当前位置:文档之家› 环己酮氨肟化生产20万吨年环己酮肟车间工艺设计资料

环己酮氨肟化生产20万吨年环己酮肟车间工艺设计资料

环己酮氨肟化生产20万吨年环己酮肟车间工艺设计资料
环己酮氨肟化生产20万吨年环己酮肟车间工艺设计资料

中北大学

毕业设计开题报告

学生姓名:马旭媛学号:1104034310 学院:化工与环境学院

专业:化学工程与工艺

设计题目:环己酮氨肟化生产20万吨/年环己酮肟

车间工艺设计

指导教师: 李裕

2015年 4月 3日

毕业设计开题报告

毕业设计开题报告

环己酮肟实验报告doc

环己酮肟实验报告 篇一:制备环己酮肟的实验 50.设计合成实验的原理和步骤。 一、以环已酮和盐酸羟胺为主要原料 【实验原理】 2 NH2OH·HCl (盐酸羟胺) + Na2CO3→NH2OH+2NaCl+ H2O +CO2 本实验以环已酮和盐酸羟胺为主要原料来制备环己酮肟。羟胺在酸性条件下稳定,因此常常做成稳定的盐酸羟胺。但是本反应中制得的环己酮肟酸性条件下不稳定易分解,在碱性环境下稳定,所以本实验的反应环境是碱性环境。 本实验中碳酸钠要过量,原因是:(1)提供碱性环境,使生成物环己酮肟稳定(2)碳酸钠弱碱性,起中和作用,使羟胺从盐酸羟胺中游离出来,与环己酮进行反应。 本实验中盐酸羟胺过量要过量,原因是:若环己酮过量,环己酮和环己酮肟的后处理比较复杂,难以提纯目的产物。 【实验步骤】 1、先在锥形瓶中加水溶解适量盐酸羟胺,再加入环己酮肟混合均匀,后将碳酸钠碱液缓慢滴加到混合液中反应,直至溶液显碱性为止。观察并记录实验现象。 2.不断搅拌,反应过程中会产生大量的CO2产生并伴有白色固体析出。用TLC跟踪反应进程,直至反应完全。

3.间歇振荡15min后用冰水浴冷却。有更多白色固体析出。 4、把产物抽滤称重并记录实验数据,后把粗产物反复洗涤、过滤2-3次后再用乙醇重结晶可得纯品环己酮肟。 5、计算理论值和收率。对本次实验进行理论分析和数据分析,得出结论。 二、环已酮和氨水、双氧水为主要原料 【实验原理】 C6H5O(环己酮)+NH3.H2O+H2O2→2H2O +C6H5=NOH(环己酮肟) 本实验以环已酮和和氨水、双氧水为主要原料来制备环己酮肟。羟胺在酸性条件下稳定,因此常常做成稳定的盐酸羟胺。但是本反应中制得的环己酮肟酸性条件下不稳定易分解,在碱性环境下稳定,所以本实验的反应环境是碱性环境,要加入氨水。 NH3.H2O、H2O2过量理由:1、提供碱性环境 2、NH3.H2O、H2O2过量,产物容易分离。若环己酮过量,若环己酮过量,环己酮和环 己酮肟的后处理比较复杂,难以提纯目的产物。 【实验步骤】 1、先搭好回流装置,取一定量的环己酮、氨水、双氧水加入单口烧瓶中,混合均匀后在一定温度下反应,观察并

环己醇制备环己酮

环己醇制备环己酮 一、实验目的 1.学习铬酸氧化法制备环己酮的原理和方法。 2.通过第二醇转变为酮的实验,进一步了解醇和酮之间的区别和联系。 二、实验原理 反应式: OH O 副反应: O HOOC—(CH2)4—COOH 三、仪器设备 圆底烧瓶,温度计,分液漏斗,冷凝管。 四、相关知识点 醇的氧化反应,酮的氧化反应。 五、实验步骤 1. 投料反应 在500ml圆底烧瓶内,放置120ml冰水,在搅拌下慢慢加入20ml 浓硫酸,充分混匀,小心加入20g环己醇(21ml,0.2mo1/l)。在上

述混合液内插入一支温度计,将溶液冷至30℃以下。在烧杯中将21g 重铬酸钠(Na2Cr2O7·2H2O,0.07mo1/l)溶解于12ml水中。取此溶液lml加入圆底烧瓶中,充分振摇,这时可观察到反应温度上升和反应液由橙红色变为墨绿色,表明氧化反应已经发生。继续向圆底烧瓶中滴加剩余的重铬酸钠溶液,同时不断振摇烧瓶,控制滴加速度,保持烧瓶内反应液温度在55—60℃之间。若超过此温度时立即在冰水浴中冷却。滴加完毕,继续振摇反应瓶直至观察到温度自动下降1—2℃以上。然后再加入少量的草酸(约需1g),使反应液完全变成墨绿色,以破坏过量的重铬酸盐。 (二)分离粗产物和收集产物 1. 分离粗产物 在反应瓶内加入100ml水,再加几粒沸石,装成蒸馏装置,将环己酮与水一并蒸馏出来,环己酮与水能形成沸点为95℃的共沸混合物。直到馏出液不再混浊后再多蒸15—20ml(约收集馏液80—100ml),用食盐(15—20g)饱和馏液,在分液漏斗中静置后分出有机层。 2. 收集产物 有机层用无水碳酸钾干燥,蒸馏,收集150—156℃的馏分,环己酮产量12—13 g(产率62%—67%)。 六、实验报告要求 写好标题,目的,原理,操作步骤,记录实验结果, 对实验现象进行解释及讨论。 七、思考题 1、制备环己酮时,当反应结束后,为什么要加入草酸,如果不加入草酸有什么不好?用反应式说明之。

环己酮肟的制备

环己酮肟的制备(cyclohexanone oxime ) 一、实验目的: 学习用酮和羟胺的缩合反应制备肟的方法 二、实验原理: O NH 2OH HCl +N OH + HCl 三、主要试剂: 盐酸羟胺 2.5 g (35 mmol), 环己酮 2.5 g (2.7 ml, 25 mmol). 四、实验步骤: 在50 mlde 烧杯内将2.5 g 盐酸羟胺溶解于7.5 ml 水中(可以微微加热)。然后慢慢用 6 mol/L NaOH 水溶液中和(pH = 8左右)并冷却至室温。 将2.7 ml 环己酮 加入 50 ml 的圆底烧瓶中,加入4.0 ml 乙醇,在不断搅拌下,滴加上述羟胺溶液。加毕,回流20 min, 回流后如溶液中有不溶性固体杂质,则趁热减压过滤。将滤液冷却,析出晶体,过滤,干燥,称重,计算产率(一般85%)。测定产品熔点,(产品的熔点 88-89 oC )。

乙醚的制备 思考题及注意事项 204.204.实验室使用或蒸馏乙醚时应注意哪些问题? 答:在实验室使用或蒸馏乙醚时,实验台附近严禁有明火。因为乙醚容易挥发,且易燃烧,与空气混和到一定比例时即发生爆炸。所以蒸馏乙醚时,只能用热水浴加热,蒸馏装置要严密不漏气,接收器支管上接的橡皮管要引入水槽或室外,且接收器外要用冰水冷却。 另外,蒸馏保存时间较久的乙醚时,应事先检验是否含过氧化合物。因为乙醚在保存期间与空气接触和受光照射的影响可能产生二乙基过氧化物(C2H5OOC2H5),过氧化物受热容易发生爆炸。 检验方法:取少量乙醚,加等体积的2% KI 溶液,再加几滴稀盐酸振摇,振摇后的溶液若能使淀粉显蓝色,则表明有过氧化合物存在。 除去过氧化合物的方法:在分液漏斗中加入乙醚(含过氧化物),加入相当乙醚体积1/5的新配制的硫酸亚铁溶液(55 ml水中加3 ml浓硫酸,再加30g 硫酸亚铁),剧烈振动后分去水层即可。 205.205.在制备乙醚时,滴液漏斗的下端若不浸入反应液液面以下会有什么影响?如果滴液漏斗的下端较短不能浸入反应液液面下应怎么办? 答:滴液漏斗的下端应浸入反应液液面以下,若在液面上面,则滴入的乙醇易受热被蒸出,无法参与反应,造成产率低、杂质多。如果滴液漏斗下端较短而不能浸入反应液液面以下,应在其下端用一小段橡皮管接一段玻璃上去。但要注意,橡皮管不要接触到反应液,以免反应液中的浓硫酸腐蚀橡皮管。 206.206.在制备乙醚和蒸馏乙醚时,温度计被装的位置是否相同?为什么? 答:不同。在制备乙醚时,温度计的水银球必须插入反应液的液面以下。因为此时温度计的作用是测量反应温度;而蒸馏时,温度计的位置是在液面上即水银球的上部与蒸馏烧瓶的支管下沿平齐,因为此时温度计的作用是测量乙醚蒸气的温度。 207.207.在制备乙醚时,反应温度已高于乙醇的沸点,为何乙醇不易被蒸出? 答:因为此时,乙醇已与浓硫酸作用形成了盐。 CH3CH2OH + H2SO4[CH3CH2O+H2]HSO4- 该盐是离子型化合物,沸点较高,不易被蒸出。 208.208.制备乙醚时,为何要控制滴加乙醇的速度?怎样的滴加速度才

环己酮的制备

有机化学实验报告 实验名称:环己酮的制备 学院:化学工程学院 专业:化学工程与工艺 班级: 姓名: 指导教师: 日期:2010年11月15日 一、实验目的 1、学习次氯酸氧化法制环己酮的原理和方法。 2、进一步了解醇和酮之间的联系和区别。 二、实验原理 醇类在氧化剂存在下通过氧化反应可被氧化为醛或酮。本实验用的环己醇属仲醇,因此氧化后生成环己酮。环己酮主要用于合成尼龙-6或尼龙-66,还广泛用作溶剂,它尤其因

对许多高聚物(如树脂、橡胶、涂料)的溶解性能优异而得到广泛的应用。在皮革工业中还用作脱脂剂和洗涤剂。 本实验用次氯酸钠做氧化剂,将环己醇氧化成环己酮。 三、主要试剂 环己醇、冰醋酸、次氯酸钠溶液(约1.8mol/L)、饱和亚硫酸氢钠溶液、氯化铝、碘化钾淀粉试纸、无水碳酸钠、氯化钠、无水硫酸镁、沸石 四、试剂用量规格 五、仪器装置 250mL三颈烧瓶、搅拌器、滴液漏斗、温度计、冷凝管、接受器、分液漏斗、烧杯、量筒、电热炉、石棉网、玻璃棒 图1 环己酮的反应装置

图2 环己酮的蒸馏提纯 六、实验步骤及现象 1、向装有搅拌器、滴液漏斗和温度计的250ml三颈烧瓶中依次加入5.2ml(5g,0.05mol)环己醇和25ml冰醋酸。开动搅拌器,在冰水浴冷却下,将38ml次氯酸钠溶液(约1.8mol/L)通过液滴漏斗逐渐加入反应瓶中,并使瓶内温度维持在30~35℃,加完后搅拌5min,用碘化钾淀粉试纸检验应呈蓝色,否则应再补加5ml次氯酸钠溶液,以确保有过量次氯酸钠存在,使氧化反应完全。在室温下继续搅拌30min,加入饱和亚硫酸氢钠溶液至发应液对碘化钾淀粉试纸不显蓝色为止。 2、向反应混合物中加入30ml水、3g氯化铝和几粒沸石,在石棉网上加热蒸馏至馏出液无油珠滴出为止。 3、在搅拌下向馏出液分批加入无水碳酸钠至反应液呈中性为止,然后加入精制食盐使之变成饱和溶液,将混合液倒入分液漏斗中,分出有机层,用无水硫酸镁干燥,蒸馏收集150~155℃馏分,计算产率。 七、实验结果 最终得到的环己酮为:1.6ml 产率为:1.6ml/5.2ml=30.77% 八、实验讨论 1、数据分析 产率相对较低,操作过程不够精细。 2、结果讨论 (1)、加热蒸馏得很充分,但是分液静置的时候时间不够长,导致环己酮的损失。 (2)、最后蒸馏的时候时间太短,不够充分,环己酮没有完全分离出来。 3、实际操作对实验结果的影响 (1)、反应温度要控制在30~35℃,此时收效较高,若温度低于30℃则不反应,温度

环己酮装置生产原理

生产原理简述 1苯加氢 1.1反应原理 苯分子在一定的温度、压力和催化剂存在的条件下,与氢分子发生加成反应,生成环己烷,并放出大量的反应热。 Ni-Al2O3 C6H6+3H2————→ C6H12+△H,△H=-216.5KJ/mol 135~180℃ Ni-Al2O3 C7H8+3H2 ————→ C7H14+△H,△H=-204KJ/mol 180℃ 该反应为体积缩小放热的平衡反应,高压低温有利于反应向右进行。 以Al2O3为载体的镍催化剂,具有六方晶体结构,镍原子之间的距离为 2.48A。,具有满足使氢活化的最佳晶格参数,因而可与苯环结构相适应,使苯加氢具有满意的效率和良好的选择性。 在苯加氢过程中,首先是氢分子在催化剂表面受到两个距离适中的活性中心吸附而变形,造成氢原子之间键的断裂,从而发生氢的离解。 ↓Ni H2 =====2H++2e

苯分子在镍表面上,由于结构上的适应,苯环上的碳原子被催化剂表面的活化中心吸引,在活化中心拉力的作用下,使苯环上的三个键减弱而活化,并接受表面氢所放出的电子而使苯环离子化,带上负电。这样,在催化剂的表面上,被吸引的和活化了的苯分子随着活化中心移动,带有两种相反电荷的离子彼此吸引而中和各自的电性,同时活化了的π键,被活性氢原子所饱和,从而完成了苯环上的加氢反应。 苯与氢在催化剂表面进行加氢反应的过程,一般有以下几个步骤: ①苯和氢的气体主流扩散到催化剂颗粒的外表面。 ②苯氢组分从颗粒外表面通过微孔扩散到催化剂颗粒的内表面。 ③苯、氢组分在内表面上被吸附。 ④被吸附的苯、氢组分在内表面上进行加氢反应,生成环己烷。 ⑤环己烷组分在内表面脱附。 ⑥环己烷组分从催化剂颗粒内表面通过微孔扩散到催化剂颗粒外表面。 ⑦反应生成物环己烷从催化剂颗粒外表面扩散到气体主流中。 在以上过程中,关键是被吸引的和活化了的苯分子在催化剂颗粒内表面活化中心的吸附、移动和反应,这一反应过程与一般的气固相催化反应过程是一致的。 1.2影响因素 1.2.1反应器结构的影响 苯加氢反应是在固定床列管反应器中进行的放热反应,以管间热

环己酮肟实验报告

环己酮肟实验报告 篇一:环己酮的制备实验报告 20XX年11月19日 姓名///////////系年级20XX级应用化学系组别30同组者???科目有机化学题目环己酮的制备仪器编号 一、实验目的 1、学习铬酸氧化法制备环己酮的原理和方法。 2、通过醇转变为酮的实验,进一步了解醇和酮的联系和区别。 二、实验原理 实验室制备脂环醛酮,最常用的方法是将伯醇和仲醇用铬酸氧化。铬酸是重要的铬酸盐和40%~50%硫酸的混合物。仲醇用铬酸氧化是制备酮最常用的方法。酮对氧化剂比较稳定,不易进一步氧化。铬酸氧化醇是一个放热反应,必须严格控制反应的温度,以免反应过于剧烈。反应方程式为: Ho o 3 +na2cr2o7+4H2So4 + cr2(So4)3

+na2So4+ 7H2o 1 制备蒸馏装置 分液装置 精馏蒸馏装置 六、实验步骤 1、配制铬酸溶液:在200mL烧杯中加入30mL水和5.5g重铬酸钠,搅拌使之全部 溶解。然后在搅拌下慢慢加入 4.5mL浓硫酸,将所得橙红色溶液冷却到30℃以下备用; 2、250mL圆底烧瓶中加入5.3mL环己醇,然后一次加入配制好的铬酸溶液,并充分振摇使之混合均匀。用水浴冷却,控制反应温度在55~60℃。当温度开始下降时移去冷水浴,室温下放置0.5h,其间要间歇振摇反应瓶; 3、反应完毕后在反应瓶中加入30.0mL水和几粒沸石,改成蒸馏装置进行蒸馏。将环己酮和水一起蒸出来,直至馏出液不再浑浊再多蒸8~10mL,约收集馏出液25mL。 4、将馏出液用食盐饱和后转入分液漏斗中,分出有机相。水相用7.5mL乙醚提取一次,将乙醚提取液和有机相合并,用1~2g无水碳酸钾干燥;在水浴上蒸除乙醚,换空气冷凝管,蒸馏收集151~155℃馏分。

实验10环己酮的制备

酒泉职业技术学院《工科化学实验技术》学习领域教案

环己酮的制备 一、教学要求: 学习铬酸氧化法制环己酮的原理和方法。进一步了解醇和酮之间的联系和区别。 二、预习内容: 1.实验原理 2.抽虑操作 3.盐析 三、实验原理: 实验室制备脂肪或脂环醛酮,最常用的方法是将伯醇和仲醇用铬酸氧化。铬酸是重要的铬酸盐和40-50%硫酸的混合物。仲醇用铬酸氧化是制备酮的最常用的方法。酮对氧化剂比较稳定,不易进一步氧化。铬酸氧化醇是一个放热反应,必须严格控制反应的温度,以免反应

过于激烈。环己酮主要用于合成尼龙-6或尼龙-66,还广泛用作溶剂,它尤其因对许多高聚物(如树脂、橡胶、涂料)的溶解性能优异而得到广泛的应用。在皮革工业中还用作脱脂剂和洗涤剂。 四、仪器与药品 仪器: 250ml圆底烧瓶、温度计、蒸馏装置、分液漏斗。 药品:浓硫酸、环己醇、重铬酸钠、草酸、食盐、无水碳酸钠。 四、实验步骤: 1.铬酸溶液的配制 在250mL烧杯中加入30mL水和5.5g重铬酸钠,搅拌使之全部溶解。然后在搅拌下慢慢加入4.5mL浓硫酸,将所得橙红色溶液冷却至30℃以下备用。 2. 氧化反应在250mL圆底烧瓶中加入5.5mL环己醇,然后取此铬酸溶液lml 加入圆底烧瓶中,充分振摇,这时可观察到反应温度上升和反应液由橙红色变为 墨绿色,表明氧化反应已经发生。继续向圆底 烧瓶中滴加剩余的重铬酸钠(或重铬酸钾)溶 液,同时不断振摇烧瓶,控制滴加速度,保持 烧瓶内反应液温度在60~65℃之间。若超过此 温度时立即在冰水浴中冷却。在圆底挠瓶中插 入一支温度计,并继续振摇反应瓶。这时温度 徐徐上升,当温度上升到55℃时,用水浴冷 却,并维持反应温度在60~65℃。大约0.5h 左右,当温度开始下降时移去冷水浴,室温下图1 普通蒸馏装置 放置20分钟左右,其间仍要间歇振摇反应瓶几次,最后反应液呈墨绿色。如果反应液不能完全变成墨绿色,则应加入少量草酸(0.5~1.0g或甲醇1mL)以还原过量的氧化剂。 3.在反应瓶中加入30mL水,如图1装置仪器(改用锥形瓶作接受器)进行蒸馏,收集约50mL馏出液。这一步蒸馏操作实际上是一种简化了的水蒸气蒸馏。环已酮与水形成沸点为95℃的恒沸混合物(含环已酮38.4%)。应注意馏出液的量不能太多,因为馏出液中含水较多,而环已酮在水中的溶解度较大(31℃时为2.4g);否则,即使利用盐析效应,也有少量环已酮溶于水而损失掉。 4. 把馏出液用食盐水饱和,并将馏出液移至分液漏斗中,静止,分出有机相。水相用15mL乙醚提取一次,将乙醚提取液与有机相合并,用无水硫酸镁干燥。 5. 按图1装置仪器,在水浴上蒸出乙醚(在接液管的尾部接一通住水槽或室外的橡皮管,以便把易挥发、易燃的乙醚蒸气通入水槽的下水管内或引出室外),

有机化学实验报告环己酮的制备

环己酮的制备 华南师范:cai 前言: 环己酮,无色透明液体,分子量密度0.9478 g/mL 熔点?16.4 °C 沸点155.65 °C 在水中微溶;在乙醇中混溶。带有泥土气息,含有痕迹量的酚时,则带有薄荷味。不纯物为浅黄色,随着存放时间生成杂质而显色,呈水白色到灰黄色,具有强烈的刺鼻臭味。环己酮有致癌作用。环己酮是重要化工原料,是制造尼龙、己内酰胺和己二酸的主要中间体。也是重要的工业溶剂。也用作染色和褪光丝的均化剂,擦亮金属的脱脂剂,木材着色涂漆,可用环己酮脱膜、脱污、脱斑。 醇的氧化是制备醛酮的重要方法之一。本实验通氧化环己醇制备环己酮,氧化剂可以用铬酸或次氯酸,由于铬酸和它的盐价格比较贵,且会污染环境,用次氯酸或漂白粉来氧化醇可以避免这些缺点,产率也高。所以本实验采用次氯酸做氧化剂。 其他重要数据: 环己醇,有樟脑气味的无色粘性液体,熔点25.2℃沸点:160.9 ℃相对密度 环己酮和水形成恒沸点混合物,沸点95℃,含环己酮%,溜出液中还有乙酸,沸程94~100℃。 反应方程式: [O] OH O 1、实验部分 实验设备和材料 实验仪器:搅拌器、滴液漏斗、温度计、250mL三颈烧瓶、酒精灯、锥形瓶、冷凝管、蒸馏烧瓶、接液管、分液漏斗 实验药品:环已醇、次氯酸钠、冰醋酸、无水碳酸钠、无水硫酸镁、氯化铝、沸石、氯化钠、碘化钾淀粉试纸 实验装置 反应装置蒸馏装置分液装置 实验过程

混合反应:向装有搅拌器、滴液漏斗和温度计的250mL三颈烧瓶中依次加入mL(5g,mol)环已醇和25mL冰醋酸。开动搅拌器,在冰水浴冷却下,将38mL次氯酸钠水溶液(约mol/L)通过滴液漏斗逐滴加入反应瓶中,并使瓶内温度维持30~35℃,加完后搅拌5min,用碘化钾淀粉试纸检验应呈蓝色,否则应再补加5mL次氯酸钠溶液,以确保有过量次氯酸钠存在,使氧化反应完全。在室温下继续搅拌30min,加入饱和亚硫酸氢钠溶液至反应液对碘化钾淀粉试纸不显蓝色为至。 蒸馏粗产品:向反应混合物中加入30mL水、3g氯化铝和几粒沸石,在石棉网上加热蒸馏至馏出液无油珠滴出为至。 除杂干燥:在搅拌下向馏出液分批加入无水碳酸钠至反应液呈中性为止,然后加入精制食盐使之变成饱和溶液,将混合液倒入分液漏斗中,分出上层有机层;用无水硫酸镁干燥,过滤得到产物。 2 结果与讨论 实验步骤实验现象 混合反应加入次氯酸后,无色溶液变成乳白色,温度稍有升高,升高到28℃。用碘化钾试纸检验成紫色。充分反应后,溶液呈无色透明状液体,加入适量饱和亚硫酸氢钠后,用碘化钾试纸不显色。 蒸馏得粗产品 加入氯化铝后,有大量的白色烟雾产生,一会后,白色烟雾消失,溶液呈淡黄色。混合液体在82℃时开始沸腾,到98℃时有馏分蒸出,蒸出液为淡黄色透明液体,该液体有怡人的气味。 除杂干燥 加入分液漏斗后,溶液分为两层,上层为淡黄色油状液体(产品),下层为无色透明液体(水层)。产品为淡黄色液体,有怡人的气味,产量有3.2g 产率与产量 产量:产物为淡黄色液体3.2g 产率:=% 环己酮的沸点为156℃,而在蒸馏得粗产品中,温度为98℃即可蒸出产品的原因分析环己酮的沸点为156℃,但环己酮能与水形成共沸物,从而降低了环己酮的沸点,温度在98℃即可蒸出产物,但含有杂质。通过对粗产品除杂,可以得到较纯的环己酮,此时再蒸馏环己酮,温度即可达到环己酮的沸点156℃。 加入次氯酸充分反应后,溶液呈乳白色的原因分析 加入次氯酸充分反应后,溶液本应是无色透明溶液,而此时溶液仍呈乳白色,是因为加入次氯酸钠过多。次氯酸钠在有机试剂中溶解度比较低,当次氯酸钠过多时,容易析出,从而使溶液呈乳白色。 提高产率的因素分析

环己酮生产企业

石家庄焦化集团10万吨环己酮项目,总投资5亿元。 该项目引进日本旭化成株式会社代表国际领先水平的环己烯法工艺路线建设10万吨环己酮生产装置。该工艺与传统的环己烷法生产工艺相比,原料苯几乎100%转化成可利用的产品,苯耗较传统工艺低200kg/t环己醇以上,用氢量只相当于传统工艺的2/3,无对环境有害的物质产生,具有“本质上节能、无公害和安全”等特点;不产生有机酸,无需碱液中和,减少了装置投资和运行费用,可变成本较传统KA油法降低20~25%;加氢和水合反应均在水相中进行,反应温和,较传统的氧化工艺更安全,避免了腐蚀性副产品堵塞,具有更高的操作性,降低了水、电、气等能源消耗。该工艺循环利用原料,节约能源,无污染,是清洁、环境友好、经济的生产路线。 项目建成后,年产环己酮10万吨,环己烷2.5万吨,实现销售收入15亿元,利税3亿元,利润2亿元。 项目于09年4月30日投产。项目投产后,每年可生产9.6万吨环己酮、2.5万吨环己烷、1600吨燃料油、300吨溶剂油和其它副产品。年可实现销售收入12.5亿元,利税2.87亿元。

我国的环己酮生产主要集中在9大生产厂家,其中3~7万吨/年规模以上的有南京帝斯曼公司、巴陵分公司、巴陵石油化工有限责任公司、辽阳石化公司、中国神马集团尼龙66盐公司、巨化集团锦纶厂等6家企业。这6家企业的生产能力达到了26.5万吨,占全国总产能的90%以上。其中辽阳化纤和神马集团均用于生产己二酸,而巴陵分公司、南京帝斯曼公司为引进装置,其己内酰胺产能经扩改分别达8万吨/年和6.5万吨/年,配套的环己酮产能分别为7万吨/年和5.5万吨/年;其余为国产化装置,其中巴陵石油化工有限责任公司和巨化锦纶厂的环己酮装置在消化吸收国内外先进技术的基础上,也达到了国外的先进技术水平。其余3家分别是太原化工厂、锦西化工总厂和山东天原化学工业公司,生产规模在1万吨/年以下。国内环己酮主要生产厂家如表1所示。表2列出了部分厂家近几年的生产情况。表1 国内环己酮主要生产厂家一览表(单位:万吨) 企业名称环己酮生产能力备注 巴陵分公司7 自用 南京帝斯曼公司 5.5 自用 巴陵石油化工有限责任公司 4.5 商品量 辽阳石化公司 4.5 自用 中国神马集团尼龙66盐公司 3 自用 巨化集团锦纶厂 3 部分商品量 太原化工厂0.7 部分商品量 锦西化工总厂0.6 商品量

苯为原料生产8万吨年环己酮车间工艺设计说明书

1引言 1.1 环己酮的性质及用途 环己酮是一种重要的有机化工原料,是生产己内酰胺和己二酸及其盐的主要中间体,具有低毒、微溶于水、易溶于甲醇、乙醇、丙酮、醚、苯等大多数有机溶剂的特点,环己酮在工业上广泛应用于高档溶剂、染料助剂、医药助剂、抛光剂、胶黏剂及皮革涂料稀释剂等领域[1],近几年环己酮的产量和需求量稳定增长,其生产与发展发挥了巨大的社会效益,取得了良好的经济效益。随着近几十年来我国环己酮作为中间体的生产推移,我国市场对环己酮质量提出了更高的要求,其生产工艺需要更快的发展和转变,才能满足社会需求。 1.2 环己酮国内外市场分析 1.2.1国外产业状况 2013 年世界环己酮总产能约738.7 万吨,主要集中在己内酰胺生产较发达的国家和地区中国、美国、比利时、韩国、德国、泰国、前独联体及东欧等。其中中国是最大的环己酮生产国,占世界总产能的27.07%,其次是美国,占世界总产能的15.42%。2013 年全球环己酮产能部分情况见图1。 2013 年世界环己酮产能分布比例 27% 15%7% 6% 4%4% 37% 中国美国日本比利时德国韩国其他 图1-1 2013 年世界环己酮产能分布比例 2013 年世界环己酮产量达到517.9 万吨。预计未来几年世界环己酮产量增长速度将在3.2%以上,2014 年产量达到534.5 万吨以上,2017 年将达587.5 万吨以上,环

己酮的世界需求量也会同步增加[2],总体上供需平衡。近年来全球环己酮产量见表1.1。 表1.1 近年来全球环己酮产量变化情况及预测 年份全球产量/万吨增长率/% 2006 441.3 1.97 2007 450.0 1.97 2008 435.0 -3.33 2009 461.0 5.98 2010 474.0 2.82 2011 480.8 1.43 2012 501.9 4.39 2013 517.9 3.19 2017(预测)587.5 3.2 世界上主要生产环己酮的企业几乎都有配套的己内酰胺装置,主要用于生产己内酰胺,合成尼龙。 1.2.2 国外市场需求预测 环己酮主要用于己内酰胺、高档溶剂、助剂、抛光剂、胶黏剂及皮革涂料稀 释剂等域。2013年,环己酮在己内酰胺领域的消费比例最高,其下依次是涂料/ 油漆/油墨溶剂染料助剂、医药助剂、抛光剂、胶黏剂等。2013 年世界环己酮产 量517.9 万吨,需量495.1万吨,2014 年达到510.76 万吨,随着下游产品需求 量的增长,预计未来几年国外环己酮的产能也将呈增长趋势,2015-2017年将分 别达到526.88万吨543.51万吨、543.51 万吨和587.5 万吨。未来几年全球环己 酮在各应用领域的需求预测见1.2。 表1.2 未来几年全球环己酮消费结构及需求预测(万吨,%)应用领域市场份额年增长率2013年2014年2015年2016年2017年 己内酰胺91.2 3.1 451.33 465.32 479.75 494.62 509.95 涂料/油漆/油墨 3.2 3.5 15.9 16.45 17.03 17.63 18.24 染料助剂 2.2 3.5 10.93 11.31 11.71 12.12 12.54 医药助剂 1.5 3.5 7.45 7.71 7.98 8.26 8.55

环己酮_环己醇制备技术进展

CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2006年第25卷第8期·852· 化工进展 环己酮、环己醇制备技术进展 郭志武,靳海波,佟泽民 (北京石油化工学院化工系,北京 102617) 摘要:介绍了制备环己醇和环己酮两条工业化路线:(1)通过环己烷氧化制备环己醇和环己酮;(2)通过环己烯水合制备环己醇。还特别介绍了近年来环己烷氧化反应催化剂方面的进展,包括光氧化催化剂,纳米催化剂,Gif 催化剂,仿生催化剂,沸石催化剂以及复合催化剂等。并探讨了环己醇和环己酮工业化制备技术将来研究的方向。 关键词:苯;环己烷;环己烯;环己酮;环己醇 中图分类号:TQ 23 文献标识码:A 文章编号:1000–6613(2006)08–0852–08 Advances in techniques for production of cyclohexanone and cyclohexanol GUO Zhiwu,JIN Haibo,TONG Zemin (Department of Chemical Engineering, Beijing Institute of Petrochemical Technology,Beijing 102617,China)Abstract:The technical progress of producing cyclohexanone and cyclohexanol is reviewed. Two commercial routes to produce cyclohexanone and cyclohexanol are introduced:(1)Oxidation of cyclohexane to cyclohexanone and cyclohexanol;(2) Hydration of cyclohexene to cyclohexanol. Recent developments in oxidation of cyclohexane are described in detail,especially the catalysts. The catalysts include photooxidation catalyst, nanostructured catalyst, Gif catalyst, bionic catalyst, zeolite catalyst and composite catalyst. The researches on commercial production of cyclohexanone and cyclohexanol are discussed. Key words:benzene;cyclohexane;cyclohexene;cyclohexanone;cyclohexanol 环己酮及环己醇作为重要的化工中间体,其制备方法一直在工业生产和学术研究上备受关注。工业上生产环己酮及环己醇的路线主要有3条:①苯加氢制备环己烷,然后由环己烷与空气中氧反应部分氧化制得环己酮和环己醇;②苯部分加氢生成环己烯,然后环己烯与水加成制得环己醇;③苯酚加氢生产环己醇。由于工业上苯酚的生产经过苯烷基化生成异丙苯,然后异丙苯氧化到异丙苯过氧化氢,再联产苯酚和丙酮等多个步骤,所以考虑到苯酚的来源以及与苯较大的差价,苯酚加氢工艺的应用也受到很大限制。本文作者主要介绍环己烷氧化制环己酮和环己醇、苯加氢制环己烯,然后环己烯水合制备环己醇的研究进展。 1 环己烷氧化制备环己醇和环己酮 目前,世界上绝大部分环己醇和环己酮采用环己烷部分氧化法制备,其中环己烷由苯加氢得来。工业上环己烷液相氧化包括催化氧化和无催化氧化的路线。无催化氧化法[1]以环己酮、环己醇为引发剂,在不加催化剂的情况下直接用空气或氧气将环己烷氧化成环己基过氧化氢。环己基过氧化氢经浓缩采用钼、钒、钴等金属氧化物催化,在低温、碱性、无氧条件下使之分解成环己醇和环己酮的混合物。无催化氧化法氧化反应温度和压力都较催化法高,一般反应压力为 1.4~2.0 MPa,反应温度为170~200℃,单程转化率为4%~5%,环己醇和环己酮选择性为80%。由于此方法在某些方面明显优于现有的其他制备方法,如生产中不产生结渣、副产物少等,在工业界仍占有一定的份额。 工业上环己烷氧化主要采用催化法,而其中钴 收稿日期 2006–03–14;修改稿日期 2006–05–30。 第一作者简介郭志武(1971—),男,工程师。电话 010–81292074;E–mail guozhiwu@https://www.doczj.com/doc/7f14418779.html,。联系人靳海波,博士,教授。E–mail jinhaibo@https://www.doczj.com/doc/7f14418779.html,

环己酮概况(20200918133221)

环己酮概况 1.1环己酮的基本概况 英文名称:Cyclohexa none ;ketohexamethyle ne 分子式:C6H0O (CHO5CO 分子量:98.14 CAS 编号:108-94-1 图1.1 环己酮分子结构图 环己酮是一种重要的有机化工产品,具有高溶解性和低挥发性,可以作为特种溶剂,对聚合物如硝化棉及纤维素等是一种理想的溶剂;也是重要的有机化工原料,是制备己内酰胺和己二酸的主要中间体。 1893年A. Bayer采用庚二酸和石灰(庚二酸钙)干馏首先合成了环己酮。1943年德国I . G. Farben公司建成了苯酚加氢法合成环己酮生产装置。1960 年德国BASF公司采用环己烷氧化法建成大型环己酮生产装置,使环己烷氧化技术得以迅速发展,并导致聚酰胺纤维的大规模发展。 早期,国内环己酮只是己内酰胺的中间产品,厂家的环己酮生产能力与己内酰胺装置相匹配,只有很少量的商品环己酮供应市场。 环己酮作为一个独立的行业成长和发展起来,主要有两个原因: 一是由于环己酮的用途不断扩大,特别是作为一种高档的有机溶剂,在涂料、油墨、胶粘剂等行业被广泛应用,形成了较大的商品市场; 二是国产化己内酰胺存在着装置规模、工艺技术、产品质量、生产成本等问 题,导致国产化己内酰胺装置步履艰难。 前几年,除巨化公司的己内酰胺还在勉强维持生产外,其它厂家只生产商品 环己酮。不少厂相继对环己酮装置进行了扩能改造,扩大了环己酮商品量,形成了相当规模的行业,成为一种大宗石油化工产品。

1.2环己酮基本理化性质 环己酮(Cyclohexa none)为无色透明液体,带有泥土气息。熔点-47 °C,沸点155.6 C,闪点54C ,相对密度0.947,易溶于乙醇和乙醚。 1.3环己酮的安全及防护 健康危害: 1、侵入途径:吸入、食入、经皮吸收。 2、健康危害:本品具有麻醉和刺激作用。液体对皮肤有刺激性;眼接触有 可能造成角膜损害。慢性影响:长期反复接触可致皮炎。 泄漏应急处理: 迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿消防防护服。尽可能切断泄漏源,防止进入下水道、排洪沟等限制性空间。小量泄漏:用砂士或其它不燃性材料吸附或吸收。也可以用大量水冲洗,洗水稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容;用

环己酮肟的制备实验报告

环己酮肟的制备实验报告 篇一:环己酮肟的制备 实验二十六环己酮肟的制备 一实验目的 学习用酮和羟胺的缩合反应制备肟的方法 二实验原理: +nh2ohhcl+hcl 三主要试剂:盐酸羟胺2.5g(35mmol),环己酮 2.5g(2.7ml,25mmol). 四实验步骤: 在50ml的烧杯内将2.5g 盐酸羟胺溶解于7.5ml 水中(可 以微微加热)。然后慢慢用6mol/Lnaoh 水溶液中和(ph=8 左右)并冷却至室温。 五注意事项 1.反应回流后如溶液中有不溶性固体杂质,则可趁热减 压过滤。 篇二:环己酮肟的制备 环己酮肟的制备(cyclohexanoneoxime) 一、实验目的: 学习用酮和羟胺的缩合反应制备肟的方法 二、实验原理:o +nh2ohhcln+hcl

三、主要试剂: 盐酸羟胺2.5g(35mmol),环己酮2.5g(2.7ml,25mmol). 四、实验步骤:在50mlde 烧杯内将2.5g 盐酸羟胺溶解于7.5ml 水中(可以微微加热)。然后慢慢用6mol/Lnaoh 水溶液中和(ph=8 左右)并冷却至室温。将2.7ml 环己酮加入50ml 的圆底烧瓶中,加入4.0ml乙醇,在不断搅拌下,滴加上述羟胺溶液。加毕,回流20min, 回流后如溶液中有不溶性固体杂质,则趁热减压过滤。将滤液冷却,析出晶体,过滤,干燥,称重,计算产率(一般85%)。测定产品熔点,(产品的熔点88-89oc)。思考题及注意事项204.204.实验室使用或蒸馏乙醚时应注意哪些问题? 答:在实验室使用或蒸馏乙醚时,实验台附近严禁有明火。因为乙醚容易挥发,且易燃烧,与空气混和到一定比例时即发生爆炸。所以蒸馏乙醚时,只能用热水浴加热,蒸馏装置要严密不漏气,接收器支管上接的橡皮管要引入水槽或室外,且接收器外要用冰水冷却。另外,蒸馏保存时间较久的乙醚时,应事先检验是否含过氧化合物。因为乙醚在保存期间与空气接触和受光照射的影响可能产生二乙基过氧化物(c2h5ooc2h5),过氧化物受热.

环己酮

环己酮 环己酮基本概念 名称:环己酮 英文名:Cyclohexanone 分子式:C6H10O 分子量:98.14 化合物类别:醛和酮类 CAS号:108-94-1 环己酮物理化学性质 介绍:羰基碳原子包括在六元环内的饱和环酮。 性状:无色透明液体,带有泥土气息,含有痕迹量的酚时,则带有薄荷味。不纯物为浅黄色,随着存放时间生成杂质而显色,呈水白色到灰黄色,具有强烈的刺鼻臭味。与空气混合爆炸极限3.2%~9.0%(体积),易燃易挥发。稳定 熔点:-45℃ 沸点:155.6℃ 闪点(开杯):54℃ 相对密度(20/4℃):0.9478(水=1);3.38(空气=1) 溶解性:微溶于水,溶于乙醇、乙醚等有机溶剂。在水中溶解度10.5%(10℃),水在环己酮中溶解度5.6%(12℃),易溶于乙醇和乙醚。 折射率nD(20℃):1.4507 蒸气压:2kPa(47℃) ,1.33kPa(38.7℃) 粘度:[2.2mPa·s(25℃)] 自燃点:520~580℃。 化学性质:与开链饱和酮相同。环己酮在催化剂存在下用空气、氧或硝酸氧化均能生成己二酸HOOC(CH2)4COOH。环己酮肟在酸作用下重排生成己内酰胺。它们分别为制耐纶66和耐纶6的原料。环己酮在碱存在下容易发生自身缩合反应;也容易与乙炔反应。环己酮最早由干馏庚二酸钙获得。大规模生产环己酮是用苯酚催化氢化然后氧化的方法。在工业上主要用作有机合成原料和溶剂,例如它可溶解硝酸纤维素、涂料、油漆等。 环己酮主要用途 用途:环己酮是重要化工原料,是制造尼龙、己内酰胺和己二酸的主要中间体。也是重要的工业溶剂,如用于油漆,特别是用于那些含有硝化纤维、氯乙烯聚合物及其共聚物或甲基丙烯酸酯聚合物油漆等。用于有机磷杀虫剂及许多类似物等农药的优良溶剂,用作染料的溶剂,作为活塞型航空润滑油的粘滞溶剂,脂、蜡及橡胶的溶剂。也用作染色和褪光丝的均化剂,擦亮金属的脱脂剂,木材着色涂漆,可用环己酮脱膜、脱污、脱斑。环己酮与氰乙酸

实验10环己酮的制备

酒泉职业技术学院 《工科化学实验技术》 学习领域教案 NO : 10 09石化1、2、3、应化1班 2010.5.10-5.17 1、用铬酸氧化法环己酮的制备实验, 为什么要严格控制反应温在 60?65 C 关键点:温度的控制。 11 复习提问 之间,温度过高或过低有什么不好? 学习情境 环己酮的制备 课程内容 1. 通过氧化反应制备环己酮 2. 普通蒸馏装置的安装与操作方法。 学习目标 1?学习铬酸氧化法制环己酮的原理和方法。进一步了解醇和酮之间的 联系和 区别; 2?了解盐析效应在分离有机化合物中的应用; 主要内容(*重点、难点) 教学设计与组织 重点:掌握铬酸的配制及环己酮的制备方法。 【教学设计】 难点:熟悉醇的氧化、盐析原理,掌握蒸馏及减 压过滤操作技。 第一部分: 要内容 第二部分: 组织教学和复习上次课主 (时间:5分钟) 讲解新 内容。一、实验原 仪器:真空泵、漏斗、抽滤瓶、布氏漏斗、酒精 灯、滤纸、铁架台、铁圈、火柴、烧杯、球形冷 凝管、圆底烧瓶、分液漏斗 药品:重铬酸钠(Na2Cr2O7?2H2O );环己醇; 硫酸;无水硫酸镁;饱和食盐水;草酸 主要内容: 、实验原理 二、实验步骤 教学地点 逸夫教学楼化学实验室 教学及参考资料 【步骤一】 仪器安装、检验 (一)铬酸的配制 (二)溶液的反应 (时间:200分钟) 【步骤二】结果处理计算回收率 (时间:10分钟) 教学仪器设备 投影仪,教学计算机 实验仪器 练习与习题 课时

实验?北京:科学出版社,2003.3 2. 罗志刚主编.基础化学实验技术.广州:华南 理工大学出版社,2002.8 3. 陈同云主编.工科化学实验.北京:化学工业 出版社,2003.7 4. 王尊本主编.综合化学实验.北京:科学出版 社,2003.8 5. 周志高,初玉霞主编.有机化学实验.化学工业 出版社,2005.4 环己酮的制备 、教学要求: 学习铬酸氧化法制环己酮的原理和方法。进一步了解醇和酮之间的联系和区另叽 、预习内容: 1.实验原理 2.抽虑操作 3.盐析 三、实验原理: 实验室制备脂肪或脂环醛酮, 最常用的方法是将伯醇和仲醇用铬酸氧化。 铬酸是重要的铬酸 盐和40- 50%硫酸的混合物。仲醇用铬酸氧化是制备酮的最常用的方法。酮对氧化剂比较 稳定,不易进一步氧化。 1.王秋长,赵鸿喜,张守民,李一峻编?基础化学 、思考题 1.环己醇用铬酸氧化得到环 己 酮,用高锰酸钾氧化则得己二 酸,为什么? 2?盐析的作用是什么? 3.能否用铬酸氧化法把 2- 丁 醇和2-甲基-2-丙醇区别开来? 说明原因,并写出有关反应式。 二、完成实验报告

环己酮的制备

环己酮的制备 一、实验目的 1、学习次氯酸氧化法制环己酮的原理和方法。 2、进一步了解醇和酮之间的联系和区别。 二、实验原理 醇类在氧化剂存在下通过氧化反应可被氧化为醛或酮。本实验用的环己醇属仲醇,因此氧化后生成环己酮。环己酮主要用于合成尼龙-6或尼龙-66,还广泛用作溶剂,它尤其因对许多高聚物(如树脂、橡胶、涂料)的溶解性能优异而得到广泛的应用。在皮革工业中还用作脱脂剂和洗涤剂。 本实验用次氯酸钠做氧化剂,将环己醇氧化成环己酮。 三、主要试剂 环己醇、冰醋酸、次氯酸钠溶液(约1.8mol/L)、饱和亚硫酸氢钠溶液、氯化铝、碘化钾淀粉试纸、无水碳酸钠、氯化钠、无水硫酸镁、沸石 四、试剂用量规格 五、仪器装置 250mL三颈烧瓶、搅拌器、滴液漏斗、温度计、冷凝管、接受器、分液漏斗、烧杯、量筒、电热炉、石棉网、玻璃棒

图1 环己酮的反应装置 图2 环己酮的蒸馏提纯 六、实验步骤及现象 1、向装有搅拌器、滴液漏斗和温度计的250ml三颈烧瓶中依次加入5.2ml(5g,0.05mol)环己醇和25ml冰醋酸。开动搅拌器,在冰水浴冷却下,将38ml次氯酸钠溶液(约1.8mol/L)通过液滴漏斗逐渐加入反应瓶中,并使瓶内温度维持在30~35℃,加完后搅拌5min,用碘化钾淀粉试纸检验应呈蓝色,否则应再补加5ml次氯酸钠溶液,以确保有过量次氯酸钠存在,使氧化反应完全。在室温下继续搅拌30min,加入饱和亚硫酸氢钠溶液至发应液对碘化钾淀粉试纸不显蓝色为止。 2、向反应混合物中加入30ml水、3g氯化铝和几粒沸石,在石棉网上加热蒸馏至馏出液无油珠滴出为止。 3、在搅拌下向馏出液分批加入无水碳酸钠至反应液呈中性为止,然后加入精制食盐使之变成饱和溶液,将混合液倒入分液漏斗中,分出有机层,用无水硫酸镁干燥,蒸馏收集150~155℃馏分,计算产率。

环己酮生产技术

环己酮装置生产技术二〇一一年一月

苯加氢技术 1 综述 以纯苯和氢氮气为原料,在填充有镍催化剂的反应器中进行加氢反应,生成环己烷,供氧化工序作为原料使用。 2 反应原理 2.1主反应 C 6H 6+3H 2 C 6H 12+207.2KJ/mol (温度162—173℃ 附有 Ni-AL 2O 3) 2.2副反应 ①当反应温度高于200℃时,会生成甲基环戊烷: C 6H 6+3H 2 - CH 3 C 6H 6+9H 2 6CH 4↑ ③温度过高(>600℃)且氢气分压较低时,甲烷进一步深度裂解生成碳: CH 4 C+2H 2↑ ④生成的碳与原料气中的氧结合,生成一氧化碳和二氧化: 2C+O 2 2CO C+O 2 CO 2 氧化技术 1 综述 以环已烷与空气为原料,通过环已烷液相空气氧化,以获得以环已基过氧化氢为主的氧化液,再经水溶性钴盐的定向催化分解作用,将过氧化物分解以获得环已酮、环已醇混合物。 2 反应原理 环已烷氧化是一个极为复杂的烃类氧化反应过程。一般认为其属于链锁反应中的退化支链反应,其反应过程通常可简单表述如下: 2.1氧化与分解过程

2.1.1 1液态不已烷与空气中的氧在165℃、1.1MPa (G)和无催化剂条件下反应,生成环已基过氧化氢: 2.1.2环已基过氧化氢(简称:过氧化物)催化分解生成环已酮和环已醇: 过氧化物在酸性,碱性或较高温度等条件下,分解速度加快;在钴盐催化剂存在下,不但使分解反应速度加快,还朝着生成环已酮与环已醇的方向进行,从而可提高分解的收率. 2.13环已烷也可直接氧化生成环已醇和环已酮 2.1.4环已酮可通过环已醇进一步氧化生成,其过程复杂,且生成量较少,其反应历程可简化写作: 2.1.5环已酮与环已醇比环已烷更容易氧化,在氧化过程中发生一系列副反应,生成以已二酸为代表的各种羧酸: 2.1.6生成的羧酸与环已醇反应,可生成各种羧酸环已醇酯: 2.2皂化过程 2.2.1在分解器中,羧酸与氢氧化钠发生中和反应,生成羧酸钠盐和水: 2.2.2酯发生水解,生成羧酸盐和环已醇:

相关主题
文本预览
相关文档 最新文档