当前位置:文档之家› 一元三次方程的求解公式及其推导 阿迪力

一元三次方程的求解公式及其推导 阿迪力

新疆大学毕业论文(设计)

题目:一元三次方程的求根公式及其推导指导老师:木依丁.海力力

学生姓名:阿迪力·艾肯

所属院系:数学与系统科学学院

专业:数学与应用数学

班级:应数07-2班

完成日期:

声明

本人阿迪力·艾肯声明该毕业论文(设计)是本人在木依丁.海力力老师指导下独立完成的,本人拥有自主知识产权,没有抄袭、剽窃他人成果,由此造成的知识产权纠纷由本人负责。

声明人(签名):

2012年5月27日

阿迪力·艾肯同学在指导老师的指导下,按照任务书的内容,独立完成了该毕业论文(设计),指导教师已经详细审阅该毕业论文(设计)。

指导教师(签名):

2012年5月27日

新疆大学

毕业论文(设计)任务书班级:应数07-2 姓名:阿迪力·艾肯

摘要

在本文中,首先我们介绍了解一元三次方程的求解公式并举了几个例子,然后介绍了解一元三次方程的卡尔丹公式并举例,最后写出来卡尔丹公式的推导过

程。

目录

1.一元二次方程的求解公式及其推导过程 (1)

1.1关于解一元二次方程的例子 (2)

2.一元三次方程求解公式 (3)

2.2关于解一元三次方程的例子 (4)

3.求解一元三次方程的卡尔丹公式的推到过程 (6)

4.总结 (9)

5.致谢 (10)

6.参考文献 (11)

1·一元二次方程的求解公式及其推导

公式法解一元二次方程教案-人教版

《公式法解一元二次方程》教案 教学目标 、知识技能 掌握一元二次方程求根公式的推导,会运用公式法解一元二次方程. 、数学思考 通过求根公式的推导,培养学生数学推理的严密性及严谨性. 、解决问题 培养学生准确快速的计算能力. 、情感态度 通过公式的引入,培养学生寻求简便方法的探索精神及创新意识;通过求根公式的推导,渗透分类的思想. 重难点、关键 重点:求根公式的推导及 用公式法解一元二次方程. 难点:对求根公式推导过程中依据的理论的深刻理解. 关键:掌握一元二次方程的求根公式,并应用求根公式法解简单的一元二次方程. 教学过程 一、复习引入 【问题】(学生总结,老师点评) .用配方法解下列方程 ()- ()- .总结用配方法解一元二次方程的步骤。 ()移项; ()化二次项系数为; ()方程两边都加上一次项系数的一半的平方; ()原方程变形为()的形式; ()如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解. 【活动方略】 教师演示课件,给出题目. 学生根据所学知识解答问题. 【设计意图】 复习配方法解一元二次方程,为继续学习公式法引入作好铺垫. 一、 探索新知 如果这个一元二次方程是一般形式(≠),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题. 【问题】 已知(≠)且-4ac≥,试推导它的两个根为2b a -+,2b a - 分析:因为前面具体数字已做得很多,我们现在不妨把、、?也当成一个具体数字,根据

上面的解题步骤就可以一直推下去. 解:移项,得:- 二次项系数化为,得 b a - c a 配方,得:b a (2b a )-c a (2b a ) 即(2b a )2244b ac a - ∵-4ac≥且4a> ∴2244b ac a -≥ 直接开平方,得:2b a 即2b a - ∴2b a -,2b a -- 【说明】 这里a ac b b x 242-±-= (042≥-ac b )是一元二次方程的求根公式 【活动方略】 鼓励学生独立完成问题的探究,完成探索后,教师让学生总结归纳,由形式是一元二次方程的一般形式,得出一元二次方程的求根公式. 【设计意图】 创设问题情境,激发学生兴趣,引出本节内容,导出一元二次方程的求根公式。 【思考】 利用公式法解下列方程,从中你能发现什么 ()2320;x x -+=()2222 -=-x x ()24320x x -+= 【活动方略】 在教师的引导下,学生回答,教师板书 引导学生总结步骤:确定c b a ,,的值、算出ac b 42-的值、代入求根公式求解. 在学生归纳的基础上,老师完善以下几点: ()一元二次方程)0(02 ≠=++a c bx ax 的根是由一元二次方程的系数c b a ,,确定的;

求实系数一元三次方程根的实用公式

求实系数一元三次方程根的实用公式 在数学书籍或数学手册中,对一元三次方程求根公式的叙述都是沿用“卡丹公式”,即:对于一元三次方程: 设, 则它的三个根的表达式如下: 其中, 我们先用该公式解一个一元三次方程:。 解: p=- 9,q=6,∴T=- 3,D=- 18, ?? ∴原方程的三个根为

这样求出的三个根的表达式有两个不妥之处: 其一、当时,方程有三个实根(下文给出证明),但这里的、 、表达式不明确。 其二、当时,以及(如此例中的)违背了现行中等数学的表示规范,也不能具体地求出其值。 因此,用“卡丹公式”解出的一元三次方程的根,往往是不实用、不直观、不严密的。 下面我们推导一个实用的改进型求根公式。 实系数一元三次方程可写为(1) 令,代入(1)得(2) 其中, 不失一般性,我们只要讨论实系数一元三次方程的求根公式即可。 不妨设p、q均不为零,令y=u+v(3) 代入(2)得,(4) 选择u、v,使得,即(5) 代入(4)得,(6)

将(5)式两边立方得,(7) 联立(6)、(7)两式,得关于的方程组: ,且 问题归结于上述方程组的求解。 即求关于t的一元二次方程的两根、, 设,,, 又记的一个立方根为,则另两个立方根为,, 其中,为1的两个立方虚根。 以下分三种情形讨论: 1)若,即D>0,则、均为实数, 可求得,, 取,, 在,组成的九个数中, 有且只有下面三组满足,

即、;、;、, 也就是满足, ∴方程(2)的根为,,,这是方程(2)有一个实根,两个共轭虚根,, 其表达式就是前面给出的“卡丹公式”的形式, 这里的根式及都是在实数意义下的。 2)若,即时, 可求得,取 同理,可求得 ∴方程(2)有三个实根,其中至少有两个相等的实根。3)若,即D<0时, ,∴p<0,, 则、均为虚数,求出、并用三角式表示, 就有,,

一元三次方程求根公式的解法

一元三次方程求根公式的解法 一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。 一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下: (1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到 (2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3)) (3)由于x=A^(1/3)+B^(1/3),所以(2)可化为 x^3=(A+B)+3(AB)^(1/3)x,移项可得 (4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知 (5)-3(AB)^(1/3)=p,-(A+B)=q,化简得 (6)A+B=-q,AB=-(p/3)^3 (7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A 和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即 (8)y1+y2=-(b/a),y1*y2=c/a (9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a (10)由于型为ay^2+by+c=0的一元二次方程求根公式为 y1=-(b+(b^2-4ac)^(1/2))/(2a) y2=-(b-(b^2-4ac)^(1/2))/(2a) 可化为 (11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2) y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2) 将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得 (12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2) B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2) (13)将A,B代入x=A^(1/3)+B^(1/3)得 (14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3) 一、(14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了。由于计算太复杂及这个问题历史上已经解决,我不愿花过多的力气在上面,我做这项工作只是想考验自己的智力,所以只要关键的问题解决了另两个根我就没有花力气去求解。 二、我也曾用类似的方法去求解过一元四次方程的解,具体就是假设一元四次方程的根的形式为x=A^(1/4)+B^(1/4)+C^(1/4),有一次我好象解出过,不过后来多次求解好象说明这种方法求解一元四次方程解不出。不过我认为如果能进一步归纳出A、B、C的形式,应该能求出一元四次方程的求根公式的。由于计算实在太复杂及这个问题古人已经解决了,我后来一直没能完成这项工作。 三、通过求解一元三次方程的求根公式,我获得了一个经验,用演绎法(就是直接推

解一元二次方程(公式法)

应用拓展 某数学兴趣小组对关于x 的方程(m+1)22m x ++(m-2)x-1=0提出了下列问题. (1)若使方程为一元二次方程,m 是否存在?若存在,求出m 并解此方程. (2)若使方程为一元二次方程m 是否存在?若存在,请求出. 你能解决这个问题吗? 分析:能.(1)要使它为一元二次方程,必须满足m 2+1=2,同时还要满足(m+1)≠0. (2)要使它为一元一次方程,必须满足: ①211(1)(2)0m m m ?+=?++-≠?或②21020m m ?+=?-≠?或③1020 m m +=??-≠? 解:(1)存在.根据题意,得:m 2+1=2 m 2=1 m=±1 当m=1时,m+1=1+1=2≠0 当m=-1时,m+1=-1+1=0(不合题意,舍去) ∴当m=1时,方程为2x 2-1-x=0 a=2,b=-1,c=-1 b 2-4ac=(-1)2-4×2×(-1)=1+8=9 134 ±= x 1=,x 2=-12 因此,该方程是一元二次方程时,m=1,两根x 1=1,x 2=- 12. (2)存在.根据题意,得:①m 2+1=1,m 2=0,m=0 因为当m=0时,(m+1)+(m-2)=2m-1=-1≠0 所以m=0满足题意. ②当m 2+1=0,m 不存在. ③当m+1=0,即m=-1时,m-2=-3≠0 所以m=-1也满足题意. 当m=0时,一元一次方程是x-2x-1=0, 解得:x=-1 当m=-1时,一元一次方程是-3x-1=0 解得x=-13 因此,当m=0或-1时,该方程是一元一次方程,并且当m=0时,其根为x=-1;当m=-?1时,其一元一次方程的根为x=- 13. 布置作业 1.教材P 45 复习巩固4. 2.选用作业设计:

公式法解一元二次方程及答案详细解析

公式法解一元二次方程及答案详细解析 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

21.2.2公式法 一.选择题(共5小题) 1.用公式法解一元二次方程x2﹣5x=6,解是() A.x1=3,x2=2 B.x1=﹣6,x2=﹣1 C.x1=6,x2=﹣1 D.x1=﹣3,x2=﹣2 2.用公式法求一元二次方程的根时,首先要确定a、b、c的值.对于方程﹣ 4x2+3=5x,下列叙述正确的是() A.a=﹣4,b=5,c=3 B.a=﹣4,b=﹣5,c=3 C.a=4,b=5,c=3 D.a=4,b=﹣5,c=﹣3 3.(2011春?招远市期中)一元二次方程x2+c=0实数解的条件是() A.c≤0B.c<0 C.c>0 D.c≥0 4.(2012秋?建平县期中)若x=1是一元二次方程x2+x+c=0的一个解,则c2+c=() A.1 B.2 C.3 D.4 5.(2013?下城区二模)一元二次方程x(x﹣2)=2﹣x的解是() A.﹣1 B.2 C.﹣1或2 D.0或2 二.填空题(共3小题) 6.(2013秋?兴庆区校级期中)用公式法解一元二次方程﹣x2+3x=1时,应求出a,b,c的值,则:a=;b=;c=. 7.用公式法解一元二次方程x2﹣3x﹣1=0时,先找出对应的a、b、c,可求得 △,此方程式的根为. 8.已知关于x的一元二次方程x2﹣2x﹣m=0,用配方法解此方程,配方后的方程是.

三.解答题(共12小题) 9.(2010秋?泉州校级月考)某液晶显示屏的对角线长30cm,其长与宽之比为4:3,列出一元二次方程,求该液晶显示屏的面积. 10.(2009秋?五莲县期中)已知一元二次方程x2+mx+3=0的一根是1,求该方程的另一根与m的值. 11.x2a+b﹣2x a+b+3=0是关于x的一元二次方程,求a与b的值. 12.(2012?西城区模拟)用公式法解一元二次方程:x2﹣4x+2=0. 13.(2013秋?海淀区期中)用公式法解一元二次方程:x2+4x=1. 14.(2011秋?江门期中)用公式法解一元二次方程:5x2﹣3x=x+1. 15.(2014秋?藁城市校级月考)(1)用公式法解方程:x2﹣6x+1=0; (2)用配方法解一元二次方程:x2+1=3x. 16.(2013秋?大理市校级月考)解一元二次方程: (1)4x2﹣1=12x(用配方法解); (2)2x2﹣2=3x(用公式法解). 17.(2013?自贡)用配方法解关于x的一元二次方程ax2+bx+c=0. 18.(2014?泗县校级模拟)用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式. 19.(2011秋?南开区校级月考)(1)用公式法解方程:2x2+x=5 (2)解关于x的一元二次方程:. 20.(2011?西城区二模)已知:关于x的一元二次方程x2+4x+2k=0有两个不相等的实数根. (1)求k的取值范围;

三次方程的一般解法

一元三次方程的求根公式称为“卡尔丹诺公式” 一元三次方程的一般形式是 x3+sx2+tx+u=0 如果作一个横坐标平移y=x+s/3,那么我们就可以把方程的二次项消 去。所以我们只要考虑形如 x3=px+q 的三次方程。 假设方程的解x可以写成x=a-b的形式,这里a和b是待定的参数。 代入方程,我们就有 a3-3a2b+3ab2-b3=p(a-b)+q 整理得到 a3-b3 =(a-b)(p+3ab)+q 由二次方程理论可知,一定可以适当选取a和b,使得在x=a-b的同时, 3ab+p=0。这样上式就成为 a3-b3=q 两边各乘以27a3,就得到 27a6-27a3b3=27qa3 由p=-3ab可知 27a6 + p = 27qa3 这是一个关于a3的二次方程,所以可以解得a。进而可解出b和根x. 除了求根公式和因式分解外还可以用图象法解,中值定理。很多高次方程是无法求得精确解的,对于这类方程,可以使用二分法,切线法,求得任意精度的近似解。参见同济四版的高等数学。 一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。 一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。我归纳出来的形如x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下: (1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到 (2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3)) (3)由于x=A^(1/3)+B^(1/3),所以(2)可化为 x^3=(A+B)+3(AB)^(1/3)x,移项可得 (4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知(5)-3(AB)^(1/3)=p,-(A+B)=q,化简得 (6)A+B=-q,AB=-(p/3)^3

公式法解一元二次方程教案

公式法解一元二次方程 一、教学目标 (1)知识目标 1.理解求根公式的推导过程和判别公式; 2.使学生能熟练地运用公式法求解一元二次方程. (2)能力目标 1.通过由配方法推导求根公式,培养学生推理能力和由特殊到一般的数学思 想. 2.结合的使用求根公式解一元二次方程的练习,培养学生运用公式解决问题的能力,全面培养学生解方程的能力,使学生解方程的能力得到切实的提高。 (3)德育目标 让学生体验到所有一元二次方程都能运用公式法去解,形成全面解决问题的积极情感,感受公式的对称美、简洁美,产生热爱数学的情感. 二、教学的重、难点及教学设计 (1)教学的重点 1.掌握公式法解一元二次方程的一般步骤. 2.熟练地用求根公式解一元二次方程。 (2)教学的难点: 理解求根公式的推导过程及判别公式的应用。 (3)教学设计要点 1.情境设计 上课开始,通过提问让学生回忆一元二次方程的概念及配方法解一元二次方程的一般步骤。利用昨天所学“配方法”解一元二次方程,达到“温故而知新”的目的和总结配方法的一般步骤,为下一步解一般形式的一元二次方程做准备。 然后让学生思考对于一般形式的一元二次方程ax2+bx+c=0(a≠0) 能否用配方法求出它的解?引出本节课的内容。 2.教学内容的处理 (1)回顾配方法的解题步骤,用配方法来解一般形式的一元二次方程ax2+bx+c=0(a≠0)。 (2)总结用公式法解一元二次方程的解题步骤,并补充理解判别公式的分类与应用。 (3)在小黑板上补充课后思考题:李强和萧晨刚学了用公式法解一元二次方程,看到一个关于x 的一元二次方程x2+(2m-1)x+(m-1)=0, 李强说:“此方程有两个不相等的实数根”,而萧晨反驳说:“不一定,根的情况跟m的值有关”.那你们认为呢?并说明理由. 3.教学方法 在教学中由特殊的解法(配方法)引导探究一般形式一元二次方程的解的形

解一元三次方程的方法

解一元三次方程的方法 解一元三次方程问题是世界数学史上较著名且较为复杂而又有趣味的问题,虚数概念的引进、复数理论的建立,就是起源于解三次方程问题。一元三次方程应用广泛,如电力工程、水利工程、建筑工程、机械工程、动力工程、数学教学及其他领域等。那么,以下是我分享给大家的关于解一元三次方程的方法,欢迎大家的参考学习! 解一元三次方程的方法 解法一是意大利学者卡尔丹发表的卡尔丹公式法。 解法二是中国学者范盛金发表的盛金公式法。 这两种方法都可以解答标准型的一元三次方程,但是卡尔丹公式解题方便。 相关内容: 一元三次方程的解法的历史 人类很早就掌握了一元二次方程的解法,但是对一元三次方程的研究,则是进展缓慢。古代中国、希腊和印度等地的数学家,都曾努力研究过一元三次方程,但是他们所发明的几种解法,都仅仅能够解决特殊形式的三次方程,对一般形式的三次方程就不适用了。 在十六世纪的欧洲,随着数学的发展,一元三次方程也有了固定的求解方法。在很多数学文献上,把三次方程的求根公式称为“卡尔丹诺公式”,这显然是为了纪念世界上第一位发表一元三次方程求根公式的意大利数学家卡尔丹诺。那么,一元三次方程的通式解,是不是卡尔丹诺首先发现的呢?历史事实并不是这样。

数学史上最早发现一元三次方程通式解的人,是十六世纪意大利的另一位数学家尼柯洛?冯塔纳(Niccolo Fontana)。 冯塔纳出身贫寒,少年丧父,家中也没有条件供他念书,但是他通过艰苦的努力,终于自学成才,成为十六世纪意大利最有成就的学者之一。由于冯塔纳患有“口吃”症,所以当时的人们昵称他为“塔尔塔里亚”(Tartaglia),也就是意大利语中“结巴”的意思。后来的很多数学书中,都直接用“塔尔塔里亚”来称呼冯塔纳。 经过多年的探索和研究,冯塔纳利用十分巧妙的方法,找到了一元三次方程一般形式的求根方法。这个成就,使他在几次公开的数学较量中大获全胜,从此名扬欧洲。但是冯塔纳不愿意将他的这个重要发现公之于世。 当时的另一位意大利数学家兼医生卡尔丹诺,对冯塔纳的发现非常感兴趣。他几次诚恳地登门请教,希望获得冯塔纳的求根公式。可是冯塔纳始终守口如瓶,滴水不漏。虽然卡尔丹诺屡次受挫,但他极为执着,软磨硬泡地向冯塔纳“挖秘诀”。后来,冯塔纳终于用一种隐晦得如同咒语般的语言,把三次方程的解法“透露”给了卡尔丹诺。冯塔纳认为卡尔丹诺很难破解他的“咒语”,可是卡尔丹诺的悟性太棒了,他通过解三次方程的对比实践,很快就彻底破译了冯塔纳的秘密。 卡尔丹诺把冯塔纳的三次方程求根公式,写进了自己的学术著作《大法》中,但并未提到冯塔纳的名字。随着《大法》在欧洲的出版发行,人们才了解到三次方程的一般求解方法。由于第一个发表三次方程求根公式的人确实是卡尔丹诺,因此后人就把这种求解方法称为“卡尔丹诺公式”。 卡尔丹诺剽窃他人的学术成果,并且据为已有,这一行为在人类数学史上留下了不甚光彩的一页。这个结果,对于付出

用公式法解一元二次方程教案

用公式法解一元二次方 程教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

优质课比赛教案 第23章 23.2 用公式法解一元二次方程 整体设计 教学分析 求根公式是直接运用配方法推导出来的,从数字系数的一元二次方程到字母系数的方程,体现了从特殊到一般的思路。用公式法解一元二次方程是比较通用的方法,它体现了一元二次方程根与系数最直接的关系,一元二次方程的根是由系数a,b,c决定的,只要将其代入求根公式就可求解,在应用公式时应首先将方程化成一般形式。 教学目标 知识与技能: 1、理解一元二次方程求根公式的推导过程 2、会用求根公式解简单系数的一元二次方程 过程与方法: 经历探索求根公式的过程,发展学生的合情推理能力,提高学生的运算能力并养成良好的运算习惯 情感、态度与价值观 通过运用公式法解一元二次方程的训练,提高学生的运算能力,并让学生在学习中获得成功的体验,建立学好数学的自信心。 重点: 掌握一元二次方程的求根公式,并能用它熟练地解一元二次方程

难点: 一元二次方程求根公式的推导过程 教学过程: 一、复习引入: 1、用配方法解下列方程: (1)4x 2-12x-1=0;(2)3x 2+2x-3=0 2、用配方法解一元二次方程的步骤是什么? 说明:教师引导学生回忆配方法解一元二次方程的基本思路及基本步骤,为本节课的学习做好铺垫。 3、你能用配方法解一般形式的一元二次方程ax 2+bx+c=0(a ≠0)吗? 二、问题探究: 问题1:你能用一般方法把一般形式的一元二次方程ax 2+bx+c=0(a ≠0)转化为(x+m)2=n 的形式吗? 说明:教师引导学生回顾用配方法解数字系数的一元二次方程的过程,让 学生分组讨论交流,达成共识,最后化成(x+a b 2)2=2244a a c b - ∵a ≠0,方程两边都除以a,得x 2+ 0=+a c x a b 移项,得x 2+ a c x a b -= 配方,得x 2+ 22)2(-)2(a b a c a b x a b +=+ 即(x+=2)2a b 2244a ac b -

一元二次方程解法-公式法

第6课时 22.2.3 公式法 教学内容 1.一元二次方程求根公式的推导过程; 2.公式法的概念; 3.利用公式法解一元二次方程. 教学目标 理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程. 复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)?的求根公式的推导公式,并应用公式法解一元二次方程. 重难点关键 1.重点:求根公式的推导和公式法的应用. 2.难点与关键:一元二次方程求根公式法的推导. 教学过程 一、复习引入 1.前面我们学习过解一元二次方程的“直接开平方法”,比如,方程 (1)x2=4 (2)(x-2) 2=7 提问1 这种解法的(理论)依据是什么? 提问2 这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊 二次方程有效,不能实施于一般形式的二次方程。) 2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式。) (学生活动)用配方法解方程 2x2+3=7x (老师点评)略 总结用配方法解一元二次方程的步骤(学生总结,老师点评). (1)现将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边; (4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式; (5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根. 二、探索新知 用配方法解方程 (1)ax2-7x+3 =0 (2)a x2+bx+3=0 (3)如果这个一元二次方程是一般形式a x2+bx+c=0(a≠0),你能否用上面配方法的 步骤求出它们的两根,请同学独立完成下面这个问题. 问题:已知ax2+bx+c=0(a≠0),试推导它的两个根x1=,x2=

公式法解一元二次方程(教案)

21.2.2公式法 教案设计(张荣权) 教学内容:用公式法解一元二次方程 教材分析:在解一元二次方程时,仅仅是直接开平方法、配方法解一元二次 方程是远远不够的。对于系数不特殊的一元二次方程,这两种方法就不方便了。而用求根公式法解较复杂的一元二次方程教方便了。因此,学习用公式法解一元二次方程很有必要,也是不可缺少的一个重要内容。而公式法是一元二次方程的基本解法,它为进一步学习一元二次方程的解法级简单应用起到铺垫作用。 教学目标: 知识与技能目标:1.理解一元二次方程求根公式的推导。 2.会用求根公式解简单数字的一元二次方程。 3.理解一元二次方程的根的判别式,并会用它判别一元二次方程根的情况。 过程与方法:在教师的指导下,经过观察、推导、交流归纳等活动导出一元二次方程的求根公式,培养学生的合情推理与归纳总结能力。 情感态度与价值观:培养学生独立思考的习惯和合作交流意识。 教学重点、难点及突破 重点:1.掌握公式法解一元二次方程的步骤。 2.熟练的利用求根公式解一元二次方程。 难点:理解求根公式的推导过程及判别公式的应用。 教学突破 本节课我主要采用启发式、探究式教学法。教学中力求体现“试——究——升”模式。有计划的逐步展示知识的产生过程,渗透数学思想方法。由于学生配方能力有限,所以,崩皆可借助于多媒体辅助教学,指导学生通过观察,分析,总结配方规律,从而突破难点。学生经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力,发挥学生的自觉性,主动性和创造性。 教学设想 通过复习配方法解一元二次方程,导入对一般形式的一元二次方程的解法探讨,通过提问引导学生观察思考,产生问题,进行小组合作探讨,发现结论。加深对应用公式法的理解。渗透由特殊到一般和分类讨论及化归的数学思想,运用解一元二次方程的基本思想----开方降次,重视相关的知识联系,建立合理的逻辑过程,突出解一元二次方程的基本策略。 教学准备 教师准备:课件精选例题 学生准备:配方法解一元二次方程、二次根式的化简 教学过程:

高次方程求根公式的故事

高次方程求根公式的故事 1545年意大利学者卡丹将一元三次方程ax3 +bx2+cx+d=0的求根公式公开发表,后来人们就把它叫做“卡丹公式(也有人译作“卡尔丹公式”)。事实上,发现公式的人并不是卡丹本人,而是塔尔塔利亚。 塔尔塔利亚是意大利人,出生于1500年。他12岁那年,被入侵的法国兵砍伤了头部和舌头,从此说话结结巴巴,人们就给他一个绰号“塔尔塔利亚”(在意大利语中,这是口吃的意思),真名反倒少有人叫了。他自学成才,成了数学家,宣布自己找到了三次方程的的解法。有人听了不服气,来找他较量,每人各出30道题,由对方去解。结果,塔尔塔利亚30道三次方程的解全做了出来,对方却一道题也没做出来。塔尔塔利亚大获全胜。 后来,意大利医生兼数学家卡丹请求塔尔塔利亚把解方程的方法告诉他,但遭到了拒绝。尽管卡丹千方百计地想探听塔尔塔利亚的秘密,但是在很长时间中塔尔塔利亚都守口如瓶。可是后来,由于卡丹一再恳切要求,而且说要推荐他去当西班牙炮兵顾问,还发誓对此保守秘密,于是塔尔塔利亚在1539年把他的发现写成了一首语句晦涩的诗告诉了卡丹,但是并没有给出详细的证明。 六年后,卡丹不顾原来的信约,在他的著作中将经过改进的三次方程的解法公开发表。他在书中写道:“这一解法来自于一位最值得尊敬的朋友——布里西亚的塔尔塔利亚。塔尔塔利亚在我的恳求之下把这一方法告诉了我,但是他没有给出证明。我找到了几种证法。证法很难,我把它叙述如下。”从此,人们就把一元三次方程的求根公式称为“卡丹公式”,而塔尔塔利亚的名字反而被湮没了,正如他的真名在口吃以后被埋没了一样。 卡丹没有遵守誓言,因而受到塔尔塔利亚及许多文献资料的指责。但是卡丹在公布这一解法时并没有把发现这一方法的功劳归于自己,而是如实地说明了这是塔尔塔利亚的发现,所以算不上剽窃;而且证明过程是卡丹自己给出的,说明卡丹也做了工作。卡丹用自己的工作对塔尔塔利亚泄露给他的秘密加以补充,违背誓言,把秘密公之于世,加速了一元三次方程求根公式的普及和人类探索一元n次方程根式解法的进程。 一元三次方程应有三个根。塔尔塔利亚公式给出的只是一个实根。又过了大

一元三次方程及解法简介

一元三次方程 一元三次方程的标准型为02 3 =+++d cx bx ax )0,,,(≠∈a R d c b a 且。一元三次方 程的公式解法有卡尔丹公式法与盛金公式法。两种公式法都可以解标准型的一元三次方程。由于卡尔丹公式解题存在复杂性,对比之下,盛金公式解题更为直观,效率更高。 在一个等式中,只含有一个未知数,且未知数的最高次数是3次的整式方程叫做一元三次方程。 【盛金公式】 一元三次方程02 3 =+++d cx bx ax )0,,,(≠∈a R d c b a 且 重根判别式:bd c C ad bc B ac b A 3:9;32 2 -=-=-=,总判别式:Δ=AC B 22 -。 当A=B=0时,盛金公式①: c d b c a b x x x 33321- =-=- ===,当Δ=AC B 22 ->0时,盛金公式②:a y y b x 33 123 111---= ; i a y y a y y b x 63623 12 3 113 223 1 13,2-±++-=;其中 2 )4(322 ,1AC B B a Ab y -±-+=,12-=i .当Δ=AC B 22 -=0时,盛金公式③: K a b x +- =1;232K x x -==,其中)0(≠=A A B K .当Δ= AC B 22-<0时,盛金公式④:a Cos a b x 3321θ --= ,a Sin Cos A b x 3)333(3 ,2θ θ±+-= ; 其中arcCosT =θ,)11,0(),232( <<->-=T A A aB Ab T . 【盛金判别法】 ①:当A=B=0时,方程有一个三重实根; ②:当Δ=AC B 22 ->0时,方程有一个实根和一对共轭虚根; ③:当Δ=AC B 22 -=0时,方程有三个实根, 其中有一个两重根; ④:当Δ=AC B 22 -<0时,方程有三个不相等的实根。 【盛金定理】 当0,0==c b 时,盛金公式①无意义;当A=0时,盛金公式③无意义;当A ≤0时,盛金公式④无意义;当T <-1或T >1时,盛金公式④无意义。当0,0==c b 时,盛金公式①是否成立?盛金公式③与盛金公式④是否存在A ≤0的值?盛金公式④是否存在T <-1或T >1的值?盛金定理给出如下回答: 盛金定理1:当A=B=0时,若b=0,则必定有c=d=0(此时,方程有一个三重实根0,盛金公式①仍成立)。 盛金定理2:当A=B=0时,若b ≠0,则必定有c ≠0(此时,适用盛金公式①解题)。 盛金定理3:当A=B=0时,则必定有C=0(此时,适用盛金公式①解题)。

一般三次方程谢国芳求根公式的推导方法1(利用复三角函数的方法)

一般三次方程的简明新求根公式和根的判别法则 —— 谢国芳 Email: roixie@https://www.doczj.com/doc/7f1807217.html, 【摘要】 本文利用复三角函数推导出了远比卡丹公式简明快捷的可直接用来求解 一般三次方程(包括复系数情形)320ax bx cx d +++=的新求根公式,进而又针对实系数的情形讨论了根的情况,得到了方便的根的判别法则。 【关键词】 三次方程 复三角函数 欧拉公式 求根公式 判别法 1 一般三次方程的简化 对于一个一般形式的三次方程320ax bx cx d +++= (0)a ≠, 两边同除以a ,即可化为首项系数为1的三次方程 320b c d x x x a a a + ++=, 然后作变量代换 3b x y a =- , (1) 可消去二次项,将它化为下面的形式: 30y py q ++=, (2) 其中 2233b ac p a -=-, 323922727abc b a d q a --=-. (3) 下面我们把形如式(2)的三次方程称为简约三次方程. 并约定其一次项系数0p ≠.[1] 2 简约三次方程的三角函数解法和求根公式 在方程(2)中作变量代换[2] y z =, (4) 利用三倍角公式 3cos34cos 3cos z z z =-,

方程(2)即化为 cos3z = , (5) 定义参数 χ= , (6) 称之为三次方程3 0y py q ++=的关键比(key ratio),于是式(5)即 cos3z χ=. (7) 当χ为实数且1χ≤时,令1 cos θχ-=,可得其一般解为 32z n θπ=±+, 即 23 3n z θ π =± + ()n ∈ 取0,1,1n =-,即可得到z 在一个周期内的六个值: 22, , 33333z θθπθπ =±±+±- 但cos z 只取下面这三个值: 22cos cos , cos(), cos() 33333z θθπθπ =+- 代入式(4),即得方程3 0y py q ++=的三个根: 1 2 332cos()332)33y y y θθπθπ ?=?? ?? =+?? ?=-??? (8) 其中1 cos θχ-= , χ= (, 1) c c 危. 当关键比χ为绝对值大于1的实数或虚数时,方程(7)在实数域内无解,但如果我们 把三角函数的定义域扩大到复数域,即考虑复变量的三角函数,则对于任意复数χ都可求得其解. 根据复三角余弦函数的定义(欧拉公式): cos 2 iz iz e e z -+=, (9) 方程(7)等价于

解一元二次方程练习题公式法

解一元二次方程练习题——公式法 一.填空题。(每小题5分,共25分) 1.一般地,对于一元二次方程ax2+bx+c=0(a≠0),当b2-4ac≥0时,它的根是_____,当b-4ac<0时,方程_________. 2.方程a x2+bx+c=0(a≠0)有两个相等的实数根,则有________,?若有两个不相等的实数根,则有_________,若方程无解,则有__________. 3.若方程3x2+bx+1=0无解,则b应满足的条件是________. 4.用公式法解方程x2=-8x-15,其中b2-4ac=_______,x1=_____,x2=________. 5.已知一个矩形的长比宽多2cm,其面积为8cm2,则此长方形的周长为________. 二.选择题。(每小题5分,共25分) 6.用公式法解方程4y2=12y+3,得到() A... D. 7.不解方程,判断所给方程:①x2+3x+7=0;②x2+4=0;③x2+x-1=0中,有实数根的方程有()A.0个 B.1个 C.2个 D.3个 8.关于x的一元二次方程kx2+2x-1=0有两个不相等的实数根,则k的取值范围是() A、k>-1 B、k>1 C、k≠0 D、k>-1且k≠0 9.下列方程中有两个相等的实数根的是() A、3x2-x-1=0; B、x2-2x-1=0; C、9x2=4(3x-1); D、x2+7x+15=0. 10.(m2-n2)(m2-n2-2)-8=0,则m2-n2的值是(). A. 4或-2 B. -4或2 C. 4 D.-2 11.(20分)用公式法解方程 (1)x2+15x=-3x; (2)x2+x-6=0; (3)3x2-6x-2=0; (4)4x2-6x=0

23用公式法求解一元二次方程教学设计

第二章一元二次方程 3.用公式法求解一元二次方程(一) 横山县第三中学柳金帛 一、学生知识状况分析 学生的知识技能基础:学生通过前几节课的学习,认识了一元二次方程的一般形式:ax2+bx+c=0(a≠0),并且已经能够熟练地将一元二次方程化成它们的一般形式;在上一节课的基础上,大部分学生能够利用配方法解一元二次方程,但仍有一部分认知较慢、运算不扎实的同学不能够熟练使用配方法解一元二次方程. 学生活动经验基础:学生已经具备利用配方法解一元二次方程的经验;学生通过《规律的探求》、《勾股定理的探求》、《一次函数的图像》中一次函数增减性的总结等章节的学习,已经逐渐形成对于一些规律性的问题,用公式加以归纳总结的数学建模意识,并且已经具备本节课所需要的推理技能和逻辑思维能力. 二、教学任务分析 公式法实际上是配方法的一般化和程式化,然后再利用总结出来的公式更加便利地求解一元二次方程。所以首先要夯实上节课的配方法,在此基础上再进行一般规律性的探求——推导求根公式,最后,用公式法解一元二次方程。 其中,引导学生自主的探索,正确地导出一元二次方程的求根公式是本节课的重点、难点之一;正确、熟练地使用一元二次方程的求根公式解方程,提高学生的综合运算能力是本节课的另一个重点和难点。 为此,本节课的教学目标是: ①在教师的指导下,学生能够正确的导出一元二次方程的求根公式,并在探求过程中培养学生的数学建模意识和合情推理能力。 ②能够根据方程的系数,判断出方程的根的情况,在此过程中,培养学生观察和总结的能力.

③通过正确、熟练的使用求根公式解一元二次方程,提高学生的综合运算能力。 ④通过在探求公式过程中同学间的交流、使用公式过程中的小技巧的交流,进一步发展学生合作交流的意识和能力 三、教学过程分析 本课时分为以下五个教学环节:第一环节:回忆巩固;第二环节:探究新知;第三环节:巩固新知;第四环节:收获与感悟;第五环节:布置作业。 第一环节;回忆巩固 活动内容: ①用配方法解下列方程:(1)2x 2+3=7x (2)3x 2+2x+1=0 全班同学在练习本上运算,可找位同学上黑板演算 ②由学生总结用配方法解方程的一般方法: 第一题: 2x2+3=7x 解:将方程化成一般形式: 2x2-7x +3=0 两边都除以一次项系数:2 023272=+-x x 配方:加上再减去一次项系数一半的平方 0231649)47(2722=+-+- x x 即: 016 25)47(2=--x 1625)47(2=-x 两边开平方取“±” 得: 4547±=-x 4547±= x 写出方程的根 ∴ x1=3 , x2=21

元次方程的求根公式及其推导

一元三次方程的求根公式及其推导 有三个实数根。有三个零点时,当有两个实数根。 有两个零点时,当有唯一实数根。有唯一零点时,当。,有两实根,为,则方程若有唯一实数根。 有唯一零点有一实根,则方程若有唯一实数根。 有唯一零点没有实根,则方程若实数根的个数。 点的个数即方程零即方程则设实数根的判定: 程即可。 因此,只需研究此类方的特殊形式即公式化为均可经过移轴 三次方程由于任一个一般的一元0)()(0)1281(81 1)()(0)()(0)1281(81 1)()(0)()(0)1281(81 1)()(3 3: 0)(0)3(0)()(0)(,0).2(0)()(0)(',0).1(0)(,00)(,)(.1,0,0)2792()3)(39()3(0)3272()3)(3()3(032323221''3333233232323=?<+=?=?=+=?=?>+=?--==- ===<=?===?=>=++=++=++==++=+-++-++=+-++-++=+++x F x F p q F F x F x F p q F F x F x F p q F F p x p x x F p x F x F x F p x F x F x F p q px x x F q px x x F q px x x F q px x D A ABC B B Ax AB AC B Ax D A BC A B A B x A B C A B x A D Cx Bx Ax βαβαβαβα

33 2332323233 232332313223 2132323 2333333333333333333333332332332323212811210861128112108610)1281(81 1)27(41281121086112811210861181281918128190)1281(81 1)27(4027 27,3)(300)(33)(3)(.1.200128100128100128112810)1281(81 10)0.(0.p q q p q q x p q p q p q q a B p q q a A B A p q q a p q q a p q p q p qa a B A q B A p B A q B A p AB q B A p AB q px x B A ABx x ABx B A B A AB B A B A x B A x B A B A B A x q px x p q q px x p q q px x p q p q p q p q p q p +--+++-=≤+=--?? ???+--==++-==??? ????+--=++-=>+=--=-+?????-=+-=?? ????????-=+-==+-=-=++=+--++=+++=+=+=+==++<+=?=++=+=?=++>+=?+=?>+≥式,为: 实数根的方程的求根公上方法只能导出有一个)。故由以,小于零时会出现虚数等于零时只能解出一个但却又无法直接解出(二或三个实数根,,虽然我们清楚方程有若判别式顺序,则有,如果不考虑。则有,若判别式的两根。为一元二次方程,易知,。,即可令, 对比。 即有, 故, 由于。 ,就是设法求出下面的工作为两个待定的代数式。,的形式。其中,程的求根公式应为了一元三次方根公式的归纳,我得到及特殊一元高次方程求一元一次,一元二次以得到。通过对出的,通常由归纳思维式由演绎推理是很难解一元三次方程的求根公实根式的推导: )(求根公式的推导: 有三个实数根。 时,方程有两个实数根。 时,方程有唯一实数根。 时,方程,则有以下结论:。令一定有时, ,则当时方程很容易求解同时为不同时为为研究方便,不妨设

一元二次方程的解法(公式法)

一元二次方程的解法(公式法)教案 ——小店一中潘卫生 教学内容 1.一元二次方程求根公式的推导过程; 2.公式法的概念; 3.利用公式法解一元二次方程. 教学目标 理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程. 复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)?的求根公式的推导公式,并应用公式法解一元二次方程. 重难点关键 1.重点:求根公式的推导和公式法的应用. 2.难点与关键:一元二次方程求根公式法的推导. 教学过程 一、复习引入 (学生活动)用配方法解下列方程 (1)6x2-7x+1=0 (2)4x2-3x=52 (老师点评)(1)移项,得:6x2-7x=-1 二次项系数化为1,得:x2-7 6 x=- 1 6 配方,得:x2-7 6 x+( 7 12 )2=- 1 6 +( 7 12 )2 (x- 7 12 )2= 25 144 x- 7 12 =± 5 12 x1= 5 12 + 7 12 = 75 12 + =1 x2=- 5 12 + 7 12 = 75 12 - = 1 6 (2)略 总结用配方法解一元二次方程的步骤(学生总结,老师点评). (1)移项; (2)化二次项系数为1; (3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为(x+m)2=n的形式; (5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.

二、探索新知 如果这个一元二次方程是一般形式a x 2+bx+c=0(a ≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题. 问题:已知ax 2+bx+c=0(a ≠0)且b 2-4ac ≥0,试推导它的两个根 x 1=2b a -+x 2=2b a -- 分析:因为前面具体数字已做得很多,我们现在不妨把a 、b 、c?也当成一个具体数字,根据上面的解题步骤就可以一直推下去. 解:移项,得:a x 2+bx=-c 二次项系数化为1,得x 2+ b a x=- c a 配方,得:x 2+b a x+(2b a )2=-c a +(2b a )2 即(x+2b a )2=2244b ac a - ∵b 2-4ac ≥0且4a 2>0 ∴2244b ac a -≥0 直接开平方,得:x+2b a = 即x=2b a -± ∴x 1=2b a -,x 2=2b a - 由上可知,一元二次方程a x 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因此: (1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b-4ac ≥0时, ?将a 、b 、c 代入式子x=2b a -就得到方程的根. (2)这个式子叫做一元二次方程的求根公式. (3)利用求根公式解一元二次方程的方法叫公式法. (4)由求根公式可知,一元二次方程最多有两个实数根. 例1.用公式法解下列方程.

相关主题
文本预览
相关文档 最新文档