当前位置:文档之家› 数字信号处理技术及发展趋势

数字信号处理技术及发展趋势

数字信号处理技术及发展趋势
数字信号处理技术及发展趋势

数字信号处理技术及发展趋势

贵州师范大学物电学院电子信息科学与技术

罗滨志 120802010051

摘要

数字信号处理的英文缩写是DSP,而数字信号处理又是电子设计领域的术语,其实现的功能即是用离散(在时间和幅度两个方面)所采样出来的数据集合来表示和处理信号和系统,其中包括滤波、变换、压缩、扩展、增强、复原、估计、识别、分析、综合等的加工处理,从而达到可以方便获得有用的信息,方便应用的目的【1】。而DPS实现的功能即是对信号进行数字处理,数字信号又是离散的,所以DSP大多应用在离散信号处理当中。

从DSP的功能上来看,其发展趋势日益改变着我们的科技的进步,也给世界带来了巨大的变化。从移动通信到消费电子领域,从汽车电子到医疗仪器,从自动控制到军用电子系统中都可以发现它的身影【2】。拥有无限精彩的数字信号处理技术让我们这个世界充满变化,充满挑战。

In this paper

Is the abbreviation of digital signal processing DSP, the digital signal processing (DSP) is the term in the field of electronic design, the function of its implementation is to use discrete (both in time and amplitude) sampling represented data collection and processing of signals and systems, including filtering, transformation, compression, extension, enhancement, restoration, estimation, identification, analysis, and comprehensive processing, thus can get useful information, convenient for the purpose of convenient application [1]. And DPS the functions is to digital signal processing, digital signal is discrete, so most of DSP applications in discrete signal processing.

From the perspective of the function of DSP, and its development trend is increasingly changing our of the progress of science and technology, great changes have also brought the world. From mobile communication in the field of consumer electronics, from automotive electronics to medical equipment, from automatic control to the military electronic systems can be found in the figure of it [2]. Infinite wonderful digital signal processing technology to let our world full of changes, full of challenges

关键字:DSP 离散数据集合数字处理科技发展

随着信息技术的不断进步,数字信号处理技术应运而生并得到迅速的发展。80年代以前,由于受到方法的限制,数字信号处理技术处于理论研究阶段,还得不到广泛的应用和普及。在那一阶段,人们利用通用计算机进行数字滤波、频谱分析等算法的研究,以及数字信号处理系统的模拟与仿真。而将数字信号处理技术推向高峰的则是实时数字信号处理技术的高速发展。

实时数字信号处理技术对数字信号处理系统的处理能力提出了严格的要求,所有运算、处理都必须小于系统可以接受的最大时延。典型实时数字信号处理系统的基本部件包括:抗混滤波器、模/数转换器、数字信号处理、数/模转换器和抗镜像滤波器。由这些部件共同完成数字信号的处理与获得有用的信号,和其他数字系统一样,实时数字信号处理系统具有很多模拟系统不具备的优点,比如说灵活性,易于维护等。当前实用的DSP系统主要有:利用X86处理器完成实时数字信号处理、利用通用微处理器完成实时数字信号处理、利用可编程逻辑阵列进行实时数字信号处理、利用数字信号处理器实现实时数字信号处理等。可以看到实时数字信号处理技术的发展给我们生活带来了无尽的方便,让我们生活变得多姿多彩,数字信号处理技术是科技发展中的重要里程碑。

随着数字信号处理技术的不断发展,数字信号处理系统的应用领域也极其广泛,它贯穿了我们生活的方方面面,其中包括基本信号处理、通信、语音、图形图像、军事、仪器仪表、控制、医疗、家用电器等诸多方面,可以看到不管是小型技术还是大型设备上都有数字信号处理技术。它就好比一根线将所有技术都穿在一起。在发展初阶段,数字信号处理技术最大的应用领域即是在通信方面,它使得移动通信设备更加个性化、智能化。而在军事领域更是数字信号处理技术的天地。由此可见,数字信号处理技术是我们当今社会必不可少的一项科学技术。它的发展直接影响着科技的进步与发展。

数字信号处理技术的发展正在极大的改变着我们的生活。作为数字化技术的奠基石,数字信号处理技术正在扮演着不可或缺的角色。数字信号处理的核心技术是信号的算法与实现功能,由于它的优越性,越来越多的人正在慢慢的认识它、接触他、掌握它,因此,看清数字信号处理技术的发展趋势,正确使用数字信号处理技术,才能更好的发挥数字信号处理技术的作用,数字信号处理技术,无非就是数字信号处理器件的使用及其功能,现当代数字信号处理器件的发展,必须兼顾3P的因素,即性能、功耗、价格【3】。总体说来,随着VLSI技术的飞速发展,现代的数字信号处理器件不仅在价格方面显著下降,在性能和功耗方面也做得非常出色,使得数字信号处理器件更能适应当今发展的总趋势,让数字信号处理技术在实际应用中占据着不可忽视的位置,相信在不久的将来数字信号处理技术又

会带领科技迈向更高台阶。

回首数字信号处理技术的发展,我们可以清楚的看到其对社会科技发展所作出的贡献是不可衡量的,因为它不仅仅是在单方向上有作用,而是贯穿着整个社会的点点滴滴,通信、语音、图形图像、军事、仪器仪表、控制、医疗、家用电器等等,它改变了我们的生活,让我们的世界变得多姿多彩、有声有色,也使得我们国家在军事方面取得突破性的成果,所以我们不能忽视它,必须要学会很好的掌握和熟悉它,让它能更好的服务于我们的社会,服务于我们广大人民群众。数字信号处理技术的发展是科技史上的重要里程碑,它的一次又一次的更新,一次又一次的进步,使得其功能变得越来越强大,能够服务和使用的方面也越来越多,就是因为一次次的改进让我们看清楚了数字信号处理技术的含金量,看清楚了它的巨大功能,所以我们必须得了解它、熟悉它,让它能更好的服务于我们的社会。能更有力的推进我们科技的进步和发展。

每一件产品、每一项技术都只有不断地更新、不断的进步以满足人们生活所需,为人们带来方便,才能更长远的立足于社会,才不会无情的被市场所淘汰。数字信号处理技术也是如此,为了满足人们所需,数字信号处理技术在不断地创新,不断地提升自己的功能,为的就是在社会中有一席之地,当然未来数字信号处理技术的发展肯定是我们无法想象的,它的进步、它的创新和强大的功能必将使其在市场上占据不可忽略的比重。未来数字信号处理技术的发展可以分为几方面的形式,首先其技术的发展趋势是数字信号处理的内核结构将进一步改善,多通道结构和单指令多重数据(SIMD)、特大指令字组(VLIM)将在新的高性能处理器中将占主导地位【4】。它将有效的将数字信号处理和微处理器融合。微处理器是成本低的,主要执行智能定向控制任务的通用处理器能很好执行智能控制任务,但是数字信号处理功能很差。而数字信号处理的功能正好与其相反。在许多应用中均需要同时具有智能控制和数字信号处理两种功能,因此,把数字信号处理和

微处理器结合起来,用单一芯片的处理器实现这两种功能,将加速个人通信机、智能电话、无线网络产品的开发,同时简化设计,减小PCB体积,降低功耗和整个系统的成本;数字信号处理技术与SOC的融合,SOC是指把一个系统集成在一块芯片上,这个系统包括数字信号处理和系统接口软件等;数字信号处理与FPGA

的融合,FPGA是现场编程门阵列器件。它和数字信号处理集成在一块芯片上,

可实现宽带信号处理,大大提高了信号处理速度。由此可见,数字信号处理在将来的发展前景是很具有优势的,通过与其他芯片的融合可以获得具有更强大功能的芯片,它也很具有市场的发展趋势,很显然,在可预见的一段时间内,无线应用仍将是可编程数字信号处理市场的驱动引擎。不过,嵌入式数字信号处理市场将会是一个更大的市场,数字信号处理技术是你能够访问窄带,宽带或是无线互

联网的唯一手段,它还是新兴的IP电话市场的关键。没有数字信号处理就没有互联网的访问,没有多媒体,也没有无线通信。因此,尽管遭遇了短期的市场挫折,数字信号处理仍将是整个半导体工业的技术驱动力。

在未来的发展上,国内的业者如欲进入数字信号处理领域,在目前这个垄断市场情况下,应该避免与国际大厂在其擅长的领域正面交锋,若能另开辟市场,选择利基产品切入,则尚有机会再数字信号处理市场一搏。整体看来,数字信号处理应用在通讯领域,数字影音的产品将越来越普及,使得相关市场需求越来越大,未来数字信号处理市场竞争将越来越激烈,虽然目前数字信号处理的主要应用产品的市场都是由国际半导体大厂所控制,但是我国在政府的扶持下,本土厂商积极投入研发资源,以消费性产品作为进入数字信号处理市场的一个敲门砖,也必将在数字信号处理市场上争得一席之地。

总结:

综上所诉,我们可以看到数字信号处理的功能是非常强大的,它贯穿了我们生活的方方面面,也为我们的生活带来了诸多的方便,它的出现可谓是科技上的一大重要里程碑,它的发展也必将影响科技的进步,所以我们要学会了解它、熟悉它并且掌握它,只要能很好的运用它,它将会为我们的生活带来意想不到的收获,数字信号处理的未来发展前景也是非常可观的,从上述可以看到在将来它的发展是超乎我们的想象的,它的功能也必将在原来的基础之上有所增加,它将继续改变这我们的世界,也必将占据着属于自己的市场,让我们共同期待未来的数字信号处理技术为我们世界带来的奇迹吧!

参考文献:

【1】程佩青.数字信号处理教程(第四版).北京:清华大学出版社,2013.

【2】汪春梅,孙洪波,邹俊忠.TMS320C55xDSP原理及应用(第三版).北京:电子工业出版社,2011.

【3】邹彦,唐冬,宁志刚.DSP原理及应用.北京: 电子工业出版社,2005.

【4】申敏,邓矣兵,郑建宏.DSP原理及其在移动通信中的应用.北京:人民邮电出版社,2001.

数字信号处理的应用和发展前景

数字信号处理的应用与发展趋势 作者:王欢 天津大学信息学院电信三班 摘要: 数字信号处理是应用于广泛领域的新兴学科,也是电子工业领域发展最为迅速的技术之一。本文就数字信号处理的方法、发展历史、优缺点、现代社会的应用领域以及发展前景五个方面进行了简明扼要的阐述。 关键词: 数字信号处理发展历史灵活稳定应用广泛发展前景 数字信号处理的简介 1.1、什么是数字信号处理 数字信号处理简称DSP,英文全名是Digital Signal Processing。 数字信号处理是利用计算机或专用处理设备以数字的形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。 DSP系统的基本模型如下: 数字信号处理是一门涉及许多学科且广泛应用于许多领域的新兴学科。它以众多的学科为理论基础,所涉及范围及其广泛。例如,在数学领域、微积分、概率统计、随即过程、数值分析等都是数字信号处理的基本工具;同时与网络理论、信号与系统、控制论、通信理论、故障诊断等学科也密切相关。近年来的一些新兴学科,如人工智能、模式识别、神经网络等,都是与数字信号处理密不可分的。数字信号处理可以说许多经典的理论体系作为自己的理论基础,同时又使自己成为一门新兴学科的理论基础。 1.2、数字信号系统的发展过程 数字信号处理技术的发展经历了三个阶段。 70 年代DSP 是基于数字滤波和快速傅里叶变换的经典数字信号处理, 其系统由分立的小规模集成电路组成, 或在通用计算机上编程来实现DSP 处理功能, 当时受到计算机速度和存储量的限制,一般只能脱机处理, 主要在医疗电子、生物电子、应用地球物理等低频信号处理方面获得应用。 80 年代DSP 有了快速发展, 理论和技术进入到以快速傅里叶变换(FFT) 为主体的现代信号处理阶段, 出现了有可编程能力的通用数字信号处理芯片, 例如美国德州仪器公司(TI公司) 的TMS32010 芯片, 在全世界推广应用, 在雷达、语音通信、地震等领域获得应用, 但芯片价格较贵, 还不能进 入消费领域应用。 90 年代DSP 技术的飞速发展十分惊人, 理论和技术发展到以非线性谱估计为代表的更先进的信号处理阶段, 能够用高速的DSP 处理技术提取更深层的信息, 硬件采用更高速的DSP 芯片, 能实时地完成巨大的计算量, 以TI 公司推出的TMS320C6X 芯片为例, 片内有两个高速乘法器、6 个加法器, 能以200MHZ 频率完成8 段32 位指令操作, 每秒可以完成16 亿次操作, 并且利用成熟的微电子工艺批量生产,使单个芯片成本得以降低。并推出了C2X 、C3X 、C5X 、C6X不同应用范围的系列, 新一代的DSP 芯片在移动通信、数字电视和消费电子领域得到广泛应用, 数字化的产品性能价 格比得到很大提高, 占有巨大的市场。 1.3、数字信号处理的特点

DSP技术应用现状以及发展趋势精

DSP技术应用现状以及发展趋势(精)

————————————————————————————————作者:————————————————————————————————日期: 2

DSP技术应用现状以及发展趋势 一、数字信号处理结构。 实时数字信号处理系统:采集系统+DSP芯片 非实时系统:pc机上进行处理系统的模拟与仿真或仿真库+DSP芯片。 1 DSP、MCU、MPU的关系 微控制器MCU通俗的称呼是单片机,它与微处理器MPU是微机技术的两大分支。MPU的发展动力是人类对无止境的海量数值运算的需求,速度越来越快。MC U的发展是为了满足被控制对象的要求,向高可靠性、低功耗、低成本发展。一般MCU的引脚数在60以下,MCU以8位机为主、32位机为辅。有趋势提高MCU的运算功能,将DSP集成到MCU中,比如32位的MC68356集成了Motorola的DSP560 02。 微控制器MCU一直存在两种基本结构:哈佛(Harvard)结构和冯诺依曼 (von Meumann)结构,还可进一步讲是对应成复杂指令集计算机CISC和精简指令计算机RISC。冯诺伊曼结构具有单一总线PRAM或DRAM都映射到同一地址空间,总线宽度与CPU类型匹配。哈佛结构具有独立的程序总线和数据总线,CISC的指令一般是微码miccode,每条指令由CPU解码为许多基本指令,基于CISC的微控制器一般很复杂,都采用冯诺伊曼结构,所需要的程序存储器比RISC产品少。微码在CPU产生而限制了CISC器件的带宽,其指令集也比RISC器件大。 68000的MPU是准32位的MPU,内部32位,外部总线是16位。苹果机就是用68000系列,它的运行分成系统态和用户态,其设计是面向分时多任务或实时操作系统的,68000的总线后来变成VME总线标准。到68020就是全32位了。 1991年IEEE1149.1即JTAG的公布满足了IC制造商的措施需求,也给ASIC、MCU 、MPU、DSP、PLD、FPGA等的用户带来方便。一般十万门以上的IC都有JTAG 接口,1993年IEEE1149.5对JTAG作了修正(5线接口)。IC的测试分成晶片级、IC 封装级、电路板与系统极,JTAG完成了前两者的测试。适于68000系列的32位机的开发工具ICD32是一段扁平电缆,一端接IC的JTAG的5线接口,一端通过25芯头(里面有GAL)接PC机并口。传统上,微控制器MCU与微处理器MPU是两大分支,而DSP是MCU的一种特殊变形。但是从实质讲,MPU多半是CISC,除了DSP 之外的MCU也是CISC。而DSP是RISC。所以比较时更适合DSP与MPU相比,MP U适宜于相同管理这样的应用中,以条件判断为主的应用,以软件管理的操作系统为核心的产品,MPU的设计侧重于不妨碍程序的 流程,以保证操作系统支持功能及转移预测功能等。而DSP侧重于保证数据的顺利通行,结构尽量简单。 2 冯·诺依曼结构和哈佛结构 3

DSPC2000系列综述及其应用电子

DSPC2000系列综述及其应用电子 ——— 摘要 TI公司生产的C2000系列的DSP主要是针对自动控制领域的需要而设计的。本文主要说明了DSP 的产生和发展,概括了C2000系列的特点,综述了C2000中使用的主要技术。同时阐述了今后的发展趋势,在应用方面做了简要介绍,并给出了一个应用实例。 关键词:C2000;集成外设;JTAG;嵌入式;应用 关键字 C2000 发展状况趋势硬件技术软件技术应用电子 1 DSP的产生背景及其发展 1.1 产生背景 由于计算机和信息技术的发展,出现了数字信号处理。它是利用计算机或专用处理器设备,以数字形式对信号进行采集、变换等处理,以得到符合人们需要的信号形式,是一门涉及并广泛应用于许多领域的新兴学科[1]。20世纪后期,随着计算机、大规模集成电路(LSI)、超大规模集成电路(VLSI)以及微处理器技术的迅猛发展,数字信号处理无论在理论上还是在工程应用中都得到了巨大的发展。 伴随着数字信号理论的产生与发展,在一些应用领域中对需要对相关的数据进行处理,但由于使用普通的计算机不能满足特殊环境的要求,而另一方面,如果使用工业PC机,则不能充分发挥其各种性能,并且体积相对较大,增加成本。这就迫使集成电路生产商家开发出可用于数字信号处理的器件,于是就产生了DSP。 DSP主要用来实现相关的数据处理或者比较复杂的算法,其中最具代表的就是TI公司生产的C5000系列的DSP,该系列的DSP主要用于比较复杂算法、语音处理等领域。在上世纪末随着各种新兴控制理论的不断涌现,在实际应用中使用到的算法也日趋复杂化,为了既能满足控制系统实时性的要求,又能满足传统的控制需要,不少公司相继开发出了针对自动控制领域的DSP,最为代表的器件就是TI公司生产的C2000系列。 1.2 发展状况及其趋势 1979年,美国Intel公司生产的2920可以看做商用DSP的开端,这一芯片内部还没有现代DSP 芯片所必须的单周期硬件乘法器,但是该芯片却内含了一个完整的数字信号处理器。DSP芯片应用的另一个开端是TI公司于1982年发布的TMS32010系列芯片[2]。之后TI又相继推出了第二代、第三代、第四代、第五代(C5000)以及目前速度最快的第六代(C6000)。TI公司目前常用的DSP 芯片主要为3大系列:C2000、C5000和C6000系列,其中C2000主要应用于自动控制领域。在DSP 的发展过程中,除了TI公司研发生产DSP外,还有摩托罗拉、NEC、美国模拟器件公司也在研发和生产DSP并取得了一定成就,在市场中占据相当的份额。 在C2000系列发展历史(如图1所示)中,TI最早推出的16位定点C2xx系列获得了巨大的成功。在1996年TI又推出了第一款带有Flash的DSP。新世纪TI在C24xx系列的基础上,又推出了F/C281x系列。最近为了适应市场的专业化需要,推出了Piccolo F280xx系列。 1 C2000系列发展历史 从DSP技术发展的角度来看,随着集成电路规模日益增大,其相应的芯片电压必将越来越小,将会从目前的3V发展到1V甚至更低,并且功耗也将越来越小。当然其运行速度也将越来越快,实时性能更强。 2 DSPC2000的相关技术

数字信号处理习题集(附答案)

第一章数字信号处理概述 简答题: 1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用? 答:在A/D变化之前为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。此滤波器亦称为“抗混叠”滤波器。 在D/A变换之后为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故又称之为“平滑”滤波器。 判断说明题: 2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。 () 答:错。需要增加采样和量化两道工序。 3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理。() 答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。故离散时间信号和系统理论是数字信号处

理的理论基础。 第二章 离散时间信号与系统分析基础 一、连续时间信号取样与取样定理 计算题: 1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T 表示采样周期(假设T 足够小,足以防止混叠效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器。 (a ) 如果kHz T rad n h 101,8)(=π截止于,求整个系统的截止频 率。 (b ) 对于kHz T 201=,重复(a )的计算。 采样(T) () n h () n x () t x () n y D/A 理想低通T c πω=() t y 解 (a )因为当0)(8=≥ω πωj e H rad 时,在数 — 模变换中 )(1)(1)(T j X T j X T e Y a a j ωω=Ω= 所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为 8 π = ΩT c 因此 Hz T f c c 625161 2==Ω= π

数字信号处理技术综述

数字信号处理 数字信号处理是20世纪60年代,随着信息学科和计算机学科的高速发展而迅速发展起来的一门新兴学科。数字信号处理是把信号用数字或符号表示成序列,通过计算机或通用(专用)信号处理设备,用数值计算方法进行各种处理,达到提取有用信息便于应用的目的。例如:滤波、检测、变换、增强、估计、识别、参数提取、频谱分析等。信号处理技术—直用于转换或产生模拟或数字信号,其中应用的最频繁的领域就是信号的滤波。此外,从数字通信、语音、音频和生物医学信号处理到检测仪器仪表和机器人技术等许多领域中,都广泛地应用了数字信号处理技术。在本文中,主要介绍数字信号处理中两个方面:傅立叶变换和数字滤波器。 首先,从信号处理的发展来看,傅立叶的思想及其分析方法毫无疑问具有极其重要的地位,因为它开创了对信号进行频谱分析的理论,从而解决了许多复杂的处理过程。 传统的信号分析方法分别在时域和频域使用傅立叶变换进行处理。傅立叶变换以及其数字实现方法——快速傅立叶变换允许把一个信号分解成多个独立的频率分量和幅度分量。这样很容易区分开有用信号和噪声。 但是经典傅立叶变换工具的主要缺陷是不能把时间和频率信息结合起来给出频率是怎样随时间变化的。对于非平稳信号,传统的傅立叶变换显然不行,因为它无法给出所需信号频率出现的时间区域,也就无法真正了解频率随时间的变化情况。 短时傅立叶变换是一种能对信号同时进行时间域和频率域分析的工具。它的基本思想是:通过对所感兴趣的时刻附近的一小部分信号进行傅立叶分析,以确定该时刻的信号频率。因为时间间隔与整个信号相比是很短的(如语音信号),因此把这个处理过程叫做短时傅立叶变换。 为实现STFT,研究人员一开始使用的是窗口。实际上,它只给了我们关于信号的部分信息,STFT分析的精度取决于窗的选取。这正难点所在,比如:时间间隔应取多大;我们要确定什么样的窗口形状才能给中心点一个较大的权值,而给边缘点一个较小的权值;不同的窗口会产生不同的短时分布。还应该注意到的是:信号的特性由于窗函数的特性有所扰乱,信号恢复原状需要适当的整理并对信号进行估计。因此,STFT并不总能给我们一个清晰的表述。这就需要更好的方法来表示事件和频率的关系。 因此,研究时间—频率分布的动机是为了改进STFT,其基本思想是获得一个时间和频率的联合函数,用于精确的描述时域和频域的信号能量。 经典傅立叶分析只能把信号分解成单个的频率分量,并且建立其每一个分量的相对强度,但能量频谱并没有告诉我们那些频率在什么时候出现。时—频分布

DSP技术应用及发展前景浅析

DSP技术应用及发展前景浅析 【摘要】数字信号处理(DSP)是广泛应用于许多领域的新兴学科,因其具有可程控、可预见性、精度高、稳定性好、可靠性和可重复性好、易于实现自适应算法、大规模集成等优点,广泛应用于实时信号处理系统中。本文概述了DSP技术在各个领域的应用状况,以及在未来的发展前景。 【关键词】数字信号处理数据处理信息技术 1 引言 20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。在过去的二十多年时间里,数字信号处理已经在通信等领域得到极为广泛的应用。数字信号处理是利用计算机或专用处理设备,以数字形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。 2 DSP目前的主要应用领域 DSP技术在数据通信、汽车电子、图像处理以及声音处理等领域应用广泛。 (1)数字化移动电话 数字移动电话可划为两大类:高速移动电话和低速移动电话。而无论是高速移动电话还是低速移动电话,都要用至少1个DSP,因此,高速发展的数字化移动电话急需极为大量的DSP器件。 (2)数据调制解调器 数字信号处理器的传统应用领域之一,就是调制解调器。调制解调器是联系通信与多媒体信息处理系统的纽带。利用PC机通过调制解调器经由电话线路,实现拨号连接Internet 是最简便的访问形式。由于Internet用户急剧增加,由PC机上利用浏览程序调用活动图像信息量增大,就需要使用数据传送速度更高的调制解调器。这就意味,在高速调制解调器里需要更高性能的DSP器件。 (3)磁盘/光盘控制器需求 多种信息存储媒体产品的迅速发展,诸如磁盘存储器、CD-ROM和DVD (DigitalVersatileDisk)-ROM的纷纷上市。今日的磁盘驱动器HDD,存储容量已相当可观,大型HDD姑且不谈,就连普通PC机的HDD的存储容量也远在1GB以上,小型HDD 向高密度、高存储容量和高速存取方向发展,其控制器必须具备高精度和高速响应特性,它所用的DSP性能也是今非昔比,高速DSP是必不可少的关键性器件。 (4)图形图像处理需求 DVD里应用的活动图像压缩/解压缩用MPEG2编码/译码器,同时也广泛地应用于视频点播VOD、高品位有线电视和卫星广播等诸多领域。这些领域应用的DSP应该具备更高的处理速度和功能。而且,活动图像压缩/解压技术也日新月异,例如,DCT变换域编码很难提高压缩比与重构图像质量,于是出现了对以视觉感知特性为指导的小波分析图像压缩方法。新的算法出现,要求相应的高性能DSP。 (5)汽车电子系统及其它应用领域 汽车电子系统日益兴旺发达,诸如装设红外线和毫米波雷达,将需用DSP进行分析。利用摄像机拍摄的图像数据需要经过DSP处理,才能在驾驶系统里显示出来,供驾驶人员参考。因此,DSP在汽车电子领域的应用也必然会越来越广泛。 (6)声音处理。 声音数字压缩技术早已开始应用,其中以脉冲编码调制(PCM)的方法最普遍。由于其

DSP技术综述

DSP技术综述 班级:7 学号: 姓名:

【摘要】数字信号处理(DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。它是一种通过使用数学技巧执行转换或提取信息,来处理现实信号的方法,这些信号由数字序列表示。本文概述了数字信号处理技术的发展过程,分析了DSP处理器在多个领域应用状况,介绍了DSP的最新发展,对数字信号处理技术的发展前景进行了展望。 【Abstract】:Digital signal processing (DSP) is the one who is widely used in many disciplines involved in many areas of emerging disciplines. It is a through the use of mathematical skills execution conversion or extract information, to deal with real signal method, these signals by digital sequence said.This paper outlines the development of digital signal processing technology, processes, analyzes the DSP processor, application status in many areas, introduced the latest developments in DSP, digital signal processing technology for the future development prospects. 【关键词】数字信号处理;DSP平台;DSP发展趋势【Key words】Signal digital signal processing ; DSP platform ; the development trend of DSP

数字信号处理技术及发展趋势

数字信号处理技术及发展趋势 贵州师范大学物电学院电子信息科学与技术 罗滨志 120802010051 摘要 数字信号处理的英文缩写是DSP,而数字信号处理又是电子设计领域的术语,其实现的功能即是用离散(在时间和幅度两个方面)所采样出来的数据集合来表示和处理信号和系统,其中包括滤波、变换、压缩、扩展、增强、复原、估计、识别、分析、综合等的加工处理,从而达到可以方便获得有用的信息,方便应用的目的【1】。而DPS实现的功能即是对信号进行数字处理,数字信号又是离散的,所以DSP大多应用在离散信号处理当中。 从DSP的功能上来看,其发展趋势日益改变着我们的科技的进步,也给世界带来了巨大的变化。从移动通信到消费电子领域,从汽车电子到医疗仪器,从自动控制到军用电子系统中都可以发现它的身影【2】。拥有无限精彩的数字信号处理技术让我们这个世界充满变化,充满挑战。 In this paper Is the abbreviation of digital signal processing DSP, the digital signal processing (DSP) is the term in the field of electronic design, the function of its implementation is to use discrete (both in time and amplitude) sampling represented data collection and processing of signals and systems, including filtering, transformation, compression, extension, enhancement, restoration, estimation, identification, analysis, and comprehensive processing, thus can get useful information, convenient for the purpose of convenient application [1]. And DPS the functions is to digital signal processing, digital signal is discrete, so most of DSP applications in discrete signal processing. From the perspective of the function of DSP, and its development trend is increasingly changing our of the progress of science and technology, great changes have also brought the world. From mobile communication in the field of consumer electronics, from automotive electronics to medical equipment, from automatic control to the military electronic systems can be found in the figure of it [2]. Infinite wonderful digital signal processing technology to let our world full of changes, full of challenges

数字信号处理的新技术及发展

数字信号处理的新技术及发展 摘要:数字信号处理是一门涉及许多学科而又广泛应用于许多领域的新兴学科。本文简述了数字信号处理技术的发展过程,分析了数字信号处理技术在多个领域应用状况,介绍了数字信号处理技术的最新发展,对数字信号处理技术的发展前景进行了展望。 关键词:信号数字信号处理信息技术DSP 0引言 自从数字信号处理(Digital Signal Processor)问世以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生,并到迅速的发展。由于它具有高速、灵活、可编程、低功耗和便于接口等特点,已在图形、图像处理,语音、语言处理,通用信号处理,测量分析,通信等领域发挥越来越重要的作用。随着技术成本的降低,控制界已对此产生浓厚兴趣,已在不少场合得到成功应用。 1数字信号处理技术的发展历程 DSP的发展大致分为三个阶段: 在数字信号处理技术发展的初期(二十世纪50-60年代),人们只能在微处理器上完成数字信号的处理。直到70年代,有人才提出了DSP的理论和算法基础。一般认为,世界上第一个单片DSP芯片应当是1978年AMI公司发布的S281l。1979年美国Intel公司发布的商用可编程器件2920是DSP芯片的一个重要里程碑。这两种芯片内部都没有现代DSP芯片所必须有的单周期乘法器。1980年,日本NEC公司推出的mPD7720是第一个具有硬件乘法器的商用DSP芯片,从而被认为是第一块单片DSP器件。 随着大规模集成电路技术的发展,1982年美国德州仪器公司推出世界上第一代DSP芯片TMS32010及其系列产品,标志了实时数字信号处理领域的重大突破。Ti公司之后不久相继推出了第二代和第三代DSP芯片。90年代DSP发展最快。Ti公司相继推出第四代、第五代DSP芯片等。 随着CMOS技术的进步与发展,日本的Hitachi公司在1982年推出第一个基于CMOS工艺的浮点DSP芯片,1983年日本Fujitsu公司推出的MB8764,其指

数字信号处理习题集附答案)

第一章数字信号处理概述简答题: 1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用? 答:在A/D变化之前让信号通过一个低通滤波器,是为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。此滤波器亦称位“抗折叠”滤波器。 在D/A变换之后都要让信号通过一个低通滤波器,是为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故友称之为“平滑”滤波器。 判断说明题: 2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。()答:错。需要增加采样和量化两道工序。 3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理 理论,对信号进行等效的数字处理。() 答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字

长所造成的影响。故离散时间信号和系统理论是数字信号处理的理论基础。 第二章 离散时间信号与系统分析基础 一、连续时间信号取样与取样定理 计算题: 1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T 表示采样周期(假设T 足够小,足以防止混迭效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器。 (a ) 如果kHz rad n h 101,8)(=π截止于,求整个系统的截止频率。 (b ) 对于kHz T 201=,重复(a )的计算。 解 (a )因为当0)(8=≥ω πωj e H rad 时,在数 — 模变换中 )(1)(1)(T j X T j X T e Y a a j ωω=Ω= 所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为 8 π = ΩT c 因此 Hz T f c c 625161 2==Ω= π

DSP的历史、现状与发展趋势

DSP的历史、现状与发展趋势 一、内容摘要:信息化的基础是数字化。数字化的核心技术之一是数字信号处理。数字信号处理的任务在很大程度上需要由DSP器件来完成。DSP技术已成为人们日益关注的并得到迅速发展的前沿技术。DSP 可以代表数字信号处理器(Digital Signal Processor),也可以代表数字信号处理技术(Digital Signal Processing)。本文就DSP的发展历史、国内外现状和DSP未来的发展前景作了简单的介绍。 二、关键字:DSP 历史现状特点发展趋势 三、内容: (一)、DSP的发展历史: 数字信号处理(Digital Signal Processing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。DSP有两种含义:digital Signal Processing(数字信号处理)、Digital Signal Processor (数字信号处理器)。我们常说的DSP指的是数字信号处理器。数字信号处理器是一种适合完成数字信号处理运算的处理器。20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。在过去的二十多年时间里,数字信号处理已经在通信等领域得到极为广泛的应用。在当今的数字化时代背景下,DSP己成为通信、计算机、消费类电子产品等领域的基础器件。DSP的发展大致分为三个阶段: 在DSP出现之前数字信号处理只能依靠微处理器来完成。但由于微处理器较低的处理速度不快,根本就无法满足越来越大的信息量的高速实时要求。因此应用更快更高效的信号处理方式成了日渐迫切的社会需求,到了70年代,有人提出了DSP的理论和算法基础。但那时的DSP仅仅停留在教科书上,即使是研制出来的DSP系统也是由分立元件组成的,其应用领域仅局限于军事、航空航天部门。一般认为,世界上第一个单片DSP芯片是1978年AMI公司发布的S2811。1979年美国Intel公司发布的商用可编程器件2920是DSP芯片的一个主要里程碑。这两种芯片内部都没有现代DSP芯片所必须有的单周期乘法器。1980年,日本NEC公司推出的mP D7720是第一个具有硬件乘法器的商用DSP芯片,从而被认为是第一块单片DSP 器件。 随着大规模集成电路技术和半导体技术的发展,1982年世界上诞生了第一代DSP芯片TMS32010及其系列产品。这种DSP器件采用微米工艺N MOS技术制作,虽功耗和尺寸稍大,但运算速度却比微处理器快了几十倍,尤其在语言合成和编码译码器中得到了广泛应用。DSP芯片的问世是个里程碑,它标志着DSP应用系统由大型系统向小型化迈进了一大步。至80年代中期,随着CMOS工艺的DSP芯片应运而生,其存储容量和运算速度都得到成倍提高,成为语音处理、图像硬件处理技术的基础。 80年代后期,第三代DSP芯片问世,运算速度进一步提高,其应用范围逐步扩大到通信、计算机领域。90年代DSP发展最快,相继出现了第四代和第五代DSP器件。现在的DSP属于第五代产品,它与第四代相比,系统集成度更高,将DSP芯核及外围元件综合集成在单一芯片上。这种集成度极高的DSP芯片不仅在通信、计算机领域大显身手,而且逐渐渗透到人们的日常生活领域。经过20多年的发展,DSP产品的应用已扩大到人们的学习、工作和生活的各个方面,并逐步成为电子产品更新换代的决定因素。 (二)、DSP的现状: 中国DSP的发展现状: 一、市场发展现况

高速实时数字信号处理硬件技术发展概述

高速实时数字信号处理硬件技术发展概述 摘要:在过去的几年里,高速实时数字信号处理(DSP)技术取得了飞速的収展,目前单片DSP芯片的速度已经可以达到每秒80亿次定点运算(8000MIPS);其 高速度、可编程、小型化的特点将使信息处理技术迚入一个新纪元。一个完整的高速 实时数字信号处理系统包括多种功能模块,如DSP,ADC,DAC,RAM,FPGA,总线接口等技术本文的内容主要是分析高速实时数字信号处理系统的特点,构成,収展过程和系统设计中的一些问题,幵对其中的主要功能模块分别迚行了分析。最后文中介绍了一种采用自行开収的COTS产品快速构建嵌入式幵行实时信号处理系统的设计方法。 1.概述 信号处理的本质是信息的变换和提取,是将信息仍各种噪声、干扰的环境中提取出来,幵变换为一种便于为人或机器所使用的形式。仍某种意义上说,信号处理类似于”沙里淘金”的过程:它幵不能增加信息量(即不能增加金子的含量),但是可以把信息(即金子)仍各种噪声、干扰的环境中(即散落在沙子中)提取出来,变换成可以利用的形式(如金条等)。如果不迚行这样的变换,信息虽然存在,但却是无法利用的,这正如散落在沙中的金子无法直接利用一样。 高速实时信号处理是信号处理中的一个特殊分支。它的主要特点是高速处理和实时处理,被广泛应用在工业和军事的关键领域,如对雷达信号的处理、对通

信基站信号的处理等。高速实时信号处理技术除了核心的高速DSP技术外,还包括很多外围技术,如ADC,DAC等外围器件技术、系统总线技术等。 本文比较全面地介绍了各种关键技术的当前状态和収展趋势,幵介绍了目前高性能嵌入式幵行实时信号处理的技术特点和収展趋势,最后介绍了一种基于COTS产品快速构建嵌入式幵行实时信号处理系统的设计方法。 2.DSP技术 2.1 DSP的概念 DSP(digital signal processor),即数字信号处理器,是一种专用于数字信号处理的可编程芯片。它的主要特点是: ①高度的实时性,运行时间可以预测; ②Harvard体系结构,指令和数据总线分开(有别于冯·诺依曼结构); ③RISC指令集,指令时间可以预测; ④特殊的体系结构,适合于运算密集的应用场合; ⑤内部硬件乘法器,乘法运算时间短、速度快; ⑥高度的集成性,带有多种存储器接口和IO互联接口; ⑦普遍带有DMA通道控制器,保证数据传辒和计算处理幵行工作; ⑧低功耗,适合嵌入式系统应用。 DSP有多种分类方式。其中按照数据类型分类,DSP被分为定点处理器(如ADI的ADSP218x/9xBF5xx,TI的TMS320C62/C64)和浮点处理器(如ADI的SHARC/Tiger SHARC系统·TI的TMS320C67)。 雷达信号处理系统对DSP的要求很高,通常是使用32bit的高端DSP;而且浮

DSP技术发展趋势

DSP技术发展趋势 摘要:本文主要讲了什么是DSP技术,以及DSP的技术发展趋势、市场发展趋势。 一、引言 数字信号处理(Digital Signal Processing,即DSP),起源于上个世纪80年代,是一门涉及到许多学科并且广泛应用在很多领域的热门学科。它利用微型计算机、专用处理设备,以数字方式对信号的采集、变换、滤波、估值、增强、压缩、识别处理,得到人们需要的信号形式。它紧紧围绕着数字信号处理的理论、实现以及应用发展。 二、DSP技术 数字信号处理(DSP)的理论基础涉及的范围非常广泛。比如微积分、概率统计、随机过程、数值分析等数学基础是数字信号处理的基本工具,同时它与网络理论、信号与系统、控制理论、通信原理、故障诊断,传感器技术等密切相关,还有近些年来蓬勃发展的一些学科:人工智能、模式识别、神经网络等,都与数字信号处理密不可分。 正是由于有这些理论发展的前提基础,和广泛的市场需求,DSP处理的器件也应运而生,在广泛应用在各个领域的同时得到迅速的发展。世界上第一个单片DSP芯片是1978年AMI公司发布的S2811,在这之后,1979年美国Intel公司发布的商用可编程器件2920是DSP芯片的一个非常重要的里程碑。即使这两种芯片内部没有现代DSP芯片的单周期乘法器,但是他们为DSP的蓬勃、迅速发展奠定了很重要的基础。接着,1980年,日本NEC公司推出了第一个具有乘法器的商用DSP芯片,随后,美国德州仪器公司(TI 公司)推出一系列DSPs产品,广泛地应用在信号处理的各个领域。 三、技术发展趋势 1、数字信号处理器的内核结构进一步改善,多通道结构和单指令多重数据(SIMD)、特大指令字组(VLIM)将在新的高性能处理器中将占主导地位,如Analog Devices的 ADSP-2116x。 2、DSP 和微处理器的融合: 微处理器是低成本的,主要执行智能定向控制任务的通用处理器能很好执行智能控制任务,但是数字信号处理功能很差。而DSP的功能正好与之相反。在许多应用中均需要同时具有智能控制和数字信号处理两种功能,如数字蜂窝电话就需要监测和声音处理功能。因此,把DSP和微处理器结合起来,用单一芯片的处理器实现这两种功能,将加速个人通信机、智能电话、无线网络产品的开发,同时简化设计,减小PCB体积,降低功耗和整个系统的成本。例如,有多个处理器的Motorola公司的DSP5665x,有协处理器功能的Massan公司FILU-200,把MCU功能扩展成DSP和MCU功能的TI公司的

DSP技术应用现状以及发展趋势(精)

DSP技术应用现状以及发展趋势 一、数字信号处理结构。 实时数字信号处理系统:采集系统+DSP芯片 非实时系统:pc机上进行处理系统的模拟与仿真或仿真库+DSP芯片。 1 DSP、MCU、MPU的关系 微控制器MCU通俗的称呼是单片机,它与微处理器MPU是微机技术的两大分支。MPU的发展动力是人类对无止境的海量数值运算的需求,速度越来越快。MCU的发展是为了满足被控制对象的要求,向高可靠性、低功耗、低成本发展。一般MCU的引脚数在60以下,MCU以8位机为主、32位机为辅。有趋势提高MCU的运算功能,将DSP集成到MCU中,比如32位的MC68356集成了Motorola的DSP56002。 微控制器MCU一直存在两种基本结构:哈佛(Harvard)结构和冯诺依曼 (von Meumann)结构,还可进一步讲是对应成复杂指令集计算机CISC和精简指令计算机RISC。冯诺伊曼结构具有单一总线PRAM或DRAM都映射到同一地址空间,总线宽度与CPU类型匹配。哈佛结构具有独立的程序总线和数据总线,CISC的指令一般是微码miccode,每条指令由CPU解码为许多基本指令,基于CISC的微控制器一般很复杂,都采用冯诺伊曼结构,所需要的程序存储器比RISC产品少。微码在CPU产生而限制了CISC器件的带宽,其指令集也比RISC器件大。 68000的MPU是准32位的MPU,内部32位,外部总线是16位。苹果机就是用68000系列,它的运行分成系统态和用户态,其设计是面向分时多任务或实时操作系统的,68000的总线后来变成VME总线标准。到68020就是全32位了。 1991年IEEE1149.1即JTAG的公布满足了IC制造商的措施需求,也给ASIC、MCU、MPU、DSP、PLD、FPGA等的用户带来方便。一般十万门以上的IC都有JTAG接口,1993年IEEE1149.5对JTAG作了修正(5线接口)。IC的测试分成晶片级、IC封装级、电路板与系统极,JTAG完成了前两者的测试。适于68000系列的32位机的开发工具ICD32是一段扁平电缆,一端接IC的JTAG的5线接口,一端通过25芯头(里面有GAL)接PC机并口。传统上,微控制器MCU与微处理器MPU是两大分支,而DSP是MCU的一种特殊变形。但是从实质讲,MPU多半是CISC,除了DSP之外的MCU也是CISC。而DSP是RISC。所以比较时更适合DSP与MPU相比,MPU适宜于相同管理这样的应用

数字信号处理在物联网领域的应用

为自己所爱盖楼。 关于数字信号处理在物联网领域应用的文献综述 专业:物联1303 姓名:李红莉 学号:20136025

伴随着计算机技术的发展,计算机数字时代已经成为主流,而数字信号处理技术[1]则是数字时代的主力军,是不可或缺的技术。所以关于数字信号处理的技术发展[2]也一直受到人们的关注,数字信号的应用领域十分广阔,有通信领域,图像图形技术领域,仪表仪器领域,PC 领域等等,还有未来不断挖掘的新应用领域,无疑会将数字信号处理技术推到高峰。此外,数字信号处理[3]的计算发展也一直掌握着处理器DSP的结构演变与发展。而物联网[4]是新一代信息技术的重要组成部分,近几年来,物联网技术受到人们的广泛关注。 其中物联网技术在医疗保健领域[5]的应用越来越受关注。依托医疗行业巨大的市场机遇,物联网有望成为远程医疗行业又一个重要前沿。物联网能够使医疗设备在移动性、连续性、实时性方面做到更好,以满足远程医疗门诊管理解决方案。可以用于及时监测相关诊断信息。通过无线网的普及,提高效率、节省医院人手和提高医疗服务质量。 数字信号处理在物联网中的一大重要应用是心电信号处理[6]。心电信号处理需要数字滤波器即FIR滤波器和IIR滤波器。在数字信号处理中,为了不产生相位失真,通常要求滤波具有零相位。实现零相位数字滤波可以采用FRR或RRF方法。而心电图信号取自安置在心脏部位的电极,其幅度非常微弱,极易受到外界干扰,从而降低了判断的准确性。其中最显著的就是电源干扰,数字信号处理中的自适应滤

波可实现消除心电图的电源干扰[7]。消除干扰后将病人的原始信号经过数字信号处理中的滤波后在心电图中显示出来反应病人的身体状况是否正常。 参考文献 [1]孙金林.数字信号处理技术的发展与思考[J].赤峰学院学报,2011,5. [2]李方慧.数字信号处理技术的新进展[M].北京理工大学出版社,2010:8. [3]周军晓, 崔莹超. 论数字信号处理技术应用领域[J]. 消费电子, 2013, 第12期:19-19. [4]戴威. 浅谈物联网技术及应用领域[J]. 华章, 2010, 27期. [5]王羽,徐渊洪,杨红,等.物联网技术在患者健康管理中的应用框架[J].中国医院,2010,14(8):2-4. [6]朱洪俊. 心电信号零相位数字滤波[J]. 北京生物医学工程, 2003, 04期:260-262. [7]王建君, 陈日新, 王东. 数字信号处理在医学上的应用--心电图的抗干扰测量[J]. 计算技术与自动化, 2000, 第2期:45-47.

数字信号处理课程标准

. 课程标准 课程名称:数字信号处理 课程代码:05038 适用专业:通信技术 学时:72 学分:4.5 制订人: 审核:

《数字信号处理》学习领域(课程)标准 一、学习领域(课程)综述 (一)学习领域定位 “数字信号处理”学习领域由岗位群的“通信电力机务员岗位”行动领域转化而来,是构成通信技术专业框架教学计划的专业学习领域之一,其定位见表一: 表一学习领域定位 (二)设计思路 本学习领域注重培养分析问题、解决问题的能力、强化学生动手实践能力,遵循学生认知规律,紧密结合通信技术专业的发展需要,为将来从事通信技术产品的设计、检测奠定坚实的基础。将本课程的教学活动分析设计成若干项目或工作情景,以项目为单位组织教学、并以典型设备为载体,通过具体案例,按数字信号项目实施的顺序逐步展开,让学生在掌握技能的同时,引出相关专业理论知识,使学生在技术训练过程中加深对专业知识、技能的理解和应用、培养学生的综合职业能力,满足学生职业生涯发展的需要。 本课程在内容组织形式上强调了学生的主体性学习,在每个项目实施前,先提出学习目标,再进行任务分析,学生针对项目的各项任务进行相关知识的学习,并通过多种实践活动实施项目以实现学习目标。最后根据多元化的评分标准进行自我评价。 (三)学习领域(课程)目标 1. 方法能力目标: ●能根据项目任务或工作,制订项目完成工作计划; ●学会自我学习、收集和检索信息、查阅技术资料; ●在数字信号处理过程中会选择各种仪器仪表;

●学会学习和工作的方法,勤于思考、做事认真的良好作风; ●培养学生一丝不苟、刻苦钻研的职业道德; ●学会在产品制作过程中进行技术指导、质量管理和成本核算方法。 2. 社会能力目标: ●建立团结协作的精神,能与人沟通和合作完成工作任务; ●养成勇于创新、敬业乐业的工作作风; ●形成清晰的逻辑思维意识,正确辨别事物的真假; ●了解通信技术应用的发展前景,拓宽产品开发的思路; ●掌握产品生产工艺要求,培养工作的质量意识、安全意识; ●具有较强的社会责任感,为祖国发展强大贡献力量的责任意识; ●积累丰富的工作经验。 3. 专业(职业)能力目标: ●具备设计IIR数字滤波器的基本能力; ●具备设计FIR数字滤波器的基本能力; ●能够对基本的信号进行基本的运算; ●能够将模拟滤波器转化为数字滤波器 二、学习领域(课程)描述 学习领域描述包括学习领域名称、学期、参考学时、学习任务和学习领域目标等,见表二: 表二学习领域的描述

相关主题
文本预览
相关文档 最新文档