当前位置:文档之家› 第7章 二元系相图和合金的凝固与制备原理 笔记及课后习题详解 (已整理 袁圆 2014.8.7)

第7章 二元系相图和合金的凝固与制备原理 笔记及课后习题详解 (已整理 袁圆 2014.8.7)

第7章 二元系相图和合金的凝固与制备原理 笔记及课后习题详解 (已整理 袁圆 2014.8.7)
第7章 二元系相图和合金的凝固与制备原理 笔记及课后习题详解 (已整理 袁圆 2014.8.7)

第七章二元系相图和合金的凝固与制备原理

7.1 复习笔记

一、相图的表示和测定方法

二元相图中的成分有两种表示方法:质量分数(w)和摩尔分数(x)。两者换算如下:

二、相图热力学的基本要点

1.固溶体的自由能一成分曲线

图7-1 固溶体的自由能一成分曲线示意图(a)Ω<0(b)Ω=0(c)Ω>0 相互作用参数的不同,导致自由能一成分曲线的差异,其物理意义为:

(1)当Ω<0,即e AB<(e AA+e BB)/2时,A-B对的能量低于A-A和B-B对的平均能量,所以固溶体的A,B组元互相吸引,形成短程有序分布,在极端情况下会形成长程有序,此时△Hm<0。

(2)当Ω=0,即e AB=(e AA+e BB)/2时,A-B对的能量等于A-A和B-B对的平均能量,

H=0。

组元的配置是随机的,这种固溶体称为理想固溶体,此时△m

(3)当Ω>0,即e AB>(e AA+e BB)/2时,A-B对的能量高于A-A和B-B对的平均能量,意味着A-B对结合不稳定,A,B组元倾向于分别聚集起来,形成偏聚状态,此时△Hm>0。

2.多相平衡的公切线原理

两相平衡时的成分由两相自由能—成分曲线的公切线所确定,如图7-2所示。

对于二元系,在特定温度下可出现三相平衡,如图7-3所示。

图7-2两相平衡的自由能曲线图7-3二元系中三相平衡时的自由能成分曲线3.混合物的自由能和杠杆法则

混合物中B组元的摩尔分数

而混合物的摩尔吉布斯自由能

由上两式可得

上式表明,混合物的摩尔吉布斯自由能G m 应和两组成相和的摩尔吉布斯自由能G m1和G m2在同一直线上。该直线即为相α和β相平衡时的共切线,如图7-4所示。

图7-4 混合物的自由能

两平衡相共存时,多相的成分是切点所对应的成分1x 和2x ,即固定不变。此时可导出:

此式称为杠杆法则,在α和β两相共存时,可用杠杆法则求出两相的相对量,α相的相对量为

122x x x x --,β相的相对量为1

21

x x x x --,两相的相对量随体系的成分x 而变。

4.二元相图的几何规律

(1)相图中所有的线条都代表发生相转变的温度和平衡相的成分,所以相界线是相平衡的体现,平衡相成分必须沿着相界线随温度而变化。

(2)两个单相区之间必定有一个由该两相组成的两相区把它们分开,而不能以一条线接界。两个两相区必须以单相区或三相水平线隔开。即在二元相图中,相邻相区的相数差为l (点接触情况除外),这个规则称为相区接触法则。

(3)二元相图中的三相平衡必为一条水平线,它表示恒温反应。

(4)当两相区与单相区的分界线与三相等温线相交,则分界线的延长线应进入另一两相区内,而不会进入单相区内。

三、二元相图分析

1.匀晶相图和固溶体凝固

(1)匀晶相图

图7-5 Cu-Ni相图

2)固溶体的平衡凝固

平衡凝固是指凝固过程中的每个阶段都能达到平衡,即在相变过程中有充分的时间进行组元间的扩散,以达到平衡相的成分,现以w(Ni)为30%的Cu—Ni合金(见图7-5)为例来描述平衡凝固过程。

图7-6 Cu-Ni固溶体平衡凝固时组织变化示意图

固溶体的凝固过程与纯金属凝固的不同:

①合金结晶出的固相成分与液态不同,形核时除需要能量起伏外还需要成分起伏。

②固溶体的凝固在一个温度区间内进行,这时液、固两相的成分随温度下降不断地发生变化,因此,这种凝固过程必然依赖两组元原子的扩散。

(3)固溶体的非平衡凝固

非平衡凝固:在工业生产中,合金溶液浇涛后的冷却速度较快,在每一温度下不能保持足够的扩散时间,使凝固过程偏离了平衡条件,这称为非平衡凝固。

枝晶偏析:固溶体通常以树枝状生长方式结晶,非平衡凝固导致先结晶的枝干和后结晶的枝晶的成分不同,故称为枝晶偏析。属于境内偏析。

(2)

2.共晶相图及其合金凝固

(1)共晶相图

图7-7 Pb-Sn相图

该共晶反应可写成:L E→αM+βN

(2)共晶合金的平衡凝固及其组织

现以Pb—Sn合金为例,分别讨论各种典型成分合金的平衡凝固及其显微组织。

①图7-9为w(Sn)=10%的Pb—Sn合金平衡凝固过程示意图。

图7-8 w(Sn)=10%的Pb-Sn合金平衡凝固示意图

②共晶合金w(Sn)=61.9%的合金为共晶合金(见图7-10)。

图7-9 w(Sn)=10%的Pb-Sn合金平衡凝固示意图

③现以w(Sn)=50%的Pb-Sn合金为例,分析其平衡凝固过程(见图7-11)。

图7-10 亚共晶合金平衡凝固示意图

④过共晶合金成分位于E,N两点之间的合金称为过共晶合金。

(3)共晶合金的非平衡凝固

①伪共晶:在非平衡凝固条件下,某些亚共晶或过共晶成分的合金也能得全部的共晶组织,这种由非共晶成分的合金所得到的共晶组织称为伪共晶。

②离异共晶:非平衡共晶组织某些合金在平衡凝固条件下获得单相固溶体,在快冷时可能出现少量的非平衡共晶体。

3.包晶相图及其合金凝固

(1)包晶相图

图7-11 Pt-Ag合金相图图7-12 包晶反应时原子迁移示意图

该包晶反应为:Lc+αD→βp

(2)包晶合金的凝固及其平衡组织

①w(Ag)为42.4%的Pt-Ag合金(合金I)

②42.4%

③10.5%

(3)包晶合金的非平衡凝固

实际生产中的冷速较快,导致包晶反应的不完全性,形成包晶反应的非平衡组织。

4.溶混间隙相图与调幅分解

在不少的二元合金相图中有溶混间隙,如:Cu-Pb,Cu-Ni,SiO2-Al2O3等。溶混间隙显示了两种液相不相混溶性。溶混间隙转变可写成L→L1+L2,或α→α1+α2,后者在转变成二相中,其转变方式可有两种:一种是通常的形核长大方式,需要克服形核能垒;另一种是通过没有形核阶段的不稳定分解,称为调幅分解。

5.其他类型的二元相图

(1)具有化合物的二元相图

①形成稳定化合物:可把它看作为一个独立组元而把相图分为两个独立部分。

形成不稳定化合物的相图:由包晶转变得到,无法直接熔融为相同成分的液相。

(2)具有偏晶转变的相图

偏晶转变是由一个液相L1分解为一个固相和另一成分的液相L2的恒温转变(3)具有合晶转变的相图

合晶转变是两个成分不同的液相L1和L2相互作用形成一个固相

(4)具有熔晶转变的相图

一个固相恒温分解为一个液相和另一个固相

5)具有固态转变的二元相图

①同素异构转变

②共析转变:一个固相在恒温下转变为另外两个固相

③包析转变:一个固相与另一个固相反应形成第三个固相的恒温转变

④脱溶转变

⑤有序—无序转变

⑥固溶体转变的中间相

⑦磁性转变:居里温度

6.复杂二元相图的分析方法

表7-1二元系各类恒温转变图型

7.根据相图推测合金的性能

1)根据相图判断合金的使用性能

(2)根据相图判别合金的工艺性能

①共晶合金的铸造性能好

②单相固溶体的加工性能好

8.二元相图实例分析

1)SiO2-Al2O3系的组织与性能

(2)铁碳合金的组织及其性能

图7-13 Fe-C三元相图

①碳在钢中可以有四种形式存在:

a.碳原子溶于α-Fe形成的固溶体,称为铁素体(体心立方结构);b.溶于γ-Fe形成的固溶体,称为奥氏体(面心立方结构);

c.与铁原子形成复杂结构的化合物Fe3C(正交点阵),称为渗碳体;d.碳以游离态石墨(六方结构)稳定相存在;

②三

个三相恒温转变

a.1495℃包晶转变:L B+δH→γJ

b.1148℃共晶转变:Lc→γE+Fe3C

c.727℃共析转变:γS→αp+Fe3C

③三条重要的固态转变线:

a.GS线—奥氏体中开始析出铁素体或铁素体全部溶人奥氏体的转变线,常称此温度为A3温度。

b.ES线—碳在奥氏体中的溶解度曲线。

c.

PQ线—碳在铁素体中的溶解度曲线。

(3)

此外,图中770℃的水平线表示铁素体的磁性转变温度,常称为A2温度。230℃的水平线表示渗碳体的磁性转变。

④典型合金平衡凝固时的转变过程和室温组织

a.工业纯铁,w(C)<0.0218%,室温下平衡组织为α+Fe3CⅢ;

b.共析钢,w(C)=0.77%,室温下平衡组织为珠光体P;

c.亚共析钢,0.0218%

d.过共析钢,0.77%

e.共晶白口铸铁,w(C)=4.30%,室温下平衡组织为变态莱氏体Ld’(P+Fe3C);

f.亚共晶白口铸铁,2.11%

g.过共晶白口铸铁,4.30%

图7-14 按组织分区的铁碳合金相图

⑤钢中的各种平衡组织总结

a.铁素体:碳原子溶于α-Fe形成的固溶体,软韧相;

b.奥氏体:碳原子溶于γ-Fe形成的固溶体,硬脆相;

c.渗碳体:碳原子铁原子形成复杂结构的化合物;

d.莱氏体:奥氏体和渗碳体的机械混合物(低温莱氏体又称变态莱氏体);

e.珠光体:铁素体和渗碳体的机械混合物,

四、二元合金的凝固理论

1.固溶体的凝固理论

(1)正常凝固

合金凝固时,要发生溶质的重新分布,重新分布的程度可用平衡分配系数K0表示。K0定义为平衡凝固时固相的质量分数W S和液相质量分数W L之比,即:K0=W s/W L

图7-15 两种k0的情况(a)k0<1(b)k0>1

①平衡凝固:任何时候已凝固的固相成分是均匀的,凝固终结时的固相成分就变为原合金成分。

图7-16 长度为L的圆棒形锭子(a)和平衡冷却示意图(b)

②非平衡凝固:已凝固的固相成分随着凝固的先后而变化,即随凝固距离x而变化。

图7-17 体积元如的凝固(a)凝固前的溶质分布(b)及凝固后的溶质分布(c)

图7-18 正常凝固后溶质质量浓度在铸锭内的分布

(2)区域熔炼

区域熔炼是利用杂质在金属的凝固态和熔融态中溶解度的差别,使杂质析出或改变其分布的一种方法。具体操作为将材料制成细棒状,用高频感应加热,使一小段固体熔融成液态。

熔融区慢慢从放置材料的一端向另一端移动。在熔融区的末端,固体重结晶,而含杂质部分因比纯质的熔点略低,较难凝固,变富集于前端。

此式为区域熔炼方程,表示了经一次区域熔炼后随凝固距离变化的固溶体质量浓度。

(3)表征液体混合程度的有效分配系数k e

有效分配系数Ke:

有效分配系数Ke的数学表达式:

图7-19 有效分配系数k e值不同时,溶质的分布情况(a)k e=1(b)k e=k0(c)k0

(4)合金凝固中的成分过冷

①成分过冷的概念

热过冷:纯金属在凝固时,其理论凝固温度(T m)不变。当液态金属中的实际温度低于T m时,就引起过冷,这种过冷称为热过冷。

成分过冷:在合金凝固时(液相部分或完全混合),由于液相中溶质的分布发生变化而改变了凝固温度,将界面前沿液体中的实际温度低于由溶质分布所决定的凝固温度时产生的过冷,称为成分过冷。

②产生成分过冷的临界条件:

成分过冷能否产生及其程度取决于液一固界面前沿液体中的溶质质量浓度分布和实际

温度分布这两个因素。

图7-20 k 0<1合金的成分过冷示意图

产生成分过冷的条件:

01k k D mw R G -< a .合金本身:液相线越陡,合金含溶质浓度越高,液体中扩散系数越小,K 0<1时K 0值

越小;或者K 0>1时,K 0值越大,都会促进成分过冷倾向增大。

b .外界条件:温度梯度越小,凝固速度越快,则使成分过冷倾向增大。 ③成分过冷对晶体生长形态的影响

图7-21 成分过冷对晶体生长形态的影响

2.共晶凝固理论

共晶组织是由液相同时结晶出两个固相得到的。

1)共晶组织分类及其形成机制

a.金属-金属型(粗糙-粗糙界面)大多是层片状或棒状合金

b.金属-非金属型(粗糙-光滑界面)组织通常形态复杂,如片状,骨骼状。

c.非金属—非金属型(光滑—光滑界面)

二元合金相图

第二章二元合金相图 纯金属在工业上有一定的应用,通常强度不高,难以满足许多机器零件和工程结构件对力学性能提出的各种要求;尤其是在特殊环境中服役的零件,有许多特殊的性能要求,例如要求耐热、耐蚀、导磁、低膨胀等,纯金属更无法胜任,因此工业生产中广泛应用的金属材料是合金。合金的组织要比纯金属复杂,为了研究合金组织与性能之间的关系,就必须了解合金中各种组织的形成及变化规律。合金相图正是研究这些规律的有效工具。 一种金属元素同另一种或几种其它元素,通过熔化或其它方法结合在一起所形成的具有金属特性的物质叫做合金。其中组成合金的独立的、最基本的单元叫做组元。组元可以是金属、非金属元素或稳定化合物。由两个组元组成的合金称为二元合金,例如工程上常用的铁碳合金、铜镍合金、铝铜合金等。二元以上的合金称多元合金。合金的强度、硬度、耐磨性等机械性能比纯金属高许多,这正是合金的应用比纯金属广泛得多的原因。 合金相图是用图解的方法表示合金系中合金状态、温度和成分之间的关系。利用相图可以知道各种成分的合金在不同温度下有哪些相,各相的相对含量、成分以及温度变化时所可能发生的变化。掌握相图的分析和使用方法,有助于了解合金的组织状态和预测合金的性能,也可按要求来研究新的合金。在生产中,合金相图可作为制订铸造、锻造、焊接及热处理工艺的重要依据。 本章先介绍二元相图的一般知识,然后结合匀晶、共晶和包晶三种基本相图,讨论合金的凝固过程及得到的组织,使我们对合金的成分、组织与性能之间的关系有较系统的认识。 2.1 合金中的相及相图的建立 在金属或合金中,凡化学成分相同、晶体结构相同并有界面与其它部分分开的均匀组成部分叫做相。液态物质为液相,固态物质为固相。相与相之间的转变称为相变。在固态下,物质可以是单相的,也可以是由多相组成的。由数量、形态、大小和分布方式不同的各种相组成合金的组织。组织是指用肉眼或显微镜所观察到的材料的微观形貌。由不同组织构成的材料具有不同的性能。如果合金仅由一个相组成,称为单相合金;如果合金由二个或二个以上的不同相所构成则称为多相合金。如含30%Zn的铜锌合金的组织由α相单相组成;含38%Zn的铜锌合金的组织由α和β相双相组成。这两种合金的机械性能大不相同。 合金中有两类基本相:固溶体和金属化合物。 2.1.1 固溶体与复杂结构的间隙化合物 2.1.1.1 固溶体 合金组元通过溶解形成一种成分和性能均匀的、 且结构与组元之一相同的固相称为固溶体。与固溶 体晶格相同的组元为溶剂,一般在合金中含量较多; 另一组元为溶质,含量较少。固溶体用α、β、γ等 符号表示。A、B组元组成的固溶体也可表示为A (B),其中A为溶剂,B为溶质。例如铜锌合金中 锌溶入铜中形成的固溶体一般用α表示,亦可表示 为Cu(Zn)。图2.1 置换与间隙固溶体示意图 ⑴固溶体的分类 ①按溶质原子在溶剂晶格中的位置(如图2.1)分为:

金属凝固原理复习资料

金属凝固原理复习题部分参考答案 (杨连锋2009年1月) 2004年 二 写出界面稳定性动力学理论的判别式,并结合该式说明界面能,温度梯度,浓度梯度对界面稳定性的影响。 答:判别式, 2 01()()2 (1)m c v D s g m v D g G T k ωωωω * *??- ??? =-Γ- ++?? -- ??? ,()s ω的正负决定 着干扰振幅是增长还是衰减,从而决定固液界面稳定性。第一项是由界面能决定的,界面能不可能是负值,所以第一项始终为负值,界面能的增加有利于固液界面的稳定。第二项是由温度梯度决定的,温度梯度为正,界面稳定,温度梯度为负,界面不稳定。第三项恒为正,表明该项总使界面不稳定,固液界面前沿形成的浓度梯度不利于界面稳定,溶质沿界面扩散也不利于界面稳定。 三 写出溶质有效分配系数E k 的表达式,并说明液相中的对流及晶体生长速度对E k 的影 响。若不考虑初始过渡区,什么样的条件下才可能有0s C C * = 答:0 00 (1)N L s v E D C k k C k k e δ*- = = +- 可以看出,搅拌对流愈强时,扩散层厚度N δ愈小, 故s C * 愈小。生长速度愈大时,s C * 愈向0C 接近。(1)慢的生长速度和最大的对流时,N L v D δ《1,0E k k = ;(2)大的生长速度或者液相中没有任何对流而只有扩散时,N L v D δ》1,E k =1 (3)液相中有对流,但属于部分混合情况时,0 1E k k <<。1E k =时,0 s C C * = ,即在 大的生长速度或者液相中没有任何对流而只有扩散时。 四 写出宏观偏析的判别式,指出产生正偏析,负偏析,和不产生偏析的生长条件。 答:0 1s q q C k C k = -+,s C 是溶质的平均浓度,0C 是液相的原始成分,q 是枝晶 内溶质分布的决定因素,它是合金凝固收缩率β,凝固速度u 和流动速度v 的函数, (1)(1)v q u β=-- 。0s C C =,即 1p u v β β =- -时,q=1,无宏观偏析。0s C C >时,对于01k <的合金来说,为正偏析,此时 1p u v β β >- -。0s C C <时,对于01k <的合金来 说,为负偏析,此时 1p u v β β <- -。 五 解:用2m m m m r m m k r T V T V T H H σσ?=- ?=- ? ??计算

第一章 合金凝固理论

1.解释概念 成份过冷,有效分配系数,宏观偏析 2.杠杆定律的意义及适用条件。 3.两相平衡时,如何确定平衡相的成份,为什么? 4.根据公切线法则,画出共晶温度时各相自由焓—成份曲线示意图。 5.合金结晶与纯金属有何不同? 6.铜和镍固态完全互溶,它们的熔点分别是T Cu=1083℃,T Ni=1452℃,问Ni-10%Cu及 Ni-50%Cu两种合金在浇铸和凝固条件相同的条件下,哪种合金形成柱状晶的倾向大?哪种合金的枝晶偏析严重?为什么? 7.画图并说明共晶成分的Al-Si合金在快冷条件下得到亚共晶组织α+(α+Si)的原因。 8.画出Pb-Sn相图,求: l分析过共晶合金80%Sn的平衡结晶过程(写出反应式)、画出冷却曲线及组织示意图、写出结晶后的室温组织。 l求室温组织中组织组成物的相对重量、共晶组织中的共晶α及共晶β的相对重量。 l求室温组织中组成相的相对重量。 9.填空 l固溶体合金,在铸造条件下,容易产生___偏析,用___ 方法处理可以消除。 l Al-CuAl2共晶属于__ 型共晶,Al-Si共晶属于__型共晶,Pb-Sn共晶属于__型共晶。 l固溶体合金凝固时有效分配系数ke的定义是__。当凝固速率无限缓慢时,ke趋于__; 当凝固速率很大时,则ke趋于__ 。 l K0<1的固溶体合金非平衡凝固的过程中,K0越小,成分偏析越____ , 提纯效果越_____;而K0>1的固溶体合金非平衡凝固的过程中,K0越大,成分偏析越____ , 提纯效果越_____。 l固溶体合金_____ 凝固时成分最均匀,液相完全混合时固溶体成分偏析(宏观偏析)最___ ,液相完全无混合时固溶体成分偏析最____ ,液相部分混合时固溶体成分偏析_________。 10.试说明在正温度梯度下为什么固溶体合金凝固时一般呈树枝状方式长大,而纯金属却 得不到树枝状晶体? 11.根据所示的Al-Si共晶相图,试分析下列(a,b,c)三个金相组织属什么成分并说明理由。指出细化 此合金铸态组织的可能用途。 12.指出相图错误,并加以改正。

金属凝固理论重点总结

金属凝固理论复习资料 一、名词解释 1.能量起伏:金属晶体结构中每个原子的振动能量不是均等的,一些原子的能量超过原子 的平均能量,有些原子的能量则远小于平均能量,这种能量的不均匀性称为“能量起伏” 2.结构起伏:液态金属中的原子集团处于瞬息万变的状态,时而长大时而变小,时而产生 时而消失,此起彼落,犹如在不停顿地游动。这种结构的瞬息变化称为结构起伏。 3.浓度起伏:不同原子间结合力存在差别,在金属液原子团簇之间存在着成分差异。这种 成分的不均匀性称为浓度起伏。 4.熔化潜热:将金属加热到至熔点时,金属体积突然膨胀,等于固态金属从热力学温度零 度加热到熔点的总膨胀量,金属的其他性质如电阻,粘性等发生突变,吸收的热能。 5.充型能力:液态金属充满铸型型腔,获得形状完整,轮廓清晰的铸件的能力。 6.成分过冷:由溶质再分配导致的界面前方熔体成分及其凝固温度发生变化而引起的过 冷。 7.热过冷:仅由熔体实际温度分布所决定的过冷状态称为热过冷 8.宏观偏析:又称长程偏析或区域偏析,指较大范围内的化学成分不均匀现象,表现为铸 件各部位之间化学成分的差异。 9.微观偏析:微观偏析是指微小范围(约一个晶粒范围)内的化学成分不均匀现象,按位 置不同可分为晶内偏析(枝晶偏析)和晶界偏析。 10.微观偏析 (1)晶内偏析:在一个晶粒内出现的成分不均匀现象,常产生于有一定结晶温度范围、能够形成固溶体的合金中。 (2)晶界偏析:溶质元素和非金属夹杂物富集与晶界,使晶界和晶内的化学成分出现差异。它会降低合金的塑性和高温性能,又会增加热裂倾向。 11.宏观偏析: (1)正常偏析:当合金溶质分配系数k<1时,凝固界面的液相中将有一部分被排出,随着温度的降低,溶质的浓度将逐渐增加,越是后来结晶的固相,溶质浓度越高,当k>1时相反。正常偏析存在使铸件的性能不均匀,在随后的加工中难以消除。 (2)逆偏析:即k<1时,铸件表面或底部含溶质元素较多,而中心部分或上部分含溶质较少。 (3)V形偏析和逆V形偏析:常出现在大型铸锭中,一般呈锥形,偏析中含有较高的碳以及硫和磷等杂质。 (4)带状偏析:它总是和凝固的固-液界面相平行。 (5)重力偏析:由于重力的作用而出现化学成分不均匀的现象,常产生于金属凝固前和刚刚开始凝固之际。 枝晶偏析:由于固溶体合金多按枝晶方式生长,分支本身分支与分支间的成分是不均匀的,故称为~。 12.正偏析:指溶质含量高于其平均溶质含量的区域 13.负偏析:降低该区的溶质浓度,使该区C5降低,产生的偏析。(溶质含量低于其平均溶 质含量的区域) 14.重力偏析:由于沿垂直方向逐层凝固而产生的正常偏析和固液相之间或互不相容的液相 之间有的密度不同,在凝固过程中发生沉浮现象造成的。 15.过热度:指金属熔点与液态金属温度之差。 16.过冷度:理论结晶温度与实际结晶温度的差值称为过冷度

第四章 二元合金相图与合金凝固参考答案

第四章二元合金相图与合金凝固 一、本章主要内容: 相图基本原理:相,相平衡,相律,相图的表示与测定方法,杠杆定律; 二元匀晶相图:相图分析,固溶体平衡凝固过程及组织,固溶体的非平衡凝固与微观偏析固溶体的正常凝固过程与宏观偏析:成分过冷,溶质原子再分配,成分过冷的形成及对组织的影响,区域熔炼; 二元共晶相图:相图分析,共晶系合金的平衡凝固和组织,共晶组织及形成机理:粗糙—粗糙界面,粗糙—光滑界面,光滑—光滑界面; 共晶系非平衡凝固与组织:伪共晶,离异共晶,非平衡共晶; 二元包晶相图:相图分析,包晶合金的平衡凝固与组织,包晶反应的应用 铸锭:铸锭的三层典型组织,铸锭组织控制,铸锭中的偏析 其它二元相图:形成化合物的二元相图,有三相平衡恒温转变的其它二元相图:共析,偏晶,熔晶,包析,合晶,有序、无序转变,磁性转变,同素异晶转变 二元相图总结及分析方法 二元相图实例:Fe-Fe3C亚稳平衡相图, 相图与合金性能的关系 相图热力学基础:自由能—成分曲线,异相平衡条件,公切线法则,由成分—自由能曲线绘制二元相图 二、 1.填空 1 相律表达式为___f=C-P+ 2 ___。 2. 固溶体合金凝固时,除了需要结构起伏和能量起伏外,还要有___成分_______起伏。 3. 按液固界面微观结构,界面可分为____光滑界面_____和_______粗糙界面___。 4. 液态金属凝固时,粗糙界面晶体的长大机制是______垂直长大机制_____,光滑界面晶体的长大机制是____二维平面长大____和_____依靠晶体缺陷长大___。 5 在一般铸造条件下固溶体合金容易产生__枝晶____偏析,用____均匀化退火___热处理方法可以消除。 6 液态金属凝固时,若温度梯度dT/dX>0(正温度梯度下),其固、液界面呈___平直状___状,dT/dX<0时(负温度梯度下),则固、液界面为______树枝___状。 7. 靠近共晶点的亚共晶或过共晶合金,快冷时可能得到全部共晶组织,这称为____伪共晶__。 8 共晶,包晶,偏晶,熔晶反应式分别为_______L1→α+β______, __ L+α→β____, ______ L1—L2+α________, ___________γ→α+ L _______。

凝固理论

凝固理论进展与快速凝固 摘要:本文综述了凝固理论的某些新进展,对高生长速率下的凝固热力学与形核、生长动力学,特别是非平衡溶质分配系数,形核孕育期与相选择,化学成分及熔体热历史对形核机制的影晌,平界面的绝对稳定性,快速的枝晶/胞晶生长以及样品体积内快凝过程的发展等问题给出了定量的表述,文中还指出了对快凝过程进行分析和设计的工作步骤。 关健词:快速凝固,热力学,动力学,形核,晶体生长,相选择 0 前言 在近几十年中,凝固技术的重要进展有:连续铸造的扩大应用;定向凝固与单晶生长技术的完善;半固态(流变)铸造从研究走向了实际应用;通过凝固过程制备重要的新型材料,如复合材料、自生复合材料、梯度材料等;快速凝固技术的出现与应用。快速凝固是通过合金熔体的快速冷却(≥104-106K/s)或非均质形核的被遏制,使合金在很大的过冷度下发生高生长速率(≥1-100cm/s)的凝固,可制备非晶、准晶、微晶和纳米晶合金,此类新型功能或结构材料正在逐步进人工业应用。可见,现代凝固技术的发展不仅致力于获得外形完美、内无宏观缺陷的零件,而且追求在材料中形成常规工艺条件下不可能出现的结构与显微组织特征,使其具备一系列特殊优异的使用性能。从这个意义上说,新凝固技术与新材料的研究和发展已融为一体,最具代表性的例子是快速凝固技术,它的出现和发展直接促进了新一代金属玻璃与微晶、纳米晶合金的形成。 现代凝固技术的研究与应用,迫切要求以液/固相变理论的新成果为指导。在研究对象的尺度上,不局限于宏观的凝固过程的研究,而是要在原子尺度上对移动的液/固界面的行为进行分析。与凝固技术的发展相适应,近年来凝固理论的研究在下列方面取得进展:从传热、传质和固/液界面动力学三个方面对凝固动力学过程给出了不断改进的定量描述;固/液界面形态稳定性理论继续完善,可在低速生长至高速生长的较宽范围内,全面估计界面能、界面曲率、结晶潜热等对晶体形貌及显微结构的影响,提供晶体形态转变的定量判据;大过冷和高生长速率下的凝固热力学和动力学研究不断深入,为合金快速凝固过程的分析和设计提供了依据。 本文将概略介绍近年来凝固理论的某些研究成果;对快速凝固条件下的热力学和形核、生长动力学,以及相选择和显微结构的形成等问题给出定量的表述,以便更有效地对合金的快速凝固过程进行分析、设计和控制。

金属凝固理论答案

1.凝固速度对铸件凝固组织、性能与凝固缺陷的产生有重要影响。试分析可以通过哪些工艺措施来改变或控制凝固速度? 答:① 改变铸件的浇注温度、浇铸方式与浇铸速度; ② 选用适当的铸型材料和起始(预热)温度; ③ 在铸型中适当布置冷铁、冒口与浇口; ④ 在铸型型腔内表面涂敷适当厚度与性能的涂料。 2. 影响铸件凝固方式的因素有哪些? 答:①合金凝固温度区间;②铸件断面的温度梯度。 3. 何为凝固动态曲线?有何意义? 答: 凝固动态曲线:在凝固体的断面上,不同时间、不同位置达到同一温度点(液相温度、固相温度)连接起来的曲线。 意义:判断金属在凝固过程中两相去的宽窄由两相区的宽窄判断凝固断面的凝固方式。 4. 凝固方式分为几种?对铸件质量有何影响? 答:①逐层凝固方式,对铸件质量的影响:流动性能好,容易获得健全的铸件。液体补缩好,铸件的组织致密,形成集中缩孔的倾向大(形成缩松的倾向小,可以采用一定的工艺措施消除集中缩孔)。热裂倾向小(因为热裂是在凝固区形成的,凝固区域窄,晶间不易出现裂纹,即使出现也可以焊合)。气孔倾向小,应力大,宏观偏析严重。 ②体积凝固方式,对铸件质量的影响:流动性能不好,不容易获得健全的铸件。液体补缩不好,铸件的组织不致密,热裂形成集中缩孔的倾向小。热裂倾向大(因为热裂是在凝固区形成的,凝固区域宽,晶间易出现裂纹),气孔倾向大,应力小,宏观偏析不严重。 ③中间凝固方式,对铸件质量的影响:可大幅改善铸件的组织和降低铸件的中心缺陷,介于前两者之间。 5.凝固时间“平方根定律”与“折算厚度法则”有何区别? 答:“平方根定律”是对于大平板,球体和长圆柱体铸件比较准确,对于短而粗的杆和矩形;“折算厚度法则”考虑了铸件形状,由于边角效应的影响,计算结果一般比实际凝固时间长10%~20%。“折算定律”考虑了铸件形状影响因素,接近实际,是对“平方根定律”的修正。它们形式一样但意义不一样。 6. 比较同样体积大小的球状、块状、板状及杆状铸件凝固时间的长?。 答:一般在体积相同的情况下上述物体的表面积大小依次为:A 球t 块>t 板>t 杆。 5. 在砂型中浇铸尺寸为300?300?20 mm 的纯铝板。设铸型的初始温度为20℃,浇注后瞬间铸件-铸型界面温度立即升至纯铝熔点660℃,且在铸件凝固期间保持不变。浇铸温度为 纯铝 212 1200 2700 6.5?10-5 3.9?105 砂型 0.739 1840 1600 2.5?10-7 试求:(1)根据平方根定律计算不同时刻铸件凝固层厚度s,并作出曲线; (2)分别用“平方根定律”及“折算厚度法则”计算铸件的完全凝固时间,并分析差别。 解:(1) 代入相关已知数解得: 2222ρλc b ==1475 ,

第四章材料的成形凝固与二元合金相图参考答案.doc

第四章材料的成形凝固与二元合金相图 习题参考答案 一、解释下列名词 答:1、凝固:物质由液态转变为固态的过程。 2、过冷度:实际结晶温度与理论结晶温度之差称为过冷度。 3、自发形核:在一定条件下,从液态金属中直接产生,原子呈规则排列的结晶核心。 4、非自发形核:是液态金属依附在一些未溶颗粒表面所形成的晶核。 5、变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒的处理方法。 6、变质剂:在浇注前所加入的难熔杂质称为变质剂。 7、同素异构转变:金属在固态下随温度的改变,由一种晶格转变为另一种晶格的现象。 8、合金:通过熔炼,烧结或其它方法,将一种金属元素同一种或几种其它元素结合在一起所形成的具有金属特性的新物质。 9、组元:组成合金的最基本的、独立的物质。 10相:在金属或合金中,凡成分相同、结构相同并与其它部分有界面分开的均匀组成部分。 11、相图:用来表示合金系中各个合金的结晶过程的简明图解称为相图。 12、枝晶偏析:实际生产中,合金冷却速度快,原子扩散不充分,使得先结晶出来的固溶体合金含高熔点组元较多,后结晶含低熔点组元较多,这种在晶粒内化学成分不均匀的现象。 13、比重偏析:比重偏析是由组成相与溶液之间的密度差别所引起的。如果先共晶相与溶液之间的密度差别较大,则在缓慢冷却条件下凝固时,先共晶相便会在液体中上浮或下沉,从而导致结晶后铸件上下部分的化学成分不一致的现象。 二、填空题 1、实际结晶温度比理论结晶温度略低一些的现象称为金属结晶的过冷现象,实际结晶温度与理论结晶温度之差称为过冷度。 2、金属结晶过程是晶核形成与晶核长大的过程,这是结晶的基本规律。 3、金属结晶时的冷却速度越快,则过冷度越大,结晶后的晶粒越细,其强度越高,塑性和韧性越好。 4、典型的金属铸锭组织由三层组成,即表层细晶区、柱状晶区、中心粗等轴晶区。 5、在金属铸锭中,除组织不均匀外,还经常存在缩孔、气孔、疏松等各种铸造缺陷。 6、其它条件相同时,在下列铸造条件下,就铸件晶粒大小来说:

第四章 二元合金相图与合金凝固答案教学内容

第四章二元合金相图与合金凝固答案

第四章二元合金相图与合金凝固 一、本章主要内容: 相图基本原理:相,相平衡,相律,相图的表示与测定方法,杠杆定律; 二元匀晶相图:相图分析,固溶体平衡凝固过程及组织,固溶体的非平衡凝固与微观偏析 固溶体的正常凝固过程与宏观偏析:成分过冷,溶质原子再分配,成分过冷的形成及对组织的影响,区域熔炼; 二元共晶相图:相图分析,共晶系合金的平衡凝固和组织,共晶组织及形成机理:粗糙—粗糙界面,粗糙—光滑界面,光滑—光滑界面; 共晶系非平衡凝固与组织:伪共晶,离异共晶,非平衡共晶; 二元包晶相图:相图分析,包晶合金的平衡凝固与组织,包晶反应的应用 铸锭:铸锭的三层典型组织,铸锭组织控制,铸锭中的偏析 其它二元相图:形成化合物的二元相图,有三相平衡恒温转变的其它二元相图:共析,偏晶,熔晶,包析,合晶,有序、无序转变,磁性转变,同素异晶转变 二元相图总结及分析方法 二元相图实例:Fe-Fe3C亚稳平衡相图, 相图与合金性能的关系 相图热力学基础:自由能—成分曲线,异相平衡条件,公切线法则,由成分—自由能曲线绘制二元相图 二、 1.填空 1 相律表达式为___f=C-P+ 2 ___。 2. 固溶体合金凝固时,除了需要结构起伏和能量起伏外,还要有___成分 _______起伏。 3. 按液固界面微观结构,界面可分为____光滑界面_____和_______粗糙界面___。

4. 液态金属凝固时,粗糙界面晶体的长大机制是______垂直长大机制_____,光滑界面晶体的长大机制是____二维平面长大____和_____依靠晶体缺陷长大___。 5 在一般铸造条件下固溶体合金容易产生__枝晶____偏析,用____均匀化退火___热处理方法可以消除。 6 液态金属凝固时,若温度梯度dT/dX>0(正温度梯度下),其固、液界面呈___平直状___状,dT/dX<0时(负温度梯度下),则固、液界面为______树枝___状。 7. 靠近共晶点的亚共晶或过共晶合金,快冷时可能得到全部共晶组织,这称为____伪共晶。 8 共晶,包晶,偏晶,熔晶反应式分别为_______L1→α+β______, __ L+α→β ____, ______ L1—L2+α________, ___________γ→α+ L _______。 10 共析,偏析,包析反应式分别为______γ→α+β________,______ α1—α2+β________,_______α+β→γ______。 11 固溶体合金凝固时,溶质分布的有效分配系数k0=__ C s/C l __ 14 固溶体合金定向凝固时,液相中溶质混合越充分,则凝固后铸锭成分_偏析最严重__。 15. 在二元相图中,L1→α+L2叫___偏晶___反应,β→L+α称为___熔晶__转变,而反应α1—α2+β称为____偏析___反应,α+β→γ称为___包析___反应。19 Fe-Fe3C相图中含碳量小于__ 0.0218-2.11% __为钢,大于___ 2.11% __为铸铁;铁碳合金室温平衡组织均由_______F______和____ Fe3C __________两个基本相组成;根据溶质原子的位置,奥氏体其晶体结构是____ FCC __________,是____间隙________固溶体,铁素体是_____ ____间隙固溶体 ______固溶体,其晶体结构是__ BCC ____,合金平衡结晶时,奥氏体的最大含C量是___ 2.11 _______;珠光体是由___铁素体____和__渗碳体__组成的两相混合物;莱氏体的含碳量_____ 4.3% ____;在常温下,亚共析钢的平衡组织是___ P+F ___,过共析钢的平衡组织是____ P+Fe3C II ____,亚共晶白口铸铁的平

二元合金相图的绘制与应用

二元合金相图的绘制与应用 实验二元合金相图的绘制与应用 一、目的要求 1、理解步冷曲线,学会用热分析方法测绘Sn-Bi 二元合金相图 2、学会铂电阻的测温技术,尝试用金属相图测量装置测量温度的方法 3、掌握微电脑控制器的使用方法 4、理解产生过冷现象的原因及避免产生过冷现象的方法 二、基本原理 相图是用几何图形来表示多相平衡体系中有哪些相、各相的成分如何,不同相的相对量是多少,以及它们随浓度、温度、压力等变量变化的关系图。对蒸气压较小的二组分凝聚体系,常以温度-组成图来描述。热分析方法与步冷曲线 热分析方法是绘制相图常用的基本方法之一。将两种金属按一定比例配成并把它加热成均匀的液相体系,然后让它在一定的环境中自行冷却,并每隔一定的时间(例如0.5min 或1min )记录一次温度,以温度T 为纵坐标,以时间t 为横坐标,做出温度-时间(T-t )曲线,称为步冷曲线。若体系均匀冷却时,冷却过程不发生相变化,则体系的温度随时间的变化是均匀的,则步冷曲线不出现转折或平台,而是一条直线,冷却速度快。若冷却过程中发生了相变化,由于相变化过程中伴随有热效应,发生相变热,所以体系温度随时间的变化速度将发生改变,体系的冷却速度减缓,步冷曲线就出现转折或平台。测定一系列组成不同的样品的步冷曲线,从曲线上找出各相对应体系发生相变的温度,就可以绘制出被测系统的相图。这就是用热分析法绘制液固相图的概要. 如图所示: T /℃ t Bi-Cd 合金冷却曲线 曲线1、5是纯物质的步冷曲线。当系统从高温冷却时,开始没有发生相变化,温度 下降比较快,步冷曲线较陡;冷却到A 的熔点时,固体A 开始析出,系统出现两相平衡(固体A 和溶液平衡共存),根据相律,此时f= k-?+1=1-2+1=0,系统温度维持不变, 步冷曲线出现bc 的水平线段;直到液相完全凝固后,温度又继续下 降。 曲线2、4是A 与B 组成的混合物的步冷曲线。与纯物质的步冷曲线不同。系统从高温冷却到温度b ’时, 开始有固体A 不断析出,这时体系呈两相,溶液中含A 的量随之

第三章 二元合金相图和合金的凝固

第三章二元合金相图和合金的凝固 一.名词解释 相图、相律、匀晶转变、共晶转变、包晶转变、共析转变、包析转变、异晶转变、平衡结晶、不平衡结晶、异分结晶、平衡分配系数、晶内偏析、显微偏析、区域偏析、区域提纯、成份过冷、胞状组织、共晶组织、亚共晶组织、过共晶组织、伪共晶、离异共晶、 二.填空题 1.相图可用于表征合金体系中合金状态与和之间的关系。 2.最基本的二元合金相图有、、。 3.根据相律,对于给定的金属或合金体系,可独立改变的影响合金状态的内部因 素和外部因素的数目,称为,对于纯金属该数值最多为,而对于二元合金该数值最多为。 4.典型的二元合金匀晶相图,如Cu-Ni二元合金相图,包含、两 条相线,、、三个相区。 5.同纯金属结晶过程类似,固溶体合金的结晶包括和两 个基本过程。 6.勻晶反应的特征为_____________,其反应式可描述为________ 。 7.共晶反应的特征为_____________,其反应式可描述为___________ _。 8.共析反应的特征为_____________,其反应式可描述为_____________。 9.金属或合金在极缓慢冷却条件下进行的结晶过程称为。纯金属结 晶时所结晶出的固相成分与液相成分,称为;而固溶体合金结晶时所结晶出的固相成分与液相成分,称为。 10.固溶体合金经不平衡结晶所产生的两类成分偏析为、。 11.固溶体合金产生晶内偏析的程度受到溶质原子扩散能力的影响,若结晶温度较 高,溶质原子的扩散能力小,则偏析程度。如磷在钢中的扩散能力较硅小,所以磷在钢中的晶内偏析程度较,而硅的偏析较。 12.固溶体合金结晶后出现枝晶偏析时,结晶树枝主轴含有较多的________组元。 严重的晶内偏析降低合金的,为消除枝晶偏析,工业生产中广泛采用的方法。 13.根据区域偏析原理,人们开发了,除广泛用于提纯金属、金属化合物 外,还应用于半导体材料及有机物的提纯。通常,熔化区的长度,液体

金属凝固原理(全)

《金属凝固理论》期末复习题 一、是非判断题 1 金属由固态变为液态时熵值的增加远远大于金属由室温加热至熔点时熵值的增加。(错) 2 格拉晓夫准则数大表明液态合金的对流强度较小。(错) 3 其它条件相同时,凹形基底的夹杂物不如凸形基底的夹杂物对促进形核有效。(错) 4 大的成分过冷及强形核能力的形核剂有利于等轴晶的形成。(对) 5 大多数非小平面-小平面共晶合金的共晶共生区呈现非对称型。(对) 6 根据相变动力学理论,液态原子变成固态原子必须克服界面能。(对) 7 具有糊状凝固方式的合金容易产生分散缩孔。(对) 8.金属熔体的黏度与金属的熔点相类似,本质都是反映质点间(原子间)结合力大小。(对) 9. 以熔体中某一参考原子作为坐标原点,径向分布函数表示距参考原子r处找到其他原子的 几率。(错) 10. 液态金属中在3-4个原子直径的范围内呈一有序排列状态,但在更大范围内,原子间呈无序状态。(对) 11. 金属熔体的黏度越大,杂质留在铸件中的可能性就越大。(对) 12. 半固态金属在成型过程中遵循的流变特性,主要满足宾汉体的流变特性(对) 13. 在砂型中,低碳钢的凝固方式是体积凝固。(错) 14. 铸型具有一定的发气能力,会导致型腔气体反压增大,充型能力下降。(对) 15. 晶体生长的驱动力是固液两相的体积自由能差值。(对) 16. 绝大多数金属或合金的生长是二维晶核生长机理。(错) 17. Fe-Fe3C共晶合金结晶的领先相是奥氏体。(错) 18. 铸件中的每一个晶粒都代表着一个独立的形核过程,而铸件结晶组织的形成则是这些晶 核就地生长的结果。(错) 19. 型壁附近熔体内部的大量形核只是表面细晶粒区形成的必要条件,而抑制铸件形成稳定 的凝固壳层则为其充分条件. (对) 20.对于薄壁铸件,选择蓄热系数小的铸型有利于获得细等轴晶。(错) 21.处理温度越高,孕育衰退越快。因此在保证孕育剂均匀溶解的前提下,应尽量降低处理 温度。(对) 22. 铸铁中产生的石墨漂浮属于逆偏析。(错) 23.湿型铸造的阀体铸件件皮下形成的内表面光滑的气孔,其形成原因主要是砂型的发气量 大、透气性不足。(对) 二、名词解释 1.黏度:是熔体在不同层面上存在相对运动时才表现出来的一种物理性能,其本质反映的是 质点间的结合力大小。 2.金属遗传性:指在结构上,由原始炉料通过熔体阶段向铸造合金的信息传递,具体表现在 原始炉料通过熔体阶段对合金零件凝固组织,力学性能及凝固缺陷的影响。 3.半固态铸造:指在金属的凝固过程中,对金属施加剧烈的搅拌或扰动、或改变金属的热状 态、或加入晶粒细化剂、或进行快速凝固,即改变初生固相的形核和长大 过程,得到的一种液态金属熔体中均匀地悬浮着一定球状初生固相的固液 混合浆料,然后利用其进行成型的工艺。 4. 充型能力:液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力 5.非均质形核:指在不均匀的熔体中依靠外来杂质或型壁界面提供的衬底进行形核的过程 6. 临界形核半径:由金属学可知,只有大于临界半径的晶胚才可以作为晶核稳定存在,此

包晶合金凝固理论及过程控制基础

2017年教育部自然科学奖推荐项目公示材料 1、项目名称:包晶合金凝固理论及过程控制基础 2、推荐奖种:自然科学奖 3、推荐单位:哈尔滨工业大学 4、项目简介: 包晶合金是应用非常广泛的工程合金,如航空发动机叶片材料Ti-Al、不锈钢Fe-Ni-Cr、磁性材料Nb-Fe-B、超导材料Y-Ba-Cu-O等。包晶合金凝固过程会出现典型的包晶反应:液相+初生相→包晶相。初生相和包晶相“相近相争”的生长特性,导致包晶凝固经历较长的非稳态初始过渡,引起组成相及组织形态之间竞争与选择的多样性。但这些竞争选择的物理过程还不清楚。2008年,国际著名凝固科学家Kurz在总结进入二十一世纪以来凝固科学技术取得的重要进展时指出,包晶凝固理论研究仍是今后凝固科学的主要方面之一。本项目将包晶合金宏观上分为两大类,即非小平面包晶合金和小平面包晶合金,针对这两大类合金,围绕以下具体内容开展了系统深入的研究。 (1) 包晶凝固相及组织选择。通过综合考虑溶质分凝及界面过冷,推导出描述各种相临界生长条件的7个数学解析式,建立了从初始过渡向稳态生长发展整个过程的相及组织选择理论模型,获得了带状组织、共生组织存在范围对生长条件的依赖关系,解决了包晶凝固初始过渡阶段相及组织演化预测问题,填补了理论空白。 (2) 非小平面类包晶合金包晶反应动力学及两相生长机理。通过对Fe-Ni、Cu-Ge等非小平面类包晶合金进行系统研究,发现了包晶反应三相交接区内初生相的凝固、重熔与再凝固过程,建立了非小平面类包晶反应动力学模型,获得了包晶反应对包晶两相共生生长形态稳定性影响规律,建立了包晶非等温共生生长模型,定量预测其稳定形成区间,为包晶系共生复合材料制备提供了理论和技术依据。 (3) 小平面类包晶合金包晶反应模式与机理。利用高温度梯度定向凝固实验,揭示了温度梯度区域熔化(TGZM)驱动重熔与再凝的小平面包晶反应动力学本质,首次发现了TGZM效应引起的一种全新的“分离式”包晶反应;结合溶质守恒与Fick扩散定律,建立了“分离式”包晶反应物理模型和数学模型。该成果

第7章 二元系相图和合金的凝固与制备原理 笔记及课后习题详解 (已整理 袁圆 2014.8.7)

第七章二元系相图和合金的凝固与制备原理 7.1 复习笔记 一、相图的表示和测定方法 二元相图中的成分有两种表示方法:质量分数(w)和摩尔分数(x)。两者换算如下: 二、相图热力学的基本要点 1.固溶体的自由能一成分曲线

图7-1 固溶体的自由能一成分曲线示意图(a)Ω<0(b)Ω=0(c)Ω>0 相互作用参数的不同,导致自由能一成分曲线的差异,其物理意义为: (1)当Ω<0,即e AB<(e AA+e BB)/2时,A-B对的能量低于A-A和B-B对的平均能量,所以固溶体的A,B组元互相吸引,形成短程有序分布,在极端情况下会形成长程有序,此时△Hm<0。 (2)当Ω=0,即e AB=(e AA+e BB)/2时,A-B对的能量等于A-A和B-B对的平均能量, H=0。 组元的配置是随机的,这种固溶体称为理想固溶体,此时△m (3)当Ω>0,即e AB>(e AA+e BB)/2时,A-B对的能量高于A-A和B-B对的平均能量,意味着A-B对结合不稳定,A,B组元倾向于分别聚集起来,形成偏聚状态,此时△Hm>0。 2.多相平衡的公切线原理 两相平衡时的成分由两相自由能—成分曲线的公切线所确定,如图7-2所示。 对于二元系,在特定温度下可出现三相平衡,如图7-3所示。 图7-2两相平衡的自由能曲线图7-3二元系中三相平衡时的自由能成分曲线3.混合物的自由能和杠杆法则 混合物中B组元的摩尔分数

而混合物的摩尔吉布斯自由能 由上两式可得 上式表明,混合物的摩尔吉布斯自由能G m 应和两组成相和的摩尔吉布斯自由能G m1和G m2在同一直线上。该直线即为相α和β相平衡时的共切线,如图7-4所示。 图7-4 混合物的自由能 两平衡相共存时,多相的成分是切点所对应的成分1x 和2x ,即固定不变。此时可导出: 此式称为杠杆法则,在α和β两相共存时,可用杠杆法则求出两相的相对量,α相的相对量为 122x x x x --,β相的相对量为1 21 x x x x --,两相的相对量随体系的成分x 而变。 4.二元相图的几何规律 (1)相图中所有的线条都代表发生相转变的温度和平衡相的成分,所以相界线是相平衡的体现,平衡相成分必须沿着相界线随温度而变化。 (2)两个单相区之间必定有一个由该两相组成的两相区把它们分开,而不能以一条线接界。两个两相区必须以单相区或三相水平线隔开。即在二元相图中,相邻相区的相数差为l (点接触情况除外),这个规则称为相区接触法则。 (3)二元相图中的三相平衡必为一条水平线,它表示恒温反应。 (4)当两相区与单相区的分界线与三相等温线相交,则分界线的延长线应进入另一两相区内,而不会进入单相区内。

合金凝固理论

高压作用下合金凝固的研究进展 摘要:综述了高压作用下合金凝固的研究现状,重点介绍高压作用下晶粒形核、长大模型、溶质扩散等理论模型,以及高压在材料制备中的应用,最后对高压作用下的合金凝固过程的研究进行了评价与展望。 关键词:合金;凝固;高压;理论模型 0引言 金属凝固过程直接决定凝固组织的大小、分布及相组成,进而决定了铸件的各种性能。优质铸件的获得,必须对凝固过程加以控制,这一领域的研究长期以来一直是材料工作者关注的热点领域。为了控制金属凝固过程,传统的方法是通过调节温度参数来改变凝固组织,而对于影响凝固过程的另一个热力学参数——压力,通常忽略它的作用。其实,压力作为凝固过程参数空间中的一维,往往对凝固过程的发生及进程产生重大影响,甚至可以改变常规条件下的相变顺序,从而有利于一些新相或新材料结构的生成[1,2]。与常规挤压铸造研究不同的是,高压作用下的金属凝固过程突破了常规挤压铸造的压力范围(小于几百兆帕),其压力可高达10~100GPa ,在如此高的压力作用下,凝固过程的热力学参数、动力学参数都随压力而改变,从而影响了凝固过程[3,4]。与快速凝固、微重力、电场、磁场作用下的凝固相同,高压作用下的凝固也属特殊条件下的凝固研究范围,本文将这一领域的研究现状进行介绍,并对未来的发展加以展望[5-10]。 l 高压作用下合金凝固机理 在常压作用下的金属凝固过程中,起主导作用的参数是熔体温度,此时压力对凝固动力学和热力学参数产生的影响可以不计,但在高压条件下,由于压力与温度变得同等重要,压力变成一个不可忽略的因素。 压力通过影响凝固动力学参数、热力学参数,最终改变了微观组织演变机制,从而丰富了凝固理论的研究范围。 1.1 高压对熔体粘度、熔点的影响 高压作用会对熔体中原子的运动产生重要影响,从而改变熔体的粘度,通常压力P 与熔体粘度之间满足下面的关系[11]: KT PVN E )(0exp +=ηη (1) 式中: 0η为常压下的粘度系数,E 为粘滞流变激活能,V 为熔体体积,K 为玻尔兹曼常量,N 为阿伏加德罗常数,T 为绝对温度,P 为作用在熔体上的压力。 式(1)表明,熔体的粘度系数随压力升高而增加,使得金属原子的自由行程受到限制。将描述液一气的克拉珀龙引入到高压作用下的固一液转变过程,可以得到: H V T dP dT m m ??= (2) 式中: m T 为物质的熔点,V ?为熔化时体积的变化,H ?为热焓,压力改变时该值的变化可以忽略。 则式(2)表明,物质熔点随压力的变化受固液相变体积变化的影响,当熔化过程为膨胀反应时,熔点随压力增加而升高;当熔化过程为压缩反应时,熔点随压力增加而减少。 1.2高压作用下溶质扩散模型

金属凝固理论

快速凝固理论与技术的研究及应用 摘要快速凝固技术是近年来得到广泛发展和应用的新型材料的制备技术,其特点是具有较高的冷却速率和明显的非平衡效应。本文介绍了快速凝固技术原理、快速凝固得到的组织特征及原因、快速凝固实现方法,并对快速凝固技术在制备镁合金、铝合金、铜合金、金属纳米结构材料中的应用作了详细介绍。快速凝固技术得到的合金具有超细的晶粒度,无偏析或少偏析的微晶组织,新的亚稳相等与常规合金不同的组织和结构特征。 关键词快速凝固;凝固原理;凝固组织;快速凝固实际应用 Research and Application of Rapid Solidification Theory and Technology ABSTRACT Rapid solidification technology is the preparation technology of new materials and it is widely developed and applied in recent years.The characteristic of the rapid solidification technology is high velocity of cooling and obvious non-equilibrium effect. This paper mainly introduce the principle, structure and the realization method of rapid solidification technology. It also introduces the application of rapid solidification technology which is in magnesium alloy, aluminum alloy, copper alloy and metal nano structure material in detail. The alloy obtained by rapid solidification technology has ultrafine grain size, microcrystalline structure of segregation-free or less segregation, new metastable phase that conventional alloys do not possess. These features all owned by it surely play an important influence on the theoretical study and the need in actual production of material science and other subjects. KEY WORDS rapid solidification; theory of solidification; structure of solidification; practical application of rapid solidification 凝固是金属材料生产过程中材料冶金质量控制的关键环节。在金属材料的生产过程中,完成合金液的冶炼之后,首先需要铸造成铸坯,并进行后续的变形加工。铸坯的凝固质量不仅影响后续的加工工艺,而且对最终产品的性能有重要影响。如钢坯中的成分偏析,晶粒粗大等是长期困扰钢材质量控制的难题。快速凝固的出现在很大程度上解决了这一问题,由于凝固速度极快、凝固时间极短、扩散时间短、晶粒长大时间有限,成分偏析、晶粒粗大等问题在一定程度上得到了解决。这对材料科学及其他学科的理论研究以及满足实际生产中的需要起到了重大作用,因此,近些年材料的快速凝固过程引起了人们的极大兴趣[1]。 1 快速凝固原理、组织特征及性能 1.1快速凝固的原理 快速凝固是指通过对合金熔体的快速冷却(≥104~106K/s)或非均质形核的被遏制,使合金在很大的过冷度下,发生高生长速率(≥1~100cm/s)的凝固[2]。 1.2快速凝固的组织特征 快速凝固能改善合金的显微结构,从而能改善合金的综合力学性能。快速凝固由于是非平衡凝固,因此快速凝固的组织特征不同于普通凝固,加决冷却速度和凝固速率所引起的组织及结构特征可以近似地用图1来表示[3]。

相关主题
文本预览
相关文档 最新文档