当前位置:文档之家› 基因组学总结

基因组学总结

基因组学总结
基因组学总结

一、前言

继20世纪50年代Watson和Crick揭示了遗传信息携带者DNA的双螺旋结构后,近50年来分子生物学的发展势如破竹。60年代中期遗传信息传递的中心法则的初步确定;70年代基因重组理论和技术的崛起;以及近二三十年来基因的表达和调控及相关的发育分子生物学的进展;蛋白质翻译后加工、折叠、组装、转运,生物大分子相互识别、信号转导的深入研究等;一个个里程碑工作接踵而来。人类基因组计划业已完成,不久完整的人类基因组序列将呈现在人们面前。一个崭新的时代——后基因组时代已经来临。

基因即DNA分子上有遗传效应的特定核苷酸序列的总称,基因组即细胞或生物组的全部遗传物质,遗传物质即基因的编码序列,大量的非编码序列同样含有遗传物质。1985年美国科学家率先提出了人类基因组计划(HGP:Human Genome Plan),1990年正式启动。这是一项规模宏大的跨国跨学科的科学探索工程,其宗旨在于测定人类染色体中所包含的30亿个碱基对组成的核苷酸序列,从而绘制人类基因组图谱,并且辨认其载有的基因及其序列,从而达到破译人类遗传信息的目的。该项计划是继曼哈顿计划和阿波罗登月计划之后人类历史上的一个伟大工程。2001年人类基因组工作草图的发表被认为是人类基因组计划成功的里程碑,2005年人类基因组计划的测序工作已经基本完成,同时制作出了遗传图谱、物理图谱、序列图谱和基因图谱四张图谱。

二、人类基因组计划的成功完成对人类的意义

1、对人类各个领域的贡献

a 对人类疾病基因研究的贡献:人类疾病相关的基因是人类基因组中结构和功能完整性至关重要的信息。对于单基因病,采用“定位克隆”和“定位候选克隆”的全新思路,导致了亨廷顿氏舞蹈症、遗传性结肠癌和乳腺癌等一大批单基因遗传病致病基因的发现,为这些疾病的基因诊断和基因治疗奠定了基础。对于心血管疾病、肿瘤、糖尿病、神经精神类疾病(老年性痴呆、精神分裂症)、自身免疫性疾病等多基因疾病是目前疾病基因研究的重点。健康相关研究是HGP的重要组成部分,1997年相继提出:“肿瘤基因组解剖计划”“环境基因组学计划”。

b 对医学的贡献:基因诊断、基因治疗和基于基因组知识的治疗、基于基因组信息的疾病预防、疾病易感基因的识别、风险人群生活方式、环境因子的干预。

c 对生物技术的贡献:对研发基因工程药物和诊断研究试剂产业有巨大推动。

d 对细胞、胚胎、组织工程的贡献:胚胎和成年期干细胞、克隆技术、器官再造。

f 人类基因组计划的完成,在社会经济、生物进化等方面都有重要影响。

2、基因检测在个体化医学方面的应用

人类基因组计划和一系列的实验完成之后积累的大量的数据资料,科学家们面临的挑战就是如何利用这些数据的巨大潜力去改善人类的健康状况并使人类更好的生存,探索出一条造福人类健康的崭新途径。

大部分表型都是由遗传因素(基因及其产物)和非遗传因素(环境因素)交互作用,HGP的研究成果以及基因组学的研究,有助于我们了解遗传因素在人类健康和疾病中的角色,精确确定非遗传因素,并迅速将新发现用于疾病的预防、诊断和治疗。例如鉴定基因及其路径在健康和疾病中的角色,测定它们与环境因素之间的关系,预测药物反应,疾病的早期诊断,疾病在分子水平上的精确分类等。因此基因组学的进展将推动人们发展相应基因组研究方法,对人类基因组可遗传变异进行更为深入细致全面描述和分析。目前科学家们建立起一套人类基因常见差异的细目,包括核苷酸多态性(SNPs),小的缺失和插入,以及其它结构上的

不同,并致力于寻找不同表型与DNA序列变异之间的关联。HapMap和SNPs 将会揭示基因差异与疾病的关系,架起连结人类健康与疾病差异的桥梁,也将极大程度推动对一般疾病的遗传机制和药物基因组学的研究。

3、复杂疾病与遗传分析

复杂疾病的发生是由多种遗传因素和多种内外界环境因素的共同作用,对复杂疾病进行遗传分析的主要目标之一就是找出其易感基因。复杂疾病在遗传学上具有某些独特的复杂特点,致使各种遗传分析的效力不够高,还需要一定深度的研究。

三、基因命名的方法

2、基因的命名

人类基因的命名一半由基因符号和基因名称组成,如CTP2C9 “cytochrome P450, family 2,subfamily C,polypeptide 9”。基因命名时一般要遵循简明、独特和能够表达基因的特征或功能三个基本原则,基因名称一般使用美式英语拼写,且为小写,不能在名称中对组织特异性、分子量等信息进行详细描述。当使用到人名时首字母要大写,对基因名称进行限定时,限定词放在名称后面并用“,”隔开。使用替代名称作为基因名称的一部分时,替代名称放在括号内,与其它种属同源的基因,应使用已获得批准的基因名称和符号,在名称后面加注“homolog”并在括号内标明种属。基因符号的命名要遵循简短独特、不含任何标点符号、仅含拉丁字母和阿拉伯数字三个基本原则。

3、基因变异位点的命名

基因突变的类型主要有点突变,移码突变,缺失突变和插入突变。所有变异发生的最终都是DNA水平的变异引起相应RNA或蛋白质水平的变化。DNA变异涉及的四种碱基AGCT需大写,RNA中则小写,蛋白质水平氨基酸的变异使用前三个字母的缩写。

变异序列的类型:g代表基因组序列,c代表编码DNA,P代表蛋白序列。

突变表示方法:置换突变(“>”):如241T>G代表序列的第241位核苷酸T被G 替换。缺失突变(“del”):如692-694del代表692,693,694位三个核苷酸连续缺失。插入突变(“ins”):如451-452insT,代表451位与452位核苷酸之间插入了一个胸腺嘧啶脱氧核苷酸。内含子突变(“IVS”):当全基因组序列未知时,供体位置GT的G位用+1表示,受体位置AG的G位开始用-1表示。如IVS4+1G>T 代表在第四个内含子的+1核苷酸处G突变为T;IVS4-2A>C代表在第四个内含子的-2核苷酸处A突变为C。cDNA核苷酸的编号可以用来指示内含子附近的突变位点。如c.1997+1G>T,cDNA第1997位核苷酸下游+1处G替换为T。重复突变(“dup”):如序列ACTTTGTGCC突变为ACTTTGTGGCC不能描述为18_19insG,而应描述为18dupG。倒位(“inv”):如76_83inv表示第76到83位氨基酸之间的片段发生倒位。

四、生物信息学的重要性

1、生物信息学及相关生物信息的查询

随着生物实验技术及检测手段的发展、人类基因组计划的完成、及基因组学的发展,产生了成千上万的数据,这些数据也覆盖了生命科学的各个领域。基因组数据库、(核酸、蛋白质)序列数据库、生物大分子(主要是Pr)结构数据库、及文献数据库应运而生。而对于这些信息的查询和使用则依赖于一系列相关的数据库。

NCBI, 是一个综合数据库,包括GeneBank 数据库、Pupmed 文献数据库、人类孟德尔遗传数据库OMIM、3D蛋白结构分子模型数据库、分类学浏览器等。搜

索检索:Entrez系统,可检索(DNA、RNA、蛋白质)序列、(蛋白质)结构及参考文献。

2、基因测序技术及原理

基因测序主要是通过某种方法检测出一条DNA链中核苷酸的排列顺序。目前用于基因测序的方法主要有Sanger双脱氧链末端终止法和Maxam-Gilbert化学降解法,其中Sanger双脱氧链末端终止法应用的更为广泛。

原理:(1)Sanger双脱氧链末端终止法:由于ddNTP缺乏延伸所需要的3-OH 基团,该方法利用一种DNA聚合酶来延伸结合在待定序列模板上的引物,直到掺入一种链终止核苷酸为止,每一次序列测定由一套四个单独的反应构成,每个反应含有所有四种脱氧核苷酸三磷酸(dNTP),并混入限量的一种不同的双脱氧核苷三磷酸(ddNTP)使延长的寡聚核苷酸选择性地在G、A、T或C处终止,终止点由反应中相应的双脱氧而定。结果通过高分辨率变性凝胶电泳分离并用X- 光胶片放射自显影或非同位素标记进行检测。(2)Maxam-Gilbert化学降解法:将一个DNA片段的5'端磷酸基作放射性标记,再分别采用不同的化学方法修饰和裂解特定碱基,从而产生一系列长度不一而5'端被标记的DNA片段,这些以特定碱基结尾的片段群通过凝胶电泳分离,再经放射线自显影,确定各片段末端碱基,从而得出目的DNA的碱基序列。

3、复杂疾病易感基因测序

可以通过外显子组测序,针对全基因外显子区域的DNA筛查复杂疾病的易感基因。

4、SNP检测技术

基因检测的方法主要有SNP检测,甲基化检测和基因表达检测。

SNP具有密度高、代表性强、高度稳定和易自动化的特点,理想的SNP检测方法应该能够检测出常见SNP、稀有SNP和突变位点。高通量时代SNP的检测方法有DNA测序法、基因芯片法、变性高效液相色谱法(DHPLC)、TagMan探针法、MassARRAY法等。

SNP检测方法:(1)对未知SNP进行检测时,方法主要有:温度梯度凝胶电泳(TGGE)、变梯性度凝胶电泳(DGGE)、单链构象多态性(SSCP)、变性高效液相色谱检测(DHPLC)、限制性片段长度多态性(RFLP)、随机扩增多态性DNA(RAPD)等。(2)对已知SNP进行检测时,主要方法有:等位基因特异寡核苷酸片段分析(ASO)、突变错配扩增检验(MAMA)、基因芯片技术(gene chips)等。

五、后基因组计划

1、国际人类基因组计划单体型图计划

人类基因组计划的结果表明,人类的基因99%都是相同的,只有1%不同,而仅仅这1%的不同,就足以引起人类日常生活中对药物敏感性、免疫能力等各方面极大的不同,比如同一种药物对部分人有很好的疗效,而对部分人却效果甚微:相同的职业、相仿的年龄,有的人却比别人更容易生病等。这一系列不同的原因,就再于那1%的差异,多核苷酸多态性(SNP)是造成每个人对药物的敏感性不同、血型不同、身高差异等的原因,此外,SNP也和癌症、心血管疾病、自体免疫等疾病有关。

位于一条染色体上或某一区域的一组相关联的SNP位点称为单体型,实际上大多数染色体区域只有少数几个常见的单体型(P>5%),代表了一个群体中人与人之间的大部分多态性,且不同民族、群体单体型类别和频率都不同。由于发现了

这些个体差异的原因,2002年10月27日至29日,“国际人类基因组单体型图计划(HAPMAP计划)”正式揭幕,该项计划是人类基因组计划的自然延伸,目的是构建人类DNA序列中多态位点的常见模式,即单体型图(HapMap),运用单倍体分型的方法来找出约50万个标签SNP来代表整个人类基因图谱之中的SNP集合,这些标签SNP与表现型间的关联也更容易显现出来。国际HapMap 计划通过提供充分资源,使研究人员用于发现与疾病及个体治疗反应相关的遗传多态位点,从而对人类健康做出贡献。一旦发现这样的变异位点,研究人员可以更多地了解该疾病的起因以及预防、诊断和治疗的方法。

2、千人基因组计划

国际千人基因组计划,由中英美德等国科学家共同承担研究任务,旨在绘制迄今为止最详尽最有医学应用价值的人类基因组遗传多态性图谱。2012年11月大型国际科研合作项目“千人基因组计划”的研究人员在新一期英国期刊《Nature》上发布了1092人的基因数据,这一成果将有助于更广泛的分析与疾病有关的基因变异。

“千人基因组计划”是基因组科学向临床医学迈进的重要转折点,可以通过在更大的人群范围内定位人群突变基因,检测导致人类遗传疾病的相关基因,鉴定特定遗传病人群中含有的罕见致病基因。“千人基因组计划”的最终目标是完成2500个人的全基因组数据,如此海量的数据能更精确的定位已发现的遗传风险因子,挖掘出更多未知的致病因子,为人类健康造福。

六、营养基因组学

营养基因组学目前主要是研究营养和食物化学在人体中的分子生物学过程以及产生的效应,对人体基因的转录、翻译表达以及代谢机制,其可能的应用范围包括营养素作用的分子机制、营养素的人体需要量、个体食谱的制定以及食品安全等,它强调对个体的作用,是继药物之后源于人类基因组计划的个体化治疗的第二次浪潮。基因组技术将有助于发现大批分子水平上可特异地反映营养素水平的指标,从而大大推动这方面的工作;而且可使营养需要量的建立基于更科学的分子机制基础之上。

目前, 营养基因组学的研究正在不断的发展, 科学家们越来越不倾向于从性质或营养作用方面找答案, 而是倾向于研究以营养基因组学为基础的系统生物学的相互影响以促进健康。我们相信, 随着有关各种族基因特点的巨大资料库的建立和记录人类基因组信息的人类基因组芯片的出现, 不仅为科学家和医生们进行疾病研究而且也为促进人类健康的基因营养提供依据,并将为营养基因学开拓更加广阔的应用前景。

七、结语

1、心得

2、建议

现代分子生物学重点

现代分子生物学 第一章 DNA的发现: 1928年,英国Griffith的体内转化实验 1944年,Avery的体外转化实验 1952年,Hershey和Chase的噬菌体转导实验 分子生物学主要研究内容(p11) DNA的重组技术 基因表达调控研究 生物大分子的结构功能研究——结构分子生物学 基因组,功能基因组与生物信息学研究 第二章 DNA RNA组成 脱氧核糖核酸 A T G C 核糖核酸 A U G C 原核生物DNA的主要特征 ①一般只有一条染色体且带有单拷贝基因; ②整个染色体DNA几乎全部由功能基因与调控序列组成; ③几乎每个基因序列都与它所编码的蛋白质序列呈线性对应状态。 染色体作为遗传物质的特点: (1)分子结构相对稳定(贮存遗传信息) (2)通过自我复制使前后代保持连续性(传递遗传信息) (3)通过指导蛋白质合成控制生物状态(表达遗传信息) (4)引起生物遗传的变异(改变遗传信息) C值以及C值反常 C值单倍体基因组DNA的总量 C值反常C值往往与种系进化的复杂程度不一致,某些低等生物却有较大的C值。如果这些DNA 都是编码蛋白质的功能基因,那么,很难想象在两个相近的物种中,他们的基因数目会 相差100倍,由此推断,许多DNA序列可能不编码蛋白质,是没有生理功能的。 DNA的中度重复序列,高度重复序列 中度各种rRNA,tRNA以及某些结构基因如组蛋白基因都属于这一类 高度卫星DNA 核小体 是由H2A H2B H3 H4 各2分子生成的八聚体和约200bp的DNA构成的,H1在核小体外面。 真核生物基因组的结构特点 ①基因组庞大; ②大量重复序列; ③大部分为非编码序列,90%以上; ④转录产物为单顺反子; ⑤断裂基因; ⑥大量的顺式作用元件; ⑦DNA多态性:SNP和串联重复序列多态性; ⑧端粒(telomere)结构。

【免费下载】真菌基因组学研究进展

真菌基因组学研究进展 真菌为低等真核生物,种类庞大而多样。据估计,全世界约有真菌150万种,已被描述的约8万种。真菌在自然界分布广泛,存在于土壤、水、空气和生物体内外,与人类生产和生活有着非常密切的关系。许多真菌在自然界的碳素和氮素循环中起主要作用,参与淀粉、纤维素、木质素等有机含碳化合物及蛋白质等含氮化合物的分解。有些真菌如蘑菇、草菇、木耳、麦角、虫草、茯苓等可直接供作食用和药用,或在发酵工业、食品加工业、抗生素生产中具有重要作用。然而,也有些种类引起许多植物特别是重要农作物的病害,如水稻稻瘟病、小麦锈病、玉米腥黑穗病、果树病害等。少数真菌甚至是人类和动物的致病菌,如白色假丝酵母Candida albicans等。因此,合理利用有益真菌,控制和预防有害 真菌具有重要意义。 本文整理了已完成基因组序列测定的真菌的信息,并对真菌染色体组的历史、测序策略及其基因组学的研究进展进行了评述。 1真菌染色体组的研究历史和资源 1986年美国科学家Thomas Rodefick提出基因组学概念,人类基因组计划带动了模式生物和其它重要生物体基因组学研究。阐明各种生物基因组DNA中碱基对的序列信息及破译相关遗传信息的基因组学已经成为与生物学和医学研究不可分割的学科。由欧洲、美国、加拿大和日本等近百个实验室六百多位科学家通力合作,1996年完成第一个真核生物酿酒酵母Saccharomyces cerevisiae的基因组测序,这 对于酵母菌类群来说是一个革命性的里程碑,并且激起了真核基因功能和表达的第一次全球性研究(Goffeau etal,1996)。随后粟酒裂殖酵母Schizosaccharomyces pombe(Wood etal.2002)和粗糙脉孢 霉Neurospora crassa(Galagan etal.2003)染色体组的完成显露出酿酒酵母作为真菌模式生物的局限性。尽管如此,真菌染色体组测序的进展最初是缓慢的。为加快真菌染色体组研究的步伐,2000年由 美国Broad研究所与真菌学研究团体发起真菌基因组行动(fungal genome initiative,FGI),目的是 促进在医药、农业和工业上具有重要作用的真菌代表性物种的基因组测序。2002年2月FGI发表了第 一份关于测定15种真菌基因组计划的白皮书。2003年6月,真菌基因组行动发表了第二份白皮书,列 出了44种真菌作为测序的目标,强调对其中10个属即青霉属Penicillium、曲霉属Aspergillus、组 织胞浆菌属Histoplasma、球孢子菌Coccidioides、镰刀菌属Fusarium、脉孢菌属Neurospora、假丝 酵母属Candida、裂殖酵母属Schizosaccharomyces、隐球酵母属Cryptococcus和柄锈病菌属Puccin& 的物种优先进行测序。之后,经过FGI、法国基因组学研究项目联(G6nolevures Consortium)、美国能 源部联合基因组研究所(The DOE Joint Genome Institute,JGI)DOE联合基因组研究所、基因组研究 院(The Institute for Genomic Research,TIGR)、英国The Wellcome Trust Sanger InstimteSanger和华盛顿大学基因组测序中心等共同努力;得到包括美国国家人类染色体研究所、国 家科学基金会、美国农业部和能源部等的资助,也有来自学术界和产业集团如著名的 Monsanto、Syngenta、Biozentrum、Bayer Crop Science AG和Exelixis等公司的持续合作,在最近 的几年里,真菌基因组学研究取得重大突破。至2008年6月1日,共有3734种生物的全基因组序列测定工作已经完成或正在进行,公开发表812个完整的基因组,其中,70余种真菌基因组测序工作已经 组装完成或正在组装,分别属于子囊菌门、担子菌门、接合菌门、壶菌门和微孢子虫(Microsporidia) 的代表。此外,还有Ajellomyces dermatitidis和Antonospora locustae等20余种真菌基因组序列 正在测定中(Bemal etal.2001)。这些真菌都是重要的人类病原菌、植物病原菌、腐生菌或者模式生物,基因组大小为2.5—81.5Mb,包含酵母或产生假菌丝的酵母、丝状真菌,或者具有二型性(或多型性) 生活史的真菌,拥有与动物和植物细胞一样的的细胞生理学和遗传学特征,包括多细胞性、细胞骨架结

宏基因组学概述

宏基因组学概述

————————————————————————————————作者: ————————————————————————————————日期: ?

宏基因组学概述 王莹,马伊鸣 (北京交通大学土木建筑工程学院环境1402班) 摘要:随着分子生物学技术的快速发展及其在微生物生态学和环境微生物学研究中的广泛应用,促进了以环境中未培养微生物为研究对象的新兴学科——微生物环境基因组学(又叫宏基因组学、元基因组学,英文名Metagenomics)的产生和快速发展。宏基因组学通过直接从环境样品中提取全部微生物的DNA,构建宏基因组文库,利用基因组学的研究策略研究环境样品所包含的全部微生物的遗传组成及其群落功能.在短短几年内,宏基因组学研究已渗透到各个领域,包括海洋、土壤、热液口、热泉、人体口腔及胃肠道等,并在医药、替代能源、环境修复、生物技术,农业、生物防御及伦理学等各方面显示了重要的价值。本文对宏基因组学的主要研究方法、热点内容及发展趋势进行了综述 关键词:宏基因组宏基因组学环境基因组学基因文库的构建 Macro summary of Metagenomics WangYing,Ma Yi-Ming (BeijingJiaotongUniversity, Institute of civil engineering,)Key words:Metagenome; Metagenomics;The environmental genomics 宏基因组学(Metagenomics)又叫微生物环境基因组学、元基因组学。它通过直接从环境样品中提取全部微生物的DNA,构建宏基因组文库,利用基因组学的研究策略研究环境样品所包含的全部微生物的遗传组成及其群落功能。它是在微生物基因组学的基础上发展起来的一种研究微生物多样性、开发新的生理活性物质(或获得新基因)的新理念和新方法。其主要含义是:对特定环境中全部微生物的总DNA(也称宏基因组,metagenomic)进行克隆,并通过构建宏基因组文库和筛选等手段获得新的生理活性物质;或者根据rDNA数据库设计引物,通过系统学分析获得该环境中微生物的遗传多样性和分子生态学信息。 1.起源 宏基因组学这一概念最早是在1998年由威斯康辛大学植物病理学部门的Jo Handelsman等提出的,是源于将来自环境中基因集可以在某种程度上当成一个单个基因组研究分析的想法,而宏的英文是"meta-",具有更高层组织结构和动态变化的含义。后来伯克利分校的研究人员Kevin Chen和LiorPachter将宏基因组定义为"应用现代基因组学的技术直接研究自然状态下的微生物的有机群落,而不需要在实验室中分离单一的菌株"的科学。 2 研究对象 宏基因组学(Metagenomics)是将环境中全部微生物的遗传信息看作一个整体自上而下地研究微生物与自然环境或生物体之间的关系。宏基因组学不仅克服了微生物难以培养的困难, 而且还可以结合生物信息学的方法, 揭示微生物之间、微生物与环境之间相互作用的规律, 大大拓展了微生物学的研究思路与方法, 为从群落结构水平上全面认识微生物的生态特征和功能开辟了新的途径。目前, 微生物宏基因组学已经成为微生物研究的热点和前沿, 广泛应用于气候变化、水处理工程系统、极端环境、人体肠道、石油污染、生物冶金等领域, 取得了一系列引人瞩目的重要成果。 3 研究方法

呼吸科实习小结

呼吸科实习小结 来xx中心医院实习已经一个月了,在这段时间里,我第一次接触了临床,第一次穿梭于病房,第一次与病人有了正面的接触,虽然过程中有许许多多的不适应,但却让我获益良多。 呼吸内科是我实习的第一站,在这里什么都是从头学起,很多时候都让我有点手足无措。在老师的耐心教导和其他实习同学的悉心帮助下,我学会了开化验单和其它项目的申请单。慢慢地也开始会刊老师开的医嘱了,从简单的到复杂的,对于一些抗生素的使用也有了一定的了解。在查房过程中,带教老师会对某些疾病的要点进行讲解。有新病人时,老师会认真修正我所写的病历,第二天查房时还会讲解一下他们的诊断思路,这让我从中有了很大的进步。在呼吸科碰到的病种较多,有气胸、胸腔积液、copd、哮喘、肺炎等,通过书写病历和体格检查,对这些疾病的症状和体征有了一定的了解。对于我在呼吸科感到比较遗憾的是,当时没有提出来去肺功能实验室观看肺功能实验是如何操作的。 从呼吸科出来后去了血液科。在这个科室最有意义的事就是做了一次骨穿。虽然在血液科只待了一个礼拜,但通过前几天的观摩,终于在出科前一天亲身实践了一次。看到自己成功完成了,真要谢谢老师对我的信任以及支持。骨穿对血液科来说是一项常规检查,所有张慧英主任在我们进科室第一天就给噩梦详细

讲解了整个过程。血液科是我感觉与我们检验专业最有联系的一个科室,看到骨髓报告单让我很有亲切感,它不像b超、ct那样,我们一点都不懂。W骨髓报告单上的每一项我们都很熟悉,我们以前的实验课都有练习过。通过在血液科的一周,我对再生障碍性贫血和缺铁性贫血有了深入的了解。 这个月内最后去的科室是心内科。由于在校期间没有怎么学心电图,所以跟着老师查房比较累。当老师们对着心电图讨论p 波、u波、st段时,刚开始可以说是一头雾水,几天下来渐渐进入状态了,一些简单的还能看得明白。在心内科的时候,还去导管室看了一次冠脉造影和一次pci,当看着导丝从桡动脉穿刺进入到心脏时,不得不惊叹医学发展之快。对于冠脉狭窄的病人,成功实行pci术,可以感觉到作为医生的自豪。有时仅仅坐在办公室里听老师们的讨论,就可以从中学到很多知识。在心内科碰到最多的病人就是冠心病,通过老师与病人的交谈,了解了冠心病的危险因素,知道冠脉造影是冠心病的确诊依据,对冠心病的治疗也有了一定的了解。 作为我学习过程中理论与实践相结合的第一个月,一切都让我感到新鲜。我喜欢现在这种状况,喜欢每到一个科室给我带来的新鲜感。我会好好利用在内科剩下的一个月,努力学习,相信自己在这个过程中一定会有所成长。 医院呼吸内科工作总结在医院党政领导及各有关职能部门的有效指导下,呼吸科通过全科医护人员的共同努力,已完成

基因组学重点整理

生物五界:动物、植物、真菌、原生生物和原核生物;生物三界:真细菌、古细菌、真核生物 具有催化活性的RNA分子称为核酶(ribozyme)核酶催化的生化反应有:自我剪接、催化切断其它RNA、合成多肽键、催化核苷酸的合成 新基因的产生:基因与基因组加倍1)整个基因组加倍;2)单条或部分染色体加倍;3)单个或成群基因加倍。DNA水平转移:原核生物中的DNA水平转移可通过接合转移,噬菌体转染,外源DNA的摄取等不同途径发生,水平转移的基因大多为非必须基因。动物中由于种间隔离不易进行种间杂交,但其主要来源于真核细胞与原核细胞的内共生。动物种间基因转移主要集中在逆转录病毒及其转座成分。 外显子洗牌与蛋白质创新:产生全新功能蛋白质的方式有二种:功能域加倍,功能域或外显子洗牌 基因冗余:一条染色体上出现一个基因的很多复份(复本)当人们分离到某一新基因时,为了鉴定其生物学功能,常常使其失活,然后观察它们对表型的影响。许多场合,由于第二个重复的功能基因可取代失活的基因而使突变型表型保持正常。这意味着,基因组中有冗余基因存在。看家基因很少重复,它们之间必需保持剂量平衡,因此重复的拷贝很快被淘汰。与个体发育调控相关的基因表达为转录因子,具有多功能域的结构。这类基因重复拷贝变异可使其获得不同的表达控制模式,促使细胞的分化与多样性的产生,并导致复杂形态的建成,具有许多冗余基因。 非编码序列扩张方式:滑序复制、转座因子 模式生物海胆、果蝇、斑马鱼、线虫、蟾蜍、小鼠、酵母、水稻、拟南芥等。模式生物基因组中G+C%含量高, 同时CpG 岛的比例也高。进化程度越高, G+C 含量和CpG 岛的比例就比较低 如果基因之间不存在重叠顺序,也无基因内基因(gene-within-gene),那么ORF阅读出现差错的可能只会发生在非编码区。细菌基因组中缺少内含子,非编码序列仅占11%, 对阅读框的排查干扰较少。细菌基因组的ORF阅读相对比较简单,错误的机率较少。高等真核生物DNA的ORF阅读比较复杂:基因间存在大量非编码序列(人类占70%);绝大多数基因内含有非编码的内含子。高等真核生物多数外显子的长度少于100个密码子 内含子和外显子序列上的差异:内含子的碱基代换很少受自然选择的压力,保留了较多突变。由于碱基突变趋势大多为C-T,故A/T的含量内含子高于外显子。由于终止密码子为TAA\TAG\TGA,如果以内含子作为编码序列,3种读码框有很高比例的终止密码子。 基因注释程序编写的依据:1)信号指令,包括起始密码子,终止密码子,终止信号,剪接受体位和供体位,多聚嘧啶序列,分支点保守序列2)内容指令,密码子偏好,内含子和外显子长短 基因功能的检测:基因失活、基因过表达、RNAi干涉 双链DNA的测序可从一端开始,亦可从两端进行,前者称单向测序,后者称双向测序。 要获得大于50 kb的DNA限制性片段必需采用稀有切点限制酶。 酵母人工染色体(YAC)1)着丝粒在细胞分裂时负责染色体均等分配。2)端粒位于染色体端部的特异DNA序列,保持人工染色体的稳定性3)自主复制起始点(ARS)在细胞中启动染色体的复制 合格的STS要满足2个条件:它应是一段序列已知的片段,可据此设计PCR反应来检测不同的DNA片段中是否存在这一顺序;STS必需在染色体上有独一无二的位置。如果某一STS在基因组中多个位点出现,那么由此得出的作图数据将是含混不清的。 遗传图绘制主要依据由孟德尔描述的遗传学原理,第一条定律为等位基因随机分离,第二条定律为非等位基因自由组合,显隐性规律/不完全显性、共显性、连锁 衡量遗传图谱的水平覆盖程度饱和程度 基因类型:transcribed, translatable gene (蛋白基因) ;transcribed but non-translatable gene ( RNA基因)Non- transcribed, non-translatablegene ( promoter, operator ) rRNA基因,tRNA基因, scRNA基因, snRNA基因, snoRNA基因, microRNA基因 基因组(genome):生物所具有的携带遗传信息的遗传物质总和。 基因组学(genomic):用于概括涉及基因作图、测序和整个基因功能分析的遗传学分支。 染色体组(chromosome set):不同真核生物核基因组均由一定数目的染色体组成,单倍体细胞所含有的全套染色体。 比较基因组学(comparative genomics):比较基因组学是基因组学与生物信息学的一个重要分支。通过模式生物基因组与人类基因组之间的比较与鉴别,为分离重要的候选基因,预测新的基因功能,研究生物进化提供依据。(目标)

进化基因组学研究进展

研究进化基因组学进展 摘要:进化基因组学是利用基因组数据研究差异基因功能、生物系统演化、从基因在水平探索生物进化的学科。随着近年来基因组数据的不断增加,进化基因组学得到了长足的发展。进化基因组学主要包括从基因组水平理解和诠释生物进化和新基因分析研究探索两方面的内容。本文介绍了进化基因组学研究的主要内容和较为常用的方法,以及近年来在细菌、酵母、果蝇进化基因组学方面的研究进展。 关键词:进化基因组学系统进化比较基因组学新基因 正文 随着基因测序技术的不断进步以及基因组学的飞速的发展,人们积累了大量的基因组学数据,利用所得的大量的基因组数据与进化生物学相结合,在基因组水平研究生物进化机制,随即产生了进化基因组学。 近年来进化基因组学取得了长足的进展,在研究差异基因功能、生物系统演化、从基因在水平探索生物进化的终极方式等方面有重大突破,对人类理解生命现象和过程有重要作用。 研究系统进化学通常包括两个关键步骤:一方面,在不同物种中鉴定同源性特佂,另一方面利用构建系统进化树的方法比较这些特征,进而重新构建这些物种的进化历史[1]。针对这两个关键步骤,传统系统进化学,常采用基于形态学数据和单个基因研究的同源性状鉴定和重建系统进化树(常包括距离法、最大简约法、概率法)[1]的方法来研究。在目前拥有丰富基因组数据的条件下,我们可以分析基因组数据,利用进化基因组学研究系统进化。 一、目前进化基因组学的研究内容主要集中于两个方面:(1)在比较不同生物的基因数据的基础上,从基因组水平理解和诠释生物进化;(2)通过对新基因的分析研究探索基因进化过程的规律两个方面。在进行全基因组进化分析方面,进化基因组学主要集中于构建系统进化树、研究基因组进化策略、研究生物功能变化和进化机制、进化和生态功能基因组学、基因注释的等方面;在新基因方面

分子生物学考试重点

基因文库:包括基因组文库和部分基因文库。将含有某种生物不同基因的许多 DNA片段,(导入受体菌的群体中储存,各个受体菌分别含有这种生物的不同的基因,称为基因文库。) 蛋白激酶:是指能够将磷酸集团从磷酸供体分子转移到底物蛋白的氨基酸受体上的一大类酶。 蛋白磷酸酶:是具有催化已经磷酸化的蛋白质分子发生去磷酸化反应的一类酶分 子,与蛋白激酶相对应存在,共同构成了磷酸化和去磷酸化这一重要的蛋白质活性的开关系统。 受体:是细胞膜上或细胞内能识别外源化学信号并与之结合的蛋白分子。是信息分子的接收分子,它们的化学本质是存在于细胞表面或细胞内的蛋白分子。mRNA剪接:去除初级转录物上的内含子,把外显子连接成为成熟RNA的过程前导链:在复制过程中,连续复制的链的前进方向始终与复制叉前进方向一致称为前导链 校对:DNApolI的3’到5’外切酶活性将错配的A水解下来,同时利用5’到3’聚合 酶活性补回正确配对的C,复制可以继续下去,这种功能称为校对 核小体:真核生物染色质由DNA与蛋白质构成,其基本单位是核小体。各两分子的H2A、H2B、H3、H4构成八聚体的核心组蛋白,双链DNA缠绕在这一核心上形成核小体的核心颗粒。颗粒之间再由DNA和组蛋白H1构成的链接区相连形成串珠样结构。 解链温度/融解温度(Tm):在解链过程中,紫外吸光度的变化ΔA260达到最大变化值的一半时所对应的温度定义为DNA的解链温度或融解温度。Tm值:DNA在加热变性过程中,紫外吸收值达到最大值的50%时的温度 增色效应:在DNA解链过程中,由于有更多的共轭双键得以暴露,含有DNA的溶液在260nm 处的吸光度随之增加,这种现象称为DNA的增色效应 DNA复性:当变性条件缓慢除去后,使原来两条彼此分离的DNA链重新缔合,形成双螺旋结构,这个过程称为DNA的复性。 退火:热变性的DNA经缓慢冷却后可以复性,这一过程称为退火。 DNA变性:某些理化因素(温度,pH,离子强度)导致DNA双链互补碱基对之间的氢键发生断裂,使DNA双链解离为单链的现象 DNA复制:以亲代DNA分子为模板按照碱基配对原则合成子代DNA分子的过程。广义也指DNA或RNA基因组的扩增过程,其化学本质是酶促脱氧核苷酸聚合反应 不对称转录:在DNA分子双链上,按碱基互补配对规律能指导转录生成RNA的一股链作为模板指导转录,另一股链则不转录,这种模板选择性称为不对称转录 转录:以DNA为模板合成RNA的过程称为转录。 逆转录:是以RNA为模板合成DNA的过程,即RNA指导下的DNA合成。此过程中,核酸合成与转录(DNA到RNA)过程与遗传信息的流动方向(RNA到DNA)相反称为逆转录 颠换:嘌呤被嘧啶取代或反之。 转换:DNA链中一种嘌呤被另一种嘌呤取代,或嘧啶被另一种嘧啶所取代。

基因组学研究的应用前景

基因组学研究的应用前景摘要:基因组学是一门研究基因组的结构,功能及表达产物的学科,基因组的结构不仅是蛋白质,还有许多复杂功能的RNA,包括三个不同的亚领域,及结构基因组学,功能基因组学和比较基因组学。近几年,基因组学在微生物药物,细菌,病毒基因,营养基因方面都有进展,其前景是光明的。 关键词:基因研究未来结构 一、微生物药物产生菌功能基因组学研究进展 微生物药物是一类化学结构和生物活性多样的次级代谢产物,近年来多个产生菌基因组序列已经被测定完成,在此基础上开展的功能基因组研究方兴未艾,并在抗生素生物合成,形态分化,调控,发育与进化及此生代谢产物挖掘等方面有着新的发现,展现出广阔的研究前景,青霉素及其衍生的《》内酰胺类抗生素极大地改善了人类的卫生保健和生活质量,并促进研究人员不断对其工业生产菌株类黄青霉进行遗传改良和提高其产量,从而降低生产成本。经过60年的随机诱变筛选,当前青霉素产量至少提高了三个数量级,同时,青霉素的生物合成机理也得到了较为清晰的阐述,其pcbAB编码的非核糖体肽合酶ACVS~DPcbc编码的异青霉素N合成酶IPNS位于细胞质中,而苯乙酸COA连接酶PenDE编码的IPN酰基转移酶位于特殊细胞器一微体中。 研究发现,青霉素合成基因区域串联扩增,产黄青细霉胞中微体含量增加都可显著提高青霉素产量。然而随机诱变筛选得到的黄青霉工业菌株高产的分子机制尚不明确。为此,2008年荷兰研究人员联合国美国venter基因组研究所对黄青霉wisconsin54—1225进行了基因组测试和分析,并进一步利用DNA芯片技术研究了wisconsin54—1255及其高产菌株DS17690在培养基中是否添加侧链前体苯乙酸情况下的转录组变化,四组数据的比较分析发现,有2470个基因至少在其中一个条件下是差异表达的,根据更为严格的筛选标准,在PPA存在的条件下,高产菌相比测序菌株有307个基因转录是上调的,和生长代谢,青霉素前体合成及其初级代谢和转运等功能相关,另有271个基因显著下调,主要是与生长代谢及发育分化相关的功能基因。 二、乳酸菌基因组学的研究进展

宏基因组学的一般研究策略

宏基因组学的一般研究策略 摘要: 宏基因组学是目前微生物基因工程的一个重要方向与热点。它把微生物的总群体特性与基因组学实验手段结合了起来,包括从环境样品中提取总DNA、再用可培养的宿主微生物建立文库及筛选目的克隆和基因。该法是研究不可培养微生物、寻找新的基因和开发新活性产物的重要新途径。它避开了微生物分离、纯化和培养的步骤,大大扩展了微生物资源的利用范围。本文旨在介绍宏基因组学的一般研究方法并结合我们的实验情况,对这一崭新领域中的最新研究策略进行了简要综述。 关键词: 宏基因组学, 不可培养微生物, 文库构建, 文库筛选,研究策略 Strategies for accessing metagenomics for desired applications Abstract: Metagenomics is a new field of microbial genetic engineering. It has the characteristics of microbial ecology and the methodology of genomics. Metagenomics includes genomic DNA isolation, library construction and screening strategies, and can be used in the discovery of new gene and biocatalysts and in the study of uncultured microorganism. Metagenomics can overcome the advantages of isolation and cultivation procedures in traditional microbial method, and thus greatly broaden the space of microbial resource utilization. In this paper, we mainly reviewed the metagenomic methodology, together with the latest advances and novel strategy in this research field. Keywords:Metagenomics; Uncultured microorganism;Library construction;Library screening Research strategies 大自然中蕴藏着无数具有重要价值的微生物及其活性产物,也是新基因及生物学资源的重要源泉,对其进行研究成为微生物学和分子生物学研究的一个重要方向。然而人们现在能够培养与利用的不到环境中总微生物的1%[1]。宏基因组学(metagenomics)是直接从环境样品中提取全部微生物的总DNA, 避开了分离、纯化和培养微生物的过程来构建宏基因组文库,用基因组学的研究策略来研究环境样品中的总微生物的组成及其在群落中的功能等。现在,宏基因组学技术方法已在微生物多样性,微生物细胞间的相互作用,新基因和新型生物催化剂的开发,新的抗生素的开发及环境生态等方面得到了广泛应用[2]。本文旨在介绍宏基因组学的一般实验方法并结合我们的研究情况,对这一崭新领域中的最新研究策略进行了简要综述。深化了我们对这一学科的认识,促进了该学科的进步。 1 宏基因组学研究策略 1.1宏基因组学概要 宏基因组学是Handelsman等于1998年提出的[3], 可见是一门很新的学科,其随着基因组实验手段,生物信息学和测序技术等的日新月异也迅猛发展了起来,这个新学科是以环境样品的总微生物基因组为实验对象,通过测序分析、文库评价、产活性物质及其基因的克隆的获取和基因功能的鉴别,对微生物种群组成与生物量、生态学关系、生物化学关系与环境关系以及功能活性进行研究[4]。其主要过程包括样品和基因的富集和提取; 宏基因组文库的构建; 目的基因的筛选; 目的基因活性产物的表达(图1)。 1.2 微生物及其基因的富集 在文库筛选过程中由于目的基因比例较小, 对环境中微生物的富集不但可提高基因总量,有利于基因的提取,还可增加目的基因的比例,如Kouker 等用橄榄油富集产脂肪酶的微生物收到了很好的效果[5 ],橄榄油不仅可作为底物,还可诱导脂肪酶的合成。目前富集技术主要分为细胞水平和基因水平。其中细胞水平主要是用选择培养基来富集某些微生物, 常

进化基因组学研究进展

进化基因组学研究进展 刘超 (山东大学生命科学学院济南250100) 摘要:进化基因组学是利用基因组数据研究差异基因功能、生物系统演化、从基因在水平探索生物进化的学科。随着近年来基因组数据的不断增加,进化基因组学得到了长足的发展。进化基因组学主要包括从基因组水平理解和诠释生物进化和新基因分析研究探索两方面的内容。本文介绍了进化基因组学研究的主要内容和较为常用的方法,以及近年来在细菌、酵母、果蝇进化基因组学方面的研究进展。 关键词:进化基因组学系统进化比较基因组学新基因 前言 随着基因测序技术的不断进步以及基因组学的飞速的发展,人们积累了大量的基因组学数据,利用所得的大量的基因组数据与进化生物学相结合,在基因组水平研究生物进化机制,随即产生了进化基因组学(Evolutional Genomics)。 近年来进化基因组学取得了长足的进展,在研究差异基因功能、生物系统演化、从基因在水平探索生物进化的终极方式等方面有重大突破,对人类理解生命现象和过程有重要作用。 1进化基因组学研究内容 研究系统进化学通常包括两个关键步骤:一方面,在不同物种中鉴定同源性特佂,另一方面利用构建系统进化树的方法比较这些特征,进而重新构建这些物种的进化历史[1]。针对这两个关键步骤,传统系统进化学,常采用基于形态学数据和单个基因研究的同源性状鉴定和重建系统进化树(常包括距离法、最大简约法、概率法)[1]的方法来研究。在目前拥有丰富基因组数据的条件下,我们可以分析基因组数据,利用进化基因组学研究系统进化。

目前进化基因组学的研究内容主要集中于两个方面:(1)在比较不同生物的基因数据的基础上,从基因组水平理解和诠释生物进化;(2)通过对新基因的分析研究探索基因进化过程的规律两个方面[2](如图1)。在进行全基因组进化分析方面,进化基因组学主要集中于构建系统进化树、研究基因组进化策略、研究生物功能变化和进化机制、进化和生态功能基因组学[2]、基因注释的等方面;在新基因方面主要分析基因产生机制和新基因固定及其动力学研究。 图1 进化基因组学主要研究内容 目前进化基因组学的研究有力的解决了一些基础性的进化问题,但也出现了一些未来需要急需解决的挑战。例如生物进化的本质和目前重建系统进化树方法的限制[1]。 2研究进化基因组学的方法 研究进化基因组学的方法主要包括利用基因组数据分析和研究新基因的产生和演化两种。 2.1利用基因组数据进行系统进化分析 利用基因组数据进行系统进化分析,常有基于基因序列的方法和基于全基因特征的方法。(如图2)

宏基因组学研究方法及应用概述

宏基因组学研究方法及应用概述彭昌文 (山东省济宁学院生物学系 273155) 颜 梅 (山东省曲阜师范大学生命科学学院 273165) 摘 要 本文简要介绍了宏基因组的概念,概述了其原理及应用。 关键词 宏基因组 宏基因组学 环境基因组学 基因文库的构建 迄今,人们对微生物世界的认识基本都来源于对占细菌总种数不到1%的微生物的单个种群的孤立研究结果。然而微生物是通过其群落而非单一种群来执行在自然界物质与能量循环中的作用的,对微生物群落作为整体的功能认识远远落后于对其个体的认识。这种状况不利于全面认识微生物在自然界所扮演的重要角色。为了获得完整的环境微生物基因表达产物,早在1978年许多学者就提出了直接从环境中提取微生物DNA的思路,1998年,AR I A D phar maceutical公司的科学家Handels man等首次提出宏基因组的概念[1]。宏基因组(the genomes of the total m icrobi ota found in nature)是指生境中全部微生物基因的总和[2]。它包含了可培养的和未培养的微生物的基因总和,微生物主要包括环境样品中的细菌和真菌。而宏基因组学就是一种以环境样品中的微生物群体基因组为研究对象,以功能基因筛选和测序分析为研究手段,以微生物多样性、种群结构、进化关系、功能活性、相互协作关系及与环境之间的关系等为研究目的的新的微生物研究方法,也称为微生物环境基因组学、元基因组学或生态基因组学。它主要研究从环境样品获得的基因组中所包含的微生物的遗传组成及其群落功能,为充分认识和开发利用非培养微生物,并从完整的群落水平上认识微生物的活动、最大限度地挖掘微生物资源,提供了可能,已成为国际生命科学技术研究的热点和前沿。 1 宏基因组学的研究方法 宏基因组学的研究过程一般包括从环境样品中提取基因组DNA,克隆DNA到合适的载体,导入宿主菌体,筛选目的转化子等工作,可分为三个步骤。 1.1 宏基因组的提取 在宏基因组筛选过程中,目的基因是整个核苷酸链中的一部分,因此样品前期的富集能够提高筛选命中率。DNA的提取是宏基因文库构建的关键步骤。提取步骤通常需要满足两个条件:既要尽可能提取样品所有微生物的基因,又要保持片段的完整和纯度。目前所开发的DNA提取方法有两种:细胞提取法和直接裂解法。直接裂解法包括物理法(冻融法、超声法、玻璃球珠击打法、液氮碾磨法)、化学法(常用化学试剂有表面活性剂、盐类、有机溶剂等)及酶裂解法。另外,依据提取样品总DNA前是否分离细胞,可以分为原位裂解法和异位裂解法。原位裂解法可以直接破碎样品中的微生物细胞而使DNA 得以释放,由于无需对样品微生物进行复苏,且黏附颗粒上的微生物细胞亦能被裂解,所得DNA能更好地代表样品微生物的多样性。此法操作容易、成本低,DNA 提取率高,但由于机械剪切作用较强,所提取的DNA 片段小(1~50kb),通常适用于构建小片段插入文库(以质粒和λ噬菌体为载体)的DNA提取。异位裂解法则先采用物理方法将微生物从样品中分离出来,然后采用较温和的方法抽提DNA。此法条件温和,可获得大片段DNA(20~500kb),纯度高,但操作繁琐、成本高、得率低,通常适用于构建大片段插入文库(以柯斯质粒或者细菌人工染色体为载体)的DNA提取。1.2 宏基因组文库的构建 宏基因组文库的构建需适宜的克隆载体。通常用于DNA克隆的载体主要包括质粒、黏粒和细菌人工染色体等。质粒一般用于克隆小于10kb的DNA片段,适用于单基因的克隆与表达。黏粒的插入片段可达40kb左右,细菌人工染色体插入片段可达350kb,可用来制备由多基因簇调控的微生物活性物质的完整代谢途径的相关片段文库。1.3 目的基因的筛选 目的基因的筛选方法包括序列分析和功能分析两种。序列分析适用于小片段DNA文库的基因筛选;而功能分析通常适用于大片段DNA文库的筛选。序列分析筛选不依赖于重组基因在外源宿主中的表达,因为所使用的寡聚核苷酸引物是直接通过DNA序列中的保守区域设计的,反映了氨基酸序列的保守性,可获得未知序列的目的基因。该方法对DNA量的要求不高,筛选到新活性物质的可能性较大。序列分析的另一个手段是对宏基因组克隆测序,无论是全部或随机测序都是发现新基因的有效手段。 对于功能分析而言,首先需获得目的克隆,然后通过序列和生化分析对其进行表征。此法能快速鉴定出全新且有开发价值的活性物质,可用于医药、工农业等行业。由于此法检出率较低,工作量较大,且受检测手段的限制,所以常要借助于高通量筛选。 2 宏基因组学的应用 2.1 在生态学方面的应用 当今微生物生态学研究的主要目的之一是将微生物与其所在环境中的代谢过程相联系。应用16s r DNA作为系统发育锚去鉴定属于某种微生物的克隆,然后对基因进行测序,从而获得

分子生物学知识点归纳

分子生物学 1.DNA的一级结构:指DNA分子中核苷酸的排列顺序。 2.DNA的二级结构:指两条DNA单链形成的双螺旋结构、三股螺旋结构以及四股螺旋结构。 3.DNA的三级结构:双链DNA进一步扭曲盘旋形成的超螺旋结构。 4.DNA的甲基化:DNA的一级结构中,有一些碱基可以通过加上一个甲基而被修饰,称为DNA的甲基化。甲基化修饰在原核生物DNA中多为对一些酶切位点的修饰,其作用是对自身DNA产生保护作用。真核生物中的DNA甲基化则在基因表达调控中有重要作用。真核生物DNA中,几乎所有的甲基化都发生于二核苷酸序列5’-CG-3’的C上,即5’-mCG-3’. 5.CG岛:基因组DNA中大部分CG二核苷酸是高度甲基化的,但有些成簇的、稳定的非甲基化的CG小片段,称为CG岛,存在于整个基因组中。“CG”岛特点是G+C含量高以及大部分CG二核苷酸缺乏甲基化。6.DNA双螺旋结构模型要点: (1)DNA是反向平行的互补双链结构。 (2)DNA双链是右手螺旋结构。螺旋每旋转一周包含了10对碱基,螺距为3.4nm. DNA双链说形成的螺旋直径为2 nm。每个碱基旋转角度为36度。DNA双螺旋分子表面存在一个大沟和一个小沟,目前 认为这些沟状结构与蛋白质和DNA间的识别有关。 (3)疏水力和氢键维系DNA双螺旋结构的稳定。DNA双链结构的稳定横向依靠两条链互补碱基间的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持。 7.核小体的组成: 染色质的基本组成单位被称为核小体,由DNA和5种组蛋白H1,H2A,H2B,H3和H4共同构成。各两分子的H2A,H2B,H3和H4共同构成八聚体的核心组蛋白,DNA双螺旋缠绕在这一核心上形成核小体的核心颗粒。 核小体的核心颗粒之间再由DNA和组蛋白H1构成的连接区连接起来形成串珠样结构。 8.顺反子(Cistron):由结构基因转录生成的RNA序列亦称为顺反子。 9.单顺反子(monocistron):真核生物的一个结构基因与相应的调控区组成一个完整的基因,即一个表达单位,转录物为一个单顺反子。从一条mRNA只能翻译出一条多肽链。 10.多顺反子(polycistron): 原核生物具有操纵子结构,几个结构基因转录在一条mRNA链上,因而转录物为多顺反子。每个顺反子分别翻译出各自的蛋白质。 11.原核生物mRNA结构的特点: (1) 原核生物mRNA往往是多顺反子的,即每分子mRNA带有几种蛋白质的遗传信息。 (2)mRNA 5‘端无帽子结构,3‘端无多聚A尾。 (3)mRNA一般没有修饰碱基。 12.真核生物mRNA结构的特点: (1)5‘端有帽子结构。即7-甲基鸟嘌呤-三磷酸鸟苷m7GpppN。 (2)3‘端大多数带有多聚腺苷酸尾巴。 (3)分子中可能有修饰碱基,主要有甲基化。 (4)分子中有编码区和非编码区。 14.tRNA的结构特点 (1)tRNA是单链小分子。 (2)tRNA含有很多稀有碱基。 (3)tRNA的5‘端总是磷酸化,5’末端核苷酸往往是pG. (4)tRNA的3‘端是CCA-OH序列。是氨基酸的结合部位。 (5)tRNA的二级结构形状类似于三叶草,含二氢尿嘧啶环(D环)、T环和反密码子环。 (6)tRNA的三级结构是倒L型。D环和T环在L的拐角上。 15.rRNA (1)rRNA是细胞内含量最丰富的RNA,它们与核糖体蛋白共同构成核糖体,后者是蛋白质合成的场所。 (2)核糖体和rRNA一般都用沉降系数S表示大小。原核生物核糖体的沉降系数为70S,由50S和30S 两个大小亚基组成,30S小亚基含有16SrRNA和21种蛋白质。50S大亚基含有23S和5SrRNA以及 34种蛋白质。真核生物沉降系数为80S,由大小亚基组成。40S小亚基含有18SrRNA和30多种蛋 白质。60SrRNA含有5S、5.8S和28SrRNA 以及大约45种蛋白质。 16.核酶(ribozyme):某些RNA分子能催化自身或其他RNA分子进行化学反应,即具有酶样的催化活性,这类具有催化活力的RNA称为核酶。核酶分为3类:(1) 异体催化的剪切型。(2)自体催化的剪切型(3)内含子的自我剪切型。 17.核内不均一RNA(hnRNA):真核生物转录生成的mRNA前体即为hnRNA。这类mRNA前体必须经过一系列的加工处理才能变成成熟的mRNA。加工过程的主要环节包括:(1)5‘端加帽(2)3’端加尾(3)内含子的切除和外显子的连接(4)分子内部的甲基化修饰(5)核苷酸序列的编辑作用。 18.miRNA:是一种单链小分子RNA,广泛存在于真核生物中,是一组不编码蛋白质的短序列RNA,其特点就是高度的保守性、时序性和组织特异性。研究表明miRNA可能决定组织和细胞的功能特异性,也可能参与了复杂的基因调控,对组织的发育起重要作用。 19.siRNA:小干扰RNA。是人工合成的短的双链RNA,它可抑制细胞内特定基因的表达,导致转录后基因失

宏基因组学概述

宏基因组学概述 王莹,马伊鸣 (北京交通大学土木建筑工程学院环境1402班) 摘要:随着分子生物学技术的快速发展及其在微生物生态学和环境微生物学研究中的广泛应用,促进了以环境中未培养微生物为研究对象的新兴学科——微生物环境基因组学(又叫宏基因组学、元基因组学,英文名Metagenomics)的产生和快速发展。宏基因组学通过直接从环境样品中提取全部微生物的DNA,构建宏基因组文库,利用基因组学的研究策略研究环境样品所包含的全部微生物的遗传组成及其群落功能.在短短几年内,宏基因组学研究已渗透到各个领域,包括海洋、土壤、热液口、热泉、人体口腔及胃肠道等,并在医药、替代能源、环境修复、生物技术,农业、生物防御及伦理学等各方面显示了重要的价值。本文对宏基因组学的主要研究方法、热点内容及发展趋势进行了综述 关键词:宏基因组宏基因组学环境基因组学基因文库的构建 Macro summary of Metagenomics Wang Ying, Ma Yi-Ming (BeijingJiaotongUniversity, Institute of civil engineering,) Key words: Metagenome; Metagenomics; The environmental genomics 宏基因组学(Metagenomics)又叫微生物环境基因组学、元基因组学。它通过直接从环境样品中提取全部微生物的DNA,构建宏基因组文库,利用基因组学的研究策略研究环境样品所包含的全部微生物的遗传组成及其群落功能。它是在微生物基因组学的基础上发展起来的一种研究微生物多样性、开发新的生理活性物质(或获得新基因)的新理念和新方法。其主要含义是:对特定环境中全部微生物的总DNA (也称宏基因组,metagenomic)进行克隆,并通过构建宏基因组文库和筛选等手段获得新的生理活性物质;或者根据rDNA数据库设计引物,通过系统学分析获得该环境中微生物的遗传多样性和分子生态学信息。 1.起源 宏基因组学这一概念最早是在1998年由威斯康辛大学植物病理学部门的Jo Handelsman等提出的,是源于将来自环境中基因集可以在某种程度上当成一个单个基因组研究分析的想法,而宏的英文是"met a-",具有更高层组织结构和动态变化的含义。后来伯克利分校的研究人员Kevin Chen和Lior Pachter 将宏基因组定义为"应用现代基因组学的技术直接研究自然状态下的微生物的有机群落,而不需要在实验室中分离单一的菌株"的科学。 2 研究对象 宏基因组学(Metagenomics)是将环境中全部微生物的遗传信息看作一个整体自上而下地研究微生 物与自然环境或生物体之间的关系。宏基因组学不仅克服了微生物难以培养的困难, 而且还可以结合生物信息学的方法, 揭示微生物之间、微生物与环境之间相互作用的规律, 大大拓展了微生物学的研究思路与方法, 为从群落结构水平上全面认识微生物的生态特征和功能开辟了新的途径。目前, 微生物宏基因组学已经成为微生物研究的热点和前沿, 广泛应用于气候变化、水处理工程系统、极端环境、人体肠道、石油污染、生物冶金等领域, 取得了一系列引人瞩目的重要成果。 3 研究方法 宏基因组学的研究过程一般包括样品和基因(组)的富集;提取特定环境中的基因组 DNA;构建宏基因组 DNA 文库;筛选目的基因;目的基因活性产物表达(图 1)五个步骤。

相关主题
文本预览
相关文档 最新文档