁控制系统的重要作用及其稳定性研究的意义。

第二章,通过查阅资料和之前所学过自动控制原理的基本知识,构建本文所采用的同步发电机励磁控系统数学模型,即建立了分析发电机励磁系统稳定性的传递函数。

第三章,利用控制理论中的根轨迹法研究励磁系统的稳定性。

第四章, 采用文中建立的模型,进行仿真研究数值分析,是本文的重点。

第五章, 对本文所做工作进行了总结并指出了本文存在的一些不足之处和下一步需要继续工作的方向。

发电机励磁原理及构造

发电机原理及构造——发电机的励磁系统 众所周知,同步发电机要用直流电流励磁。在以往的他励式同步发电机中,其直流电流是有附设的直流励磁机供给。直流励磁机是一种带机械换向器的旋转电枢式交流发电机。其多相闭合电枢绕组切割定子磁场产生了多相交流电,由于机械换向器和电刷组成的整流系统的整流作用,在电刷上获得了直流电,再通过另一套电刷,滑块系统将获得的直流输送到同步发电机的转子,励磁绕组去励磁,因此直流励磁机的换向器原则上是一个整流器,显然可以用一组硅二节管取代,而功率半导体器件的发展提供了这个条件。将半导体元件与发电机的轴固结在一起转动,则可取消换向器、滑块等滑动接触部分、利用二极管换成直流电流。直流送给转子励磁、绕组励磁。这就是无刷系统。 下面我们以典型的几种不同发电机励磁系统,介绍它的工作原理。 一、相复励励磁原理 左图为常用的电抗移相相复励励磁系统线路图。由线形电抗器DK把电枢绕组抽头电压移相约90°、和电流互感器LH提供的电压几何叠加,经过桥式整流器ZL整流,供给发电机励磁绕组。负载时由电流互感器LH供给所需的复励电流,进行电流补偿,由线形电抗器DK 移相进行相位补偿。 二、三次谐波原理 左图为三次谐波原理图,对一般发电机来源,我们需要的是工频正弦波,称为基波,比基波高的正弦波都称为谐波、其中三次谐波的含量最大,在谐波发电机定子槽中,安放有主绕组和谐波励磁绕组(s1、s2),而这个绕组之间没有电的联系。谐波绕组将绕组中150HZ谐波感应出来,经过ZL桥式整流器整流,送到主发电机转子绕组LE中进行励磁。 三、可控硅直接励磁原理 由左图可以看出,可控硅直接励磁是采用可控硅整流器直接将发电机输出的任一相一部分能量,经整流后送入励磁绕组去的励磁方式,它是由自动电压调节器(A VR),控制可控硅的导通角来调节励磁电流大小而维持发电机端电压的稳定。 四、无刷励磁原理 无刷励磁主要用于西门子、斯坦福、利莱等无刷发电机。它是利用交流励磁机,其定子上的剩磁或永久磁铁(带永磁机)建立电压,该交流电压经旋转整流起整流后,送入主发电机的励磁绕组,使发电机建压。自动电压调节器(A VR)能根据输出电压的微小偏差迅速地减小或增加励磁电流,维持发电机的所设定电压近似不变。 中小型三相同步发电机的技术发展概况 一.概述 中小型同步发电机是中小型电机的主要产品之一,广泛应用于小型水电站、船舶电站、移动电站、固定电站、应急备用电站、正弦波试验电源、变频电源、计算机电源及新能源――风力发电、地热发电、潮汐发电、余热发电等。它对边(疆)老(区)贫(穷)地区实现电气化,提高该地区经济发展水平和人民的生活水平有着重要的作用,中小型发电机在船舶、现代电气化火车内燃机车等运输设备中也是一个关键设备。移动电站对国防设施、工程建设、海上石油平台、陆上电驱动石油钻机、野外勘探等也是不可缺少的关键装备之一。应急备用电站在突发事件中的防灾、救护保障人民的生命和财产的安全有着不可替代的作用。开发绿色能源、可再生能源、减少大气二氧化碳的含量,小水电、风力发电、地热发电和余热发电是重要的组成部分。 我国小型同步发电机的第一代产品是1956年电工局在上海组织的统一设计并于1957年完成的TSN、TSWN系列农用水轮发电机。第二代产品是在进行了大量试验研究和调查研究的基础上于1965年开始的T2系列小型三相同步发电机统一设计,该水平达到六十年代国际先进水平,为B级绝缘的有刷三相同步发电机。在这段时间还开发了ST系列有刷单相同

同步发电机励磁自动控制系统练习参考答案

一、名词解释 1.励磁系统 答:与同步发电机励磁回路电压建立、调整及在必要时使其电压消失的有关设备和电路。 2.发电机外特性 答:同步发电机的无功电流与端电压的关系特性。 3.励磁方式 答:供给同步发电机励磁电源的方式。 4.无刷励磁系统 答:励磁系统的整流器为旋转工作状态,取消了转子滑环后,无滑动接触元件的励磁系统。 5.励磁调节方式 答:调节同步发电机励磁电流的方式。 6.自并励励磁方式 答:励磁电源直接取自于发电机端电压的励磁方式。 7.励磁调节器的静态工作特性 答:励磁调节器输出的励磁电流(电压)与发电机端电压之间的关系特性。 8.发电机调节特性 答:发电机在不同电压值时,发电机励磁电流IE与无功负荷的关系特性。 9.调差系数 答:表示无功负荷电流从零变至额定值时,发电机端电压的相对变化。 10.正调差特性 答:发电机外特性下倾,当无功电流增大时,发电机的端电压随之降低的外特性。11.负调差特性 答:发电机外特性上翘,当无功电流增大时,发电机的端电压随之升高的外特性。12.无差特性 答:发电机外特性呈水平.当无功电流增大时,发电机的端电压不随之变化的外特性。

13.强励 答:电力系统短路故障母线电压降低时,为提高电力系统的稳定性,迅速将发电机励磁增加到最大值。 二、单项选择题 1.对单独运行的同步发电机,励磁调节的作用是( A ) A.保持机端电压恒定; B.调节发电机发出的无功功率; C.保持机端电压恒定和调节发电机发出的无功功率; D.调节发电机发出的有功电流。 2.对与系统并联运行的同步发电机,励磁调节的作用是( B ) A.保持机端电压恒定; B.调节发电机发出的无功功率; C.调节机端电压和发电机发出的无功功率; D.调节发电机发出的有功电流。 3.当同步发电机与无穷大系统并列运行时,若保持发电机输出的有功 PG = EGUG sinδ为常数,则调节励磁电流时,有( B )等于常数。 X d A.U G sinδ; B.E Gsinδ; C.1 X d ?sinδ; D.sinδ。 4.同步发电机励磁自动调节的作用不包括( C )。 A.电力系统正常运行时,维持发电机或系统的某点电压水平; B.合理分配机组间的无功负荷; C.合理分配机组间的有功负荷; D.提高系统的动态稳定。 5.并列运行的发电机装上自动励磁调节器后,能稳定分配机组间的( A )。A.无功负荷;

励磁系统建模危险点预控措施表(新版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 励磁系统建模危险点预控措施表 (新版)

励磁系统建模危险点预控措施表(新版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 作业名称 励磁系统建模 序号 危险点 控制措施 检查执行情况(工作负责人填写) 1 人员思想状态不稳 班组长或工作负责人要对言行、情绪表现非正常状况的成员进行沟通、谈心,帮助消除或平息思想上的不正常波动,保持良好的工作心态,否则不能进入生产现场进行作业 2 人员精神状态不佳 班组长或工作负责人要观察、了解成员精神状态,对酒后上班、

睡眠不足、过度劳累、健康欠佳等成员严禁进入工作现场3 工作票 1、工作票上所填写的安全措施应完善; 2、工作票上的安全措施确已正确执行,并确认无误; 3、工作负责人应向工作班成员交待安全注意事项; 4、外协人员或厂家工作人员必须在监护下进行作业。 4 人身触电 1.试验设备摆放时应轻起轻放,避免碰撞。 2.远离带电设备,对高压设备保持一定的距离(10kV及以下的带电设备应保持0.7米的安全的距离、20kV/35kV应保持1.0米的安全距离、110kV及以下的应保持1.5米的安全距离、220kV应保持 3.00米得安全距离) 3.接线时严格参照试验接线图。 4.接线完成以后由试验负责人检查核实。 5.严禁试验中人员私自改动接地线 5

励磁系统建模试验方案资料

励磁系统建模试验方案

目录 1.试验目的 (1) 2.试验内容 (1) 3.试验依据 (1) 4.试验条件 (1) 5.设备概况及技术数据 (2) 6.试验内容 (4) 7.试验分工 (5) 8.环境、职业健康安全风险因素辨识和控制措施 (6) 9.试验设备 (6)

1.试验目的 对被测试机组的励磁系统进行频率响应以及动态响应测试,确认励磁系统模型参数和特性,为电力系统分析计算提供可信的模型数据。 2.试验内容 2.1励磁系统模型传递函数静态验证试验。 2.2发电机空载特性测量及空载额定状态下定子电压等各物理量的测量。 2.3发电机时间常数测量。 2.4 A VR比例放大倍数测量试验。 2.5系统动态响应测试(阶跃试验)。 2.6 20%大干扰阶跃试验。 2.7对发电机进行频率响应测试。 3.试验依据 Q/GDW142-2012《同步发电机励磁系统建模导则》 设备制造厂供货资料及有关设计图纸、说明书。 4.试验条件 4.1资料准备 励磁调节器制造厂应提供AVR和PSS模型和参数。 电机制造厂应提供发电机的有关参数和特性曲线。 4.2设备状态要求 被试验发电机组励磁系统已完成全部常规的检查和试验,调节器无异常,具备开机条件。

5.设备概况及技术数据 容量为135MW,励磁系统形式为自并励励磁方式,励磁调节器采用南瑞电控公司生产的NES6100型数字励磁调节器。其励磁系统结构框图如图1: 图1 励磁系统框图 5.1励磁调节器模型: 图2 励磁调节器模型

5.2发电机: 生产厂家:南京汽轮机电机厂 型号:QFR-135-2 额定视在功率:158.8 MV A 额定有功功率:135 MW 额定定子电压:13.8 kV 额定定子电流:6645 A 额定功率因数:0.85 额定励磁电流:893 A 额定励磁电压:403 V 额定空载励磁电流:328 A 额定空载励磁电压:147 V 额定转速:3000 r/min 发电机轴系(发电机+燃气轮机)转动惯量(飞轮转矩):18.91t.m2 转子绕组电阻:0.3073Ω(15℃)0.3811Ω(75℃), 0.4179Ω(105℃试验值) 转子绕组电感: 直轴同步电抗Xd(非饱和值/饱和值):219.04/197.15 直轴瞬变电抗Xd’(非饱和值/饱和值):30.02/27.02 直轴超瞬变电抗Xd”(非饱和值/饱和值):19.63/17.67 横轴同步电抗Xq(非饱和值/饱和值):205.96/182.36 横轴瞬变电抗Xq’(非饱和值/饱和值):36.03/32.42 横轴超瞬变电抗Xq”(非饱和值/饱和值):23.1/20.79 直轴开路瞬变时间常数Td0’ : 9.8 秒 横轴开路瞬变时间常数Tq0’ : 1.089秒 直轴开路超瞬变时间常数Td0” : 0.06秒 横轴开路超瞬变时间常数Tq0” : 0.054秒

最新发电机励磁系统

发电机励磁系统

发电机励磁系统 一、简介: 励磁系统是同步发电机的重要组成部分,它是供给同步发电机励磁电源的一套系统,励磁系统是一种直流电源装置。励磁系统一般由两部分组成:(如图一所示)一部分用于向发电机的磁场绕组提供直流电流,以建立直流磁场,通常称作励磁功率输出部分(或称励磁功率单元)。另一部分用于在正常运行或发生故障时调节励磁电流,以满足安全运行的需要,通常称作励磁控制部分(或称励磁控制单元或励磁调节器)。 励磁功率单元向同步发电机转子提供直流电流,即励磁电流,以建立直流磁场。励磁功率单元有足够的可靠性并具有一定的调节容量。在电力系统运行中,发电机依靠电流的变化进行系统电压和本身无功功率的控制因此,励磁功率单元应具备足够的调节容量以适应电力系统中各种运行工况的要求。而且它有足够的励磁顶值电压和电压上升速度具有较大的强励能力和快速的响应能力。 励磁调节器根据输入信号和给定的调节准则控制励磁功率单元的输出,是整个励磁系统中较为重要的组成部分。励磁调节器的主要任务是检测和综合系统运行状态的信息,以产生相应的控制信号,经放大后控制励磁功率单元以得到所要求的发电机励磁电流。系统正常运行时,励磁调节器就能反映发电机电压高低以维持发电机电压在给定水平。应能迅速反应系统故障,具备强行励磁等控制功能以提高暂态稳定和改善系统运行条件。

在电力系统的运行中,同步发电机的励磁控制系统起着重要的作用,它不仅控制发电机的端电压,而且还控制发电机无功功率、功率因数和电流等参数。 图一 二、励磁系统必须满足以下要求: 1、正常运行时,能按负荷电流和电压的变化调节(自动或手动)励磁电流,以维持电压在稳定值水平,并能稳定地分配机组间的无功负荷。 2、整流装置提供的励磁容量应有一定的裕度,应有足够的功率输出,在电力系统发生故障,电压降低时,能迅速地将发电机地励磁电流加大至最大值(即顶值),以实现发动机安全、稳定运行。 3、调节器应设有相互独立的手动和自动调节通道; 4、励磁系统应装设过电压和过电流保护及转子回路过电压保护装置。 三、励磁系统方式: 励磁方式,就是指励磁电源的不同类型。 一般分为三种:直流励磁机方式、交流励磁机方式、静止励磁方式。 静止励磁系统。由机端励磁变压器供给整流器电源,经三相全控整流桥控制发电机的励磁电流。

几种常见的励磁系统介绍

发电机的心脏——励磁系统 发电机励磁系统概述励磁系统是同步发电机的重要组成部分,它是供给同步发电机励磁电源的一套系统。励磁系统一般由两部分组成:(如图一所示)一部分用于向发电机的磁场绕组提供直流电流,以建立直流磁场,通常称作励磁功率输出部分(或称励磁功率单元)。另一部分用于在正常运行或发生故障时调节励磁电流,以满足安全运行的需要,通常称作励磁控制部分(或称励磁控制单元或励磁调节器)。在电力系统的运行中,同步发电机的励磁控制系统起着重要的作用,它不仅控制发电机的端电压,而且还控制发电机无功功率、功率因数和电流等参数。在电力系统正常运行的情况下,维持发电机或系统的电压水平;合理分配发电机间的无功负荷;提高电力系统的静态稳定性和动态稳定性,所以对励磁系统必须满足以下要求: 图一 1、常运行时,能按负荷电流和电压的变化调节(自 动或手动)励磁电流,以维持电压在稳定值水平,并能稳定地分配机组间的无功负荷。 2、应有足够的功率输出,在电力系统发生故障,电压降低时,能迅速地将发电机地励磁电流加大至最大值(即顶值),以实现发动机安全、稳定运行。 3、励磁装置本身应无失灵区,以利于提高系统静态稳定,并且动作应迅速,工作要可靠,调节过程要稳定。我热电分厂现共有三期工程,5台同步发电机采用了3种励磁方式: 1、图二为一期两台QFG-6-2型发电机的励磁系统方框图。 图二

2、图三为二期两台QF2-12-2型发电机的励磁系统方框图。 图三 3、图四为三期一台QF2-12-2型发电机的励磁系统方框图 图四 一、三种发电机励磁系统的组成 一期是交流励磁机旋转整流器的励磁系统,即无刷励磁系统。如图二所示,它的副励磁机是永磁发电机,其磁极是旋转的,电枢是静止的,而交流励磁机正好相反,其电枢、硅整流元件、发电机的励磁绕组都在同一轴上旋转,不需任何滑环与电刷等接触元件,这就实现了无刷励磁。二期是自励直流励磁机励磁系统。如图三所示,发电机转子绕组由专用的直流励磁机DE供电,调整励磁机磁场电阻Rc可改变励磁机励磁电流中的IRC从而达到调整发电机转子电流的目的。三期采用的是静止励磁系统。这类励磁系统不用励磁机,由机端励磁变压器供给整流器电源,经三相全控整流桥控制发电机的励磁电流。 二、励磁电流的产生及输出

第一章 同步发电机励磁系统概述

第一章 同步发电机励磁系统概述 [ 摘 要 ] 本文阐述了同步发电机励磁系统的任务及发展,讨论了同步发电机的不同励磁方式及其特点,最后介绍了在发电机励磁控制系统的基本要求和相关技术。 [ 关键词 ] 同步发电机 励磁系统 第一节 同步发电机励磁系统的任务和发展 同步发电机的励磁系统一般由两部分组成。一部分用于向发电机的磁场绕组提供直流电流,以建立直流磁场,通常称为励磁功率输出部分(或称为功率单元)。另一部分用于在正常运行或发生事故时调节励磁电流,以满足运行的需要。这一部分包括励磁调节器、强行励磁、强行减磁和自动灭磁等,一般称为励磁控制部分(或称为控制单元)。 不论在系统正常还是在故障情况下,同步发电机的直流励磁电流都需要控制,因此励磁系统是同步发电机的重要组成部分。励磁系统不但与发电机及其相联的电力系统的运行经济指标密切相关,而且与发电机及其电力系统的运行稳定性能密切相关。 一.同步发电机励磁系统的任务 (一)控制发电机的端电压 维持发电机的端电压等于给定值是电力系统调压的主要手段之一,在负荷变化的情况下,要保证发电机的端电压为给定值则必须调节励磁。 由发电机的简化相量图(图1-1)可得: E U jI X q f f d =+ ??(1-1) 式中:??E q——发电机的空载电势; U f——发电机的端电压; I f ——发电机的负荷电流比例。 图1-1 同步发电机简化向量图 式(1-1)说明,在发电机空载电势E q 恒定的情况下,发电机端电压U f 会随负荷电流If 的加大而降低,为保证发电机端电压U f 恒定,必须随发电机负荷电流I f 的增加(或减小),增加(或减小)发电机的空载电势E q ,而E q 是发电机励磁电流Ifq 的函数(若不考虑饱和,Eq 和Ifq 成正比),故在发电机运行中,随

同步电动机励磁系统常见故障分析

同步电动机励磁系统常见故障分析 作者:陆业志 本文结合KGLF11型励磁装置,对其在运行中的常见故障进行分析。 1 常见故障分析 (1)开机时调节6W,励磁电流电压无输出。 原因分析:励磁电流电压无输出,肯定是晶闸管无触发脉冲信号,而六组脉冲电路同时无触发脉冲很可能是移相插件接触不良,或者同步电源变压器4T损坏,造成没有移相给定电压加到六组脉冲电路的1V1基极回路上,从而六组脉冲电路无脉冲输出导致晶闸管不导通。 (2)励磁电压高而励磁电流偏低。 原因分析:这是个别触发脉冲消失或是个别晶闸管损坏的缘故。个别触发脉冲消失可能是脉冲插件接触不良。另外图1中三极管1V1、单极晶体管2VU及小晶闸管9VT损坏,或者是电容2C严重漏电或开路。如果主回路中晶闸管1VT~6VT中有某一个开路或是触发极失灵,同样会导致输出励磁电流偏低的现象。 (3)合励磁电路主开关时,励磁电流即有输出。 原因分析:这是由于图1所示脉冲电路中的三极管1V1集电极-发射极之间漏电,即使移相电路还未送来正确的控制电压,也会导致1C充电到2VU导通的程度。2VU即输出触发使小晶闸管9VT导通,2C经9VT放电而发出脉冲令1VT、3VT、6VT之一触发导通,使转子励磁电路中流过直流电流。 (4)同步电动机起动时,励磁不能自行投入。 原因分析:励磁不能自行投入。肯定是自动投励通道电路中断或工作不正常,因此可能是投励插件与插座间接触不良,或是图2所示投励电路中的三极管3V1、单结晶体管4VU工作不正常,电容5C漏电、电位器W′损坏。另外是移相插件同样有接触不良现象,或者是图3所示移相电路的小晶闸管10VT损坏等等。 (5)运行过程中励磁电流电压上下波动。 原因分析:引起励磁电流电压输出不稳的原因很多,主要有1)脉冲插件可能存在接触不良,造成个别触发脉冲时有时无。2)图1所示脉冲电路的电位器4W松动,使三极管1V1电流负反馈发生变化,造成放大器工作点不稳定,从而影响晶闸管主回路输出的稳定性。另外,如果电容2C漏电或单结晶体管2VU及三极管1V1性能不良,也会引起触发脉冲相位移动。3)图3所示移相电路的电位器6W松动或接触不良,将会使移相控制电压Ed间歇性消失,引起励磁电流电压输出大幅度波动。另外,如果稳压管7VS、8VS损坏,都会使Ey随电网电压波动而波动,使Ed输出波动,造成晶闸管主回路直流输出不稳。 (6)励磁装置输出电压调不到零位。

(12)Std 421.5-1992 IEEE推荐的电力系统稳定研究用励磁系统数学模型要点

NARI IEEE推荐的电力系统稳定研究用 励磁系统数学模型 IEEE Std 421.5-1992 IEEE电力工程学会 能源开发和发电委员会提出 IEEE标淮局1992,3,19批准 国电自动化研究院 电气控制技术研究所译 2003年7月

目录 1.范围 (3) 2.参考文献 (3) 3.同步电机励磁系统在型励磁系统模型研究中的表示法 (4) 4.同步电机端电压变送器和负荷补偿器模型 (5) 5.DC型直流励磁机 (6) 5.1DC1A型励磁系统模型 (6) 5.2DC2A型励磁系统模型 (7) 5.3DC3A型励磁系统模型 (8) 6.AC型交流励磁机-整流器励磁系统模型 (9) 6.1AC1A型励磁系统模型 (9) 6.2AC2A型励磁系统模型 (10) 6.3AC3A型励磁系统模型 (11) 6.4AC4A型励磁系统模型 (11) 6.5AC5A型励磁系统模型 (13) 6.6AC6A型励磁系统模型 (14) 7. ST型励磁系统模型 (15) 7.1 ST1A型励磁系统模型 (15) 7.2 ST2A 型励磁系统模型 (16) 7.3 ST3A型励磁系统模型 (17) 8. 电力系统稳定器 (18) 8.1 PSS1A型电力系统稳定器 (18) 8.2 PSS2A型电力系统稳定器 (19) 9. 断续作用励磁系统 (20) 9.1 DEC1A型断续作用励磁系统 (20) 9.2 DEC2A型断续作用励磁系统 (22) 9.3 DEC3A型断续作用励磁系统 (22) 10. 文献目录 (23) 附录A 符号表 (23) 附录B 相对(标么)单位制 (25) 附录C 励磁机饱和负荷效应 (26) 附录D 整流器调整率 (27) 附录E 限制的表示 (28) 附录F 用消除快反馈环避免计算问题 (30) 附录G 同步电机内感应反向磁场电流流通路径 (35) 附录H 励磁限制器 (36) 附录I 采样数据…………………………………………………37--- ..46

发电机励磁系统的数学模型

发电机励磁系统的数学模型

课程设计报告 课程名称电力系统自动装置原理 设计题目发电机励磁系统数学建模 及PID控制仿真 设计时间2016-2017学年第一学期 专业年级电气133班 姓名姚晓 学号2012012154 提交时间2016年12月30日 成绩 指导教师陈帝伊谭亲跃 水利与建筑工程学院

发电机励磁系统数学建模及PID控制仿真 摘要:本文主要进行了发电机励磁系统的数学建模和PID控制仿真。励磁系统在电力系统的规划与控制领域都有非常重要的作用,精确的模型结构与参数是选择有效控制手段和整个电力系统仿真准确性的基础。文中通过对励磁系统建模及仿真的研究,在整理系统稳定性判断理论发展的基础上,运用MATLAB软件仿真,论证了PID励磁调节可有效地改进励磁控制品质,仿真试验是调整励磁系统参数的有效措施。 关键字:电力系统、励磁系统、根轨迹、PID、仿真

目录 第一章绪论 (6) 1.1本课题研究意义 (6) 1.2本文主要内容 (6) 第二章发电机励磁系统的数学模型 (8) 2.1励磁系统数学模型的发展 (8) 2.2发电机励磁系统原理与分类 (9) 2.3发电机励磁系统的数学模型 (9) 2.3.1励磁机的传递函数 (9) 2.3.2励磁调节器各单元的传递函数 (11) 2.3.3同步发电机的传递函数 (11) 2.3.4励磁稳定器 (12) 2.4励磁控制系统的传递函数 (12) 第三章励磁控制系统的稳定性 (13) 3.1传统方法绘制根轨迹 (13) 3.2用MATLAB绘制根轨迹 (15) 第四章 PID在发电机励磁系统中的应用 (16) 4.1同步发电机的励磁系统的动态指标 (16) 4.2无PID调节的励磁系统 (16) 4.2.1源程序 (16) 4.2.2数值计算结果 (20) 4.3有PID调节的励磁系统 (21) 4.3.1源程序 (22) 4.3.2数值计算结果 (25) 第五章总结与体会 (27) 参考文献 (28)

发电机励磁系统

发电机励磁系统 1、励磁系统的重要作用 励磁系统的主要作有:1)根据发电机负荷的变化相应的调节励磁电流,以维持机端电压为给定值;2)控制并列运行各发电机间无功功率分配;3)提高发电机并列运行的静态稳定性;4)提高发电机并列运行的暂态稳定性;5)在发电机内部出现故障时,进行灭磁,以减小故障损失程度;6)根据运行要求对发电机实行最大励磁限制及最小励磁限制。二、励磁系统的工作原理励磁装置是指同步发电机的励磁系统中除励磁电源以外的对励磁电流能起控制和调节作用的电气调控装置。励磁系统是电站设备中不可缺少的部分。励磁系统包括励磁电源和励磁装置,其中励磁电源的主体是励磁机或励磁变压器;励磁装置则根据不同的规格、型号和使用要求,分别由调节屏、控制屏、灭磁屏和整流屏几部分组合而成。励磁装置的使用,是当电力系统正常工作的情况下,维持同步发电机机端电压于一给定的水平上,同时,还具有强行增磁、减磁和灭磁功能。对于采用励磁变压器作为励磁电源的还具有整流功能。励磁装置可以单独提供,亦可作为发电设备配套供应。三、发电机励磁系统的组成励磁功率单元向同步发电机转子提供励磁电流;而励磁调节器则根据输入信号和给定的调节准则控制励磁功率单元的输出。励磁系统的自动励磁调节器对提高电力系统并联机组的稳定性具有相当大的作用。尤其是现代电力系统的发展导致机组稳定极限降低的趋势,也促使励磁技术不断发展。同步发电机的励磁系统主要由功率单元和调节器(装置)两大部分组成。其中励磁功率单元是指向同步发电机转子绕组提供直流励磁电流的励磁电源部分,而励磁调节器则是根据控制要求的输入信号和给定的调节准则控制励磁功率单元输出的装置。由励磁调节器、励磁功率单元和发电机本身一起组成的整个系统称为励磁系统控制系统。励磁系统是发电机的重要组成部份,它对电力系统及发电机本身的安全稳定运行有很大的影响。自动调节励磁的组成部件有机端电压互感器、机端电流互感器、励磁变压器;励磁装置需要提供以下电流,厂用AC380v、厂用DC220v控制电源.厂用DC220v合闸电源;需要提供以下空接点,自动开机.自动停机.并网(一常开,一常闭)增,减;需要提供以下模拟信号,发电机机端电压100V,发电机机端电流5A,母线电压100V,励磁装置输出以下继电器接点信号;励磁变过流,失磁,励磁装置异常等。励磁控制、保护及信号回路由灭磁开关,助磁电路、风机、灭磁开关偷跳、励磁变过流、调节器故障、发电机工况异常、电量变送器

同步发电机励磁系统的简述

同步发电机励磁的简述 摘要:励磁系统是同步发电机组的重要构成部分,它的技术性能及运行的可靠性,对供电质量、继电保护可靠动作、加速异步电动机自启动和发电机与电力系统的安全稳定运行都有重大的影响。随着国内外励磁系统的研制不断取得进展,各型励磁系统不断涌现。综合各种因素的比较,交流无刷励磁机励磁系统和静止励磁系统(发电机自并励系统)两种励磁系统在工程是实际应用中占有很大的优势。 关键词:励磁直流发电机交流励磁机永磁机稳定 笔者所涉及的火电厂主要为中小型火力发电厂,下面着重介绍在我们所涉及的工程中常用的他励交流励磁机励磁系统和静止励磁系统(发电机自并励系统)两种励磁系统,其他励磁系统只做简单介绍。 一、概述 励磁系统是提供同步发电机可调励磁电流装置的组合。同步发电机的励磁系统一般由励磁功率单元和励磁调节器两个部分组成,励磁功率单元向同步发电机转子提供直流电流,即励磁电流:励磁调节器根据输入信号和给定的调节准则控制励磁功率单元的输出。整个励磁自动控制系统是由励磁调节器、励磁功率单元、发电机构成的一个反馈控制系统。 对同步发电机的励磁进行控制,是对发电机的运行实行控制的重要内容之一。电力系统在正常运行时,发电机励磁电流的变化主要影响电网的电压水平和并联运行机组间无功功率的分配,在某些故障情况下,发电机端电压降低将导致

电力系统稳定水平下降。为此,当系统发生故障的时候,要求发电机迅速增大励磁电流,以维持电网的电压水平及稳定性,可见,同步发电机励磁的自动控制在保证电能质量,无功功率的合理分配和提高电力系统运行的可靠性方面都起着非常重要的作用。优良的励磁控制系统不仅可以保证发电机可靠运行,提供合格的电能,而且还可以有效提高系统的技术指标。 二、同步发电机励磁系统的分类及其性能特点 同步发电机为了实现能量的转换,需要有一个直流磁场,而产生这个磁场的直流电流,称为发电机的励磁电流。根据励磁电流的供给方式,凡是从其它电源获得励磁电流的发电机,称为他励发电机,从发电机本身获得励磁电源的,则称为自励发电机。 同步发电机的励磁电源实质上是一个可控的直流电源。为了满足正常运行的要,发电机励磁电源必须具备足够的调节容量,并且要有一定的强励倍数和励磁电压响应速度。在设计励磁系统方案时,首先应考虑他的可靠性。为了防止系统电网故障对他的影响,励磁功率单元往往作为发电机的专用电源,另外,它的起励方式也应力求简单方便。 在电力系统发展初期,同步发电机容量不大,励磁电流由与发电机组同轴的直流发电机供给,既所谓直流励磁机励磁系统。随着发电机容量的提高,所需励磁电流也相应增大,机械整流在换流方面遇到了困难,而大功率半导体整流元件制造工艺却日益成熟,于是大容量机组的励磁功率单元就采用了交流发电机和半

同步发电机励磁系统概述

同步发电机励磁系统概述 励磁系统是同步发电机的重要组成部分,直接影响发电机的 运行特性。励磁系统一般由两部分构成:第一部分是励磁功率单元,它向同步发电机的励磁绕组提供直流励磁电流;第二部分是 励磁调节器,它根据发电机的运行状态,自动调节功率单元输出 的励磁电流,以满足发电机远行的要求。 同步发电机励磁系统的任务 无论在稳态运行或暂态过程中,同步发电机的运行状态在很 大程度上与励磁有关。优良的励磁系统不仅可以保证发电机运行 的可靠性和稳定性,而且可以有效地提高发电机及其相联的电力 系统的技术经济指标。为此,在正常运行或事故情况下,同步发 电机都需要调节励磁电流。励磁调节应执行下列任务。 一、电压控制及无功分配 在发电机正常运行工况下,励磁系统应维持发电机端电压 (或升压变压器高压侧电压)在给定水平。当发电机负荷改变而 端电压随之变化时,由于励磁调节器的调节作用,励磁系统将自 动地增加或减少供出的励磁电流,使发电机端电压回复到给定水平,保证有一定的调压精度。当机组甩负荷时,通过励磁系统的 调节作用,应限制机瑞电压使之不致过份升高。另外.当几台机 组并列运行时,通过励磁系统应能稳定地分配机组的无功功率。 维持电压水平和机组间稳定分损无功功率,这是励磁调节应执行 的基本任务。调节作用,应限制机瑞电压使之不致过份升高。另外.当几台机组并列运行时,通过励磁系统应能稳定地分配机组的无功功率。维持电压水平和机组间稳定分损无功功率,这是励磁调节应执行的基本任务。 二、提高同步发电机并列运行的稳定性 电力系统可靠供电的首要要求,是使并入系统中的所有同步 发电机保持同步运行。系统在运行中随时会遭受各种扰动,这样,伴随着励磁调节,系统将由一种平衡状态企图建立新的平衡状

同步电机励磁系统

同步电机励磁系统 Excitation system for synchronous electricalmachines-Definitions GB/T 7409.11997 本标准是对GB 7409—87的修订。 GB 7409—87执行七年来,技术已有新的发展,其中有些内容IEC已制定了国际标准。为适应技术发展的要求和贯彻积极采用国际标准的精神,原标准需作修订。 为便于采用IEC标准和今后增补、修订标准的方便,经技术委员会研究,将GB 7409改编为系列标准:修订后的GB 7409.1等同采用IEC 34-16-1:1991;GB 7409.2等同采用IEC 34-16-2:1991,至于GB 7409.3,由于IEC目前还没有相应的标准,此部分是根据GB 7409执行七年的情况并参考了美国IEEE std 421.1—1986、421.A—1978、421.B—1979和原苏联ГОСТ21558—88等标准编写的。 本标准定义的同步旋转电机的励磁系统术语为一般通用的术语。同步电机励磁系统所有 各分标准在使用同步电机励磁系统技术名词和术语时均符合本标准之规定。其他未包括的术 语,应在同步电机励磁系统各分标准中作补充规定。 本标准由全国旋转电机标准化技术委员会汽轮发电机分技术委员会提出并归口。 本标准负责起草单位:哈尔滨大电机研究所。 主要起草人:忽树岳。 IEC

1)IEC(国际电工委员会)是由所有国家的电工技术委员会(IEC国家委员会)组成的世界范围内的标准化组织。IEC的目的是促进电工和电子领域内所有有关标准化问题的国际间的合 作。为此目的和除其他活动之外,IEC出版国际标准。这些标准是委托各个技术委员会制定 的;对所讨论的主题感兴趣的任何一个国家委员会都可以参加起草工作,与IEC有联系的国际的,政府的和非政府的组织也可以参加起草工作。IEC和ISO(国际标准化组织)按两大组织之间共同确定的条件紧密合作。 2)IEC关于技术问题的正式决议或协议是由代表各国家委员会专门利益的技术委员会 所制定的,这些决议或协议都尽可能充分地表达了国际上所涉及的问题的一致意见。 3)这些决议或协议均以标准、技术报告或导则的形式出版且以推荐的形式供国际上使 用,并在此意义上为各国家委员会所承认。 4)为了促进国际上的统一,IEC各国家委员会应尽最大可能在各自的国家和地区标准中 明确地采用IEC国际标准,并应清楚地指明IEC标准与对应的本国或本地区标准之间的某 些分歧。 5)IEC对任何申明符合其某些标准的设备不提供表明它已被认可的标记过程,并且也不 对其负责。 IEC

同步发电机励磁系统的建模及仿真

[键入文档标题] 专业:电气工程及其自动化姓名: 学号: 指导教师:

同步发电机励磁系统的建模及仿真 发电机的三分之一故障来自于同步发电机的励磁系统,所以研究同步发电机励磁系统对于电力系统有举足轻重的作用。所谓同步发电机励磁系统就是向励磁绕组供给励磁电流的整套装置。按照励磁功率产生的方式不同,同步发电机的励磁方式可以分为自励式和他励式两种。自励式是将发电机发出的交流电经过整流后输送到同步发电机的励磁侧,而他励式是同步发电机的励磁侧单独采用直流励磁机或交流励磁机作为电源供电。 以单机―无穷大系统为模型进行研究。单机―无穷大系统模型是简单电力系统分析中最简单最常用的研究对象,其示意图如图1所示,该仿真系统由同步励磁发电机、变压器、双回路输电线和无穷大系统构成。其中,同步励磁发电机参数为200MVA、13800V、112.5r/min、50Hz,变压器参数为Y―Y型210MVA。 图1单机―无穷大系统示意图 建模及其仿真步骤如下。 1.选择模块 首先建立一个Simulink 模型窗口,然后根据系统的描述选择合适的模块添加至模型窗口中,建立模型所需的模块如下:

1)选择Machines 模块库下的Synchronous Machine pu Standard 模块作为同步励磁发电机、Excitation System 模块作为励磁控制器。 2)选择Elements 模块库下的Three-Phase Transformer (Two Windings) 模块作为三相升压变压器、Three-Phase Series RLC Load 模块作为三相并联RLC 负载接地、Three-Phase Fault 模块作为任意相之间或者任意相与地之间的短路、Ground 模块作为接地。 3)选择Electrical Source 模块库下的Three-Phase Source 模块作为无穷大系统。 4)选择Measurements 模块库下的Voltage Measurement 模块作为电压测量。 5)选择Math Operation 模块库下的Gain 模块。 6)选择Sources 模块库下的Constant 模块。 7)选择Signal Routing 模块库下的Bus Selector 模块作为输出信号选择器。 8)选择Sinks 模块库下的Scope 模块。 2. 搭建模块 将模块放在合适的位置,将模块从输入端至输出端进行连接,搭建完的Simulink 励磁系统模型如图2 所示。 图2 Simulink 励磁系统模型

发电机的励磁系统介绍

发电部培训专题(发电机的励磁系统)(因为目前我公司的励磁系统的资料还没有到,该培训资料还是不全面的,其间还有许多不足之处希望大家批评指正)

我厂励磁系统采用的是机端自并励静止励磁系统,全套引入ABB公司型号为UNITROL5000励磁系统。 发电机励磁系统能够满足不超过额定励磁电压和额定励磁电流倍情况下的连续运行。励磁系统具有短时间过负荷能力,励磁强励倍数为2倍,允许强励时间为20秒,励磁系统强励动作值为倍的机端电压值。 我厂励磁系统可控硅整流器设置有备用容量,功率整流装置并联支路为5路。当一路退出运行后还可以满足强励及额定励磁电压和额定励磁电流倍情况下的连续运行工况;当两路退出运行时还可以满足额定励磁电压和额定励磁电流倍情况下的连续运行工况,但闭锁强励功能。5路整流装置均设有均流装置,均流系数不低于95%。整流柜冷却风机有100%的额定容量,其通风装置有两路电源供电并可以自动进行切换。任意一台整流柜或风机有故障时,都会发生报警。每一路整流装置都设有快速熔断器保护。 我厂励磁系统主要包括:励磁变、励磁调节器、可控硅整流器、起励和灭磁单元几个部分。如图所示:

我厂励磁变采用三相油浸式变压器,其容量为7500KV A,变比为,接线形式为△/Y5形式,高压侧每相有3组CT ,其中两组分别提供给发变组保护A、C柜,另一组为测量用。低压侧设有三组CT其中两组分别提供给发变组保护A、C柜,另一组为备用。高压侧绝缘等级是按照35KV设计的,它设有静态屏蔽装置。 我厂励磁调节器采用的是数字微机型,具有微调节和提高暂态稳定的特性。励磁调节器设有过励限制、过励保护、低励限制、电力系统稳定器、过激磁限制、过激磁保护、转子过电压和PT断线保护单元。自动调节器有两个完全相同而且独立的通道,每个通道设有独立的CT、PT稳压电源元件。两个通道可实现自动跟踪和无扰动切换。单通道可以完全满足发电机各种工况运行。自动调节器具备以下4种运行方式:机端恒压运行方式、恒励磁电流运行方式、恒无功功率运 行方式、恒功率因数运行方式。自动调节器采用风机强制通风。

同步发电机怎么励磁

无刷励磁发电机的轴端头是一台交流发电机,其转子是发电绕组,发出的电流通过固定在发电机轴上的导线引导固定在轴上的硅整流管,整流后的直流直接进入转子绕组,其中没有整流刷这个东西,所以成为无刷励磁。 无刷励磁发电机的轴端头是一台交流发电机,其转子是发电绕组,发出的电流通过固定在发电机轴上的导线引导固定在轴上的硅整流管,整流后的直流直接进入转子绕组,其中没有整流刷这个东西,所以成为无刷励磁。曾经风靡过一段时间,但是由于整流管坏了就得停机,所以现在已经用的很少了,基本都采用自复励系统。 同步发电机励磁方式分为两大类:一类是用直流发电机作为励磁电源的直流励磁系统;另一类是用硅整流装置将交流转化成直流后供给励磁的整流器励磁系统。现说明如下: 1.直流励磁机励磁 直流励磁机通常与同步发电机同轴,采用并励或他励接法。采用他励接法时,励磁机的励磁电流由另一台被称为副励磁机的同轴的直流发电机供给。 2.静止励磁器励磁 同一轴上有3台发电机,即主发电机、交流主励磁机和交流副励磁机。副励磁机的励磁电流开始时由外部直流电源提供,待电压建立起来后再转为自励(有时采用永磁发电机)。副励磁机的输出电流经过静止晶闸管整流器整流后供给主励磁机,而主励磁机的交流输出电流经过静止的三相桥式硅整流器整流后供给主发电机的励磁绕组。 3.旋转整流器励磁 静止整流器的直流输出必须经过电刷和集电环才能输送到旋转的励磁绕组,对于大容量的同步发电机,其励磁电流达到了数千安培,使得集电环严重过热。因此,在大容量的同步发电机中,常采用不需要电刷和集电环的旋转整流器励磁系统。主励磁机是旋转电枢式三相同步发电机,旋转电枢的交流电流经与主轴一起旋转的硅整流器整流后,直接送到主发电机的转子励磁绕组。交流主励磁机的励磁电流由同轴的交流副励磁机经静止的晶闸管整流器整流后供给。用于这种励磁系统取消了集电环和集电装置,故又称为无刷励磁系统。

同步发电机励磁系统

四川大学 电力系统自动装置 题目同步发电机励磁系统 学院电气信息学院 专业电气工程及其自动化

同步发电机励磁系统及励磁调节器工作原理 一励磁系统的结构 励磁系统,一般来讲,就是与同步发电机励磁回路电压建立,调整以及必要时使其电压消失的有关元件和设备的总称。 同步发电机的自动励磁调节通常分为两部分: 第一部分是励磁功率单元,用于向发电机的磁场绕组提供直流电流,已建立直流磁场。 第二部分是励磁调节器,用于在正常运行或发生事故时调节励磁电流或自动灭磁等以满足运行的需要。 二自动励磁调节系统的作用: 1。电力系统正常运行时,维持发电机或系统某点电压水平。当发电机无功负荷变化时,一般情况下机端电压要发生相应的变化,此时自动励磁调节装置应能供给要求的励磁功率,满足不同负荷情况下励磁

电流的自动调节,维持机端或系统某点电压水平。 负荷波动—功率变化—电压变化 负荷增大—电压降低—励磁电流增大 同步发电机的励磁系统就是通过不断调节励磁电流来维持给定的电压。 2。合理分配发电机间的无功功率。发电机的无功负荷与励磁电流有着密切的关系,励磁电流的自动调节,要影响发电机间无功负荷的分配,所以对励磁系统的调节特征有一定的要求。

励磁电流的变化只是改变了机组的无功功率和功率角的大小。 与无限大母线并列运行的机组,调节励磁电流可以改变发电机无功功率的数值即控制无功分配。 3。提高电力系统稳定性 电力系统在运行中随时可能受到各种干扰,受到干扰后,电力系统稳定性的要求能够恢复到原来的状态或者过渡到一个新的运行状态。其主要标志是暂态过程结束后,同步发电机能维持或恢复同步运行。励磁调节系统对静态稳定和暂态稳定的影响 (1)对改善静态稳定的影响

励磁系统建模危险点预控措施表(2021)

励磁系统建模危险点预控措施 表(2021) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0722

励磁系统建模危险点预控措施表(2021) 作业名称 励磁系统建模 序号 危险点 控制措施 检查执行情况(工作负责人填写) 1 人员思想状态不稳 班组长或工作负责人要对言行、情绪表现非正常状况的成员进行沟通、谈心,帮助消除或平息思想上的不正常波动,保持良好的工作心态,否则不能进入生产现场进行作业 2

人员精神状态不佳 班组长或工作负责人要观察、了解成员精神状态,对酒后上班、睡眠不足、过度劳累、健康欠佳等成员严禁进入工作现场3 工作票 1、工作票上所填写的安全措施应完善; 2、工作票上的安全措施确已正确执行,并确认无误; 3、工作负责人应向工作班成员交待安全注意事项; 4、外协人员或厂家工作人员必须在监护下进行作业。 4 人身触电 1.试验设备摆放时应轻起轻放,避免碰撞。 2.远离带电设备,对高压设备保持一定的距离(10kV及以下的带电设备应保持0.7米的安全的距离、20kV/35kV应保持1.0米的安全距离、110kV及以下的应保持1.5米的安全距离、220kV应保持 3.00米得安全距离)

相关主题
文本预览
相关文档 最新文档