当前位置:文档之家› 非线性电路发展趋势

非线性电路发展趋势

非线性电路发展趋势
非线性电路发展趋势

非线性电路理论的发展趋势微波有源电路的设计和研制一直是微波技术研究领域中的主要工作,人们已在设计和研制各种微波有源电路的过程中积累了丰富的经验,并提出了不少成功的方法二,一仁.但是,直到八十年代初,大部分研究工作和设计方法采用的都是线性电路理论.而实

际上,有源器件都存在非线性,传统的线性电路理论难以满足分析和设计现代微波有源

电路的要求.微波有源器件的非线性一方面要影响整个系统的性能,而另一方面,有些电路如变频器和振荡器等又必须利用器件的非线性才能实现.虽然基于线性假设的小信号线性分析方法可以近似处理部分弱非线性电路(如放大器等),但不能处理振荡器、变频器等强非线性电路,也不能分析放大器的交调特性.现代微波有源电路的设计应采用非

线性电路理论困.一般来说,分析和设计微波有源非线性电路要比分析和设计无源线性

电路复杂得多,必须借助计算机辅助技术才能实现.自八十年代初以来,微波有源电路的非线性理论及其机辅分析和设计技术的研究已逐渐成为微波技术研究领域中的热

门,IEEE微波年会、欧洲微波会议和亚太微波会议等每次都有专题介绍这方面的研究工作。

电路理论是重要的基础理论,是研究电路的基本规律及其计算方法的学科。非线性电路理论长期以来一直是电路理论的一个重要分支,因为一切实际电路严格说来都是非线性的。然而,由于非线性电路理论的研究较线性理论的研究困难得多,其原因在于:

(1)非线性电路要涉及求解非线性代数方程和非线性微分方程;

(2)非线性电路不遵循叠加原理,现有的分析线性电路的方法不能直接用于分析非线性电路;

(3)非线性元器件的种类和用途繁多,很难找到一个普适性的模型和方法。因此,在很长的一段时间内非线性电路理论进展缓慢。

尽管如此,世界各国的电路学者对非线性电路的研究兴趣仍然是与日俱增的。这是因为非线性电路在理论与实践上都具有十分重要的意义。实际上,许多现代电工技术,就其基本概念来说,都是以非线性的理论作为基础的。例如在通信系统中,调制、检波、混频、振荡等环节都是依靠非线性器件而工作的,甚至连“线性放大”也是依靠非线性器件来实现的,为此,人们设计了许多非线性器件以实现上述种种目的。还有一类问题,其中的非线性虽然不是有意设计出来的,但它是一种客观存在。在这种情况下,许多非线性现象用传统的电路理论已经无法解释,忽视非线性的传统做法再也不能适应新技术迅速发展的形势。因此,非线性电路的基础理论急需发展,以驾驭这些不同于线性电路的客观规律,避其所害,用其所利。

近年来,随着新型器件的不断出现、微电子与集成电路技术的发展,以及电子计算机在电子系统设计领域中的应用,非线性电路理论越来越显示出它的重要性,并日益受到重视。非线性电路理论与分析已经是信号、电路与系统专业的一门重要课程。在过去的三十多年时间里,世界上有许多学者在非线性电路理论的研究工作中作了大量的开创性工作,取得了丰硕的成果。可以预见在今后相当长的时期内,这将仍是一个活跃的科研领域。

非线性电路的研究现状

非线性电路的研究几乎是与线性电路平行的,并已经提出了许多具体方法。如:幂级数法,描述函数法,谐波平衡法,Volterra级数分析法等。但总的来说,由于非线性电路本身所包含的现象十分复杂,这些方法都有其局限性,不能成为分析和设计非线性

电路的通用方法。非线性电路理论的研究目前还处在发展阶段,还有许多问题有待于进一步探讨。

幂级数法

幂级数法是把非线性系统用一个线性滤波器(或其它频率敏感网络)后跟一个无记忆、宽带转移非线性“元件”加以模型化。如图所示。

图非线性系统的幂级数模型

其中线性滤波器的频域特性用线性传递函数H(f)表示,非线性部分的时域特性用其幂级数系数()表示

(1-1)

一般级数在N阶处截断,取有限值做近似计算,以取代无穷项。

传递函数变量w(t)和u(t)可以是小信号增量电流或电压,非线性部分可以代表一个非线性电流、电压、转移电阻、或转移放大器。转移函数f(u)应为单值、弱非线性的,并且通过取其级数的若干项就可以恰当地代表非线性。线性函数H(f)可以代表一个滤波器或匹配网络。

幂级数模型很容易分析,因为图中所示的各个部分可以孤立处理,即给定输入x(t),可直接使用线性方法求出线性滤波器的输出u(t);将u(t)的表达式带入非线性的幂级数表达式(式(1-1)),则可确定无记忆非线性的输出w(t)。

虽然幂级数法的概念简单明了,但它有一定的局限性。首先,如果电路不能用一个简单的传递非线性来描述,使用这种方法将十分困难,甚至不可能,而很多实际电路往往都不能用一个简单的传递非线性描述;其次,对含有记忆元件如电容的电路,不可能写成幂级数,事实上电路是具有这些元件的,非线性电抗的存在造成在计算交截点时不再是幂级数所认定的直线,而是具有波动,所以采用幂级数计算的结果存在一些误差,只是一个近似。

描述函数法

系统的方块图表示法是线性系统理论中的一种有效方法,这种方法可以推到非线性系统,因为许多非线性系统都可以简化为一个闭环反馈系统,如图。

@

G(s)为线性滤波器,N(A)表示一个非线性环节。假定非线性环节的输入信号为正弦波

(1-2)

输出信号则是周期函数,可展开成傅氏级数

(1-3)

假定非线性特性是对称的,则。又假定线性部分具有良好的低通滤波特性,则高次谐波的影响很小,可以忽略不计。在此情况下,式(1-3)变为

(1-4)式中幅度n是a,和bi的函数,即

(1-5)仿照线性环节传递函数的定义,可得

(1-6)式(1-6)中N(A)是非线性环节的传递函数,称为描述函数,式(1-4)可写成

(1-7)

式(1-7)与线性环节的描述方程在形式上相同。一般把图称为等效线性化系统,而把包含N(A)的系统方程称为等效线性方程。不过在这里,N(A)是振幅的函数,这一等效线性方程在本质上仍是非线性的。

描述函数法优点是理论分析简单,系统方块图易于变换,N(A)可以通过实验确定。值得注意的是,描述函数法的有效性条件是系统的非线性环节具有良好的低通特性,在满足这一条件的情况下,只考虑基波才是合理的。不过对于实际系统来说,高次谐波分量不一定能够忽略,为此,为了提高分析的精确度,人们提出了多描述函数法的理论,但这种方法相当繁琐。

谐波平衡法

谐波平衡法的基本思想是:把一个非线性电路分解为线性和非线性子网络两部分,如图所示,找一组端口电压波形(或者谐波电压分量),使线性子网络方程和非线性子网络方程给出相同的电流,实际上就是建立谐波平衡方程,然后采用恰当的方法求解。

图分为线性子网和非线性子网的非线性电路

线性子网络部分按多端口网络处理,用Y矩阵、S矩阵或其它矩阵描述。非线性子网络中的非线性元件用其I/V或Q/V特性描述,并用时域分析。

如果把端口电流频率分量用向量表示,则有

式中的是线性子网的第n个端口上的第k阶电流谐波分量的向量,它由各端口

电压和线性子网络的Y矩阵求得。表示非线性部分向量,由各端口电压和非线性元

件求得,该方程就是谐波平衡方程,通过求解该方程就可得出每个谐波电压分量。具体求解谐波平衡方程的方法有:优化法、分裂法、牛顿法和反射算法等。

谐波平衡法不仅可以用于分析弱非线性电路,而且还可以用来分析多频率大信号激励下的强非线性电路。该方法建立方程简单,但计算较复杂。

级数分析法

Volterra级数是非线性系统的一种通用的表达形式,是线性系统描述的直接扩展。利用该方法可以导出与线性系统传递函数相似的非线性传递函数,它能把寻求非线性电路的n阶转移函数的问题转化为对线性电路进行n次频域分析。

早在1887年,意大利科学家Vito Volterra在研究非线性解析泛函数时就提出了Volterra级数的概念[[3],他当时仅把Volterra级数作为Taylor级数的推广。二十世纪四十年代,第一次使用Volterra级数描述非线性系统,并把这种级数用于非线性电路的分析。

从二十世纪五十年代到八十年代这一时期,关于Volterra级数的研究一直比较活跃。但由于一个本质性的困难,即Volterra级数的维数灾难问题(随着Volterra核阶次的增高,表示Volterra核参数的数目呈指数增长),以及当时计算能力的限制,使得应用很少。

九十年代以来,信号处理界和控制界对Volterra级数的研究和应用又出现一股热潮,国内也有相关专著出现。在基于Volterra级数的非线性系统稳定性分析、Volterra 核辨识、基于Volterra级数的控制研究等方面职得了一定的理论成果在文献中,和利

用Volterra级数法提出了分析非线性振荡电路的n阶决定方程,A和分

别为正弦振荡幅值与角频率,它可以判断非线性电路中是否存在振荡和以任意期望的精度求得振荡电路的幅度与频率。

Volterra级数法的有效性在于是否容易得到非线性元件的Volterra核,由于等人研究出了测量Volterra核的方法,可以预见Volterra级数分析法将是研究现代非线性系统的重要方法。

非线性电路的分析方法除了以上列出的几种以外,还有变换矩阵分析法、等效小参量法、相平面法等,在此不再一列举。

其它理论在非线性电路分析中的应用

电.路与系统的基本规律及其计算方法的研究是电路理论分析与应用研究者的根本任务。如何建立一套用来分析和设计各种类型的电路与系统的技术是电子科学技术领域不断创新、不断发展的热点。回顾三十年代电路理论的建立和六十年代以来近代电路理论的形成,富有成效的分析和设计电路与系统的理论方法和求解技巧不断出现。

随着VLSI和计算机科学技术的飞速发展,电路与系统的规模愈来愈大,新的工程概念不断产生,科学技术的交叉性、综合性越来越强,计算复杂性日益提高,因此,传统的分析、研究方法和求解策略己不能完全适应新的变革,从而促进了应用于电路与系统领域的新理论和方法的巨大发展。主要的理论与方法有:神经网络计算,遗传算法,面向对象设计,模糊逻辑,小波变换,网络模型计算复杂度等。目前用于非线性电路理论的理论与方法主要为神经网络计算,遗传算法,模糊逻辑,网络模型计算复杂度等。

. 1神经网络计算

神经网络计算是一种仿生信息处理技术,模拟人(或其他动物)脑神经系统中神经元有规律的互连而形成网络的学习、联想、记忆、逻辑推理等智能的电路系统,与传统的计算机相比人工神经网络在存储方式、信息处理方式、信息加工对象、运算工作方式等方面上具有显著的优越性。

在非线性电路理论中,主要用神经网格计算寻找最优解。能够进行优化计算的神经网络有Hopfield网、Boltzmann网(BM), Cauchy网,但最常用的是Hopfield网,这类神经网络是一非线性动力学系统,可用二次能量函数来描述该系统的状态,其稳定性对应着能量的大小,因为系统从高能向低能的稳定过程类似于约束满足问题的搜索最优解过程,所以可以用这类网络求解优化计算问题。

可以看出神经网络计算可归为数值分析法,所以这种方法也同样具有数值分析法的优缺点,以Hopfield网为例,凡可将目标函数描述成网络能量函数形式的求解问题,基本上均能用它来计算,且收敛速度快,但由于Hopfield网的稳定点有多个,而且其稳定点可能是局部最优,即Hopfield网每次计算只能最多得一解,全局寻优能力差。

遗传算法

遗传算法(Genetic Algorithm简称GA)是模拟生物界中的自然选择与生物遗传机制的一种搜索算法。它将“适者生存”这一基本的达尔文进化理论引入串结构,并且在串之间进行有组织但又随机的信息交换技术。遗传算法具有很强的鲁棒性(robustness),所谓鲁棒性是指能在许多不同的环境中通过效率及功能之间的协调平衡以求生存的能

力。遗传算法正是吸收了自然生物系统“适者生存”的进化原理,从而使它能够提供一个在复杂空间中进行鲁棒性搜索的方法。

遗传算法在几个基本方面不同于传统优化方法:

GA运算的是解集的编码,而不是解集本身。

GA的搜索始于解的一个群体,而不是单个解。

GA通过目标函数计算适应值,而不需使用导数或其他附属信息。

GA采用概率的,而非确定的状态转移规则。

遗传算法已成为人们用来解决高度复杂问题的一个新思想和新方法。得到了广泛的应用,尤其是在优化计算等领域。

GA从诞生之日起,就引起人们极大的兴趣,新的被改写GA不断被提出。对GA的改进可以分为以下几个方面:编码方法,母本选择,基因操作子的设计,参数控制技术等,目的是使GA在一定的环境下,最大限度地避免未成熟收敛、欺骗问题等缺点与不利之处。

网格模型计算复杂度

当前对于网格模型计算复杂性的分析,重点是仅对存储量和运算量相联系的空间复杂性和时间复杂性进行的,这有很大的局限性。另外神经网格计算、模糊集合及遗传算法的相互结合,新的智能计算方法在信息处理方式(信息表示、程序设计、体系结构等)上都有重大的变革,因此就必须冲破传统的Turing模型意义下的计算复杂理论的制约,建立一个新的理论基础,以适应智能计算系统发展的需要。

电路与系统模型的建立和计算都会产生组合优化问题,即根据目标函数的某些性能评价准则在搜索空间中满足问题要求的最佳结构。对于不少问题能够找到有效的解算方法。计算复杂性理论为评价和区分这两类问题提供了方法论。它研究在可利用的空间和时间范围完成计算的问题,即研究现实可计算性问题。

模糊逻辑

模糊集合理论是一种仿效生物信息处理模式以获得柔性信息处理的理论方法[[lo,。因为现实世界中遇到的对象很多是模糊的、不精确定义的类型,它们的成员没有精确定义的判别标准。模糊集正反映了这类不满足互补律的“亦此亦彼”的模糊性,其所对应的逻辑是一种连续值逻辑或称呼为模糊逻辑((Fuzzy Logic)。

模糊现象与随机现象是客观世界中有本质区别的两种现象,与之对应的模糊性与随机性的数学模型是有根本区别的。如果说概率与统计学将数学的应用范围从必然现象扩展到随机现象的领域,那么,模糊数学将数学的应用范围从清晰现象扩大到模糊现象的领域。但是模糊性与随机性之间存在着某种必然的联系—两者都有不确定性。如果求解电路系统涉及到了随机技术,就存在不确定性,显然就可能用到模糊技术〔川.上述非线性电路计算方法还没有进入实用阶段,目前主要是用于理论计算。

总结与展望

随着科学技术的发展和进步,越来越多的非线性现象引起了人们的重视。对非线性问题的研究己经渗透到人类科研活动的许多领域。随着人们对事物认识程度的不断加深,对系统性能要求的不断提高,非线性系统理论逐渐成为理论研究的热点。

多年的理论研究和实践工作表明,Volterra级数法是一种十分有效的分析非线性系统的方法,工程实际中有很大一类非线性系统都可以由Volterra级数来表示。Volterra级数为人们更好的认识和研究非线性现象和非线性系统提供了一种强有力的工具。

采用Volterra级数法所得到的非线性传递函数是线性系统的传递函数在非线性系统中的直接推广。非线性传递函数是系统的固有特性,能完整地表示一个非线性系统,而与输入信号的选择无关,利用它可以很直观的研究非线性系统的谐波、增益压缩/扩张、频率互调制等频率特性,具有鲜明的物理意义。

然而,Volterra级数法也有它的不足:Volterra级数法要求电路的非线性特性要用幂级数表示,否则不适用;分析一般的动态系统时,计算过程往往是非常繁琐的,确定高阶的非线性传递函数需要计算大量的数据,因而一般都用计算机辅助分析;另外这种方法的低阶精确度并不高,而且与幂级数一样也有收敛性问题。

近年来,关于Volterra级数及其应用的研究得到了各国学者的广泛关注,已基于Volterra级数的非线性电路研究经取得了许多成果,但这一领域尚有许多理论和工程应用问题有待研究解决:

1.目前Volterra级数法仅限于分析弱非线性系统,其在强非线性系统方面的应用尚有待更进一步的探索和开发;

2.现有文献都是关于稳态方面的研究,暂态方面的结果尚未见发表;

3.研制计算机软件系统,以便系统地编列非线性大系统的各阶Volterra核的表达式,并对电路的稳态和暂态响应进行分析;

4.对非线性器件和系统的各阶Volterra核进行精确的测量。

集成电路的现状与发展趋势

集成电路的现状与发展趋势 1、国内外技术现状及发展趋势 目前,以集成电路为核心的电子信息产业超过了以汽车、石油、钢铁为代表的传统工业成为第一大产业,成为改造和拉动传统产业迈向数字时代的强大引擎和雄厚基石。1999年全球集成电路的销售额为1250亿美元,而以集成电路为核心的电子信息产业的世界贸易总额约占世界GNP的3%,现代经济发展的数据表明,每l~2元的集成电路产值,带动了10元左右电子工业产值的形成,进而带动了100元GDP的增长。目前,发达国家国民经济总产值增长部分的65%与集成电路相关;美国国防预算中的电子含量已占据了半壁江山(2001年为43.6%)。预计未来10年内,世界集成电路销售额将以年平均15%的速度增长,2010年将达到6000~8000亿美元。作为当今世界经济竞争的焦点,拥有自主版权的集成电路已曰益成为经济发展的命脉、社会进步的基础、国际竞争的筹码和国家安全的保障。 集成电路的集成度和产品性能每18个月增加一倍。据专家预测,今后20年左右,集成电路技术及其产品仍将遵循这一规律发展。集成电路最重要的生产过程包括:开发EDA(电子设计自动化)工具,利用EDA进行集成电路设计,根据设计结果在硅圆片上加工芯片(主要流程为薄膜制造、曝光和刻蚀),对加工完毕的芯片进行测试,为芯片进行封装,最后经应用开发将其装备到整机系统上与最终消费者见面。 20世纪80年代中期我国集成电路的加工水平为5微米,其后,经历了3、1、0.8、0.5、0.35微米的发展,目前达到了0.18 微米的水平,而当前国际水平为0.09微米(90纳米),我国与之相差约为2-3代。 (1)设计工具与设计方法。随着集成电路复杂程度的不断提高,单个芯片容纳器件的数量急剧增加,其设计工具也由最初的手工绘制转为计算机辅助设计(CAD),相应的设计工具根据市场需求迅速发展,出现了专门的EDA工具供应商。目前,EDA主要市场份额为美国的Cadence、Synopsys和Mentor等少数企业所垄断。中国华大集成电路设计中心是国内唯一一家EDA开发和产品供应商。 由于整机系统不断向轻、薄、小的方向发展,集成电路结构也由简单功能转向具备更多和更为复杂的功能,如彩电由5片机到3片机直到现在的单片机,手机用集成电路也经历了由多片到单片的变化。目前,SoC作为系统级集成电路,能在单一硅芯片上实现信号采集、转换、存储、处理和I/O等功能,将数字电路、存储器、MPU、MCU、DSP等集成在一块芯片上实现一个完整系统的功能。它的制造主要涉及深亚微米技术,特殊电路的工艺兼容技术,设计方法的研究,嵌入式IP核设计技术,测试策略和可测性技术,软硬件协同设计技术和安全保密技术。SoC以IP复用为基础,把已有优化的子系统甚至系统级模块纳入到新的系统设计之中,实现了集成电路设计能力的第4次飞跃。

74系列芯片数据手册大全

74系列芯片数据手册大全 74系列集成电路名称与功能常用74系列标准数字电路的中文名称资料7400 TTL四2输入端四与非门 7401 TTL 集电极开路2输入端四与非门 7402 TTL 2输入端四或非门 7403 TTL 集电极开路2输入端四与非门 7404 TTL 六反相器 7405 TTL 集电极开路六反相器 7406 TTL 集电极开路六反相高压驱动器 7407 TTL 集电极开路六正相高压缓冲驱动器 7408 TTL 2输入端四与门 7409 TTL 集电极开路2输入端四与门 7410 TTL 3输入端3与非门 74107 TTL 带清除主从双J-K触发器 74109 TTL 带预置清除正触发双J-K触发器 7411 TTL 3输入端3与门 74112 TTL 带预置清除负触发双J-K触发器 7412 TTL 开路输出3输入端三与非门 74121 TTL 单稳态多谐振荡器 74122 TTL 可再触发单稳态多谐振荡器 74123 TTL 双可再触发单稳态多谐振荡器 74125 TTL 三态输出高有效四总线缓冲门 74126 TTL 三态输出低有效四总线缓冲门 7413 TTL 4输入端双与非施密特触发器 74132 TTL 2输入端四与非施密特触发器 74133 TTL 13输入端与非门 74136 TTL 四异或门 74138 TTL 3-8线译码器/复工器 74139 TTL 双2-4线译码器/复工器 7414 TTL 六反相施密特触发器 74145 TTL BCD—十进制译码/驱动器 7415 TTL 开路输出3输入端三与门 74150 TTL 16选1数据选择/多路开关 74151 TTL 8选1数据选择器 74153 TTL 双4选1数据选择器 74154 TTL 4线—16线译码器 74155 TTL 图腾柱输出译码器/分配器 74156 TTL 开路输出译码器/分配器 74157 TTL 同相输出四2选1数据选择器 74158 TTL 反相输出四2选1数据选择器 7416 TTL 开路输出六反相缓冲/驱动器 74160 TTL 可预置BCD异步清除计数器 74161 TTL 可予制四位二进制异步清除计数器

数字信号处理技术及发展趋势

数字信号处理技术及发展趋势 贵州师范大学物电学院电子信息科学与技术 罗滨志 120802010051 摘要 数字信号处理的英文缩写是DSP,而数字信号处理又是电子设计领域的术语,其实现的功能即是用离散(在时间和幅度两个方面)所采样出来的数据集合来表示和处理信号和系统,其中包括滤波、变换、压缩、扩展、增强、复原、估计、识别、分析、综合等的加工处理,从而达到可以方便获得有用的信息,方便应用的目的【1】。而DPS实现的功能即是对信号进行数字处理,数字信号又是离散的,所以DSP大多应用在离散信号处理当中。 从DSP的功能上来看,其发展趋势日益改变着我们的科技的进步,也给世界带来了巨大的变化。从移动通信到消费电子领域,从汽车电子到医疗仪器,从自动控制到军用电子系统中都可以发现它的身影【2】。拥有无限精彩的数字信号处理技术让我们这个世界充满变化,充满挑战。 In this paper Is the abbreviation of digital signal processing DSP, the digital signal processing (DSP) is the term in the field of electronic design, the function of its implementation is to use discrete (both in time and amplitude) sampling represented data collection and processing of signals and systems, including filtering, transformation, compression, extension, enhancement, restoration, estimation, identification, analysis, and comprehensive processing, thus can get useful information, convenient for the purpose of convenient application [1]. And DPS the functions is to digital signal processing, digital signal is discrete, so most of DSP applications in discrete signal processing. From the perspective of the function of DSP, and its development trend is increasingly changing our of the progress of science and technology, great changes have also brought the world. From mobile communication in the field of consumer electronics, from automotive electronics to medical equipment, from automatic control to the military electronic systems can be found in the figure of it [2]. Infinite wonderful digital signal processing technology to let our world full of changes, full of challenges

集成电路封装的发展现状及趋势

集成电路封装的发展现 状及趋势 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

序号:39 集成电路封装的发展现状及趋势 姓名:张荣辰 学号: 班级:电科本1303 科目:微电子学概论 二〇一五年 12 月13 日

集成电路封装的发展现状及趋势 摘要: 随着全球集成电路行业的不断发展,集成度越来越高,芯片的尺寸不断缩小,集成电路封装技术也在不断地向前发展,封装产业也在不断更新换代。 我国集成电路行业起步较晚,国家大力促进科学技术和人才培养,重点扶持科学技术改革和创新,集成电路行业发展迅猛。而集成电路芯片的封装作为集成电路制造的重要环节,集成电路芯片封装业同样发展迅猛。得益于我国的地缘和成本优势,依靠广大市场潜力和人才发展,集成电路封装在我国拥有得天独厚的发展条件,已成为我国集成电路行业重要的组成部分,我国优先发展的就是集成电路封装。近年来国外半导体公司也向中国转移封装测试产能,我国的集成电路封装发展具有巨大的潜力。下面就集成电路封装的发展现状及未来的发展趋势进行论述。 关键词:集成电路封装、封装产业发展现状、集成电路封装发展趋势。 一、引言 晶体管的问世和集成电路芯片的出现,改写了电子工程的历史。这些半导体元器件的性能高,并且多功能、多规格。但是这些元器件也有细小易碎的缺点。为了充分发挥半导体元器件的功能,需要对其进行密封、扩大,以实现与外电路可靠的电气连接并得到有效的机械、绝缘等

方面的保护,防止外力或环境因素导致的破坏。“封装”的概念正事在此基础上出现的。 二、集成电路封装的概述 集成电路芯片封装(Packaging,PKG)是指利用膜技术及微细加工技术,将芯片及其他要素在框架或基板上布置、粘贴固定及连线,引出接线端并通过可塑性绝缘介质灌封固定,构成整体立体结构的工艺。此概念称为狭义的封装。 集成电路封装的目的,在于保护芯片不受或少受外界环境的影响,并为之提供一个良好的工作条件,以使集成电路具有稳定、正常的功能。封装为芯片提供了一种保护,人们平时所看到的电子设备如计算机、家用电器、通信设备等中的集成电路芯片都是封装好的,没有封装的集成电路芯片一般是不能直接使用的。 集成电路封装的种类按照外形、尺寸、结构分类可分为引脚插入型、贴片型和高级封装。 引脚插入型有DIP、SIP、S-DIP、SK-DIP、PGA DIP:双列直插式封装;引脚在芯片两侧排列,引脚节距,有利于散热,电气性好。 SIP:单列直插式封装;引脚在芯片单侧排列,引脚节距等特征与DIP基本相同。

数字电路芯片大全资料

芯片大全 -- 74系列芯片资料(还算可以)! 74系列芯片资料 反相器驱动器 LS04 LS05 LS06 LS07 LS125 LS240 LS244 LS245 与门与非门 LS00 LS08 LS10 LS11 LS20 LS21 LS27 LS30 LS38 或门或非门与或非门 LS02 LS32 LS51 LS64 LS65 异或门比较器 LS86 译码器 LS138 LS139 寄存器 LS74 LS175 LS373 反相器: Vcc 6A 6Y 5A 5Y 4A 4Y 六非门74LS04 ┌┴─┴─┴─┴─┴─┴─┴┐六非门(OC门) 74LS05 _ │1413 12 11 10 9 8│六非门(OC高压输出) 74LS06 Y = A )│ │ 1 2 3 4 5 6 7│ └┬─┬─┬─┬─┬─┬─┬┘ 1A 1Y 2A 2Y 3A 3Y GND 驱动器: Vcc 6A 6Y 5A 5Y 4A 4Y ┌┴─┴─┴─┴─┴─┴─┴┐ │1413 12 11 10 9 8│ Y = A )│六驱动器(OC高压输出) 74LS07 │ 1 2 3 4 5 6 7│ └┬─┬─┬─┬─┬─┬─┬┘ 1A 1Y 2A 2Y 3A 3Y GND Vcc -4C 4A 4Y -3C 3A 3Y ┌┴─┴─┴─┴─┴─┴─┴┐ _ │1413 12 11 10 9 8│

Y =A+C )│四总线三态门 74LS125 │ 1 2 3 4 5 6 7│ └┬─┬─┬─┬─┬─┬─┬┘ -1C 1A 1Y -2C 2A 2Y GND Vcc -G B1 B2 B3 B4 B8 B6 B7 B8 ┌┴─┴─┴─┴─┴─┴─┴─┴─┴─┴┐8位总线驱动器 74LS245 │20 19 18 17 16 15 14 13 12 11│ )│DIR =1 A=>B │ 1 2 3 4 5 6 7 8 9 10│DIR=0 B=>A └┬─┬─┬─┬─┬─┬─┬─┬─┬─┬┘ DIR A1 A2 A3 A4 A5 A6 A7 A8 GND 页首非门,驱动器与门,与非门或门,或非门异或门,比较器译码器寄存器 正逻辑与门,与非门: Vcc 4B 4A 4Y 3B 3A 3Y ┌┴─┴─┴─┴─┴─┴─┴┐ │1413 12 11 10 9 8│ Y = AB )│2输入四正与门 74LS08 │ 1 2 3 4 5 6 7│ └┬─┬─┬─┬─┬─┬─┬┘ 1A 1B 1Y 2A 2B 2Y GND Vcc 4B 4A 4Y 3B 3A 3Y ┌┴─┴─┴─┴─┴─┴─┴┐ __ │1413 12 11 10 9 8│ Y = AB )│2输入四正与非门 74LS00 │ 1 2 3 4 5 6 7│ └┬─┬─┬─┬─┬─┬─┬┘ 1A 1B 1Y 2A 2B 2Y GND Vcc 1C 1Y 3C 3B 3A 3Y ┌┴─┴─┴─┴─┴─┴─┴┐ ___ │1413 12 11 10 9 8│ Y = ABC )│3输入三正与非门 74LS10 │ 1 2 3 4 5 6 7│ └┬─┬─┬─┬─┬─┬─┬┘ 1A 1B 2A 2B 2C 2Y GND Vcc H G Y

国家电网未来发展趋势

国家电网未来发展趋势 王亮201711131076 上周四有幸听了席老师的讲座,感触颇深,席老师为我们讲述了国家电网的发展历史,公司内部的组成,以及现在的技术动态。我觉得既然是学生,我们离毕业还有两年,我们更应该关注国家电网未来的发展趋势,只有这样,我们才能领先别人,赢在起跑线上。 伴随着中国电力发展步伐不断加快,中国电网也得到迅速发展。电网系统运行电压等级不断提高,网络规模也不断扩大。全国已经形成了东北电网、华北电网、华中电网、华东电网、西北电网和南方电网6个跨省的大型区域电网,并基本形成了完整的长距离输电电网网架。 广义的电网是发电设备、输配电设备和用电设备采用一定的结构和运行模式构建起来的统一整体。因此,自从有了发电机及其相应的供电系统,便有了电网。1882年,爱迪生公司在纽约建成世界上第一座正规的直流电站和相应的供电系统,可以认为是人类首个真正意义上的电网。然而,由于当时不能为直流电升压,输电距离和输电容量受到极大的限制,于是,特斯拉于1887年发明了交流发电机和多相交流输电技术。1897年,美国西屋公司在尼亚加拉水电站的首台交流发电机投入运行并为35公里外的水牛城供电,从此确立了现代电网的基础。 2015年3月,《关于进一步深化电力体制改革的若干意见》出台,在发电侧和售电侧开放市场引入竞争,价格由市场形成,同时管住中间的输配电网环节,电网公司一家垄断局面将被打破。目前电网建设已成为我国电力建设的主要方向,电网建设前景诱人。“十三五”期间,我国电网投资规模持续扩张,到2020年将全面建成统一的坚强智能电网,初步实现建设世界一流电网的目标。 展望未来,我们认为,未来电网将呈现以下重要发展趋势: 第一,可再生能源将成为电网中的主要一次能源来源。人类已经认识到化石能源是不可持续的能源,有必要大力发展可再生能源来替代之。这是因为:(1)核能在本世纪中叶前难以成为主导能源。核裂变能的原料也属于有限资源,且其利用存在安全风险,核废料处理也比较复杂。由于核裂变能的利用还涉及到国际安全环境,当前的核裂变能技术出口是受到国际有关条约严格控制的。尽管核聚变能可满足人类长期发展需求,但其应用前景尚不明朗,ITER(国际热核聚变堆)计划到本世纪中叶才能建成首个示范电站。(2)可再生能源是可持续发展的绿色能源,且可开采量足够人类使用。据统计分析,地球上接收的太阳能是人类目前能源需求总量的10000倍。地球上的风能总量也达到了目前人类能源需求总量的5倍,如果再算上水力资源、生物质能源、地热能、海洋能,则可再生能源的总量更大。由此可见,可再生能源发展潜力巨大。(3)可再生能源目前已经得到很大的发展。随着技术不断进步,可再生能源发电的单位成本呈逐年下降趋势。根据欧洲、美国和日本等发达国家和地区的预计,到2020年,光伏发电基本上可以实现平价上网。(4)国际已经有共识认为,可再生能源今后仍然会快速发展,且将逐渐成为主导能源。例如,2012年,国际能源署(IEA)发布的《2012年世界能源展望》,对2035年前的全球能源趋势作出了预测:到2015年,可再生能源将成为全球第二大电力来源,并在2035年接近第一大电力来源——煤炭的发

集成电路技术及其发展趋势

集成电路技术及其发展趋势 摘要目前,以集成电路为核心的电子产业已超过以汽车、石油、钢铁为代表的传统工业成为第一大产业,成为改造和拉动传统产业迈向数字时代的强大引擎和雄厚基石。作为当今世界竞争的焦点,拥有自主知识产权的集成电路已日益成为经济发展的命脉、社会进步的基础、国际竞争的筹码和国家安全的保障。 关键词集成电路系统集成晶体管数字技术

第一章绪论 1947年12月16日,基于John Bardeen提出的表面态理论、Willianm Shockley给出的放大器基本设想以及Walter Brattain设计的实验,美国贝尔实验室第一次观测到具有放大作用的晶体管。1958年12月12日,美国德州仪器公司的Jack 发明了全世界第一片集成电路。这两项发明为微电子技术奠定了重要的里程碑,使人类社会进入到一个以微电子技术为基础、以集成电路为根本的信息时代。50多年来,集成电路已经广泛地应用于军事、民用各行各业、各个领域的各种电子设备中,如计算机、手机、DVD、电视、汽车、医疗设备、办公电器、太空飞船、武器装备等。集成电路的发展水平已经成为衡量一个国家现代化水平和综合实力的重要标志[1]。 现代社会是高度电子化的社会。在日常生活中,小到电视机、计算机、手机等电子产品,大到航空航天、星际飞行、医疗卫生、交通运输等行业的大型设备,几乎都离不开电路系统的应用。构成电路系统的基本元素为电阻、电容、晶体管等元器件。早期的电路系统是将分立的元器件按照电路要求,在印刷电路板上通过导线连接实现的。由于分立元件的尺寸限制,在一块印刷电路板上可容纳的元器件数量有限。因此,由分立元器件在印刷电路板上构成的电路系统的规模受到限制。同时,这种电路还存在体积大、可靠性低及功耗高等问题。 半导体集成电路是通过一系列特定的加工工艺,将晶体管、二极管等有源器件和电阻、电容等无源器件,按照一定的电路规则,互连“集成”在一块半导体单晶片上。封装在一个外壳内,执行特定的电路或系统功能。与印刷电路板上电路系统的集成不同,在半导体集成电路中,构成电路系统的所有元器件及其连线是制作在同一块半导体材料上的,材料、工艺、器件、电路、系统、算法等知识的有机“集成”,使得电路系统在规模、速度、可靠性和功耗等性能上具有不可比拟的优点,已经广泛的应用于日常生活中。半导体集成电路技术推动了电子产品的小型化、信息化和智能化进程。它彻底改变了人类的生活方式,成为支撑现代化发展的基石[2]。 1959年,英特尔(Intel)的始创人,Jean Hoerni 和Robert Noyce,在Fairchild Semiconductor开发出一种崭新的平面科技,令人们能在硅威化表面铺上不同的物料来制作晶体管,以及在连接处铺上一层氧化物作保护。这项技术上的突破取代了以往的人手焊接。而以硅取代锗使集成电路的成本大为下降,令

未来电网的发展趋势

未来电网的发展趋势 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

未来电网的发展趋势 编辑:华英电力 经历了100多年的发展,电网的规模和结构形态发生了很大的变化,即从最初的局域小规模电网发展到区域中等规模电网,进而发展到今天的跨区互联大电网。如今,电网已经为人类供应了大约四分之一的终端能源,成为现代能源体系的重要组成部分,电力在终端能源消费结构中的比例已经成为一个国家发达程度的标志之一。 未来电网将呈现以下重要发展趋势:第一,可再生能源将成为电网中的主要一次能源来源。第二,电网的结构和运行模式将发生重大变化。第三,新材料技术将在电网中得到广泛地应用。第四,物理电网将与信息系统高度融合。 广义的电网是发电设备、输配电设备和用电设备采用一定的结构和运行模式构建起来的统一整体。因此,自从有了发电机及其相应的供电系统,便有了电网。1882年,爱迪生公司在纽约建成世界上第一座正规的直流电站和相应的供电系统,可以认为是人类首个真正意义上的电网。然而,由于当时不能为直流电升压,输电距离和输电容量受到极大的限制,于是,特斯拉于1887年发明了交流发电机和多相交流输电技术。1897年,美国西屋公司在尼亚加拉水电站的首台交流发电机投入运行并为35公里外的水牛城供电,从此确立了现代电网的基础。 经历了100多年的发展,电网的基本形态没有根本性的变化,即电网以铜、铝等为基本导电材料、以传统电力设备为基础、以可调度能源(如化石能源、水力和核能等)作为电力的主要一次能源来源、以交流为运行模式的基本形态。然而,电网的规模和结构形态发生了很大的变化,即从最初的局域小规模电网发展到区域中等规模电网,进而发展到今天的跨区互联大电网。例如,2012年,我国发电总装机容量已经接近12亿千瓦,年总发电量接近5万亿度,我国电网已经基本形成了“西电东送、南北互供、全国联网”的总体格局,已经覆盖了全国大部分地区,成为世界最大的电网之一。如今,电网已经为人类供应了大约四分之一的终端能源,成为现代能源体系的重要组成部分,电力在终端能源消费结构中的比例已经成为一个国家发达程度的标志之一。 展望未来,我们认为,未来电网将呈现以下重要发展趋势: 第一,可再生能源将成为电网中的主要一次能源来源。人类已经认识到化石能源是不可持续的能源,有必要大力发展可再生能源来替代之。这是因为:(1)核能在本世纪中叶前难以成为主导能源。核裂变能的原料也属于有限资源,且其利用存在安全风险,核废料处理也比较复杂。由于核裂变能的利用还涉及到国际安全环境,当前的核裂变能技术出口是受到国际有关条约严格控制的。尽管核聚变能可满足人类长期发展需求,但其应用前景尚不明朗,ITER (国际热核聚变堆)计划到本世纪中叶才能建成首个示范电站。(2)可再生能源是可持续发展的绿色能源,且可开采量足够人类使用。据统计分析,地球上接收的太阳能是人类目前能源需求总量的10000倍。地球上的风能总量也达到了目前人类能源需求总量的5倍,如果再算上水力资源、生物质能源、地热能、海洋能,则可再生能源的总量更大。由此可见,可再生能源发展潜力巨大。(3)可再生能源目前已经得到很大的发展。随着技术不断进步,可再生能源发电的单位成本呈逐年下降趋势。根据欧洲、美国和日本等发达国家和地区的预计,到2020年,光伏发电基本上可以实现平价上网。(4)国际已经有共识认为,可再生能源今后仍然会快速发展,且将逐渐成为主导能源。例如,

集成电路论文

我国集成电路发展状况 摘要 集成电路产业是知识密集、技术密集和资金密集型产业,世界集成电路产业发展异常迅速,技术进步门新月异。虽然目前中国集成电路产业无论从质还是从量来说都不算发达,但伴随着全球产业东移的大潮,中国的经济稳定增长,巨大的内需市场,以及充裕的各类人才和丰富的自然资源,可以说中国集成电路产业的发展尽得天时、地利、人和之势,将会崛起成为新的世界集成电路制造中心。 首先,本文介绍了集成电路产业的相关概念,并对集成电路产业的重要特点进行了分析。其次,在介绍世界集成电路产业发展趋势的基础上本文对我国集成电路产业发展的现状进行了分析和论述, 并给出了发展我国集成电路的策略。 集成电路产业是信息产业和现代制造业的核心战略产业,其已成为一些国家信息产业发展中的重中之重。相比于其它地区,中国是集成电路产业的后来者,但新世纪集成电路产业的变迁为中国集成电路产业的蚓起带来了机遇,如果我们能抓住这一有利时机,中国不仅能成为集成电路产业的新兴地区,更能成为世界集成电路产业强国。 关键词:集成电路产业;发展现状;发展趋势 ABSTRACT

Integrated circuit(IC) industry is of a knowledge,technology and capital concentrated nature. IC industry in the world develops extremely fast and the technology improves everyday.Although currently China’s IC industry is not fully developed,taking into consideration of either quality or quantity of the products.with the shifting of the global industry centre to the east and with the stable economic growth,enormous market demands and abundant human and nature resources available in China,the development of China’s IC industry has favourable conditions in all aspects.and it is expected that in the near future China will become tire new IC manufacturing centre in the world. Firstly, this paper introduce the concept of IC , and analysis the important points of it. Secondly, this paper introduces the developments of IC in the word especially in China. In the end, this paper gives some advices of the developments of IC in our country. The IC is the core of information industry and modern manufacturing strategic industries. IT has become some national top priority in the development of information industry. Compared with other regions, the latter of the China's integrated circuit industry, but the changes of the IC industry in the new century for China's integrated circuit industry vermis creates opportunity, if we can seize the favorable opportunity, China can not only a new region of the integrated circuit industry, more can become the integrated circuit industry in the world powers. Key words: IC current situations tendency 前言

数字电路的发展及应用——集成电路的现状与前景及EDA技术探究

目录 摘要 (1) Abstract (1) 引言 (2) 1集成电路现状与前景 (2) 1.1国际集成电路技术和市场形势分析 (2) 1.2国内现状及前景 (3) 2 EDA技术概述 (4) 2.1 EDA技术的定义构成及特点 (4) 2.2 EDA技术的发展 (5) 2.3基于EDA技术的电子系统设计方法 (5) 2.4基于EDA技术的现场可编程门阵列(FPGA)电路 (6) 结束语 (8) 参考文献: (9)

数字电路的应用与发展 ——集成电路现状与前景及EDA技术探究 学生姓名:许文涛学号:20095042030 学院:物理电子工程学院专业:电子信息工程 指导教师:李长庚职称:副教授 摘要:时至今日,“数字化”的浪潮几乎席卷了电子技术的一切领域。电子设计的必由之路是数字化,这已成为共识。电子产品正在以前所未有的速度进行着革新。在数字集成电路方面,电路的集成度如摩尔定律所预言的那样,以每1~2年翻一番的速度增长,使电路的复杂程度越来越高、规模越来越大。可以预见,未来很长一段时间内电子领域仍将是数字化与集成化的天下。由于电子产品的更新周期日益缩短,新产品开发速度日益加快,因而对电子设计自动化(EDA)提出了更高的要求,也有力地促进了EDA技术的发展和普及。本文慨括阐述了集成电路的现状与前景及EDA技术,重点阐述EDA技术。 关键词:数字电路;集成电路;EDA技术 Application and development of digital circuit Abstract:Today,”digital " tide engulfed almost all areas of electronic technology.Electronic design the route one must take is digitized,this has become a consensus.Electronic products are to the hitherto unknown pace of innovation.In digital integrated circuits,the integration level of the circuit such as Moore's law as predicted,with every1~2 years to double the speed of growth,make the circuit complexity is getting higher and higher,more and more large scale.Can foreknow,the future for a long time the electronic field will still be digitized and integrated world.Due to the electronic product updates cycle to shorten increasingly,new product development speed to be accelerated increasingly,so the electronic design automation ( EDA ) has put forward higher requirements,but also effectively promoted the development of EDA technology and popularization.The paper summarizes the expounds the current situation and Prospect of integrated circuit and EDA technology, focusing on EDA technology. Keywords: digital circuit;integrated circuit;EDA Technology

74系列和CMOS芯片功能大全

74系列芯片功能大全7400 TTL 2输入端四与非门 7401 TTL 集电极开路2输入端四与非门 7402 TTL 2输入端四或非门 7403 TTL 集电极开路2输入端四与非门 7404 TTL 六反相器 7405 TTL 集电极开路六反相器 7406 TTL 集电极开路六反相高压驱动器 7407 TTL 集电极开路六正相高压驱动器 7408 TTL 2输入端四与门 7409 TTL 集电极开路2输入端四与门 7410 TTL 3输入端3与非门 74107 TTL 带清除主从双J-K触发器 74109 TTL 带预置清除正触发双J-K触发器7411 TTL 3输入端3与门 74112 TTL 带预置清除负触发双J-K触发器7412 TTL 开路输出3输入端三与非门 74121 TTL 单稳态多谐振荡器 74122 TTL 可再触发单稳态多谐振荡器 74123 TTL 双可再触发单稳态多谐振荡器 74125 TTL 三态输出高有效四总线缓冲门 74126 TTL 三态输出低有效四总线缓冲门

7413 TTL 4输入端双与非施密特触发器74132 TTL 2输入端四与非施密特触发器74133 TTL 13输入端与非门 74136 TTL 四异或门 74138 TTL 3-8线译码器/复工器 74139 TTL 双2-4线译码器/复工器 7414 TTL 六反相施密特触发器 74145 TTL BCD—十进制译码/驱动器 7415 TTL 开路输出3输入端三与门 74150 TTL 16选1数据选择/多路开关74151 TTL 8选1数据选择器 74153 TTL 双4选1数据选择器 74154 TTL 4线—16线译码器 74155 TTL 图腾柱输出译码器/分配器74156 TTL 开路输出译码器/分配器 74157 TTL 同相输出四2选1数据选择器74158 TTL 反相输出四2选1数据选择器7416 TTL 开路输出六反相缓冲/驱动器74160 TTL 可预置BCD异步清除计数器74161 TTL 可予制四位二进制异步清除计数器74162 TTL 可预置BCD同步清除计数器74163 TTL 可予制四位二进制同步清除计数器

未来电网发展的四大趋势 智能化是终极目标

未来电网发展的四大趋势智能化是终极目标 经历了100多年的发展,电网的规模和结构形态发生了很大的变化,即从最初的局域小规模电网发展到区域中等规模电网,进而发展到今天的跨区互联大电网。如今,电网已经为人类供应了大约四分之一的终端能源,成为现代能源体系的重要组成部分,电力在终端能源消费结构中的比例已经成为一个国家发达程度的标志之一。 未来电网将呈现以下重要发展趋势:第一,可再生能源将成为电网中的主要一次能源来源。第二,电网的结构和运行模式将发生重大变化。第三,新材料技术将在电网中得到广泛地应用。第四,物理电网将与信息系统高度融合。 肖立业 广义的电网是发电设备、输配电设备和用电设备采用一定的结构和运行模式构建起来的统一整体。因此,自从有了发电机及其相应的供电系统,便有了电网。1882年,爱迪生公司在纽约建成世界上第一座正规的直流电站和相应的供电系统,可以认为是人类首个真正意义上的电网。然而,由于当时不能为直流电升压,输电距离和输电容量受到极大的限

制,于是,特斯拉于1887年发明了交流发电机和多相交流输电技术。1897年,美国西屋公司在尼亚加拉水电站的首台交流发电机投入运行并为35公里外的水牛城供电,从此确立了现代电网的基础。 经历了100多年的发展,电网的基本形态没有根本性的变化,即电网以铜、铝等为基本导电材料、以传统电力设备为基础、以可调度能源(如化石能源、水力和核能等)作为电力的主要一次能源来源、以交流为运行模式的基本形态。然而,电网的规模和结构形态发生了很大的变化,即从最初的局域小规模电网发展到区域中等规模电网,进而发展到今天的跨区互联大电网。例如,2012年,我国发电总装机容量已经接近12亿千瓦,年总发电量接近5万亿度,我国电网已经基本形成了“西电东送、南北互供、全国联网”的总体格局,已经覆盖了全国大部分地区,成为世界最大的电网之一。如今,电网已经为人类供应了大约四分之一的终端能源,成为现代能源体系的重要组成部分,电力在终端能源消费结构中的比例已经成为一个国家发达程度的标志之一。 展望未来,我们认为,未来电网将呈现以下重要发展趋势: 第一,可再生能源将成为电网中的主要一次能源来源。人类

超大规模集成电路发展趋势

超大规模集成电路的设计发展趋势;摘要:随着信息产品市场需求的增长,尤其通过通信、;关键字:超大规模集成电路发展趋势SOCIP复用技;1引言;集成电路是采用半导体制作工艺,在一块较小的单晶硅;2超大规模集成电路发展的概述;集成电路之所以获得如此迅速的发展,与数据处理系统;1.改进性能;在计算机中采用高密度的半导体集成电路是减少信号传;2.降低成本;用Lsl替换 超大规模集成电路的设计发展趋势 摘要:随着信息产品市场需求的增长,尤其通过通信、计算机与互联网、电子商务、数字视听等电子产品的需求增长,世界集成电路市场在其带动下高速增长。本文主要从半导体电子学与计算技术工程方面进行进行的诸多研究成果以及国际集成电路的发展现状和发展趋势反映其在国际上的重要地位。 关键字:超大规模集成电路发展趋势 SOC IP复用技术 1 引言 集成电路是采用半导体制作工艺,在一块较小的单晶硅片上制作许多晶体管及电阻器、电容器等元器件,并按照多层布线或隧道布线的方法将元器件组合成完整的电子电路,通常用IC(Integrated Circuit)表示。近廿多年来,半导体电子学的发展速度是十分惊人的。从分离元件发展为集成电路,从小规模集成电路发展为现代的超大规模集成电路。集成电路的性能差不多提高了3个数量级,而其成本却下降了同样的数量级。 2 超大规模集成电路发展的概述 集成电路之所以获得如此迅速的发展,与数据处理系统日益增长的各种要求是分不开的,也是半导体电子学与计算技术工程方面进行了许多研究工作的结果。这些工作可以概括为:(l)改进性能一尽可能减少信号处理的传递时间。(2)降低成本一从设计、制造、组装、冷却等各方而降低成本。(3)提高可靠性一减少失效率,增加检测与诊断的手段。(4)缩短研制/生产周期一加快从确定研制产品到产品可用之间的时间,使产品保持领先地位。(5)结构上的改进一半导体存储器的进展,推动了计算机体系的发展。 1.改进性能 在计算机中采用高密度的半导体集成电路是减少信号传递时间,提高机器性能的重要环节。因为在普通采用小规模集成电路(551)或中规模集成电路(MSI)的硬件结构中,信号传输与负载引起的延迟,与插件上的门的有效组装密度的平方根成正比,如图(1.1.1)。也就是说,组装延迟与每个门所需的有效面积的平方根成正比。因此将组装延迟减少一半的话,必须提高组装密度4倍。从 ssl/Msl发展为LSI/VLsl标志着芯片上元件的集成度得到了很大的提高。目

74系列芯片数据手册大全2017

74系列芯片数据手册大全【强烈推荐】 74系列集成电路名称与功能常用74系列标准数字电路的中文名称资料7400 TTL四2输入端四与非门 7401 TTL 集电极开路2输入端四与非门 7402 TTL 2输入端四或非门 7403 TTL 集电极开路2输入端四与非门 7404 TTL 六反相器 7405 TTL 集电极开路六反相器 7406 TTL 集电极开路六反相高压驱动器 7407 TTL 集电极开路六正相高压缓冲驱动器 7408 TTL 2输入端四与门 7409 TTL 集电极开路2输入端四与门 7410 TTL 3输入端3与非门 74107 TTL 带清除主从双J-K触发器 74109 TTL 带预置清除正触发双J-K触发器 7411 TTL 3输入端3与门 74112 TTL 带预置清除负触发双J-K触发器 7412 TTL 开路输出3输入端三与非门 74121 TTL 单稳态多谐振荡器 74122 TTL 可再触发单稳态多谐振荡器 74123 TTL 双可再触发单稳态多谐振荡器 74125 TTL 三态输出高有效四总线缓冲门 74126 TTL 三态输出低有效四总线缓冲门 7413 TTL 4输入端双与非施密特触发器 74132 TTL 2输入端四与非施密特触发器 74133 TTL 13输入端与非门 74136 TTL 四异或门 74138 TTL 3-8线译码器/复工器 74139 TTL 双2-4线译码器/复工器 7414 TTL 六反相施密特触发器 74145 TTL BCD—十进制译码/驱动器 7415 TTL 开路输出3输入端三与门 74150 TTL 16选1数据选择/多路开关 74151 TTL 8选1数据选择器 74153 TTL 双4选1数据选择器 74154 TTL 4线—16线译码器 74155 TTL 图腾柱输出译码器/分配器 74156 TTL 开路输出译码器/分配器 74157 TTL 同相输出四2选1数据选择器 74158 TTL 反相输出四2选1数据选择器 7416 TTL 开路输出六反相缓冲/驱动器 74160 TTL 可预置BCD异步清除计数器 74161 TTL 可予制四位二进制异步清除计数器

数字电子技术的未来和发展趋势

数字电子技术的现状和未来发展趋势 摘要数字电子技术在科学的发展和市场的巨大需求的带带东下迅速的发展着,数字电子技术的应用邻域也得到了很大的扩大,数字电子技术的发展和壮大已经逐渐占领了全球信息化进程的主导地位,本篇文章简单的介绍了数字电子技术的发展现状,分析了数字电子技术的未来发展趋势。 关键词数字电子技术应用现状发展趋势 0前言 数字电子技术是当前发展最快的学科之一,电子技术可以分为数字电子技术和模拟 电子技术,就逻辑器件而言,已经从20世纪40年代的电子管、20世纪50年代的 晶体管和20世纪60年代的小规模集成电路,从中等到大规模集成,至今已发展到 超大规模集成电路。近几年又出现了可编程逻辑电路,提供了更加完善方便的设计 器件世纪过程和方法也再不断的演变和发展。半导体技术的大力发展推动应用,数 字电子技术作为电子时代的支撑技术,在全球电子信息化的进程中起着巨大的推动 作用。 1 发展现状 随着科学技术的发展和人类的进步,电子技术已经成了各种工程技术的核心,特别是进入信息时代以来,电子技术更是成了基本技术,其具体应用领域涵盖了通信领域、控制系统、测试系统、计算机等等各行各业。电子技术的出现和应用,使人类进入了高新技术时代,电子技术诞生的历史虽短,但深入的领域却是最广最深,而且成为人类探索宇宙宏光世界和微观世界的物质技术和基础。电子科学技术是人类在生产斗争和科学实验中发展起来的。1883年美国发明家爱迪生发现了热电子效应,随后在1904年弗莱明利用这个效应制成了电子二极管,并证实了电子管具有“阀门”作用,它首先被用于无线电检波。1906年美国的德福雷斯在弗莱明的二极管中放进了第三电极—栅极而发明了电子三极管,从而建树了早期电子技术上最重要的里程碑。半个多世纪以来,电子管在电子技术中立下了很大功劳;但是电子管毕竟成本高,制造繁,体积大,耗电多,从1948年美国贝尔实验室的几位研究人员发明晶体管以来,在大多数领域中已逐渐用晶体管来取代电子管。但是,我们不能否定电子管的独特优点,在有些装置中,不论从稳定性、经济性或功率上考虑,还需要采用电子管。集成电路的第一个样品是在1958年见诸于世的。集成电路的出现和应用,标志着电子技术发展到了一个新的阶段。它实现了材料、元件、电路三者之间的统一;同传统的电子元件的设计与生产方式、电路的结构形式有着本质的不同。随着集成电路制造工艺的进步,集成度越来越高,出现了在规模和超大规模集成电路(例如可在一块6平方毫米的硅片上制成一个完整的计算机),进一步显示出集成电路的优越性。按元器件集成度(芯片上所集成的元件数量)分为小规模集成电路(100个元件以上)SSI、中规模集成电路(100—1000个元件)MSI,大规模集成电路(1000—100000个元件)LSI,超大规模集成电路(100000个以上元件)VLSI等四种,现在集成度已达到数千亿。随着半导体技术的发展和科学研究、生产、管理和生活等方面的要求,电子计算机应时而兴起,并且日益完善。从1946年诞生第一台电子计算机以来,已经经历了电子管、晶体管、集成电路及大规模集成电路、超大规模集成电路,每秒运算速度已达百亿次。现在正在研究开发第五代计算机(人工智能计算机),他们不依靠程序工作,而是依靠人工智能工作。特别是从70年代微型计算机以来,由于价廉、方便、可靠、小巧,大大加快了电子计算机的普及速度。例如个人计算机,它从诞生至今不过经历十多年时间,但是它的发展却跨越了多个阶段,走进了千家万户。集计算机、电视、电话、传真机、音响等于一体的多媒体计算机也纷纷问世。以多媒体计算机、光纤电缆和互联网络为基础的信息高速公路已成为计算机诞生以来的又一次信息变革。未来的人工智能更将给人们的生活与工作方式带来前所未有的变化,随身携带微型计算机已成为一种时尚。数字控制和数字测量也在不断发展和得到日益广泛的应用。数字控制机床

相关主题
文本预览
相关文档 最新文档