当前位置:文档之家› 2021新高考数学二轮总复习专题突破练21 直线与圆及圆锥曲线 Word版含解析

2021新高考数学二轮总复习专题突破练21 直线与圆及圆锥曲线 Word版含解析

2021新高考数学二轮总复习专题突破练21 直线与圆及圆锥曲线 Word版含解析
2021新高考数学二轮总复习专题突破练21 直线与圆及圆锥曲线 Word版含解析

专题突破直线与圆及圆锥曲线

1.(2020全国Ⅱ,理19)已知椭圆C1:x2

a +y2

b

=1(a>b>0)的右焦点F与抛物线C2的焦点重

合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D

两点,且|CD|=4

3

|AB|.

(1)求C1的离心率;

(2)设M是C1与C2的公共点.若|MF|=5,求C1与C2的标准方程.

2.

已知圆O:x2+y2=4,点A(√3,0),以线段AB为直径的圆内切于圆O,记点B的轨迹为Γ.

(1)求曲线Γ的方程;

(2)直线AB交圆O于C,D两点,当B为CD的中点时,求直线AB的方程.

3.(2019全国Ⅰ,理19)已知抛物线C :y 2=3x 的焦点为F ,斜率为3

2的直线l 与C 的交点为A ,B ,与x 轴的交点为P. (1)若|AF|+|BF|=4,求l 的方程; (2)若AP ????? =3PB ????? ,求|AB|.

4.(2020山东威海一模,20)已知椭圆x 2

a +y 2

b =1(a>b>0)的左、右焦点分别为F 1,F 2,点P (-1,3

2)是椭圆上一点,|F 1F 2|是|PF 1|和|PF 2|的等差中项. (1)求椭圆的标准方程;

(2)若A 为椭圆的右顶点,直线AP 与y 轴交于点H ,过点H 的另一条直线与椭圆交于M ,N 两点,且S △HMA =6S △PHN ,求直线MN 的方程.

5.(2020重庆名校联盟高三二诊,19)已知椭圆C :x 2

a +y 2

b =1(a>b>0),F 1,F 2为椭圆的左、右焦点,P (1,

√2

2)为椭圆上一点,且|PF 1|=3√22

. (1)求椭圆的标准方程;

(2)设直线l :x=-2,过点F 2的直线交椭圆于A ,B 两点,线段AB 的垂直平分线分别交直线l 、直线AB 于M ,N 两点,当∠MAN 最小时,求直线AB 的方程.

6.(2020天津河北一模,19)已知椭圆C :x 2a 2+y 2

b 2=1(a>b>0)的离心率为1

2,直线x+y-√6=0与圆x 2+y 2=b 2相切. (1)求椭圆C 的方程;

(2)过点P (4,0)的直线l 与椭圆C 交于不同两点A ,B ,线段AB 的中垂线为l 1,若l 1在y 轴上的截距为4

13,求直线l 的方程.

答案及解析

1.解(1)由已知可设C 2的方程为y 2=4cx ,其中c=2

2.

不妨设A ,C 在第一象限,由题设得A ,B 的纵坐标分别为b 2a ,-b 2

a ;C ,D 的纵坐标分别为2c ,-2c ,故|AB|=

2b 2a

,|CD|=4c.

由|CD|=43|AB|得4c=8b 2

3a ,即3×c

a =2-2(c a )2

,解得c

a =-2(舍去),c

a =1

2.所以C 1的离心率为

12

.

(2)由(1)知a=2c ,b=√3c ,故C 1:x 24c +y 2

3c =1. 设M (x 0,y 0),则x 0

24c 2+

y 0

23c 2=1,y 02

=4cx 0,故x 024c 2+

4x 03c

=1.

① 由于C 2的准线为x=-c ,所以|MF|=x 0+c ,而|MF|=5,故x 0=5-c ,代入①得(5-c )24c 2

+

4(5-c )3c

=1,

即c 2-2c-3=0,解得c=-1(舍去),c=3.

所以C 1的标准方程为x 2

36+y 2

27

=1,C 2的标准方程为y 2

=12x. 2.解

(1)设AB 的中点为M ,切点为N ,连接OM ,MN ,则|OM|+|MN|=|ON|=2,|AB|=|ON|-(|OM|-|MN|)=2-|OM|+1

2|AB|,即|AB|+2|OM|=4.

取A 关于y 轴的对称点A',连接A'B ,则|A'B|=2|OM|, 故|AB|+2|OM|=|AB|+|A'B|=4.

所以点B 的轨迹是以A',A 为焦点,长轴长为4的椭圆. 其中a=2,c=√3,b=1,则曲线Γ的方程为x 2

4+y 2=1. (2)

因为B 为CD 的中点,所以OB ⊥CD ,则OB ????? ⊥AB ????? .

设B (x 0,y 0),则x 0(x 0-√3)+y 02

=0. 又x 0

24+y 02=1,

解得x 0=√

3,y 0=±√2

3.

则k OB =±√2

2,k AB =?√2,

则直线AB 的方程为y=±√2(x-√3), 即√2x-y-√6=0或√2x+y-√6=0. 3.解设直线l :y=3

2x+t ,A (x 1,y 1),B (x 2,y 2).

(1)由题设得F (34,0), 故|AF|+|BF|=x 1+x 2+3

2, 由题设可得x 1+x 2=52.

由{

y =3

2x +t ,y 2

=3x ,

可得9x 2+12(t-1)x+4t 2=0,则x 1+x 2=-12(t -1)9

.

从而-

12(t -1)9

=5

2,得t=-7

8.

所以l 的方程为y=3

2x-7

8. (2)由AP ????? =3PB ????? 可得y 1=-3y 2. 由{

y =3

2x +t ,y 2=3x

可得y 2-2y+2t=0.

所以y 1+y 2=2.

从而-3y 2+y 2=2,故y 2=-1,y 1=3. 代入C 的方程得x 1=3,x 2=1

3. 故|AB|=

4√13

3

. 4.解(1)因为|F 1F 2|是|PF 1|和|PF 2|的等差中项,所以a=2c ,得a 2=4c 2,则b 2=a 2-c 2=3c 2.

又P (-1,3

2)在椭圆上,所以1

4c 2+9

4b 2=1,即1

4c 2+3

4c 2=1,所以c=1. 则a 2=4,b 2=3,

椭圆的标准方程为x 24+

y 23

=1.

(2)因为P (-1,3

2),由(1)计算可知A (2,0),H (0,1), 当直线MN 与x 轴垂直时,易验证,不合题意.

当直线MN 与x 轴不垂直时,设直线MN 的方程为y=kx+1, 联立直线与椭圆的方程{y =kx +1,x 2

4

+

y 23

=1,

消去y ,可得(4k 2+3)x 2+8kx-8=0, 设M (x 1,y 1),N (x 2,y 2),由韦达定理可得{

x 1+x 2=-8k

4k +3,x 1x 2=-84k 2+3.

由S △HMA =6S △PHN ,可得|AH||MH|=6|NH||PH|,又|AH|=2|PH|, 所以|MH|=3|NH|,得x 1=-3x 2, 代入①,可得{-2x 2=-8k

4k +3,

-3x 22

=-84k 2+3,

所以3×16k 2

(4k 2+3)2=8

4k 2+3,解得k=±√6

2,所以直线MN 的方程为y=±√6

2x+1. 5.解(1)设椭圆的左焦点F 1(-c ,0)(c>0),则|PF 1|=√(1+c )2+1

2=

3√2

2

,解得c=1,

所以|PF 2|=√2

2,则由椭圆定义|PF 1|+|PF 2|=2a=2√2,∴a=√2,b=1. 故椭圆的标准方程为x 2

2+y 2=1.

(2)由题意直线AB 的斜率必定不为零,于是可设直线AB :x=ty+1, 联立方程{x =ty +1,x 2

2

+y 2

=1,

得(t 2+2)y 2+2ty-1=0,

∵直线AB 交椭圆于A (x 1,y 1),B (x 2,y 2), ∴Δ=4t 2+4(t 2+2)=8(t 2+1)>0, 由韦达定理得y 1+y 2=-2t

t 2+2,y 1y 2=-1

t 2+2, 则y N =-t

t +2,∴x N =ty N +1=-t 2

t +2+1=2

t +2.

∵MN ⊥AB ,∴k MN =-t ,∴|MN|=√1+t 2

·-2-2

t 2+2=√1+t 2·

2t 2+6t 2+2

.

又|AN|=1

2|AB|=1

2√1+

t 2·|y 1-y 2|=√1+

t 2

·

√2√1+t 2

t 2+2

, ∴tan ∠MAN=|MN |

|AN |=

√2(2√t 2+1=√2(√t 2+1+√

t 2+1

≥√2·2√2=4.

当且仅当2+1=√

2,即t=±1时取等号.

此时直线AB 的方程为x+y-1=0或x-y-1=0. 6.解(1)由题意得,{e =c

a =1

2,

b =√6|

√1+1=√3,

又a 2=b 2+c 2,

∴a=2.

∴椭圆C 的方程为x 2

4+

y 23

=1.

(2)由题意,直线l 的斜率k 存在且不为零. 设直线l 的方程为y=k (x-4),k ≠0. 设A (x 1,y 1),B (x 2,y 2),AB 的中点Q (x 0,y 0). 由{y =k (x -4),x 2

4

+

y 23

=1,

消去y ,整理得(3+4k 2)x 2-32k 2x+64k 2-12=0. 由Δ=(-32k 2)2-4(3+4k 2)(64k 2-12)>0, 解得-1

2

2,且k ≠0,

∴x 1+x 2=32k 2

3+4k 2.

∴x 0=16k 2

3+4k 2,y 0=k (x 0-4)=-12k

3+4k 2. ∴Q (16k 2

3+4k 2,-12k

3+4k 2).

由题意可知,l 1:y-y 0=-1

k (x-x 0),即y+12k

3+4k 2=-1

k (x -16k 2

3+4k 2).

化简得,y=-1k x+4k

3+4k 2. 令x=0,4k

3+4k 2=4

13. 解得k=14或k=3.

∵-12

4.

故直线l 的方程为y=1

4(x-4),即x-4y-4=0.

(完整版)高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数是离心 率用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;

二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线 1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l1 上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l1上的射影点是N ,且|BN|=2|DM|. 2. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l1、l2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: ○1(R);AG AD λλ=∈u u u r u u u r ○22;GE GF GH +=u u u r u u u r u u u r ○30.GH EF ?=u u u r u u u r 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率 23=e ,已知点)3,0(P 到这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是, 425=x 其左、右顶点分别 是A 、B ;双曲线1 :22 222=-b y a x C 的一条渐近线方程为3x -5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P ,连结AP 交椭圆C1于点M ,连结PB 并延长交椭圆C1于点N ,若=. 求证:.0=? B A D M B N l2 l1

4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A ,B 两点.设AB 中点为M ,直线AB 与OM 的夹角为αa. (1)用半焦距c 表示椭圆的方程及tg α; (2)若2

高考数学圆锥曲线专题复习

圆锥曲线 一、知识结构 1.方程的曲线 在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系: (1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 点与曲线的关系若曲线C的方程是f(x,y)=0,则点P0(x0,y0)在曲线C上?f(x0,y 0)=0; 点P0(x0,y0)不在曲线C上?f(x0,y0)≠0 两条曲线的交点若曲线C1,C2的方程分别为f1(x,y)=0,f2(x,y)=0,则 f1(x0,y0)=0 点P0(x0,y0)是C1,C2的交点? f2(x0,y0) =0 方程组有n个不同的实数解,两条曲线就有n个不同的交点;方程组没有实数解,曲线就没有交点.

2.圆 圆的定义:点集:{M ||OM |=r },其中定点O 为圆心,定长r 为半径. 圆的方程: (1)标准方程 圆心在c(a,b),半径为r 的圆方程是 (x-a)2 +(y-b)2 =r 2 圆心在坐标原点,半径为r 的圆方程是 x 2 +y 2 =r 2 (2)一般方程 当D 2 +E 2 -4F >0时,一元二次方程 x 2 +y 2 +Dx+Ey+F=0 叫做圆的一般方程,圆心为(-2D ,-2 E ),半径是 2 4F -E D 22+.配方,将方程 x 2 +y 2 +Dx+Ey+F=0化为 (x+2D )2+(y+2 E )2=44 F -E D 22+ 当D 2 +E 2 -4F=0时,方程表示一个点 (-2D ,-2 E ); 当D 2 +E 2-4F <0时,方程不表示任何图形. 点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则 |MC |<r ?点M 在圆C 内,|MC |=r ?点M 在圆C 上,|MC |>r ?点M 在圆C 内, 其中|MC |=2 02 0b)-(y a)-(x +. (3)直线和圆的位置关系 ①直线和圆有相交、相切、相离三种位置关系 直线与圆相交?有两个公共点 直线与圆相切?有一个公共点 直线与圆相离?没有公共点 ②直线和圆的位置关系的判定 (i)判别式法 (ii)利用圆心C(a,b)到直线Ax+By+C=0的距离d= 2 2 C Bb Aa B A +++与半径r 的大小关系来判 定.

高考数学一轮复习专题突破训练圆锥曲线

圆锥曲线 一、填空题 1、(2015年江苏高考)在平面直角坐标系xoy 中,P 为双曲线221x y -=右支上的一个动点,若P 到直线10x y -+=的距离大于c 恒成立,则c 的最大值 为___ 2 __________。 2、(2013年江苏高考)双曲线19 162 2=-y x 的两条渐近线的方程为 。 3、(2013年江苏高考)在平面直角坐标系xOy 中,椭圆C 的标准方程为 )0,0(122 22>>=+b a b y a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆 C 的离心率为 。 4、( 南京、盐城市高三二模)在平面直角坐标系xoy 中,已知抛物线C : y x 42=的焦点为F ,定点)0, 22(A ,若射线FA 及抛物线C 相交于点M ,及抛物线C 的准线相交于点N ,则FM :MN= 5、(苏锡常镇四市 高三教学情况调研(二))已知双曲线22 221(,0) x y a b a b -=>的离心率等于2,它的焦点到渐近线的距离等于1,则该双曲线的方程为 ▲ 6、(泰州市 高三第二次模拟考试)已知双曲线22 14x y m -=的渐近线方程为 2 y x =± ,则m = ▲

7、(盐城市 高三第三次模拟考试)若抛物线28y x =的焦点F 及双曲线 22 13x y n -=的一个焦点重合,则n 的值为 ▲ 8、( 江苏南京高三9月调研)已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的渐近 线方程 为y =±3x ,则该双曲线的离心率为 ▲ 9、( 江苏苏州高三9月调研)已知双曲线22 15 x y m -=的右焦点及抛物线 212y x =的焦点相同,则此双曲线的渐近线方程为 ▲ 10、(南京市、盐城市 高三)若双曲线222(0)x y a a -=>的右焦点及抛物线 24y x =的焦点重合,则a = ▲ . 11、(南通市 高三)在平面直角坐标系xOy 中,以直线2y x =±为渐近线,且经过抛物 线24y x =焦点的双曲线的方程是 12、(苏州市 高三上期末)以抛物线24y x =的焦点为顶点,顶点为中心,离心率为2的双曲线标准方程为 13、(泰州市 高三上期末)双曲线12222=-b y a x 的右焦点到渐近线的距离是其 到左顶点距离的一半,则双曲线的离心率e = ▲ 14、(苏锡常镇四市2014届高三5月调研(二))在平面直角坐标系xOy 中,已知双曲线22 19x y m -=的一个焦点为(5,0),则实数 m = ▲ 15、(南京、盐城市2014届高三第二次模拟(淮安三模))在平面直角坐 标系xOy 中,双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的两条渐近线及抛物线y 2=4x Y

高中数学圆锥曲线详解【免费】

解圆锥曲线问题常用方法+椭圆与双曲线的经典 结论+椭圆与双曲线的对偶性质总结 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02 020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020=-k b y a x (3)y 2 =2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2 =4x 上一点P 到点A(3,42) (2)抛物线C: y 2 =4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点分析:(1)A 在抛物线外,如图,连PF ,则PF PH =

全国卷高考数学圆锥曲线大题集大全

全国卷高考数学圆锥曲线大题集大全 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线l 1与l 2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l 1上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l 1上的射影点是N ,且|BN|=2|DM|. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l 1、l 2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: (R); AG AD λλ=∈2; GE GF GH +=0.GH EF ?= 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率 23 = e ,已知点)3,0(P 到 这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是 , 425=x 其左、右顶点分别 B A D M B N l 2 l 1

是A、B;双曲线 1 : 2 2 2 2 2 = - b y a x C 的一条渐近线方程为3x-5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若AM=. 求证:.0 = ?AB MN 4. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为αa. (1)用半焦距c表示椭圆的方程及tanα; (2)若2

高中数学圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式。 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用 解析法解决相应的几何问题。 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 ,F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO ,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B ,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆 心的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R ,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

圆锥曲线综合试题(全部大题目)含答案

1. 平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线 22x py =外一点00(,)P x y 的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦AB 的交点为Q 。 (1)求证:抛物线切点弦的方程为00()x x p y y =+; (2)求证:112|||| PC PD PQ +=. 2. 已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且.||||,0PN PM PF PM ==? (1)动点N 的轨迹方程; (2)线l 与动点N 的轨迹交于A ,B 两点,若304||64,4≤≤-=?AB OB OA 且,求直线l 的斜率k 的取值范围. 3. 如图,椭圆13 4: 2 21=+y x C 的左右顶点分别为A 、B ,P 为双曲线134:222=-y x C 右支上(x 轴上方)一点,连AP 交C 1于C ,连PB 并延长交C 1于D ,且△ACD 与△PCD 的面积 相等,求直线PD 的斜率及直线CD 的倾斜角. 4. 已知点(2,0),(2,0)M N -,动点P 满足条件||||PM PN -=记动点P 的轨迹为W . (Ⅰ)求W 的方程;

(Ⅱ)若,A B 是W 上的不同两点,O 是坐标原点,求OA OB ?的最小值. 5. 已知曲线C 的方程为:kx 2+(4-k )y 2=k +1,(k ∈R) (Ⅰ)若曲线C 是椭圆,求k 的取值范围; (Ⅱ)若曲线C 是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程; (Ⅲ)满足(Ⅱ)的双曲线上是否存在两点P ,Q 关于直线l :y=x -1对称,若存在,求出过P ,Q 的直线方程;若不存在,说明理由。 6. 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN += (1)求点P 的轨迹方程; (2)若2 ·1cos PM PN MPN -∠=,求点P 的坐标. 7. 已知F 为椭圆22221x y a b +=(0)a b >>的右焦点,直线l 过点F 且与双曲线 12 2 2=-b y a x 的两条渐进线12,l l 分别交于点,M N ,与椭圆交于点,A B . (I )若3 MON π∠= ,双曲线的焦距为4。求椭圆方程。 (II )若0OM MN ?=(O 为坐标原点),1 3 FA AN =,求椭圆的离心率e 。

历年高考数学圆锥曲线试题汇总

高考数学试题分类详解——圆锥曲线 一、选择题 1.设双曲线22 221x y a b -=(a >0,b >0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于( C ) (A (B )2 (C (D 2.已知椭圆2 2:12 x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3F A F B =,则||AF = (A). (B). 2 (D). 3 3.过双曲线22 221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线 的交点分别为,B C .若1 2 AB BC =,则双曲线的离心率是 ( ) A B C D 4.已知椭圆22 221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴, 直 线AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是( ) A B .2 C .13 D .12 5.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2 y x =于,A B 两点,且 |||PA AB =,则称点P 为“ 点”,那么下列结论中正确的是 ( ) A .直线l 上的所有点都是“点” B .直线l 上仅有有限个点是“点” C .直线l 上的所有点都不是“ 点” D .直线l 上有无穷多个点(点不是所有的点)是“ 点” 6.设双曲线12222=-b y a x 的一条渐近线与抛物线y=x 2 +1 只有一个公共点,则双曲线的离心率为 ( ). A. 4 5 B. 5 C. 25 D.5 7.设斜率为2的直线l 过抛物线2 (0)y ax a =≠的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)

高中数学-圆锥曲线专题

高三数学-圆锥曲线知识点 圆锥曲线的统一定义: 平面内的动点P(x,y)到一个定点F(c,O)的距离与到不通过这个定点的一条定直线I的距离之比是一个常数e(e >0),则动点的轨迹叫 做圆锥曲线。其中定点F(c,0)称为焦点,定直线I称为准线,正常数e称为离心率。当0v e< 1时,轨迹为椭圆;当e=1时,轨迹为抛物线;当e> 1时,轨迹为双曲线。

两点,则MFL NF. 1、点P 处的切线PT 平分△ PFF 2在点P 处的内角. 2、PT 平分△ PF 1F 2在点P 处的内角,则焦点在直线 PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点 3、以焦点半径PF 为直径的圆必与以实轴为直径的圆 相切.(内切:P 在右支;外切:P 在左支) 1 (a >o,b > o )上,则过F O 的双曲线的切线方程是 ^2 a b 2 2 2 t — (1)等轴双曲线:双曲线 x y a 称为等轴双曲线,其渐近线方程为 y x ,离心率e , 2 . (2)共轭双曲线:以已知双曲线的虚轴为实轴, 2 实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.笃 a 2 2 y_ 互为共轭双曲线,它们具有共同的渐近线: 2 L o . b 2 (3)共渐近线的双曲线系方程: 2 y b 2 2 0)的渐近线方程为笃 a 2 y o 如果双曲线的渐近线为 b 2 0时,它的双曲 2 线方程可设为二 2 a 0). 1. 点P 处的切线PT 平分△ PF1F2在点P 处的外角. 2. 以焦点半径PF1为直径的圆必与以长轴为直径的圆内切 3. P o (X o ,y o )在椭圆 2 y 2 1上,则 过 P o 的椭圆的切线方程是 2 a x °x y o y 1 b 2 4. P 0( x o , y 0) 在椭圆 2 y 2 1夕卜, 则过 P 0 作椭圆的两条切线切点为 P 、 P 2,则切点弦P 1P 2的直线方程是 辱 ^2 1. a b 5. 2 再 1 (a > b > 0)的焦半径公式 b 2 | MF i | a ex o , | MF 2 | ex o ( F i ( c,0) , F 2(C ,0) M(X o ,y 。)). 6. 设过椭圆焦点F 作直线与椭圆相交P 、Q 两点,A 为椭圆长轴上一个顶点,连结 AP 和AQ 分别交相应于焦点 F 的椭圆准线于 M N 7. 过椭圆一个焦点 F 的直线与椭圆交于两点 P 、Q, A 1、A 为椭圆长轴上的顶点, AiP 和AQ 交于点 M AP 和AQ 交于点N,贝U MF 丄NF. 8. 2 x AB 是椭圆— 2 a 2 y_ b 2 1的不平行于对称轴的弦, M (x o , y o )为AB 的中点,贝U k OM k AB b 2 二,即 K AB a b 2X o 2 a y o 9. 若P o (x o ,y o )在椭圆 -H-* 2 y x )x y o y 2 1内,则被Po 所平分的中点弦的方程是 与 乎 2 X 。 __2 a y 。2 b 2 2 2 x y 4、若P o (X o ,y 。)在双曲线r 2 a b 1. 【备注1】双曲线:

(完整word版)2019-2020年高考数学大题专题练习——圆锥曲线(一)

2019-2020年高考数学大题专题练习——圆锥曲线(一) 1.设F 1,F 2为椭圆22 143 x y +=的左、右焦点,动点P 的坐标为(-1,m ),过点F 2的直线与 椭圆交于A ,B 两点. (1)求F 1,F 2的坐标; (2)若直线P A ,PF 2,PB 的斜率之和为0,求m 的所有整数值. 2.已知椭圆2 214 x y +=,P 是椭圆的上顶点.过P 作斜率为k (k ≠0)的直线l 交椭圆于另一点A ,设点A 关于原点的对称点为B . (1)求△P AB 面积的最大值; (2)设线段PB 的中垂线与y 轴交于点N ,若点N 在椭圆内部,求斜率k 的取值范围. 3.已知椭圆()22 22:10x y C a b a b +=>>的离心率为5,定点()2,0M ,椭圆短轴的端点是 1B ,2B ,且21MB MB ⊥. (1)求椭圆C 的方程; (2)设过点M 且斜率不为0的直线交椭圆C 于,A B 两点,试问x 轴上是否存在定点P ,使PM 平分APB ∠?若存在,求出点P 的坐标,若不存在,说明理由.

4.已知椭圆C 的标准方程为22 1 1612x y +=,点(0,1)E . (1)经过点E 且倾斜角为 3π 4 的直线l 与椭圆C 交于A 、B 两点,求||AB . (2)问是否存在直线p 与椭圆交于两点M 、N 且||||ME NE =,若存在,求出直线p 斜率的取值范围;若不存在说明理由. 5.椭圆1C 与2C 的中心在原点,焦点分别在x 轴与y 轴上,它们有相同的离心率2 e =,并且2C 的短轴为1C 的长轴,1C 与2C 的四个焦点构成的四边形面积是22. (1)求椭圆1C 与2C 的方程; (2)设P 是椭圆2C 上非顶点的动点,P 与椭圆1C 长轴两个顶点A ,B 的连线PA ,PB 分别与椭圆1C 交于E ,F 点. (i)求证:直线PA ,PB 斜率之积为常数; (ii)直线AF 与直线BE 的斜率之积是否为常数?若是,求出该值;若不是,说明理由.

历年高考数学圆锥曲线第二轮专题复习

高考数学试题圆锥曲线 一. 选择题: 1.又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点, 且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到 抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. ( 41 ,-1) B. (4 1 ,1) C. (1,2) D. (1,-2) 3.如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④ 11c a <22 c a . 其中正确式子的序号是B A. ①③ B. ②③ C. ①④ D. ②④ 4.若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点到右焦点的距离大于它 到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 5.已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1 (0,]2 C . D . 6.已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A )

高中数学圆锥曲线解题技巧总结

高中数学圆锥曲线解题 技巧总结 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

解圆锥曲线问题的常用方法大全 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 020 20=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020 =-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________ (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 分析:(1)A 在抛物线外,如图,连PF ,则PF PH =现,当A 、P 、F 三点共线时,距离和最小。

高考数学试题分类大全理科圆锥曲线

2008年高考数学试题分类汇编 圆锥曲线 一. 选择题: 1.(福建卷11)又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点, 且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到 抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. (4 1 ,-1) B. ( 4 1 ,1) C. (1,2) D. (1,-2) 3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点 1 2c 第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④11c a <22 c a . 其中正确式子的序号是B A. ①③ B. ②③ C. ①④ D. ②④ 4.(湖南卷8)若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点到右焦点的距离大于 它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞)

高中数学圆锥曲线问题常用方法经典例题(含答案)

专题:解圆锥曲线问题常用方法(一) 【学习要点】 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则 有 020 20=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)

高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A,点B、D在直线l1上(B、D 位于点A右侧,且|AB|=4,|AD|=1,M是该平面上的一个动点,M在l1上的射影点是N,且|BN|=2|DM|. 2. (Ⅰ建立适当的坐标系,求动点M的轨迹C的方程. (Ⅱ过点D且不与l1、l2垂直的直线l交(Ⅰ中的轨迹C于E、F两点;另外平面上的点G、H满足: 求点G的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在轴上,离心率,已知点到这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆的一条准线方程是其左、右顶点分别 是A、B;双曲线的一条渐近线方程为3x-5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB 并延长交椭圆C1于点N,若. 求证: 4. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为 a. (1)用半焦距c表示椭圆的方程及tg;

(2)若2 <3 ,求椭圆率心率 e 的取值范围 . 5. 已知椭圆(a>b>0)的离心率,过点A(0,-b)和B(a,0)的直线与原点的距离为 (1)求椭圆的方程 (2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C D两点问:是否存在k的值,使以CD为直径的圆过E点?请说明理由 6. 在直角坐标平面中,的两个顶点的坐标分别为,,平 面内两点同时满足下列条件: ①;②;③∥ (1)求的顶点的轨迹方程; (2)过点的直线与(1)中轨迹交于两点,求的取值范围 7. 设,为直角坐标平面内x轴.y轴正方向上的单位向量,若 ,且 (Ⅰ)求动点M(x,y的轨迹C的方程; (Ⅱ)设曲线C上两点A.B,满足(1直线AB过点(0,3),(2若,则OAPB为矩形,试求AB方程.

高考理科数学-圆锥曲线专题训练

高三圆锥曲线选填训练 一、选择题(本大题共10小题,每小题4分,共40分) 1.椭圆12222=+b y a x (a >b>0)离心率为23,则双曲线12222=-b y a x 的离心率为 ( ) A .45 B .25 C .32 D .45 2.椭圆13 122 2=+y x 的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1中点在y 轴上,那么|PF 1|是|PF 2| 的 ( ) A .7倍 B .5倍 C .4倍 D .3倍 3.过双曲线x 2 -22 y =1的右焦点F 作直线l 交双曲线于A , B 两点,若|AB |=4,则这样的直线l 有 ( ) A .1条 B .2条 C .3条 D .4条 4.如果双曲线 136 642 2=-y x 上的一点P 到双曲线的右焦点的距离是8,那么点P 到右准线的距离是 ( ) A .10 B .7 7 32 C .27 D .5 32 5.若抛物线y 2=2p x 上的一点A (6,y )到焦点F 的距离为10,则p 等于 ( ) A .4 B .8 C .16 D .32 6.如图,过抛物线)(022>=p px y 的焦点F 的直线l 交抛物线于点A .B ,交其准线于点C ,若 BF BC 2=,且3=AF ,则此抛物线的方程为 A .x y 23 2= B .x y 32= C .x y 2 9 2= D .x y 92= 7.曲线 19252 2 =+y x 与曲线)925(19252 2 ≠<=-+-k k k y k x 且 有相同的( A .长、短轴 B .焦距 C .离心率 D .准线 8.过椭圆22 2214x y a a += (a>0)的焦点F 作一直线交椭圆于P, Q 两点,若线段PF 与QF 的长分别为 p, q ,则11p q +等于( ) A .4a B .1 2a C .4a D .2a 9.椭圆13 22 =+y x 上的点到直线x -y+6=0的距离的最小值是 . 10.已知双曲线C 的渐近线方程是x y 32±=,且经过点M ()1,2 9 -,则双曲线C 的方程是 . 11.AB 是抛物线y =x 2的一条弦,若AB 的中点到x 轴的距离为1,则弦AB 的长度的最大值 为 .

高中数学圆锥曲线的知识点总结

高考数学圆锥曲线部分知识点梳理 一、方程的曲线: 在平面直角坐标系中,如果某曲线C (看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程 (,)0f x y =的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标 的点都是曲线上的点,那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 点与曲线的关系:若曲线C 的方程是(,)0f x y =,则点000(,)P x y 在曲线C 上?00(,)0f x y =;点000(,)P x y 不在曲线C 上?00(,)0f x y ≠. 两条曲线的交点:若曲线1C ,2C 的方程分别为1(,)0f x y =,2(,)0f x y =,则点000(,)P x y 是1C ,2C 的交点 ?{ ),(0),(002001==y x f y x f 方程组有n 个不同的实数解,两条曲线就有n 个不同的交点;方程组没有实数解,曲线就没 有交点. 二、圆: 1、定义:点集{|}M OM r =,其中定点O 为圆心,定长r 为半径. 2、方程:(1)标准方程:圆心在(,)C a b ,半径为r 的圆方程是2 2 2 ()()x a y b r -+-= 圆心在坐标原点,半径为r 的圆方程是2 2 2x y r += (2)一般方程:①当22 40D E F +->时,一元二次方程2 20x y Dx Ey F ++++=叫做圆的一般方程,圆心为 )2 ,2(E D -- 半径是2. 配方,将方程22 0x y Dx Ey F ++++=化为 22224()()224 D E D E F x y +-+++= ②当2 2 40D E F +-=时,方程表示一个点)2 ,2(E D -- ③当2 2 40D E F +-<时,方程不表示任何图形. (3)点与圆的位置关系 已知圆心(,)C a b ,半径为r ,点M 的坐标为00(,)x y ,则||MC r < ?点M 在圆C 内,||MC r =?点M 在圆C 上,||MC r >?点M 在圆C 外,其中||MC = (4)直线和圆的位置关系:①直线和圆有相交、相切、相离三种位置关系:直线与圆相交?有两个公共点;直线与圆相切?有一个公共点;直线与圆相离?没有公共点. ②直线和圆的位置关系的判定:(i)判别式法;(ii)利用圆心(,)C a b 到直线0Ax By C ++=的距离 2 2 B A C Bb Aa d +++= 与半径r 的大小关系来判定.

高二数学圆锥曲线练习题及答案超经典习题

京翰提示:圆锥曲线的考题一般是两个选择、一个填空、一个解答题,客观题的难度为中等,解答题目相对较难,同时平面向量的介入,增加了本专题高考命题的广度圆锥曲线高考热点题型归纳。正圆锥曲线的考题一般是两个选择、一个填空、一个解答题,客观题的难度为中等。 高二数学—圆锥曲线综合练习 一、选择题(本大题共12小题,每小题5分,共60分) 1.已知|→ a |=|→ b |,→ a ⊥→ b ,且(→a +→b )⊥(k → a -→ b ) ,则k 的值是( ) A .1 B .-1 C .0 D .-2 2、已知3a =r ,23b =r ,3a b ?=-r r ,则a r 与b r 的夹角是( ) A 、150? B 、120? C 、60? D 、30? 3、若)()(),1,2(),4,3(b a b x a b a -⊥+-==且,则实数x=( ) A 、23 B 、223 C 、323 D 、4 23 4、已知(1,2)a =r ,(2,3)b x =-r 且a r ∥b r ,则x =( ) A 、-3 B 、34 - C 、0 D 、 34 5.椭圆12222=+b y a x (a >b>0)离心率为23,则双曲线12222=-b y a x 的离心率为 ( ) A . 45 B .2 5 C .32 D .4 5 6.抛物线顶点在原点,焦点在y 轴上,其上一点P(m ,1)到焦点距离为5,则抛物线方程为( ) A .y x 82 -= B .y x 82 = C . y x 162 -= D .y x 162 = 7.若过原点的直线与圆2 x +2 y +x 4+3=0相切,切点在第三象限,直线的方程是( ) A .x y 3= B .x y 3-= C .x y 3 3 = D .x y 3 3- =

相关主题
文本预览
相关文档 最新文档